1 /* $NetBSD: if_tap.c,v 1.121 2020/12/18 01:31:49 thorpej Exp $ */ 2 3 /* 4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet 31 * device to the system, but can also be accessed by userland through a 32 * character device interface, which allows reading and injecting frames. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.121 2020/12/18 01:31:49 thorpej Exp $"); 37 38 #if defined(_KERNEL_OPT) 39 40 #include "opt_modular.h" 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/atomic.h> 45 #include <sys/conf.h> 46 #include <sys/cprng.h> 47 #include <sys/device.h> 48 #include <sys/file.h> 49 #include <sys/filedesc.h> 50 #include <sys/intr.h> 51 #include <sys/kauth.h> 52 #include <sys/kernel.h> 53 #include <sys/kmem.h> 54 #include <sys/module.h> 55 #include <sys/mutex.h> 56 #include <sys/condvar.h> 57 #include <sys/poll.h> 58 #include <sys/proc.h> 59 #include <sys/select.h> 60 #include <sys/sockio.h> 61 #include <sys/stat.h> 62 #include <sys/sysctl.h> 63 #include <sys/systm.h> 64 65 #include <net/if.h> 66 #include <net/if_dl.h> 67 #include <net/if_ether.h> 68 #include <net/if_tap.h> 69 #include <net/bpf.h> 70 71 #include "ioconf.h" 72 73 /* 74 * sysctl node management 75 * 76 * It's not really possible to use a SYSCTL_SETUP block with 77 * current module implementation, so it is easier to just define 78 * our own function. 79 * 80 * The handler function is a "helper" in Andrew Brown's sysctl 81 * framework terminology. It is used as a gateway for sysctl 82 * requests over the nodes. 83 * 84 * tap_log allows the module to log creations of nodes and 85 * destroy them all at once using sysctl_teardown. 86 */ 87 static int tap_node; 88 static int tap_sysctl_handler(SYSCTLFN_PROTO); 89 static void sysctl_tap_setup(struct sysctllog **); 90 91 struct tap_softc { 92 device_t sc_dev; 93 struct ethercom sc_ec; 94 int sc_flags; 95 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */ 96 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */ 97 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */ 98 #define TAP_GOING 0x00000008 /* interface is being destroyed */ 99 struct selinfo sc_rsel; 100 pid_t sc_pgid; /* For async. IO */ 101 kmutex_t sc_lock; 102 kcondvar_t sc_cv; 103 void *sc_sih; 104 struct timespec sc_atime; 105 struct timespec sc_mtime; 106 struct timespec sc_btime; 107 }; 108 109 /* autoconf(9) glue */ 110 111 static int tap_match(device_t, cfdata_t, void *); 112 static void tap_attach(device_t, device_t, void *); 113 static int tap_detach(device_t, int); 114 115 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc), 116 tap_match, tap_attach, tap_detach, NULL); 117 extern struct cfdriver tap_cd; 118 119 /* Real device access routines */ 120 static int tap_dev_close(struct tap_softc *); 121 static int tap_dev_read(int, struct uio *, int); 122 static int tap_dev_write(int, struct uio *, int); 123 static int tap_dev_ioctl(int, u_long, void *, struct lwp *); 124 static int tap_dev_poll(int, int, struct lwp *); 125 static int tap_dev_kqfilter(int, struct knote *); 126 127 /* Fileops access routines */ 128 static int tap_fops_close(file_t *); 129 static int tap_fops_read(file_t *, off_t *, struct uio *, 130 kauth_cred_t, int); 131 static int tap_fops_write(file_t *, off_t *, struct uio *, 132 kauth_cred_t, int); 133 static int tap_fops_ioctl(file_t *, u_long, void *); 134 static int tap_fops_poll(file_t *, int); 135 static int tap_fops_stat(file_t *, struct stat *); 136 static int tap_fops_kqfilter(file_t *, struct knote *); 137 138 static const struct fileops tap_fileops = { 139 .fo_name = "tap", 140 .fo_read = tap_fops_read, 141 .fo_write = tap_fops_write, 142 .fo_ioctl = tap_fops_ioctl, 143 .fo_fcntl = fnullop_fcntl, 144 .fo_poll = tap_fops_poll, 145 .fo_stat = tap_fops_stat, 146 .fo_close = tap_fops_close, 147 .fo_kqfilter = tap_fops_kqfilter, 148 .fo_restart = fnullop_restart, 149 }; 150 151 /* Helper for cloning open() */ 152 static int tap_dev_cloner(struct lwp *); 153 154 /* Character device routines */ 155 static int tap_cdev_open(dev_t, int, int, struct lwp *); 156 static int tap_cdev_close(dev_t, int, int, struct lwp *); 157 static int tap_cdev_read(dev_t, struct uio *, int); 158 static int tap_cdev_write(dev_t, struct uio *, int); 159 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *); 160 static int tap_cdev_poll(dev_t, int, struct lwp *); 161 static int tap_cdev_kqfilter(dev_t, struct knote *); 162 163 const struct cdevsw tap_cdevsw = { 164 .d_open = tap_cdev_open, 165 .d_close = tap_cdev_close, 166 .d_read = tap_cdev_read, 167 .d_write = tap_cdev_write, 168 .d_ioctl = tap_cdev_ioctl, 169 .d_stop = nostop, 170 .d_tty = notty, 171 .d_poll = tap_cdev_poll, 172 .d_mmap = nommap, 173 .d_kqfilter = tap_cdev_kqfilter, 174 .d_discard = nodiscard, 175 .d_flag = D_OTHER | D_MPSAFE 176 }; 177 178 #define TAP_CLONER 0xfffff /* Maximal minor value */ 179 180 /* kqueue-related routines */ 181 static void tap_kqdetach(struct knote *); 182 static int tap_kqread(struct knote *, long); 183 184 /* 185 * Those are needed by the ifnet interface, and would typically be 186 * there for any network interface driver. 187 * Some other routines are optional: watchdog and drain. 188 */ 189 static void tap_start(struct ifnet *); 190 static void tap_stop(struct ifnet *, int); 191 static int tap_init(struct ifnet *); 192 static int tap_ioctl(struct ifnet *, u_long, void *); 193 194 /* Internal functions */ 195 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *); 196 static void tap_softintr(void *); 197 198 /* 199 * tap is a clonable interface, although it is highly unrealistic for 200 * an Ethernet device. 201 * 202 * Here are the bits needed for a clonable interface. 203 */ 204 static int tap_clone_create(struct if_clone *, int); 205 static int tap_clone_destroy(struct ifnet *); 206 207 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap", 208 tap_clone_create, 209 tap_clone_destroy); 210 211 /* Helper functions shared by the two cloning code paths */ 212 static struct tap_softc * tap_clone_creator(int); 213 int tap_clone_destroyer(device_t); 214 215 static struct sysctllog *tap_sysctl_clog; 216 217 #ifdef _MODULE 218 devmajor_t tap_bmajor = -1, tap_cmajor = -1; 219 #endif 220 221 static u_int tap_count; 222 223 void 224 tapattach(int n) 225 { 226 227 /* 228 * Nothing to do here, initialization is handled by the 229 * module initialization code in tapinit() below). 230 */ 231 } 232 233 static void 234 tapinit(void) 235 { 236 int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca); 237 238 if (error) { 239 aprint_error("%s: unable to register cfattach\n", 240 tap_cd.cd_name); 241 (void)config_cfdriver_detach(&tap_cd); 242 return; 243 } 244 245 if_clone_attach(&tap_cloners); 246 sysctl_tap_setup(&tap_sysctl_clog); 247 #ifdef _MODULE 248 devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor); 249 #endif 250 } 251 252 static int 253 tapdetach(void) 254 { 255 int error = 0; 256 257 if_clone_detach(&tap_cloners); 258 #ifdef _MODULE 259 error = devsw_detach(NULL, &tap_cdevsw); 260 if (error != 0) 261 goto out2; 262 #endif 263 264 if (tap_count != 0) { 265 error = EBUSY; 266 goto out1; 267 } 268 269 error = config_cfattach_detach(tap_cd.cd_name, &tap_ca); 270 if (error != 0) 271 goto out1; 272 273 sysctl_teardown(&tap_sysctl_clog); 274 275 return 0; 276 277 out1: 278 #ifdef _MODULE 279 devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor); 280 out2: 281 #endif 282 if_clone_attach(&tap_cloners); 283 284 return error; 285 } 286 287 /* Pretty much useless for a pseudo-device */ 288 static int 289 tap_match(device_t parent, cfdata_t cfdata, void *arg) 290 { 291 292 return 1; 293 } 294 295 void 296 tap_attach(device_t parent, device_t self, void *aux) 297 { 298 struct tap_softc *sc = device_private(self); 299 struct ifnet *ifp; 300 const struct sysctlnode *node; 301 int error; 302 uint8_t enaddr[ETHER_ADDR_LEN] = 303 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff }; 304 char enaddrstr[3 * ETHER_ADDR_LEN]; 305 306 sc->sc_dev = self; 307 sc->sc_sih = NULL; 308 getnanotime(&sc->sc_btime); 309 sc->sc_atime = sc->sc_mtime = sc->sc_btime; 310 sc->sc_flags = 0; 311 selinit(&sc->sc_rsel); 312 313 cv_init(&sc->sc_cv, "tapread"); 314 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET); 315 316 if (!pmf_device_register(self, NULL, NULL)) 317 aprint_error_dev(self, "couldn't establish power handler\n"); 318 319 /* 320 * In order to obtain unique initial Ethernet address on a host, 321 * do some randomisation. It's not meant for anything but avoiding 322 * hard-coding an address. 323 */ 324 cprng_fast(&enaddr[3], 3); 325 326 aprint_verbose_dev(self, "Ethernet address %s\n", 327 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr)); 328 329 /* 330 * One should note that an interface must do multicast in order 331 * to support IPv6. 332 */ 333 ifp = &sc->sc_ec.ec_if; 334 strcpy(ifp->if_xname, device_xname(self)); 335 ifp->if_softc = sc; 336 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 337 #ifdef NET_MPSAFE 338 ifp->if_extflags = IFEF_MPSAFE; 339 #endif 340 ifp->if_ioctl = tap_ioctl; 341 ifp->if_start = tap_start; 342 ifp->if_stop = tap_stop; 343 ifp->if_init = tap_init; 344 IFQ_SET_READY(&ifp->if_snd); 345 346 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU; 347 348 /* Those steps are mandatory for an Ethernet driver. */ 349 error = if_initialize(ifp); 350 if (error != 0) { 351 aprint_error_dev(self, "if_initialize failed(%d)\n", error); 352 pmf_device_deregister(self); 353 mutex_destroy(&sc->sc_lock); 354 seldestroy(&sc->sc_rsel); 355 356 return; /* Error */ 357 } 358 ifp->if_percpuq = if_percpuq_create(ifp); 359 ether_ifattach(ifp, enaddr); 360 /* Opening the device will bring the link state up. */ 361 ifp->if_link_state = LINK_STATE_DOWN; 362 if_register(ifp); 363 364 /* 365 * Add a sysctl node for that interface. 366 * 367 * The pointer transmitted is not a string, but instead a pointer to 368 * the softc structure, which we can use to build the string value on 369 * the fly in the helper function of the node. See the comments for 370 * tap_sysctl_handler for details. 371 * 372 * Usually sysctl_createv is called with CTL_CREATE as the before-last 373 * component. However, we can allocate a number ourselves, as we are 374 * the only consumer of the net.link.<iface> node. In this case, the 375 * unit number is conveniently used to number the node. CTL_CREATE 376 * would just work, too. 377 */ 378 if ((error = sysctl_createv(NULL, 0, NULL, 379 &node, CTLFLAG_READWRITE, 380 CTLTYPE_STRING, device_xname(self), NULL, 381 tap_sysctl_handler, 0, (void *)sc, 18, 382 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev), 383 CTL_EOL)) != 0) 384 aprint_error_dev(self, 385 "sysctl_createv returned %d, ignoring\n", error); 386 } 387 388 /* 389 * When detaching, we do the inverse of what is done in the attach 390 * routine, in reversed order. 391 */ 392 static int 393 tap_detach(device_t self, int flags) 394 { 395 struct tap_softc *sc = device_private(self); 396 struct ifnet *ifp = &sc->sc_ec.ec_if; 397 int error; 398 399 sc->sc_flags |= TAP_GOING; 400 tap_stop(ifp, 1); 401 if_down(ifp); 402 403 if (sc->sc_sih != NULL) { 404 softint_disestablish(sc->sc_sih); 405 sc->sc_sih = NULL; 406 } 407 408 /* 409 * Destroying a single leaf is a very straightforward operation using 410 * sysctl_destroyv. One should be sure to always end the path with 411 * CTL_EOL. 412 */ 413 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node, 414 device_unit(sc->sc_dev), CTL_EOL)) != 0) 415 aprint_error_dev(self, 416 "sysctl_destroyv returned %d, ignoring\n", error); 417 ether_ifdetach(ifp); 418 if_detach(ifp); 419 seldestroy(&sc->sc_rsel); 420 mutex_destroy(&sc->sc_lock); 421 cv_destroy(&sc->sc_cv); 422 423 pmf_device_deregister(self); 424 425 return 0; 426 } 427 428 /* 429 * This is the function where we SEND packets. 430 * 431 * There is no 'receive' equivalent. A typical driver will get 432 * interrupts from the hardware, and from there will inject new packets 433 * into the network stack. 434 * 435 * Once handled, a packet must be freed. A real driver might not be able 436 * to fit all the pending packets into the hardware, and is allowed to 437 * return before having sent all the packets. It should then use the 438 * if_flags flag IFF_OACTIVE to notify the upper layer. 439 * 440 * There are also other flags one should check, such as IFF_PAUSE. 441 * 442 * It is our duty to make packets available to BPF listeners. 443 * 444 * You should be aware that this function is called by the Ethernet layer 445 * at splnet(). 446 * 447 * When the device is opened, we have to pass the packet(s) to the 448 * userland. For that we stay in OACTIVE mode while the userland gets 449 * the packets, and we send a signal to the processes waiting to read. 450 * 451 * wakeup(sc) is the counterpart to the tsleep call in 452 * tap_dev_read, while selnotify() is used for kevent(2) and 453 * poll(2) (which includes select(2)) listeners. 454 */ 455 static void 456 tap_start(struct ifnet *ifp) 457 { 458 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 459 struct mbuf *m0; 460 461 mutex_enter(&sc->sc_lock); 462 if ((sc->sc_flags & TAP_INUSE) == 0) { 463 /* Simply drop packets */ 464 for (;;) { 465 IFQ_DEQUEUE(&ifp->if_snd, m0); 466 if (m0 == NULL) 467 goto done; 468 469 if_statadd2(ifp, if_opackets, 1, if_obytes, m0->m_len); 470 bpf_mtap(ifp, m0, BPF_D_OUT); 471 472 m_freem(m0); 473 } 474 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) { 475 ifp->if_flags |= IFF_OACTIVE; 476 cv_broadcast(&sc->sc_cv); 477 selnotify(&sc->sc_rsel, 0, 1); 478 if (sc->sc_flags & TAP_ASYNCIO) { 479 kpreempt_disable(); 480 softint_schedule(sc->sc_sih); 481 kpreempt_enable(); 482 } 483 } 484 done: 485 mutex_exit(&sc->sc_lock); 486 } 487 488 static void 489 tap_softintr(void *cookie) 490 { 491 struct tap_softc *sc; 492 struct ifnet *ifp; 493 int a, b; 494 495 sc = cookie; 496 497 if (sc->sc_flags & TAP_ASYNCIO) { 498 ifp = &sc->sc_ec.ec_if; 499 if (ifp->if_flags & IFF_RUNNING) { 500 a = POLL_IN; 501 b = POLLIN | POLLRDNORM; 502 } else { 503 a = POLL_HUP; 504 b = 0; 505 } 506 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL); 507 } 508 } 509 510 /* 511 * A typical driver will only contain the following handlers for 512 * ioctl calls, except SIOCSIFPHYADDR. 513 * The latter is a hack I used to set the Ethernet address of the 514 * faked device. 515 * 516 * Note that ether_ioctl() has to be called under splnet(). 517 */ 518 static int 519 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data) 520 { 521 int s, error; 522 523 s = splnet(); 524 525 switch (cmd) { 526 case SIOCSIFPHYADDR: 527 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data); 528 break; 529 default: 530 error = ether_ioctl(ifp, cmd, data); 531 if (error == ENETRESET) 532 error = 0; 533 break; 534 } 535 536 splx(s); 537 538 return error; 539 } 540 541 /* 542 * Helper function to set Ethernet address. This has been replaced by 543 * the generic SIOCALIFADDR ioctl on a PF_LINK socket. 544 */ 545 static int 546 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra) 547 { 548 const struct sockaddr *sa = &ifra->ifra_addr; 549 550 if (sa->sa_family != AF_LINK) 551 return EINVAL; 552 553 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false); 554 555 return 0; 556 } 557 558 /* 559 * _init() would typically be called when an interface goes up, 560 * meaning it should configure itself into the state in which it 561 * can send packets. 562 */ 563 static int 564 tap_init(struct ifnet *ifp) 565 { 566 ifp->if_flags |= IFF_RUNNING; 567 568 tap_start(ifp); 569 570 return 0; 571 } 572 573 /* 574 * _stop() is called when an interface goes down. It is our 575 * responsability to validate that state by clearing the 576 * IFF_RUNNING flag. 577 * 578 * We have to wake up all the sleeping processes to have the pending 579 * read requests cancelled. 580 */ 581 static void 582 tap_stop(struct ifnet *ifp, int disable) 583 { 584 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 585 586 mutex_enter(&sc->sc_lock); 587 ifp->if_flags &= ~IFF_RUNNING; 588 cv_broadcast(&sc->sc_cv); 589 selnotify(&sc->sc_rsel, 0, 1); 590 if (sc->sc_flags & TAP_ASYNCIO) { 591 kpreempt_disable(); 592 softint_schedule(sc->sc_sih); 593 kpreempt_enable(); 594 } 595 mutex_exit(&sc->sc_lock); 596 } 597 598 /* 599 * The 'create' command of ifconfig can be used to create 600 * any numbered instance of a given device. Thus we have to 601 * make sure we have enough room in cd_devs to create the 602 * user-specified instance. config_attach_pseudo will do this 603 * for us. 604 */ 605 static int 606 tap_clone_create(struct if_clone *ifc, int unit) 607 { 608 609 if (tap_clone_creator(unit) == NULL) { 610 aprint_error("%s%d: unable to attach an instance\n", 611 tap_cd.cd_name, unit); 612 return ENXIO; 613 } 614 atomic_inc_uint(&tap_count); 615 return 0; 616 } 617 618 /* 619 * tap(4) can be cloned by two ways: 620 * using 'ifconfig tap0 create', which will use the network 621 * interface cloning API, and call tap_clone_create above. 622 * opening the cloning device node, whose minor number is TAP_CLONER. 623 * See below for an explanation on how this part work. 624 */ 625 static struct tap_softc * 626 tap_clone_creator(int unit) 627 { 628 cfdata_t cf; 629 630 cf = kmem_alloc(sizeof(*cf), KM_SLEEP); 631 cf->cf_name = tap_cd.cd_name; 632 cf->cf_atname = tap_ca.ca_name; 633 if (unit == -1) { 634 /* let autoconf find the first free one */ 635 cf->cf_unit = 0; 636 cf->cf_fstate = FSTATE_STAR; 637 } else { 638 cf->cf_unit = unit; 639 cf->cf_fstate = FSTATE_NOTFOUND; 640 } 641 642 return device_private(config_attach_pseudo(cf)); 643 } 644 645 /* 646 * The clean design of if_clone and autoconf(9) makes that part 647 * really straightforward. The second argument of config_detach 648 * means neither QUIET nor FORCED. 649 */ 650 static int 651 tap_clone_destroy(struct ifnet *ifp) 652 { 653 struct tap_softc *sc = ifp->if_softc; 654 int error = tap_clone_destroyer(sc->sc_dev); 655 656 if (error == 0) 657 atomic_dec_uint(&tap_count); 658 return error; 659 } 660 661 int 662 tap_clone_destroyer(device_t dev) 663 { 664 cfdata_t cf = device_cfdata(dev); 665 int error; 666 667 if ((error = config_detach(dev, 0)) != 0) 668 aprint_error_dev(dev, "unable to detach instance\n"); 669 kmem_free(cf, sizeof(*cf)); 670 671 return error; 672 } 673 674 /* 675 * tap(4) is a bit of an hybrid device. It can be used in two different 676 * ways: 677 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it. 678 * 2. open /dev/tap, get a new interface created and read/write off it. 679 * That interface is destroyed when the process that had it created exits. 680 * 681 * The first way is managed by the cdevsw structure, and you access interfaces 682 * through a (major, minor) mapping: tap4 is obtained by the minor number 683 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_. 684 * 685 * The second way is the so-called "cloning" device. It's a special minor 686 * number (chosen as the maximal number, to allow as much tap devices as 687 * possible). The user first opens the cloner (e.g., /dev/tap), and that 688 * call ends in tap_cdev_open. The actual place where it is handled is 689 * tap_dev_cloner. 690 * 691 * An tap device cannot be opened more than once at a time, so the cdevsw 692 * part of open() does nothing but noting that the interface is being used and 693 * hence ready to actually handle packets. 694 */ 695 696 static int 697 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l) 698 { 699 struct tap_softc *sc; 700 701 if (minor(dev) == TAP_CLONER) 702 return tap_dev_cloner(l); 703 704 sc = device_lookup_private(&tap_cd, minor(dev)); 705 if (sc == NULL) 706 return ENXIO; 707 708 /* The device can only be opened once */ 709 if (sc->sc_flags & TAP_INUSE) 710 return EBUSY; 711 sc->sc_flags |= TAP_INUSE; 712 if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP); 713 714 return 0; 715 } 716 717 /* 718 * There are several kinds of cloning devices, and the most simple is the one 719 * tap(4) uses. What it does is change the file descriptor with a new one, 720 * with its own fileops structure (which maps to the various read, write, 721 * ioctl functions). It starts allocating a new file descriptor with falloc, 722 * then actually creates the new tap devices. 723 * 724 * Once those two steps are successful, we can re-wire the existing file 725 * descriptor to its new self. This is done with fdclone(): it fills the fp 726 * structure as needed (notably f_devunit gets filled with the fifth parameter 727 * passed, the unit of the tap device which will allows us identifying the 728 * device later), and returns EMOVEFD. 729 * 730 * That magic value is interpreted by sys_open() which then replaces the 731 * current file descriptor by the new one (through a magic member of struct 732 * lwp, l_dupfd). 733 * 734 * The tap device is flagged as being busy since it otherwise could be 735 * externally accessed through the corresponding device node with the cdevsw 736 * interface. 737 */ 738 739 static int 740 tap_dev_cloner(struct lwp *l) 741 { 742 struct tap_softc *sc; 743 file_t *fp; 744 int error, fd; 745 746 if ((error = fd_allocfile(&fp, &fd)) != 0) 747 return error; 748 749 if ((sc = tap_clone_creator(-1)) == NULL) { 750 fd_abort(curproc, fp, fd); 751 return ENXIO; 752 } 753 754 sc->sc_flags |= TAP_INUSE; 755 756 return fd_clone(fp, fd, FREAD | FWRITE, &tap_fileops, 757 (void *)(intptr_t)device_unit(sc->sc_dev)); 758 } 759 760 /* 761 * While all other operations (read, write, ioctl, poll and kqfilter) are 762 * really the same whether we are in cdevsw or fileops mode, the close() 763 * function is slightly different in the two cases. 764 * 765 * As for the other, the core of it is shared in tap_dev_close. What 766 * it does is sufficient for the cdevsw interface, but the cloning interface 767 * needs another thing: the interface is destroyed when the processes that 768 * created it closes it. 769 */ 770 static int 771 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l) 772 { 773 struct tap_softc *sc = device_lookup_private(&tap_cd, minor(dev)); 774 775 if (sc == NULL) 776 return ENXIO; 777 778 return tap_dev_close(sc); 779 } 780 781 /* 782 * It might happen that the administrator used ifconfig to externally destroy 783 * the interface. In that case, tap_fops_close will be called while 784 * tap_detach is already happening. If we called it again from here, we 785 * would dead lock. TAP_GOING ensures that this situation doesn't happen. 786 */ 787 static int 788 tap_fops_close(file_t *fp) 789 { 790 struct tap_softc *sc; 791 int unit = fp->f_devunit; 792 int error; 793 794 sc = device_lookup_private(&tap_cd, unit); 795 if (sc == NULL) 796 return ENXIO; 797 798 /* tap_dev_close currently always succeeds, but it might not 799 * always be the case. */ 800 KERNEL_LOCK(1, NULL); 801 if ((error = tap_dev_close(sc)) != 0) { 802 KERNEL_UNLOCK_ONE(NULL); 803 return error; 804 } 805 806 /* Destroy the device now that it is no longer useful, 807 * unless it's already being destroyed. */ 808 if ((sc->sc_flags & TAP_GOING) != 0) { 809 KERNEL_UNLOCK_ONE(NULL); 810 return 0; 811 } 812 813 error = tap_clone_destroyer(sc->sc_dev); 814 KERNEL_UNLOCK_ONE(NULL); 815 return error; 816 } 817 818 static int 819 tap_dev_close(struct tap_softc *sc) 820 { 821 struct ifnet *ifp; 822 int s; 823 824 s = splnet(); 825 /* Let tap_start handle packets again */ 826 ifp = &sc->sc_ec.ec_if; 827 ifp->if_flags &= ~IFF_OACTIVE; 828 829 /* Purge output queue */ 830 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) { 831 struct mbuf *m; 832 833 for (;;) { 834 IFQ_DEQUEUE(&ifp->if_snd, m); 835 if (m == NULL) 836 break; 837 838 if_statadd2(ifp, if_opackets, 1, if_obytes, m->m_len); 839 bpf_mtap(ifp, m, BPF_D_OUT); 840 m_freem(m); 841 } 842 } 843 splx(s); 844 845 if (sc->sc_sih != NULL) { 846 softint_disestablish(sc->sc_sih); 847 sc->sc_sih = NULL; 848 } 849 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO); 850 if_link_state_change(ifp, LINK_STATE_DOWN); 851 852 return 0; 853 } 854 855 static int 856 tap_cdev_read(dev_t dev, struct uio *uio, int flags) 857 { 858 859 return tap_dev_read(minor(dev), uio, flags); 860 } 861 862 static int 863 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio, 864 kauth_cred_t cred, int flags) 865 { 866 int error; 867 868 KERNEL_LOCK(1, NULL); 869 error = tap_dev_read(fp->f_devunit, uio, flags); 870 KERNEL_UNLOCK_ONE(NULL); 871 return error; 872 } 873 874 static int 875 tap_dev_read(int unit, struct uio *uio, int flags) 876 { 877 struct tap_softc *sc = device_lookup_private(&tap_cd, unit); 878 struct ifnet *ifp; 879 struct mbuf *m, *n; 880 int error = 0; 881 882 if (sc == NULL) 883 return ENXIO; 884 885 getnanotime(&sc->sc_atime); 886 887 ifp = &sc->sc_ec.ec_if; 888 if ((ifp->if_flags & IFF_UP) == 0) 889 return EHOSTDOWN; 890 891 /* In the TAP_NBIO case, we have to make sure we won't be sleeping */ 892 if ((sc->sc_flags & TAP_NBIO) != 0) { 893 if (!mutex_tryenter(&sc->sc_lock)) 894 return EWOULDBLOCK; 895 } else 896 mutex_enter(&sc->sc_lock); 897 898 if (IFQ_IS_EMPTY(&ifp->if_snd)) { 899 ifp->if_flags &= ~IFF_OACTIVE; 900 if (sc->sc_flags & TAP_NBIO) 901 error = EWOULDBLOCK; 902 else 903 error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock); 904 905 if (error != 0) { 906 mutex_exit(&sc->sc_lock); 907 return error; 908 } 909 /* The device might have been downed */ 910 if ((ifp->if_flags & IFF_UP) == 0) { 911 mutex_exit(&sc->sc_lock); 912 return EHOSTDOWN; 913 } 914 } 915 916 IFQ_DEQUEUE(&ifp->if_snd, m); 917 mutex_exit(&sc->sc_lock); 918 919 ifp->if_flags &= ~IFF_OACTIVE; 920 if (m == NULL) { 921 error = 0; 922 goto out; 923 } 924 925 if_statadd2(ifp, if_opackets, 1, 926 if_obytes, m->m_len); /* XXX only first in chain */ 927 bpf_mtap(ifp, m, BPF_D_OUT); 928 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 929 goto out; 930 if (m == NULL) 931 goto out; 932 933 /* 934 * One read is one packet. 935 */ 936 do { 937 error = uiomove(mtod(m, void *), 938 uimin(m->m_len, uio->uio_resid), uio); 939 m = n = m_free(m); 940 } while (m != NULL && uio->uio_resid > 0 && error == 0); 941 942 if (m != NULL) 943 m_freem(m); 944 945 out: 946 return error; 947 } 948 949 static int 950 tap_fops_stat(file_t *fp, struct stat *st) 951 { 952 int error = 0; 953 struct tap_softc *sc; 954 int unit = fp->f_devunit; 955 956 (void)memset(st, 0, sizeof(*st)); 957 958 KERNEL_LOCK(1, NULL); 959 sc = device_lookup_private(&tap_cd, unit); 960 if (sc == NULL) { 961 error = ENXIO; 962 goto out; 963 } 964 965 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit); 966 st->st_atimespec = sc->sc_atime; 967 st->st_mtimespec = sc->sc_mtime; 968 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime; 969 st->st_uid = kauth_cred_geteuid(fp->f_cred); 970 st->st_gid = kauth_cred_getegid(fp->f_cred); 971 out: 972 KERNEL_UNLOCK_ONE(NULL); 973 return error; 974 } 975 976 static int 977 tap_cdev_write(dev_t dev, struct uio *uio, int flags) 978 { 979 980 return tap_dev_write(minor(dev), uio, flags); 981 } 982 983 static int 984 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio, 985 kauth_cred_t cred, int flags) 986 { 987 int error; 988 989 KERNEL_LOCK(1, NULL); 990 error = tap_dev_write(fp->f_devunit, uio, flags); 991 KERNEL_UNLOCK_ONE(NULL); 992 return error; 993 } 994 995 static int 996 tap_dev_write(int unit, struct uio *uio, int flags) 997 { 998 struct tap_softc *sc = 999 device_lookup_private(&tap_cd, unit); 1000 struct ifnet *ifp; 1001 struct mbuf *m, **mp; 1002 size_t len = 0; 1003 int error = 0; 1004 1005 if (sc == NULL) 1006 return ENXIO; 1007 1008 getnanotime(&sc->sc_mtime); 1009 ifp = &sc->sc_ec.ec_if; 1010 1011 /* One write, one packet, that's the rule */ 1012 MGETHDR(m, M_DONTWAIT, MT_DATA); 1013 if (m == NULL) { 1014 if_statinc(ifp, if_ierrors); 1015 return ENOBUFS; 1016 } 1017 m->m_pkthdr.len = uio->uio_resid; 1018 1019 mp = &m; 1020 while (error == 0 && uio->uio_resid > 0) { 1021 if (*mp != m) { 1022 MGET(*mp, M_DONTWAIT, MT_DATA); 1023 if (*mp == NULL) { 1024 error = ENOBUFS; 1025 break; 1026 } 1027 } 1028 (*mp)->m_len = uimin(MHLEN, uio->uio_resid); 1029 len += (*mp)->m_len; 1030 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio); 1031 mp = &(*mp)->m_next; 1032 } 1033 if (error) { 1034 if_statinc(ifp, if_ierrors); 1035 m_freem(m); 1036 return error; 1037 } 1038 1039 m_set_rcvif(m, ifp); 1040 1041 if_statadd2(ifp, if_ipackets, 1, if_ibytes, len); 1042 bpf_mtap(ifp, m, BPF_D_IN); 1043 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN)) != 0) 1044 return error; 1045 if (m == NULL) 1046 return 0; 1047 1048 if_percpuq_enqueue(ifp->if_percpuq, m); 1049 1050 return 0; 1051 } 1052 1053 static int 1054 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l) 1055 { 1056 1057 return tap_dev_ioctl(minor(dev), cmd, data, l); 1058 } 1059 1060 static int 1061 tap_fops_ioctl(file_t *fp, u_long cmd, void *data) 1062 { 1063 1064 return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp); 1065 } 1066 1067 static int 1068 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l) 1069 { 1070 struct tap_softc *sc = device_lookup_private(&tap_cd, unit); 1071 1072 if (sc == NULL) 1073 return ENXIO; 1074 1075 switch (cmd) { 1076 case FIONREAD: 1077 { 1078 struct ifnet *ifp = &sc->sc_ec.ec_if; 1079 struct mbuf *m; 1080 int s; 1081 1082 s = splnet(); 1083 IFQ_POLL(&ifp->if_snd, m); 1084 1085 if (m == NULL) 1086 *(int *)data = 0; 1087 else 1088 *(int *)data = m->m_pkthdr.len; 1089 splx(s); 1090 return 0; 1091 } 1092 case TIOCSPGRP: 1093 case FIOSETOWN: 1094 return fsetown(&sc->sc_pgid, cmd, data); 1095 case TIOCGPGRP: 1096 case FIOGETOWN: 1097 return fgetown(sc->sc_pgid, cmd, data); 1098 case FIOASYNC: 1099 if (*(int *)data) { 1100 if (sc->sc_sih == NULL) { 1101 sc->sc_sih = softint_establish(SOFTINT_CLOCK, 1102 tap_softintr, sc); 1103 if (sc->sc_sih == NULL) 1104 return EBUSY; /* XXX */ 1105 } 1106 sc->sc_flags |= TAP_ASYNCIO; 1107 } else { 1108 sc->sc_flags &= ~TAP_ASYNCIO; 1109 if (sc->sc_sih != NULL) { 1110 softint_disestablish(sc->sc_sih); 1111 sc->sc_sih = NULL; 1112 } 1113 } 1114 return 0; 1115 case FIONBIO: 1116 if (*(int *)data) 1117 sc->sc_flags |= TAP_NBIO; 1118 else 1119 sc->sc_flags &= ~TAP_NBIO; 1120 return 0; 1121 case TAPGIFNAME: 1122 { 1123 struct ifreq *ifr = (struct ifreq *)data; 1124 struct ifnet *ifp = &sc->sc_ec.ec_if; 1125 1126 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); 1127 return 0; 1128 } 1129 default: 1130 return ENOTTY; 1131 } 1132 } 1133 1134 static int 1135 tap_cdev_poll(dev_t dev, int events, struct lwp *l) 1136 { 1137 1138 return tap_dev_poll(minor(dev), events, l); 1139 } 1140 1141 static int 1142 tap_fops_poll(file_t *fp, int events) 1143 { 1144 1145 return tap_dev_poll(fp->f_devunit, events, curlwp); 1146 } 1147 1148 static int 1149 tap_dev_poll(int unit, int events, struct lwp *l) 1150 { 1151 struct tap_softc *sc = device_lookup_private(&tap_cd, unit); 1152 int revents = 0; 1153 1154 if (sc == NULL) 1155 return POLLERR; 1156 1157 if (events & (POLLIN | POLLRDNORM)) { 1158 struct ifnet *ifp = &sc->sc_ec.ec_if; 1159 struct mbuf *m; 1160 int s; 1161 1162 s = splnet(); 1163 IFQ_POLL(&ifp->if_snd, m); 1164 1165 if (m != NULL) 1166 revents |= events & (POLLIN | POLLRDNORM); 1167 else { 1168 mutex_spin_enter(&sc->sc_lock); 1169 selrecord(l, &sc->sc_rsel); 1170 mutex_spin_exit(&sc->sc_lock); 1171 } 1172 splx(s); 1173 } 1174 revents |= events & (POLLOUT | POLLWRNORM); 1175 1176 return revents; 1177 } 1178 1179 static struct filterops tap_read_filterops = { 1180 .f_isfd = 1, 1181 .f_attach = NULL, 1182 .f_detach = tap_kqdetach, 1183 .f_event = tap_kqread, 1184 }; 1185 1186 static struct filterops tap_seltrue_filterops = { 1187 .f_isfd = 1, 1188 .f_attach = NULL, 1189 .f_detach = tap_kqdetach, 1190 .f_event = filt_seltrue, 1191 }; 1192 1193 static int 1194 tap_cdev_kqfilter(dev_t dev, struct knote *kn) 1195 { 1196 1197 return tap_dev_kqfilter(minor(dev), kn); 1198 } 1199 1200 static int 1201 tap_fops_kqfilter(file_t *fp, struct knote *kn) 1202 { 1203 1204 return tap_dev_kqfilter(fp->f_devunit, kn); 1205 } 1206 1207 static int 1208 tap_dev_kqfilter(int unit, struct knote *kn) 1209 { 1210 struct tap_softc *sc = device_lookup_private(&tap_cd, unit); 1211 1212 if (sc == NULL) 1213 return ENXIO; 1214 1215 KERNEL_LOCK(1, NULL); 1216 switch(kn->kn_filter) { 1217 case EVFILT_READ: 1218 kn->kn_fop = &tap_read_filterops; 1219 break; 1220 case EVFILT_WRITE: 1221 kn->kn_fop = &tap_seltrue_filterops; 1222 break; 1223 default: 1224 KERNEL_UNLOCK_ONE(NULL); 1225 return EINVAL; 1226 } 1227 1228 kn->kn_hook = sc; 1229 mutex_spin_enter(&sc->sc_lock); 1230 selrecord_knote(&sc->sc_rsel, kn); 1231 mutex_spin_exit(&sc->sc_lock); 1232 KERNEL_UNLOCK_ONE(NULL); 1233 return 0; 1234 } 1235 1236 static void 1237 tap_kqdetach(struct knote *kn) 1238 { 1239 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook; 1240 1241 KERNEL_LOCK(1, NULL); 1242 mutex_spin_enter(&sc->sc_lock); 1243 selremove_knote(&sc->sc_rsel, kn); 1244 mutex_spin_exit(&sc->sc_lock); 1245 KERNEL_UNLOCK_ONE(NULL); 1246 } 1247 1248 static int 1249 tap_kqread(struct knote *kn, long hint) 1250 { 1251 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook; 1252 struct ifnet *ifp = &sc->sc_ec.ec_if; 1253 struct mbuf *m; 1254 int s, rv; 1255 1256 KERNEL_LOCK(1, NULL); 1257 s = splnet(); 1258 IFQ_POLL(&ifp->if_snd, m); 1259 1260 if (m == NULL) 1261 kn->kn_data = 0; 1262 else 1263 kn->kn_data = m->m_pkthdr.len; 1264 splx(s); 1265 rv = (kn->kn_data != 0 ? 1 : 0); 1266 KERNEL_UNLOCK_ONE(NULL); 1267 return rv; 1268 } 1269 1270 /* 1271 * sysctl management routines 1272 * You can set the address of an interface through: 1273 * net.link.tap.tap<number> 1274 * 1275 * Note the consistent use of tap_log in order to use 1276 * sysctl_teardown at unload time. 1277 * 1278 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those 1279 * blocks register a function in a special section of the kernel 1280 * (called a link set) which is used at init_sysctl() time to cycle 1281 * through all those functions to create the kernel's sysctl tree. 1282 * 1283 * It is not possible to use link sets in a module, so the 1284 * easiest is to simply call our own setup routine at load time. 1285 * 1286 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the 1287 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the 1288 * whole kernel sysctl tree is built, it is not possible to add any 1289 * permanent node. 1290 * 1291 * It should be noted that we're not saving the sysctlnode pointer 1292 * we are returned when creating the "tap" node. That structure 1293 * cannot be trusted once out of the calling function, as it might 1294 * get reused. So we just save the MIB number, and always give the 1295 * full path starting from the root for later calls to sysctl_createv 1296 * and sysctl_destroyv. 1297 */ 1298 static void 1299 sysctl_tap_setup(struct sysctllog **clog) 1300 { 1301 const struct sysctlnode *node; 1302 int error = 0; 1303 1304 if ((error = sysctl_createv(clog, 0, NULL, NULL, 1305 CTLFLAG_PERMANENT, 1306 CTLTYPE_NODE, "link", NULL, 1307 NULL, 0, NULL, 0, 1308 CTL_NET, AF_LINK, CTL_EOL)) != 0) 1309 return; 1310 1311 /* 1312 * The first four parameters of sysctl_createv are for management. 1313 * 1314 * The four that follows, here starting with a '0' for the flags, 1315 * describe the node. 1316 * 1317 * The next series of four set its value, through various possible 1318 * means. 1319 * 1320 * Last but not least, the path to the node is described. That path 1321 * is relative to the given root (third argument). Here we're 1322 * starting from the root. 1323 */ 1324 if ((error = sysctl_createv(clog, 0, NULL, &node, 1325 CTLFLAG_PERMANENT, 1326 CTLTYPE_NODE, "tap", NULL, 1327 NULL, 0, NULL, 0, 1328 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0) 1329 return; 1330 tap_node = node->sysctl_num; 1331 } 1332 1333 /* 1334 * The helper functions make Andrew Brown's interface really 1335 * shine. It makes possible to create value on the fly whether 1336 * the sysctl value is read or written. 1337 * 1338 * As shown as an example in the man page, the first step is to 1339 * create a copy of the node to have sysctl_lookup work on it. 1340 * 1341 * Here, we have more work to do than just a copy, since we have 1342 * to create the string. The first step is to collect the actual 1343 * value of the node, which is a convenient pointer to the softc 1344 * of the interface. From there we create the string and use it 1345 * as the value, but only for the *copy* of the node. 1346 * 1347 * Then we let sysctl_lookup do the magic, which consists in 1348 * setting oldp and newp as required by the operation. When the 1349 * value is read, that means that the string will be copied to 1350 * the user, and when it is written, the new value will be copied 1351 * over in the addr array. 1352 * 1353 * If newp is NULL, the user was reading the value, so we don't 1354 * have anything else to do. If a new value was written, we 1355 * have to check it. 1356 * 1357 * If it is incorrect, we can return an error and leave 'node' as 1358 * it is: since it is a copy of the actual node, the change will 1359 * be forgotten. 1360 * 1361 * Upon a correct input, we commit the change to the ifnet 1362 * structure of our interface. 1363 */ 1364 static int 1365 tap_sysctl_handler(SYSCTLFN_ARGS) 1366 { 1367 struct sysctlnode node; 1368 struct tap_softc *sc; 1369 struct ifnet *ifp; 1370 int error; 1371 size_t len; 1372 char addr[3 * ETHER_ADDR_LEN]; 1373 uint8_t enaddr[ETHER_ADDR_LEN]; 1374 1375 node = *rnode; 1376 sc = node.sysctl_data; 1377 ifp = &sc->sc_ec.ec_if; 1378 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl)); 1379 node.sysctl_data = addr; 1380 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1381 if (error || newp == NULL) 1382 return error; 1383 1384 len = strlen(addr); 1385 if (len < 11 || len > 17) 1386 return EINVAL; 1387 1388 /* Commit change */ 1389 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0) 1390 return EINVAL; 1391 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false); 1392 return error; 1393 } 1394 1395 /* 1396 * Module infrastructure 1397 */ 1398 #include "if_module.h" 1399 1400 IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL) 1401