xref: /netbsd-src/sys/net/if_tap.c (revision 7d62b00eb9ad855ffcd7da46b41e23feb5476fac)
1 /*	$NetBSD: if_tap.c,v 1.128 2023/01/06 01:54:22 ozaki-r Exp $	*/
2 
3 /*
4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5  *  All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *  1. Redistributions of source code must retain the above copyright
11  *     notice, this list of conditions and the following disclaimer.
12  *  2. Redistributions in binary form must reproduce the above copyright
13  *     notice, this list of conditions and the following disclaimer in the
14  *     documentation and/or other materials provided with the distribution.
15  *
16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  *  POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
31  * device to the system, but can also be accessed by userland through a
32  * character device interface, which allows reading and injecting frames.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.128 2023/01/06 01:54:22 ozaki-r Exp $");
37 
38 #if defined(_KERNEL_OPT)
39 
40 #include "opt_modular.h"
41 #endif
42 
43 #include <sys/param.h>
44 #include <sys/atomic.h>
45 #include <sys/conf.h>
46 #include <sys/cprng.h>
47 #include <sys/device.h>
48 #include <sys/file.h>
49 #include <sys/filedesc.h>
50 #include <sys/intr.h>
51 #include <sys/kauth.h>
52 #include <sys/kernel.h>
53 #include <sys/kmem.h>
54 #include <sys/module.h>
55 #include <sys/mutex.h>
56 #include <sys/condvar.h>
57 #include <sys/poll.h>
58 #include <sys/proc.h>
59 #include <sys/select.h>
60 #include <sys/sockio.h>
61 #include <sys/stat.h>
62 #include <sys/sysctl.h>
63 #include <sys/systm.h>
64 
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_ether.h>
68 #include <net/if_tap.h>
69 #include <net/bpf.h>
70 
71 #include "ioconf.h"
72 
73 /*
74  * sysctl node management
75  *
76  * It's not really possible to use a SYSCTL_SETUP block with
77  * current module implementation, so it is easier to just define
78  * our own function.
79  *
80  * The handler function is a "helper" in Andrew Brown's sysctl
81  * framework terminology.  It is used as a gateway for sysctl
82  * requests over the nodes.
83  *
84  * tap_log allows the module to log creations of nodes and
85  * destroy them all at once using sysctl_teardown.
86  */
87 static int	tap_node;
88 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
89 static void	sysctl_tap_setup(struct sysctllog **);
90 
91 struct tap_softc {
92 	device_t	sc_dev;
93 	struct ethercom	sc_ec;
94 	int		sc_flags;
95 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
96 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
97 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
98 #define TAP_GOING	0x00000008	/* interface is being destroyed */
99 	struct selinfo	sc_rsel;
100 	pid_t		sc_pgid; /* For async. IO */
101 	kmutex_t	sc_lock;
102 	kcondvar_t	sc_cv;
103 	void		*sc_sih;
104 	struct timespec sc_atime;
105 	struct timespec sc_mtime;
106 	struct timespec sc_btime;
107 };
108 
109 /* autoconf(9) glue */
110 
111 static int	tap_match(device_t, cfdata_t, void *);
112 static void	tap_attach(device_t, device_t, void *);
113 static int	tap_detach(device_t, int);
114 
115 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
116     tap_match, tap_attach, tap_detach, NULL);
117 extern struct cfdriver tap_cd;
118 
119 /* Real device access routines */
120 static int	tap_dev_close(struct tap_softc *);
121 static int	tap_dev_read(int, struct uio *, int);
122 static int	tap_dev_write(int, struct uio *, int);
123 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
124 static int	tap_dev_poll(int, int, struct lwp *);
125 static int	tap_dev_kqfilter(int, struct knote *);
126 
127 /* Fileops access routines */
128 static int	tap_fops_close(file_t *);
129 static int	tap_fops_read(file_t *, off_t *, struct uio *,
130     kauth_cred_t, int);
131 static int	tap_fops_write(file_t *, off_t *, struct uio *,
132     kauth_cred_t, int);
133 static int	tap_fops_ioctl(file_t *, u_long, void *);
134 static int	tap_fops_poll(file_t *, int);
135 static int	tap_fops_stat(file_t *, struct stat *);
136 static int	tap_fops_kqfilter(file_t *, struct knote *);
137 
138 static const struct fileops tap_fileops = {
139 	.fo_name = "tap",
140 	.fo_read = tap_fops_read,
141 	.fo_write = tap_fops_write,
142 	.fo_ioctl = tap_fops_ioctl,
143 	.fo_fcntl = fnullop_fcntl,
144 	.fo_poll = tap_fops_poll,
145 	.fo_stat = tap_fops_stat,
146 	.fo_close = tap_fops_close,
147 	.fo_kqfilter = tap_fops_kqfilter,
148 	.fo_restart = fnullop_restart,
149 };
150 
151 /* Helper for cloning open() */
152 static int	tap_dev_cloner(struct lwp *);
153 
154 /* Character device routines */
155 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
156 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
157 static int	tap_cdev_read(dev_t, struct uio *, int);
158 static int	tap_cdev_write(dev_t, struct uio *, int);
159 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
160 static int	tap_cdev_poll(dev_t, int, struct lwp *);
161 static int	tap_cdev_kqfilter(dev_t, struct knote *);
162 
163 const struct cdevsw tap_cdevsw = {
164 	.d_open = tap_cdev_open,
165 	.d_close = tap_cdev_close,
166 	.d_read = tap_cdev_read,
167 	.d_write = tap_cdev_write,
168 	.d_ioctl = tap_cdev_ioctl,
169 	.d_stop = nostop,
170 	.d_tty = notty,
171 	.d_poll = tap_cdev_poll,
172 	.d_mmap = nommap,
173 	.d_kqfilter = tap_cdev_kqfilter,
174 	.d_discard = nodiscard,
175 	.d_flag = D_OTHER | D_MPSAFE
176 };
177 
178 #define TAP_CLONER	0xfffff		/* Maximal minor value */
179 
180 /* kqueue-related routines */
181 static void	tap_kqdetach(struct knote *);
182 static int	tap_kqread(struct knote *, long);
183 
184 /*
185  * Those are needed by the ifnet interface, and would typically be
186  * there for any network interface driver.
187  * Some other routines are optional: watchdog and drain.
188  */
189 static void	tap_start(struct ifnet *);
190 static void	tap_stop(struct ifnet *, int);
191 static int	tap_init(struct ifnet *);
192 static int	tap_ioctl(struct ifnet *, u_long, void *);
193 
194 /* Internal functions */
195 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
196 static void	tap_softintr(void *);
197 
198 /*
199  * tap is a clonable interface, although it is highly unrealistic for
200  * an Ethernet device.
201  *
202  * Here are the bits needed for a clonable interface.
203  */
204 static int	tap_clone_create(struct if_clone *, int);
205 static int	tap_clone_destroy(struct ifnet *);
206 
207 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
208 					tap_clone_create,
209 					tap_clone_destroy);
210 
211 /* Helper functions shared by the two cloning code paths */
212 static struct tap_softc *	tap_clone_creator(int);
213 int	tap_clone_destroyer(device_t);
214 
215 static struct sysctllog *tap_sysctl_clog;
216 
217 #ifdef _MODULE
218 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
219 #endif
220 
221 static u_int tap_count;
222 
223 void
224 tapattach(int n)
225 {
226 
227 	/*
228 	 * Nothing to do here, initialization is handled by the
229 	 * module initialization code in tapinit() below).
230 	 */
231 }
232 
233 static void
234 tapinit(void)
235 {
236 	int error;
237 
238 #ifdef _MODULE
239 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
240 #endif
241 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
242 
243 	if (error) {
244 		aprint_error("%s: unable to register cfattach\n",
245 		    tap_cd.cd_name);
246 		(void)config_cfdriver_detach(&tap_cd);
247 		return;
248 	}
249 
250 	if_clone_attach(&tap_cloners);
251 	sysctl_tap_setup(&tap_sysctl_clog);
252 }
253 
254 static int
255 tapdetach(void)
256 {
257 	int error = 0;
258 
259 	if_clone_detach(&tap_cloners);
260 
261 	if (tap_count != 0) {
262 		if_clone_attach(&tap_cloners);
263 		return EBUSY;
264 	}
265 
266 	error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
267 	if (error == 0) {
268 #ifdef _MODULE
269 		devsw_detach(NULL, &tap_cdevsw);
270 #endif
271 		sysctl_teardown(&tap_sysctl_clog);
272 	} else
273 		if_clone_attach(&tap_cloners);
274 
275 	return error;
276 }
277 
278 /* Pretty much useless for a pseudo-device */
279 static int
280 tap_match(device_t parent, cfdata_t cfdata, void *arg)
281 {
282 
283 	return 1;
284 }
285 
286 void
287 tap_attach(device_t parent, device_t self, void *aux)
288 {
289 	struct tap_softc *sc = device_private(self);
290 	struct ifnet *ifp;
291 	const struct sysctlnode *node;
292 	int error;
293 	uint8_t enaddr[ETHER_ADDR_LEN] =
294 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
295 	char enaddrstr[3 * ETHER_ADDR_LEN];
296 
297 	sc->sc_dev = self;
298 	sc->sc_sih = NULL;
299 	getnanotime(&sc->sc_btime);
300 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
301 	sc->sc_flags = 0;
302 	selinit(&sc->sc_rsel);
303 
304 	cv_init(&sc->sc_cv, "tapread");
305 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
306 
307 	if (!pmf_device_register(self, NULL, NULL))
308 		aprint_error_dev(self, "couldn't establish power handler\n");
309 
310 	/*
311 	 * In order to obtain unique initial Ethernet address on a host,
312 	 * do some randomisation.  It's not meant for anything but avoiding
313 	 * hard-coding an address.
314 	 */
315 	cprng_fast(&enaddr[3], 3);
316 
317 	aprint_verbose_dev(self, "Ethernet address %s\n",
318 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
319 
320 	/*
321 	 * One should note that an interface must do multicast in order
322 	 * to support IPv6.
323 	 */
324 	ifp = &sc->sc_ec.ec_if;
325 	strcpy(ifp->if_xname, device_xname(self));
326 	ifp->if_softc	= sc;
327 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
328 #ifdef NET_MPSAFE
329 	ifp->if_extflags = IFEF_MPSAFE;
330 #endif
331 	ifp->if_ioctl	= tap_ioctl;
332 	ifp->if_start	= tap_start;
333 	ifp->if_stop	= tap_stop;
334 	ifp->if_init	= tap_init;
335 	IFQ_SET_READY(&ifp->if_snd);
336 
337 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
338 
339 	/* Those steps are mandatory for an Ethernet driver. */
340 	if_initialize(ifp);
341 	ifp->if_percpuq = if_percpuq_create(ifp);
342 	ether_ifattach(ifp, enaddr);
343 	/* Opening the device will bring the link state up. */
344 	ifp->if_link_state = LINK_STATE_DOWN;
345 	if_register(ifp);
346 
347 	/*
348 	 * Add a sysctl node for that interface.
349 	 *
350 	 * The pointer transmitted is not a string, but instead a pointer to
351 	 * the softc structure, which we can use to build the string value on
352 	 * the fly in the helper function of the node.  See the comments for
353 	 * tap_sysctl_handler for details.
354 	 *
355 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
356 	 * component.  However, we can allocate a number ourselves, as we are
357 	 * the only consumer of the net.link.<iface> node.  In this case, the
358 	 * unit number is conveniently used to number the node.  CTL_CREATE
359 	 * would just work, too.
360 	 */
361 	if ((error = sysctl_createv(NULL, 0, NULL,
362 	    &node, CTLFLAG_READWRITE,
363 	    CTLTYPE_STRING, device_xname(self), NULL,
364 	    tap_sysctl_handler, 0, (void *)sc, 18,
365 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
366 	    CTL_EOL)) != 0)
367 		aprint_error_dev(self,
368 		    "sysctl_createv returned %d, ignoring\n", error);
369 }
370 
371 /*
372  * When detaching, we do the inverse of what is done in the attach
373  * routine, in reversed order.
374  */
375 static int
376 tap_detach(device_t self, int flags)
377 {
378 	struct tap_softc *sc = device_private(self);
379 	struct ifnet *ifp = &sc->sc_ec.ec_if;
380 	int error;
381 
382 	sc->sc_flags |= TAP_GOING;
383 	tap_stop(ifp, 1);
384 	if_down(ifp);
385 
386 	if (sc->sc_sih != NULL) {
387 		softint_disestablish(sc->sc_sih);
388 		sc->sc_sih = NULL;
389 	}
390 
391 	/*
392 	 * Destroying a single leaf is a very straightforward operation using
393 	 * sysctl_destroyv.  One should be sure to always end the path with
394 	 * CTL_EOL.
395 	 */
396 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
397 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
398 		aprint_error_dev(self,
399 		    "sysctl_destroyv returned %d, ignoring\n", error);
400 	ether_ifdetach(ifp);
401 	if_detach(ifp);
402 	seldestroy(&sc->sc_rsel);
403 	mutex_destroy(&sc->sc_lock);
404 	cv_destroy(&sc->sc_cv);
405 
406 	pmf_device_deregister(self);
407 
408 	return 0;
409 }
410 
411 /*
412  * This is the function where we SEND packets.
413  *
414  * There is no 'receive' equivalent.  A typical driver will get
415  * interrupts from the hardware, and from there will inject new packets
416  * into the network stack.
417  *
418  * Once handled, a packet must be freed.  A real driver might not be able
419  * to fit all the pending packets into the hardware, and is allowed to
420  * return before having sent all the packets.  It should then use the
421  * if_flags flag IFF_OACTIVE to notify the upper layer.
422  *
423  * There are also other flags one should check, such as IFF_PAUSE.
424  *
425  * It is our duty to make packets available to BPF listeners.
426  *
427  * You should be aware that this function is called by the Ethernet layer
428  * at splnet().
429  *
430  * When the device is opened, we have to pass the packet(s) to the
431  * userland.  For that we stay in OACTIVE mode while the userland gets
432  * the packets, and we send a signal to the processes waiting to read.
433  *
434  * wakeup(sc) is the counterpart to the tsleep call in
435  * tap_dev_read, while selnotify() is used for kevent(2) and
436  * poll(2) (which includes select(2)) listeners.
437  */
438 static void
439 tap_start(struct ifnet *ifp)
440 {
441 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
442 	struct mbuf *m0;
443 
444 	mutex_enter(&sc->sc_lock);
445 	if ((sc->sc_flags & TAP_INUSE) == 0) {
446 		/* Simply drop packets */
447 		for (;;) {
448 			IFQ_DEQUEUE(&ifp->if_snd, m0);
449 			if (m0 == NULL)
450 				goto done;
451 
452 			if_statadd2(ifp, if_opackets, 1, if_obytes, m0->m_len);
453 			bpf_mtap(ifp, m0, BPF_D_OUT);
454 
455 			m_freem(m0);
456 		}
457 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
458 		ifp->if_flags |= IFF_OACTIVE;
459 		cv_broadcast(&sc->sc_cv);
460 		selnotify(&sc->sc_rsel, 0, 1);
461 		if (sc->sc_flags & TAP_ASYNCIO) {
462 			kpreempt_disable();
463 			softint_schedule(sc->sc_sih);
464 			kpreempt_enable();
465 		}
466 	}
467 done:
468 	mutex_exit(&sc->sc_lock);
469 }
470 
471 static void
472 tap_softintr(void *cookie)
473 {
474 	struct tap_softc *sc;
475 	struct ifnet *ifp;
476 	int a, b;
477 
478 	sc = cookie;
479 
480 	if (sc->sc_flags & TAP_ASYNCIO) {
481 		ifp = &sc->sc_ec.ec_if;
482 		if (ifp->if_flags & IFF_RUNNING) {
483 			a = POLL_IN;
484 			b = POLLIN | POLLRDNORM;
485 		} else {
486 			a = POLL_HUP;
487 			b = 0;
488 		}
489 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
490 	}
491 }
492 
493 /*
494  * A typical driver will only contain the following handlers for
495  * ioctl calls, except SIOCSIFPHYADDR.
496  * The latter is a hack I used to set the Ethernet address of the
497  * faked device.
498  *
499  * Note that ether_ioctl() has to be called under splnet().
500  */
501 static int
502 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
503 {
504 	int s, error;
505 
506 	s = splnet();
507 
508 	switch (cmd) {
509 	case SIOCSIFPHYADDR:
510 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
511 		break;
512 	default:
513 		error = ether_ioctl(ifp, cmd, data);
514 		if (error == ENETRESET)
515 			error = 0;
516 		break;
517 	}
518 
519 	splx(s);
520 
521 	return error;
522 }
523 
524 /*
525  * Helper function to set Ethernet address.  This has been replaced by
526  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
527  */
528 static int
529 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
530 {
531 	const struct sockaddr *sa = &ifra->ifra_addr;
532 
533 	if (sa->sa_family != AF_LINK)
534 		return EINVAL;
535 
536 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
537 
538 	return 0;
539 }
540 
541 /*
542  * _init() would typically be called when an interface goes up,
543  * meaning it should configure itself into the state in which it
544  * can send packets.
545  */
546 static int
547 tap_init(struct ifnet *ifp)
548 {
549 	ifp->if_flags |= IFF_RUNNING;
550 
551 	tap_start(ifp);
552 
553 	return 0;
554 }
555 
556 /*
557  * _stop() is called when an interface goes down.  It is our
558  * responsibility to validate that state by clearing the
559  * IFF_RUNNING flag.
560  *
561  * We have to wake up all the sleeping processes to have the pending
562  * read requests cancelled.
563  */
564 static void
565 tap_stop(struct ifnet *ifp, int disable)
566 {
567 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
568 
569 	mutex_enter(&sc->sc_lock);
570 	ifp->if_flags &= ~IFF_RUNNING;
571 	cv_broadcast(&sc->sc_cv);
572 	selnotify(&sc->sc_rsel, 0, 1);
573 	if (sc->sc_flags & TAP_ASYNCIO) {
574 		kpreempt_disable();
575 		softint_schedule(sc->sc_sih);
576 		kpreempt_enable();
577 	}
578 	mutex_exit(&sc->sc_lock);
579 }
580 
581 /*
582  * The 'create' command of ifconfig can be used to create
583  * any numbered instance of a given device.  Thus we have to
584  * make sure we have enough room in cd_devs to create the
585  * user-specified instance.  config_attach_pseudo will do this
586  * for us.
587  */
588 static int
589 tap_clone_create(struct if_clone *ifc, int unit)
590 {
591 
592 	if (tap_clone_creator(unit) == NULL) {
593 		aprint_error("%s%d: unable to attach an instance\n",
594 		    tap_cd.cd_name, unit);
595 		return ENXIO;
596 	}
597 	atomic_inc_uint(&tap_count);
598 	return 0;
599 }
600 
601 /*
602  * tap(4) can be cloned by two ways:
603  *   using 'ifconfig tap0 create', which will use the network
604  *     interface cloning API, and call tap_clone_create above.
605  *   opening the cloning device node, whose minor number is TAP_CLONER.
606  *     See below for an explanation on how this part work.
607  */
608 static struct tap_softc *
609 tap_clone_creator(int unit)
610 {
611 	cfdata_t cf;
612 
613 	cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
614 	cf->cf_name = tap_cd.cd_name;
615 	cf->cf_atname = tap_ca.ca_name;
616 	if (unit == -1) {
617 		/* let autoconf find the first free one */
618 		cf->cf_unit = 0;
619 		cf->cf_fstate = FSTATE_STAR;
620 	} else {
621 		cf->cf_unit = unit;
622 		cf->cf_fstate = FSTATE_NOTFOUND;
623 	}
624 
625 	return device_private(config_attach_pseudo(cf));
626 }
627 
628 /*
629  * The clean design of if_clone and autoconf(9) makes that part
630  * really straightforward.  The second argument of config_detach
631  * means neither QUIET nor FORCED.
632  */
633 static int
634 tap_clone_destroy(struct ifnet *ifp)
635 {
636 	struct tap_softc *sc = ifp->if_softc;
637 	int error = tap_clone_destroyer(sc->sc_dev);
638 
639 	if (error == 0)
640 		atomic_dec_uint(&tap_count);
641 	return error;
642 }
643 
644 int
645 tap_clone_destroyer(device_t dev)
646 {
647 	cfdata_t cf = device_cfdata(dev);
648 	int error;
649 
650 	if ((error = config_detach(dev, 0)) != 0)
651 		aprint_error_dev(dev, "unable to detach instance\n");
652 	kmem_free(cf, sizeof(*cf));
653 
654 	return error;
655 }
656 
657 /*
658  * tap(4) is a bit of an hybrid device.  It can be used in two different
659  * ways:
660  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
661  *  2. open /dev/tap, get a new interface created and read/write off it.
662  *     That interface is destroyed when the process that had it created exits.
663  *
664  * The first way is managed by the cdevsw structure, and you access interfaces
665  * through a (major, minor) mapping:  tap4 is obtained by the minor number
666  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
667  *
668  * The second way is the so-called "cloning" device.  It's a special minor
669  * number (chosen as the maximal number, to allow as much tap devices as
670  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
671  * call ends in tap_cdev_open.  The actual place where it is handled is
672  * tap_dev_cloner.
673  *
674  * An tap device cannot be opened more than once at a time, so the cdevsw
675  * part of open() does nothing but noting that the interface is being used and
676  * hence ready to actually handle packets.
677  */
678 
679 static int
680 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
681 {
682 	struct tap_softc *sc;
683 
684 	if (minor(dev) == TAP_CLONER)
685 		return tap_dev_cloner(l);
686 
687 	sc = device_lookup_private(&tap_cd, minor(dev));
688 	if (sc == NULL)
689 		return ENXIO;
690 
691 	/* The device can only be opened once */
692 	if (sc->sc_flags & TAP_INUSE)
693 		return EBUSY;
694 	sc->sc_flags |= TAP_INUSE;
695 	if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP);
696 
697 	return 0;
698 }
699 
700 /*
701  * There are several kinds of cloning devices, and the most simple is the one
702  * tap(4) uses.  What it does is change the file descriptor with a new one,
703  * with its own fileops structure (which maps to the various read, write,
704  * ioctl functions).  It starts allocating a new file descriptor with falloc,
705  * then actually creates the new tap devices.
706  *
707  * Once those two steps are successful, we can re-wire the existing file
708  * descriptor to its new self.  This is done with fdclone():  it fills the fp
709  * structure as needed (notably f_devunit gets filled with the fifth parameter
710  * passed, the unit of the tap device which will allows us identifying the
711  * device later), and returns EMOVEFD.
712  *
713  * That magic value is interpreted by sys_open() which then replaces the
714  * current file descriptor by the new one (through a magic member of struct
715  * lwp, l_dupfd).
716  *
717  * The tap device is flagged as being busy since it otherwise could be
718  * externally accessed through the corresponding device node with the cdevsw
719  * interface.
720  */
721 
722 static int
723 tap_dev_cloner(struct lwp *l)
724 {
725 	struct tap_softc *sc;
726 	file_t *fp;
727 	int error, fd;
728 
729 	if ((error = fd_allocfile(&fp, &fd)) != 0)
730 		return error;
731 
732 	if ((sc = tap_clone_creator(-1)) == NULL) {
733 		fd_abort(curproc, fp, fd);
734 		return ENXIO;
735 	}
736 
737 	sc->sc_flags |= TAP_INUSE;
738 	if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP);
739 
740 	return fd_clone(fp, fd, FREAD | FWRITE, &tap_fileops,
741 	    (void *)(intptr_t)device_unit(sc->sc_dev));
742 }
743 
744 /*
745  * While all other operations (read, write, ioctl, poll and kqfilter) are
746  * really the same whether we are in cdevsw or fileops mode, the close()
747  * function is slightly different in the two cases.
748  *
749  * As for the other, the core of it is shared in tap_dev_close.  What
750  * it does is sufficient for the cdevsw interface, but the cloning interface
751  * needs another thing:  the interface is destroyed when the processes that
752  * created it closes it.
753  */
754 static int
755 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
756 {
757 	struct tap_softc *sc = device_lookup_private(&tap_cd, minor(dev));
758 
759 	if (sc == NULL)
760 		return ENXIO;
761 
762 	return tap_dev_close(sc);
763 }
764 
765 /*
766  * It might happen that the administrator used ifconfig to externally destroy
767  * the interface.  In that case, tap_fops_close will be called while
768  * tap_detach is already happening.  If we called it again from here, we
769  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
770  */
771 static int
772 tap_fops_close(file_t *fp)
773 {
774 	struct tap_softc *sc;
775 	int unit = fp->f_devunit;
776 	int error;
777 
778 	sc = device_lookup_private(&tap_cd, unit);
779 	if (sc == NULL)
780 		return ENXIO;
781 
782 	/* tap_dev_close currently always succeeds, but it might not
783 	 * always be the case. */
784 	KERNEL_LOCK(1, NULL);
785 	if ((error = tap_dev_close(sc)) != 0) {
786 		KERNEL_UNLOCK_ONE(NULL);
787 		return error;
788 	}
789 
790 	/* Destroy the device now that it is no longer useful,
791 	 * unless it's already being destroyed. */
792 	if ((sc->sc_flags & TAP_GOING) != 0) {
793 		KERNEL_UNLOCK_ONE(NULL);
794 		return 0;
795 	}
796 
797 	error = tap_clone_destroyer(sc->sc_dev);
798 	KERNEL_UNLOCK_ONE(NULL);
799 	return error;
800 }
801 
802 static int
803 tap_dev_close(struct tap_softc *sc)
804 {
805 	struct ifnet *ifp;
806 	int s;
807 
808 	s = splnet();
809 	/* Let tap_start handle packets again */
810 	ifp = &sc->sc_ec.ec_if;
811 	ifp->if_flags &= ~IFF_OACTIVE;
812 
813 	/* Purge output queue */
814 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
815 		struct mbuf *m;
816 
817 		for (;;) {
818 			IFQ_DEQUEUE(&ifp->if_snd, m);
819 			if (m == NULL)
820 				break;
821 
822 			if_statadd2(ifp, if_opackets, 1, if_obytes, m->m_len);
823 			bpf_mtap(ifp, m, BPF_D_OUT);
824 			m_freem(m);
825 		}
826 	}
827 	splx(s);
828 
829 	if (sc->sc_sih != NULL) {
830 		softint_disestablish(sc->sc_sih);
831 		sc->sc_sih = NULL;
832 	}
833 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
834 	if_link_state_change(ifp, LINK_STATE_DOWN);
835 
836 	return 0;
837 }
838 
839 static int
840 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
841 {
842 
843 	return tap_dev_read(minor(dev), uio, flags);
844 }
845 
846 static int
847 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
848     kauth_cred_t cred, int flags)
849 {
850 	int error;
851 
852 	KERNEL_LOCK(1, NULL);
853 	error = tap_dev_read(fp->f_devunit, uio, flags);
854 	KERNEL_UNLOCK_ONE(NULL);
855 	return error;
856 }
857 
858 static int
859 tap_dev_read(int unit, struct uio *uio, int flags)
860 {
861 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
862 	struct ifnet *ifp;
863 	struct mbuf *m, *n;
864 	int error = 0;
865 
866 	if (sc == NULL)
867 		return ENXIO;
868 
869 	getnanotime(&sc->sc_atime);
870 
871 	ifp = &sc->sc_ec.ec_if;
872 	if ((ifp->if_flags & IFF_UP) == 0)
873 		return EHOSTDOWN;
874 
875 	/* In the TAP_NBIO case, we have to make sure we won't be sleeping */
876 	if ((sc->sc_flags & TAP_NBIO) != 0) {
877 		if (!mutex_tryenter(&sc->sc_lock))
878 			return EWOULDBLOCK;
879 	} else
880 		mutex_enter(&sc->sc_lock);
881 
882 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
883 		ifp->if_flags &= ~IFF_OACTIVE;
884 		if (sc->sc_flags & TAP_NBIO)
885 			error = EWOULDBLOCK;
886 		else
887 			error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
888 
889 		if (error != 0) {
890 			mutex_exit(&sc->sc_lock);
891 			return error;
892 		}
893 		/* The device might have been downed */
894 		if ((ifp->if_flags & IFF_UP) == 0) {
895 			mutex_exit(&sc->sc_lock);
896 			return EHOSTDOWN;
897 		}
898 	}
899 
900 	IFQ_DEQUEUE(&ifp->if_snd, m);
901 	mutex_exit(&sc->sc_lock);
902 
903 	ifp->if_flags &= ~IFF_OACTIVE;
904 	if (m == NULL) {
905 		error = 0;
906 		goto out;
907 	}
908 
909 	if_statadd2(ifp, if_opackets, 1,
910 	    if_obytes, m->m_len);		/* XXX only first in chain */
911 	bpf_mtap(ifp, m, BPF_D_OUT);
912 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
913 		goto out;
914 	if (m == NULL)
915 		goto out;
916 
917 	/*
918 	 * One read is one packet.
919 	 */
920 	do {
921 		error = uiomove(mtod(m, void *),
922 		    uimin(m->m_len, uio->uio_resid), uio);
923 		m = n = m_free(m);
924 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
925 
926 	if (m != NULL)
927 		m_freem(m);
928 
929 out:
930 	return error;
931 }
932 
933 static int
934 tap_fops_stat(file_t *fp, struct stat *st)
935 {
936 	int error = 0;
937 	struct tap_softc *sc;
938 	int unit = fp->f_devunit;
939 
940 	(void)memset(st, 0, sizeof(*st));
941 
942 	KERNEL_LOCK(1, NULL);
943 	sc = device_lookup_private(&tap_cd, unit);
944 	if (sc == NULL) {
945 		error = ENXIO;
946 		goto out;
947 	}
948 
949 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
950 	st->st_atimespec = sc->sc_atime;
951 	st->st_mtimespec = sc->sc_mtime;
952 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
953 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
954 	st->st_gid = kauth_cred_getegid(fp->f_cred);
955 out:
956 	KERNEL_UNLOCK_ONE(NULL);
957 	return error;
958 }
959 
960 static int
961 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
962 {
963 
964 	return tap_dev_write(minor(dev), uio, flags);
965 }
966 
967 static int
968 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
969     kauth_cred_t cred, int flags)
970 {
971 	int error;
972 
973 	KERNEL_LOCK(1, NULL);
974 	error = tap_dev_write(fp->f_devunit, uio, flags);
975 	KERNEL_UNLOCK_ONE(NULL);
976 	return error;
977 }
978 
979 static int
980 tap_dev_write(int unit, struct uio *uio, int flags)
981 {
982 	struct tap_softc *sc =
983 	    device_lookup_private(&tap_cd, unit);
984 	struct ifnet *ifp;
985 	struct mbuf *m, **mp;
986 	size_t len = 0;
987 	int error = 0;
988 
989 	if (sc == NULL)
990 		return ENXIO;
991 
992 	getnanotime(&sc->sc_mtime);
993 	ifp = &sc->sc_ec.ec_if;
994 
995 	/* One write, one packet, that's the rule */
996 	MGETHDR(m, M_DONTWAIT, MT_DATA);
997 	if (m == NULL) {
998 		if_statinc(ifp, if_ierrors);
999 		return ENOBUFS;
1000 	}
1001 	m->m_pkthdr.len = uio->uio_resid;
1002 
1003 	mp = &m;
1004 	while (error == 0 && uio->uio_resid > 0) {
1005 		if (*mp != m) {
1006 			MGET(*mp, M_DONTWAIT, MT_DATA);
1007 			if (*mp == NULL) {
1008 				error = ENOBUFS;
1009 				break;
1010 			}
1011 		}
1012 		(*mp)->m_len = uimin(MHLEN, uio->uio_resid);
1013 		len += (*mp)->m_len;
1014 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1015 		mp = &(*mp)->m_next;
1016 	}
1017 	if (error) {
1018 		if_statinc(ifp, if_ierrors);
1019 		m_freem(m);
1020 		return error;
1021 	}
1022 
1023 	m_set_rcvif(m, ifp);
1024 
1025 	if_statadd2(ifp, if_ipackets, 1, if_ibytes, len);
1026 	bpf_mtap(ifp, m, BPF_D_IN);
1027 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN)) != 0)
1028 		return error;
1029 	if (m == NULL)
1030 		return 0;
1031 
1032 	if_percpuq_enqueue(ifp->if_percpuq, m);
1033 
1034 	return 0;
1035 }
1036 
1037 static int
1038 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
1039 {
1040 
1041 	return tap_dev_ioctl(minor(dev), cmd, data, l);
1042 }
1043 
1044 static int
1045 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1046 {
1047 
1048 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1049 }
1050 
1051 static int
1052 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1053 {
1054 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1055 
1056 	if (sc == NULL)
1057 		return ENXIO;
1058 
1059 	switch (cmd) {
1060 	case FIONREAD:
1061 		{
1062 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1063 			struct mbuf *m;
1064 			int s;
1065 
1066 			s = splnet();
1067 			IFQ_POLL(&ifp->if_snd, m);
1068 
1069 			if (m == NULL)
1070 				*(int *)data = 0;
1071 			else
1072 				*(int *)data = m->m_pkthdr.len;
1073 			splx(s);
1074 			return 0;
1075 		}
1076 	case TIOCSPGRP:
1077 	case FIOSETOWN:
1078 		return fsetown(&sc->sc_pgid, cmd, data);
1079 	case TIOCGPGRP:
1080 	case FIOGETOWN:
1081 		return fgetown(sc->sc_pgid, cmd, data);
1082 	case FIOASYNC:
1083 		if (*(int *)data) {
1084 			if (sc->sc_sih == NULL) {
1085 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1086 				    tap_softintr, sc);
1087 				if (sc->sc_sih == NULL)
1088 					return EBUSY; /* XXX */
1089 			}
1090 			sc->sc_flags |= TAP_ASYNCIO;
1091 		} else {
1092 			sc->sc_flags &= ~TAP_ASYNCIO;
1093 			if (sc->sc_sih != NULL) {
1094 				softint_disestablish(sc->sc_sih);
1095 				sc->sc_sih = NULL;
1096 			}
1097 		}
1098 		return 0;
1099 	case FIONBIO:
1100 		if (*(int *)data)
1101 			sc->sc_flags |= TAP_NBIO;
1102 		else
1103 			sc->sc_flags &= ~TAP_NBIO;
1104 		return 0;
1105 	case TAPGIFNAME:
1106 		{
1107 			struct ifreq *ifr = (struct ifreq *)data;
1108 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1109 
1110 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1111 			return 0;
1112 		}
1113 	default:
1114 		return ENOTTY;
1115 	}
1116 }
1117 
1118 static int
1119 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1120 {
1121 
1122 	return tap_dev_poll(minor(dev), events, l);
1123 }
1124 
1125 static int
1126 tap_fops_poll(file_t *fp, int events)
1127 {
1128 
1129 	return tap_dev_poll(fp->f_devunit, events, curlwp);
1130 }
1131 
1132 static int
1133 tap_dev_poll(int unit, int events, struct lwp *l)
1134 {
1135 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1136 	int revents = 0;
1137 
1138 	if (sc == NULL)
1139 		return POLLERR;
1140 
1141 	if (events & (POLLIN | POLLRDNORM)) {
1142 		struct ifnet *ifp = &sc->sc_ec.ec_if;
1143 		struct mbuf *m;
1144 		int s;
1145 
1146 		s = splnet();
1147 		IFQ_POLL(&ifp->if_snd, m);
1148 
1149 		if (m != NULL)
1150 			revents |= events & (POLLIN | POLLRDNORM);
1151 		else {
1152 			mutex_spin_enter(&sc->sc_lock);
1153 			selrecord(l, &sc->sc_rsel);
1154 			mutex_spin_exit(&sc->sc_lock);
1155 		}
1156 		splx(s);
1157 	}
1158 	revents |= events & (POLLOUT | POLLWRNORM);
1159 
1160 	return revents;
1161 }
1162 
1163 static struct filterops tap_read_filterops = {
1164 	.f_flags = FILTEROP_ISFD,
1165 	.f_attach = NULL,
1166 	.f_detach = tap_kqdetach,
1167 	.f_event = tap_kqread,
1168 };
1169 
1170 static int
1171 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1172 {
1173 
1174 	return tap_dev_kqfilter(minor(dev), kn);
1175 }
1176 
1177 static int
1178 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1179 {
1180 
1181 	return tap_dev_kqfilter(fp->f_devunit, kn);
1182 }
1183 
1184 static int
1185 tap_dev_kqfilter(int unit, struct knote *kn)
1186 {
1187 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1188 
1189 	if (sc == NULL)
1190 		return ENXIO;
1191 
1192 	switch(kn->kn_filter) {
1193 	case EVFILT_READ:
1194 		kn->kn_fop = &tap_read_filterops;
1195 		kn->kn_hook = sc;
1196 		KERNEL_LOCK(1, NULL);
1197 		mutex_spin_enter(&sc->sc_lock);
1198 		selrecord_knote(&sc->sc_rsel, kn);
1199 		mutex_spin_exit(&sc->sc_lock);
1200 		KERNEL_UNLOCK_ONE(NULL);
1201 		break;
1202 
1203 	case EVFILT_WRITE:
1204 		kn->kn_fop = &seltrue_filtops;
1205 		break;
1206 
1207 	default:
1208 		return EINVAL;
1209 	}
1210 
1211 	return 0;
1212 }
1213 
1214 static void
1215 tap_kqdetach(struct knote *kn)
1216 {
1217 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1218 
1219 	KERNEL_LOCK(1, NULL);
1220 	mutex_spin_enter(&sc->sc_lock);
1221 	selremove_knote(&sc->sc_rsel, kn);
1222 	mutex_spin_exit(&sc->sc_lock);
1223 	KERNEL_UNLOCK_ONE(NULL);
1224 }
1225 
1226 static int
1227 tap_kqread(struct knote *kn, long hint)
1228 {
1229 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1230 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1231 	struct mbuf *m;
1232 	int s, rv;
1233 
1234 	KERNEL_LOCK(1, NULL);
1235 	s = splnet();
1236 	IFQ_POLL(&ifp->if_snd, m);
1237 
1238 	if (m == NULL)
1239 		kn->kn_data = 0;
1240 	else
1241 		kn->kn_data = m->m_pkthdr.len;
1242 	splx(s);
1243 	rv = (kn->kn_data != 0 ? 1 : 0);
1244 	KERNEL_UNLOCK_ONE(NULL);
1245 	return rv;
1246 }
1247 
1248 /*
1249  * sysctl management routines
1250  * You can set the address of an interface through:
1251  * net.link.tap.tap<number>
1252  *
1253  * Note the consistent use of tap_log in order to use
1254  * sysctl_teardown at unload time.
1255  *
1256  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1257  * blocks register a function in a special section of the kernel
1258  * (called a link set) which is used at init_sysctl() time to cycle
1259  * through all those functions to create the kernel's sysctl tree.
1260  *
1261  * It is not possible to use link sets in a module, so the
1262  * easiest is to simply call our own setup routine at load time.
1263  *
1264  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1265  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1266  * whole kernel sysctl tree is built, it is not possible to add any
1267  * permanent node.
1268  *
1269  * It should be noted that we're not saving the sysctlnode pointer
1270  * we are returned when creating the "tap" node.  That structure
1271  * cannot be trusted once out of the calling function, as it might
1272  * get reused.  So we just save the MIB number, and always give the
1273  * full path starting from the root for later calls to sysctl_createv
1274  * and sysctl_destroyv.
1275  */
1276 static void
1277 sysctl_tap_setup(struct sysctllog **clog)
1278 {
1279 	const struct sysctlnode *node;
1280 	int error = 0;
1281 
1282 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1283 	    CTLFLAG_PERMANENT,
1284 	    CTLTYPE_NODE, "link", NULL,
1285 	    NULL, 0, NULL, 0,
1286 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1287 		return;
1288 
1289 	/*
1290 	 * The first four parameters of sysctl_createv are for management.
1291 	 *
1292 	 * The four that follows, here starting with a '0' for the flags,
1293 	 * describe the node.
1294 	 *
1295 	 * The next series of four set its value, through various possible
1296 	 * means.
1297 	 *
1298 	 * Last but not least, the path to the node is described.  That path
1299 	 * is relative to the given root (third argument).  Here we're
1300 	 * starting from the root.
1301 	 */
1302 	if ((error = sysctl_createv(clog, 0, NULL, &node,
1303 	    CTLFLAG_PERMANENT,
1304 	    CTLTYPE_NODE, "tap", NULL,
1305 	    NULL, 0, NULL, 0,
1306 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1307 		return;
1308 	tap_node = node->sysctl_num;
1309 }
1310 
1311 /*
1312  * The helper functions make Andrew Brown's interface really
1313  * shine.  It makes possible to create value on the fly whether
1314  * the sysctl value is read or written.
1315  *
1316  * As shown as an example in the man page, the first step is to
1317  * create a copy of the node to have sysctl_lookup work on it.
1318  *
1319  * Here, we have more work to do than just a copy, since we have
1320  * to create the string.  The first step is to collect the actual
1321  * value of the node, which is a convenient pointer to the softc
1322  * of the interface.  From there we create the string and use it
1323  * as the value, but only for the *copy* of the node.
1324  *
1325  * Then we let sysctl_lookup do the magic, which consists in
1326  * setting oldp and newp as required by the operation.  When the
1327  * value is read, that means that the string will be copied to
1328  * the user, and when it is written, the new value will be copied
1329  * over in the addr array.
1330  *
1331  * If newp is NULL, the user was reading the value, so we don't
1332  * have anything else to do.  If a new value was written, we
1333  * have to check it.
1334  *
1335  * If it is incorrect, we can return an error and leave 'node' as
1336  * it is:  since it is a copy of the actual node, the change will
1337  * be forgotten.
1338  *
1339  * Upon a correct input, we commit the change to the ifnet
1340  * structure of our interface.
1341  */
1342 static int
1343 tap_sysctl_handler(SYSCTLFN_ARGS)
1344 {
1345 	struct sysctlnode node;
1346 	struct tap_softc *sc;
1347 	struct ifnet *ifp;
1348 	int error;
1349 	size_t len;
1350 	char addr[3 * ETHER_ADDR_LEN];
1351 	uint8_t enaddr[ETHER_ADDR_LEN];
1352 
1353 	node = *rnode;
1354 	sc = node.sysctl_data;
1355 	ifp = &sc->sc_ec.ec_if;
1356 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1357 	node.sysctl_data = addr;
1358 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1359 	if (error || newp == NULL)
1360 		return error;
1361 
1362 	len = strlen(addr);
1363 	if (len < 11 || len > 17)
1364 		return EINVAL;
1365 
1366 	/* Commit change */
1367 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1368 		return EINVAL;
1369 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1370 	return error;
1371 }
1372 
1373 /*
1374  * Module infrastructure
1375  */
1376 #include "if_module.h"
1377 
1378 IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL)
1379