xref: /netbsd-src/sys/net/if_tap.c (revision 7788a0781fe6ff2cce37368b4578a7ade0850cb1)
1 /*	$NetBSD: if_tap.c,v 1.70 2013/01/28 15:05:03 yamt Exp $	*/
2 
3 /*
4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5  *  All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *  1. Redistributions of source code must retain the above copyright
11  *     notice, this list of conditions and the following disclaimer.
12  *  2. Redistributions in binary form must reproduce the above copyright
13  *     notice, this list of conditions and the following disclaimer in the
14  *     documentation and/or other materials provided with the distribution.
15  *
16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  *  POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
31  * device to the system, but can also be accessed by userland through a
32  * character device interface, which allows reading and injecting frames.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.70 2013/01/28 15:05:03 yamt Exp $");
37 
38 #if defined(_KERNEL_OPT)
39 
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/cprng.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/ksyms.h>
54 #include <sys/poll.h>
55 #include <sys/proc.h>
56 #include <sys/select.h>
57 #include <sys/sockio.h>
58 #if defined(COMPAT_40) || defined(MODULAR)
59 #include <sys/sysctl.h>
60 #endif
61 #include <sys/kauth.h>
62 #include <sys/mutex.h>
63 #include <sys/simplelock.h>
64 #include <sys/intr.h>
65 #include <sys/stat.h>
66 
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 #include <net/if_tap.h>
72 #include <net/bpf.h>
73 
74 #include <compat/sys/sockio.h>
75 
76 #if defined(COMPAT_40) || defined(MODULAR)
77 /*
78  * sysctl node management
79  *
80  * It's not really possible to use a SYSCTL_SETUP block with
81  * current module implementation, so it is easier to just define
82  * our own function.
83  *
84  * The handler function is a "helper" in Andrew Brown's sysctl
85  * framework terminology.  It is used as a gateway for sysctl
86  * requests over the nodes.
87  *
88  * tap_log allows the module to log creations of nodes and
89  * destroy them all at once using sysctl_teardown.
90  */
91 static int tap_node;
92 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
93 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
94 #endif
95 
96 /*
97  * Since we're an Ethernet device, we need the 2 following
98  * components: a struct ethercom and a struct ifmedia
99  * since we don't attach a PHY to ourselves.
100  * We could emulate one, but there's no real point.
101  */
102 
103 struct tap_softc {
104 	device_t	sc_dev;
105 	struct ifmedia	sc_im;
106 	struct ethercom	sc_ec;
107 	int		sc_flags;
108 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
109 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
110 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
111 #define TAP_GOING	0x00000008	/* interface is being destroyed */
112 	struct selinfo	sc_rsel;
113 	pid_t		sc_pgid; /* For async. IO */
114 	kmutex_t	sc_rdlock;
115 	struct simplelock	sc_kqlock;
116 	void		*sc_sih;
117 	struct timespec sc_atime;
118 	struct timespec sc_mtime;
119 	struct timespec sc_btime;
120 };
121 
122 /* autoconf(9) glue */
123 
124 void	tapattach(int);
125 
126 static int	tap_match(device_t, cfdata_t, void *);
127 static void	tap_attach(device_t, device_t, void *);
128 static int	tap_detach(device_t, int);
129 
130 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
131     tap_match, tap_attach, tap_detach, NULL);
132 extern struct cfdriver tap_cd;
133 
134 /* Real device access routines */
135 static int	tap_dev_close(struct tap_softc *);
136 static int	tap_dev_read(int, struct uio *, int);
137 static int	tap_dev_write(int, struct uio *, int);
138 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
139 static int	tap_dev_poll(int, int, struct lwp *);
140 static int	tap_dev_kqfilter(int, struct knote *);
141 
142 /* Fileops access routines */
143 static int	tap_fops_close(file_t *);
144 static int	tap_fops_read(file_t *, off_t *, struct uio *,
145     kauth_cred_t, int);
146 static int	tap_fops_write(file_t *, off_t *, struct uio *,
147     kauth_cred_t, int);
148 static int	tap_fops_ioctl(file_t *, u_long, void *);
149 static int	tap_fops_poll(file_t *, int);
150 static int	tap_fops_stat(file_t *, struct stat *);
151 static int	tap_fops_kqfilter(file_t *, struct knote *);
152 
153 static const struct fileops tap_fileops = {
154 	.fo_read = tap_fops_read,
155 	.fo_write = tap_fops_write,
156 	.fo_ioctl = tap_fops_ioctl,
157 	.fo_fcntl = fnullop_fcntl,
158 	.fo_poll = tap_fops_poll,
159 	.fo_stat = tap_fops_stat,
160 	.fo_close = tap_fops_close,
161 	.fo_kqfilter = tap_fops_kqfilter,
162 	.fo_restart = fnullop_restart,
163 };
164 
165 /* Helper for cloning open() */
166 static int	tap_dev_cloner(struct lwp *);
167 
168 /* Character device routines */
169 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
170 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
171 static int	tap_cdev_read(dev_t, struct uio *, int);
172 static int	tap_cdev_write(dev_t, struct uio *, int);
173 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
174 static int	tap_cdev_poll(dev_t, int, struct lwp *);
175 static int	tap_cdev_kqfilter(dev_t, struct knote *);
176 
177 const struct cdevsw tap_cdevsw = {
178 	tap_cdev_open, tap_cdev_close,
179 	tap_cdev_read, tap_cdev_write,
180 	tap_cdev_ioctl, nostop, notty,
181 	tap_cdev_poll, nommap,
182 	tap_cdev_kqfilter,
183 	D_OTHER,
184 };
185 
186 #define TAP_CLONER	0xfffff		/* Maximal minor value */
187 
188 /* kqueue-related routines */
189 static void	tap_kqdetach(struct knote *);
190 static int	tap_kqread(struct knote *, long);
191 
192 /*
193  * Those are needed by the if_media interface.
194  */
195 
196 static int	tap_mediachange(struct ifnet *);
197 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
198 
199 /*
200  * Those are needed by the ifnet interface, and would typically be
201  * there for any network interface driver.
202  * Some other routines are optional: watchdog and drain.
203  */
204 
205 static void	tap_start(struct ifnet *);
206 static void	tap_stop(struct ifnet *, int);
207 static int	tap_init(struct ifnet *);
208 static int	tap_ioctl(struct ifnet *, u_long, void *);
209 
210 /* Internal functions */
211 #if defined(COMPAT_40) || defined(MODULAR)
212 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
213 #endif
214 static void	tap_softintr(void *);
215 
216 /*
217  * tap is a clonable interface, although it is highly unrealistic for
218  * an Ethernet device.
219  *
220  * Here are the bits needed for a clonable interface.
221  */
222 static int	tap_clone_create(struct if_clone *, int);
223 static int	tap_clone_destroy(struct ifnet *);
224 
225 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
226 					tap_clone_create,
227 					tap_clone_destroy);
228 
229 /* Helper functionis shared by the two cloning code paths */
230 static struct tap_softc *	tap_clone_creator(int);
231 int	tap_clone_destroyer(device_t);
232 
233 void
234 tapattach(int n)
235 {
236 	int error;
237 
238 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
239 	if (error) {
240 		aprint_error("%s: unable to register cfattach\n",
241 		    tap_cd.cd_name);
242 		(void)config_cfdriver_detach(&tap_cd);
243 		return;
244 	}
245 
246 	if_clone_attach(&tap_cloners);
247 }
248 
249 /* Pretty much useless for a pseudo-device */
250 static int
251 tap_match(device_t parent, cfdata_t cfdata, void *arg)
252 {
253 
254 	return (1);
255 }
256 
257 void
258 tap_attach(device_t parent, device_t self, void *aux)
259 {
260 	struct tap_softc *sc = device_private(self);
261 	struct ifnet *ifp;
262 #if defined(COMPAT_40) || defined(MODULAR)
263 	const struct sysctlnode *node;
264 	int error;
265 #endif
266 	uint8_t enaddr[ETHER_ADDR_LEN] =
267 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
268 	char enaddrstr[3 * ETHER_ADDR_LEN];
269 
270 	sc->sc_dev = self;
271 	sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
272 	getnanotime(&sc->sc_btime);
273 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
274 
275 	if (!pmf_device_register(self, NULL, NULL))
276 		aprint_error_dev(self, "couldn't establish power handler\n");
277 
278 	/*
279 	 * In order to obtain unique initial Ethernet address on a host,
280 	 * do some randomisation.  It's not meant for anything but avoiding
281 	 * hard-coding an address.
282 	 */
283 	cprng_fast(&enaddr[3], 3);
284 
285 	aprint_verbose_dev(self, "Ethernet address %s\n",
286 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
287 
288 	/*
289 	 * Why 1000baseT? Why not? You can add more.
290 	 *
291 	 * Note that there are 3 steps: init, one or several additions to
292 	 * list of supported media, and in the end, the selection of one
293 	 * of them.
294 	 */
295 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
296 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
297 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
298 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
299 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
300 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
301 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
302 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
303 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
304 
305 	/*
306 	 * One should note that an interface must do multicast in order
307 	 * to support IPv6.
308 	 */
309 	ifp = &sc->sc_ec.ec_if;
310 	strcpy(ifp->if_xname, device_xname(self));
311 	ifp->if_softc	= sc;
312 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
313 	ifp->if_ioctl	= tap_ioctl;
314 	ifp->if_start	= tap_start;
315 	ifp->if_stop	= tap_stop;
316 	ifp->if_init	= tap_init;
317 	IFQ_SET_READY(&ifp->if_snd);
318 
319 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
320 
321 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
322 	 * being common to all network interface drivers. */
323 	if_attach(ifp);
324 	ether_ifattach(ifp, enaddr);
325 
326 	sc->sc_flags = 0;
327 
328 #if defined(COMPAT_40) || defined(MODULAR)
329 	/*
330 	 * Add a sysctl node for that interface.
331 	 *
332 	 * The pointer transmitted is not a string, but instead a pointer to
333 	 * the softc structure, which we can use to build the string value on
334 	 * the fly in the helper function of the node.  See the comments for
335 	 * tap_sysctl_handler for details.
336 	 *
337 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
338 	 * component.  However, we can allocate a number ourselves, as we are
339 	 * the only consumer of the net.link.<iface> node.  In this case, the
340 	 * unit number is conveniently used to number the node.  CTL_CREATE
341 	 * would just work, too.
342 	 */
343 	if ((error = sysctl_createv(NULL, 0, NULL,
344 	    &node, CTLFLAG_READWRITE,
345 	    CTLTYPE_STRING, device_xname(self), NULL,
346 	    tap_sysctl_handler, 0, (void *)sc, 18,
347 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
348 	    CTL_EOL)) != 0)
349 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
350 		    error);
351 #endif
352 
353 	/*
354 	 * Initialize the two locks for the device.
355 	 *
356 	 * We need a lock here because even though the tap device can be
357 	 * opened only once, the file descriptor might be passed to another
358 	 * process, say a fork(2)ed child.
359 	 *
360 	 * The Giant saves us from most of the hassle, but since the read
361 	 * operation can sleep, we don't want two processes to wake up at
362 	 * the same moment and both try and dequeue a single packet.
363 	 *
364 	 * The queue for event listeners (used by kqueue(9), see below) has
365 	 * to be protected, too, but we don't need the same level of
366 	 * complexity for that lock, so a simple spinning lock is fine.
367 	 */
368 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
369 	simple_lock_init(&sc->sc_kqlock);
370 
371 	selinit(&sc->sc_rsel);
372 }
373 
374 /*
375  * When detaching, we do the inverse of what is done in the attach
376  * routine, in reversed order.
377  */
378 static int
379 tap_detach(device_t self, int flags)
380 {
381 	struct tap_softc *sc = device_private(self);
382 	struct ifnet *ifp = &sc->sc_ec.ec_if;
383 #if defined(COMPAT_40) || defined(MODULAR)
384 	int error;
385 #endif
386 	int s;
387 
388 	sc->sc_flags |= TAP_GOING;
389 	s = splnet();
390 	tap_stop(ifp, 1);
391 	if_down(ifp);
392 	splx(s);
393 
394 	softint_disestablish(sc->sc_sih);
395 
396 #if defined(COMPAT_40) || defined(MODULAR)
397 	/*
398 	 * Destroying a single leaf is a very straightforward operation using
399 	 * sysctl_destroyv.  One should be sure to always end the path with
400 	 * CTL_EOL.
401 	 */
402 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
403 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
404 		aprint_error_dev(self,
405 		    "sysctl_destroyv returned %d, ignoring\n", error);
406 #endif
407 	ether_ifdetach(ifp);
408 	if_detach(ifp);
409 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
410 	seldestroy(&sc->sc_rsel);
411 	mutex_destroy(&sc->sc_rdlock);
412 
413 	pmf_device_deregister(self);
414 
415 	return (0);
416 }
417 
418 /*
419  * This function is called by the ifmedia layer to notify the driver
420  * that the user requested a media change.  A real driver would
421  * reconfigure the hardware.
422  */
423 static int
424 tap_mediachange(struct ifnet *ifp)
425 {
426 	return (0);
427 }
428 
429 /*
430  * Here the user asks for the currently used media.
431  */
432 static void
433 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
434 {
435 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
436 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
437 }
438 
439 /*
440  * This is the function where we SEND packets.
441  *
442  * There is no 'receive' equivalent.  A typical driver will get
443  * interrupts from the hardware, and from there will inject new packets
444  * into the network stack.
445  *
446  * Once handled, a packet must be freed.  A real driver might not be able
447  * to fit all the pending packets into the hardware, and is allowed to
448  * return before having sent all the packets.  It should then use the
449  * if_flags flag IFF_OACTIVE to notify the upper layer.
450  *
451  * There are also other flags one should check, such as IFF_PAUSE.
452  *
453  * It is our duty to make packets available to BPF listeners.
454  *
455  * You should be aware that this function is called by the Ethernet layer
456  * at splnet().
457  *
458  * When the device is opened, we have to pass the packet(s) to the
459  * userland.  For that we stay in OACTIVE mode while the userland gets
460  * the packets, and we send a signal to the processes waiting to read.
461  *
462  * wakeup(sc) is the counterpart to the tsleep call in
463  * tap_dev_read, while selnotify() is used for kevent(2) and
464  * poll(2) (which includes select(2)) listeners.
465  */
466 static void
467 tap_start(struct ifnet *ifp)
468 {
469 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
470 	struct mbuf *m0;
471 
472 	if ((sc->sc_flags & TAP_INUSE) == 0) {
473 		/* Simply drop packets */
474 		for(;;) {
475 			IFQ_DEQUEUE(&ifp->if_snd, m0);
476 			if (m0 == NULL)
477 				return;
478 
479 			ifp->if_opackets++;
480 			bpf_mtap(ifp, m0);
481 
482 			m_freem(m0);
483 		}
484 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
485 		ifp->if_flags |= IFF_OACTIVE;
486 		wakeup(sc);
487 		selnotify(&sc->sc_rsel, 0, 1);
488 		if (sc->sc_flags & TAP_ASYNCIO)
489 			softint_schedule(sc->sc_sih);
490 	}
491 }
492 
493 static void
494 tap_softintr(void *cookie)
495 {
496 	struct tap_softc *sc;
497 	struct ifnet *ifp;
498 	int a, b;
499 
500 	sc = cookie;
501 
502 	if (sc->sc_flags & TAP_ASYNCIO) {
503 		ifp = &sc->sc_ec.ec_if;
504 		if (ifp->if_flags & IFF_RUNNING) {
505 			a = POLL_IN;
506 			b = POLLIN|POLLRDNORM;
507 		} else {
508 			a = POLL_HUP;
509 			b = 0;
510 		}
511 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
512 	}
513 }
514 
515 /*
516  * A typical driver will only contain the following handlers for
517  * ioctl calls, except SIOCSIFPHYADDR.
518  * The latter is a hack I used to set the Ethernet address of the
519  * faked device.
520  *
521  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
522  * called under splnet().
523  */
524 static int
525 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
526 {
527 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
528 	struct ifreq *ifr = (struct ifreq *)data;
529 	int s, error;
530 
531 	s = splnet();
532 
533 	switch (cmd) {
534 #ifdef OSIOCSIFMEDIA
535 	case OSIOCSIFMEDIA:
536 #endif
537 	case SIOCSIFMEDIA:
538 	case SIOCGIFMEDIA:
539 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
540 		break;
541 #if defined(COMPAT_40) || defined(MODULAR)
542 	case SIOCSIFPHYADDR:
543 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
544 		break;
545 #endif
546 	default:
547 		error = ether_ioctl(ifp, cmd, data);
548 		if (error == ENETRESET)
549 			error = 0;
550 		break;
551 	}
552 
553 	splx(s);
554 
555 	return (error);
556 }
557 
558 #if defined(COMPAT_40) || defined(MODULAR)
559 /*
560  * Helper function to set Ethernet address.  This has been replaced by
561  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
562  */
563 static int
564 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
565 {
566 	const struct sockaddr *sa = &ifra->ifra_addr;
567 
568 	if (sa->sa_family != AF_LINK)
569 		return (EINVAL);
570 
571 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
572 
573 	return (0);
574 }
575 #endif
576 
577 /*
578  * _init() would typically be called when an interface goes up,
579  * meaning it should configure itself into the state in which it
580  * can send packets.
581  */
582 static int
583 tap_init(struct ifnet *ifp)
584 {
585 	ifp->if_flags |= IFF_RUNNING;
586 
587 	tap_start(ifp);
588 
589 	return (0);
590 }
591 
592 /*
593  * _stop() is called when an interface goes down.  It is our
594  * responsability to validate that state by clearing the
595  * IFF_RUNNING flag.
596  *
597  * We have to wake up all the sleeping processes to have the pending
598  * read requests cancelled.
599  */
600 static void
601 tap_stop(struct ifnet *ifp, int disable)
602 {
603 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
604 
605 	ifp->if_flags &= ~IFF_RUNNING;
606 	wakeup(sc);
607 	selnotify(&sc->sc_rsel, 0, 1);
608 	if (sc->sc_flags & TAP_ASYNCIO)
609 		softint_schedule(sc->sc_sih);
610 }
611 
612 /*
613  * The 'create' command of ifconfig can be used to create
614  * any numbered instance of a given device.  Thus we have to
615  * make sure we have enough room in cd_devs to create the
616  * user-specified instance.  config_attach_pseudo will do this
617  * for us.
618  */
619 static int
620 tap_clone_create(struct if_clone *ifc, int unit)
621 {
622 	if (tap_clone_creator(unit) == NULL) {
623 		aprint_error("%s%d: unable to attach an instance\n",
624                     tap_cd.cd_name, unit);
625 		return (ENXIO);
626 	}
627 
628 	return (0);
629 }
630 
631 /*
632  * tap(4) can be cloned by two ways:
633  *   using 'ifconfig tap0 create', which will use the network
634  *     interface cloning API, and call tap_clone_create above.
635  *   opening the cloning device node, whose minor number is TAP_CLONER.
636  *     See below for an explanation on how this part work.
637  */
638 static struct tap_softc *
639 tap_clone_creator(int unit)
640 {
641 	struct cfdata *cf;
642 
643 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
644 	cf->cf_name = tap_cd.cd_name;
645 	cf->cf_atname = tap_ca.ca_name;
646 	if (unit == -1) {
647 		/* let autoconf find the first free one */
648 		cf->cf_unit = 0;
649 		cf->cf_fstate = FSTATE_STAR;
650 	} else {
651 		cf->cf_unit = unit;
652 		cf->cf_fstate = FSTATE_NOTFOUND;
653 	}
654 
655 	return device_private(config_attach_pseudo(cf));
656 }
657 
658 /*
659  * The clean design of if_clone and autoconf(9) makes that part
660  * really straightforward.  The second argument of config_detach
661  * means neither QUIET nor FORCED.
662  */
663 static int
664 tap_clone_destroy(struct ifnet *ifp)
665 {
666 	struct tap_softc *sc = ifp->if_softc;
667 
668 	return tap_clone_destroyer(sc->sc_dev);
669 }
670 
671 int
672 tap_clone_destroyer(device_t dev)
673 {
674 	cfdata_t cf = device_cfdata(dev);
675 	int error;
676 
677 	if ((error = config_detach(dev, 0)) != 0)
678 		aprint_error_dev(dev, "unable to detach instance\n");
679 	free(cf, M_DEVBUF);
680 
681 	return (error);
682 }
683 
684 /*
685  * tap(4) is a bit of an hybrid device.  It can be used in two different
686  * ways:
687  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
688  *  2. open /dev/tap, get a new interface created and read/write off it.
689  *     That interface is destroyed when the process that had it created exits.
690  *
691  * The first way is managed by the cdevsw structure, and you access interfaces
692  * through a (major, minor) mapping:  tap4 is obtained by the minor number
693  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
694  *
695  * The second way is the so-called "cloning" device.  It's a special minor
696  * number (chosen as the maximal number, to allow as much tap devices as
697  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
698  * call ends in tap_cdev_open.  The actual place where it is handled is
699  * tap_dev_cloner.
700  *
701  * An tap device cannot be opened more than once at a time, so the cdevsw
702  * part of open() does nothing but noting that the interface is being used and
703  * hence ready to actually handle packets.
704  */
705 
706 static int
707 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
708 {
709 	struct tap_softc *sc;
710 
711 	if (minor(dev) == TAP_CLONER)
712 		return tap_dev_cloner(l);
713 
714 	sc = device_lookup_private(&tap_cd, minor(dev));
715 	if (sc == NULL)
716 		return (ENXIO);
717 
718 	/* The device can only be opened once */
719 	if (sc->sc_flags & TAP_INUSE)
720 		return (EBUSY);
721 	sc->sc_flags |= TAP_INUSE;
722 	return (0);
723 }
724 
725 /*
726  * There are several kinds of cloning devices, and the most simple is the one
727  * tap(4) uses.  What it does is change the file descriptor with a new one,
728  * with its own fileops structure (which maps to the various read, write,
729  * ioctl functions).  It starts allocating a new file descriptor with falloc,
730  * then actually creates the new tap devices.
731  *
732  * Once those two steps are successful, we can re-wire the existing file
733  * descriptor to its new self.  This is done with fdclone():  it fills the fp
734  * structure as needed (notably f_data gets filled with the fifth parameter
735  * passed, the unit of the tap device which will allows us identifying the
736  * device later), and returns EMOVEFD.
737  *
738  * That magic value is interpreted by sys_open() which then replaces the
739  * current file descriptor by the new one (through a magic member of struct
740  * lwp, l_dupfd).
741  *
742  * The tap device is flagged as being busy since it otherwise could be
743  * externally accessed through the corresponding device node with the cdevsw
744  * interface.
745  */
746 
747 static int
748 tap_dev_cloner(struct lwp *l)
749 {
750 	struct tap_softc *sc;
751 	file_t *fp;
752 	int error, fd;
753 
754 	if ((error = fd_allocfile(&fp, &fd)) != 0)
755 		return (error);
756 
757 	if ((sc = tap_clone_creator(-1)) == NULL) {
758 		fd_abort(curproc, fp, fd);
759 		return (ENXIO);
760 	}
761 
762 	sc->sc_flags |= TAP_INUSE;
763 
764 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
765 	    (void *)(intptr_t)device_unit(sc->sc_dev));
766 }
767 
768 /*
769  * While all other operations (read, write, ioctl, poll and kqfilter) are
770  * really the same whether we are in cdevsw or fileops mode, the close()
771  * function is slightly different in the two cases.
772  *
773  * As for the other, the core of it is shared in tap_dev_close.  What
774  * it does is sufficient for the cdevsw interface, but the cloning interface
775  * needs another thing:  the interface is destroyed when the processes that
776  * created it closes it.
777  */
778 static int
779 tap_cdev_close(dev_t dev, int flags, int fmt,
780     struct lwp *l)
781 {
782 	struct tap_softc *sc =
783 	    device_lookup_private(&tap_cd, minor(dev));
784 
785 	if (sc == NULL)
786 		return (ENXIO);
787 
788 	return tap_dev_close(sc);
789 }
790 
791 /*
792  * It might happen that the administrator used ifconfig to externally destroy
793  * the interface.  In that case, tap_fops_close will be called while
794  * tap_detach is already happening.  If we called it again from here, we
795  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
796  */
797 static int
798 tap_fops_close(file_t *fp)
799 {
800 	int unit = (intptr_t)fp->f_data;
801 	struct tap_softc *sc;
802 	int error;
803 
804 	sc = device_lookup_private(&tap_cd, unit);
805 	if (sc == NULL)
806 		return (ENXIO);
807 
808 	/* tap_dev_close currently always succeeds, but it might not
809 	 * always be the case. */
810 	KERNEL_LOCK(1, NULL);
811 	if ((error = tap_dev_close(sc)) != 0) {
812 		KERNEL_UNLOCK_ONE(NULL);
813 		return (error);
814 	}
815 
816 	/* Destroy the device now that it is no longer useful,
817 	 * unless it's already being destroyed. */
818 	if ((sc->sc_flags & TAP_GOING) != 0) {
819 		KERNEL_UNLOCK_ONE(NULL);
820 		return (0);
821 	}
822 
823 	error = tap_clone_destroyer(sc->sc_dev);
824 	KERNEL_UNLOCK_ONE(NULL);
825 	return error;
826 }
827 
828 static int
829 tap_dev_close(struct tap_softc *sc)
830 {
831 	struct ifnet *ifp;
832 	int s;
833 
834 	s = splnet();
835 	/* Let tap_start handle packets again */
836 	ifp = &sc->sc_ec.ec_if;
837 	ifp->if_flags &= ~IFF_OACTIVE;
838 
839 	/* Purge output queue */
840 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
841 		struct mbuf *m;
842 
843 		for (;;) {
844 			IFQ_DEQUEUE(&ifp->if_snd, m);
845 			if (m == NULL)
846 				break;
847 
848 			ifp->if_opackets++;
849 			bpf_mtap(ifp, m);
850 			m_freem(m);
851 		}
852 	}
853 	splx(s);
854 
855 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
856 
857 	return (0);
858 }
859 
860 static int
861 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
862 {
863 	return tap_dev_read(minor(dev), uio, flags);
864 }
865 
866 static int
867 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
868     kauth_cred_t cred, int flags)
869 {
870 	int error;
871 
872 	KERNEL_LOCK(1, NULL);
873 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
874 	KERNEL_UNLOCK_ONE(NULL);
875 	return error;
876 }
877 
878 static int
879 tap_dev_read(int unit, struct uio *uio, int flags)
880 {
881 	struct tap_softc *sc =
882 	    device_lookup_private(&tap_cd, unit);
883 	struct ifnet *ifp;
884 	struct mbuf *m, *n;
885 	int error = 0, s;
886 
887 	if (sc == NULL)
888 		return (ENXIO);
889 
890 	getnanotime(&sc->sc_atime);
891 
892 	ifp = &sc->sc_ec.ec_if;
893 	if ((ifp->if_flags & IFF_UP) == 0)
894 		return (EHOSTDOWN);
895 
896 	/*
897 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
898 	 */
899 	if ((sc->sc_flags & TAP_NBIO) != 0) {
900 		if (!mutex_tryenter(&sc->sc_rdlock))
901 			return (EWOULDBLOCK);
902 	} else {
903 		mutex_enter(&sc->sc_rdlock);
904 	}
905 
906 	s = splnet();
907 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
908 		ifp->if_flags &= ~IFF_OACTIVE;
909 		/*
910 		 * We must release the lock before sleeping, and re-acquire it
911 		 * after.
912 		 */
913 		mutex_exit(&sc->sc_rdlock);
914 		if (sc->sc_flags & TAP_NBIO)
915 			error = EWOULDBLOCK;
916 		else
917 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
918 		splx(s);
919 
920 		if (error != 0)
921 			return (error);
922 		/* The device might have been downed */
923 		if ((ifp->if_flags & IFF_UP) == 0)
924 			return (EHOSTDOWN);
925 		if ((sc->sc_flags & TAP_NBIO)) {
926 			if (!mutex_tryenter(&sc->sc_rdlock))
927 				return (EWOULDBLOCK);
928 		} else {
929 			mutex_enter(&sc->sc_rdlock);
930 		}
931 		s = splnet();
932 	}
933 
934 	IFQ_DEQUEUE(&ifp->if_snd, m);
935 	ifp->if_flags &= ~IFF_OACTIVE;
936 	splx(s);
937 	if (m == NULL) {
938 		error = 0;
939 		goto out;
940 	}
941 
942 	ifp->if_opackets++;
943 	bpf_mtap(ifp, m);
944 
945 	/*
946 	 * One read is one packet.
947 	 */
948 	do {
949 		error = uiomove(mtod(m, void *),
950 		    min(m->m_len, uio->uio_resid), uio);
951 		MFREE(m, n);
952 		m = n;
953 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
954 
955 	if (m != NULL)
956 		m_freem(m);
957 
958 out:
959 	mutex_exit(&sc->sc_rdlock);
960 	return (error);
961 }
962 
963 static int
964 tap_fops_stat(file_t *fp, struct stat *st)
965 {
966 	int error = 0;
967 	struct tap_softc *sc;
968 	int unit = (uintptr_t)fp->f_data;
969 
970 	(void)memset(st, 0, sizeof(*st));
971 
972 	KERNEL_LOCK(1, NULL);
973 	sc = device_lookup_private(&tap_cd, unit);
974 	if (sc == NULL) {
975 		error = ENXIO;
976 		goto out;
977 	}
978 
979 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
980 	st->st_atimespec = sc->sc_atime;
981 	st->st_mtimespec = sc->sc_mtime;
982 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
983 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
984 	st->st_gid = kauth_cred_getegid(fp->f_cred);
985 out:
986 	KERNEL_UNLOCK_ONE(NULL);
987 	return error;
988 }
989 
990 static int
991 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
992 {
993 	return tap_dev_write(minor(dev), uio, flags);
994 }
995 
996 static int
997 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
998     kauth_cred_t cred, int flags)
999 {
1000 	int error;
1001 
1002 	KERNEL_LOCK(1, NULL);
1003 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
1004 	KERNEL_UNLOCK_ONE(NULL);
1005 	return error;
1006 }
1007 
1008 static int
1009 tap_dev_write(int unit, struct uio *uio, int flags)
1010 {
1011 	struct tap_softc *sc =
1012 	    device_lookup_private(&tap_cd, unit);
1013 	struct ifnet *ifp;
1014 	struct mbuf *m, **mp;
1015 	int error = 0;
1016 	int s;
1017 
1018 	if (sc == NULL)
1019 		return (ENXIO);
1020 
1021 	getnanotime(&sc->sc_mtime);
1022 	ifp = &sc->sc_ec.ec_if;
1023 
1024 	/* One write, one packet, that's the rule */
1025 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1026 	if (m == NULL) {
1027 		ifp->if_ierrors++;
1028 		return (ENOBUFS);
1029 	}
1030 	m->m_pkthdr.len = uio->uio_resid;
1031 
1032 	mp = &m;
1033 	while (error == 0 && uio->uio_resid > 0) {
1034 		if (*mp != m) {
1035 			MGET(*mp, M_DONTWAIT, MT_DATA);
1036 			if (*mp == NULL) {
1037 				error = ENOBUFS;
1038 				break;
1039 			}
1040 		}
1041 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
1042 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1043 		mp = &(*mp)->m_next;
1044 	}
1045 	if (error) {
1046 		ifp->if_ierrors++;
1047 		m_freem(m);
1048 		return (error);
1049 	}
1050 
1051 	ifp->if_ipackets++;
1052 	m->m_pkthdr.rcvif = ifp;
1053 
1054 	bpf_mtap(ifp, m);
1055 	s = splnet();
1056 	(*ifp->if_input)(ifp, m);
1057 	splx(s);
1058 
1059 	return (0);
1060 }
1061 
1062 static int
1063 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1064     struct lwp *l)
1065 {
1066 	return tap_dev_ioctl(minor(dev), cmd, data, l);
1067 }
1068 
1069 static int
1070 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1071 {
1072 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1073 }
1074 
1075 static int
1076 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1077 {
1078 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1079 
1080 	if (sc == NULL)
1081 		return ENXIO;
1082 
1083 	switch (cmd) {
1084 	case FIONREAD:
1085 		{
1086 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1087 			struct mbuf *m;
1088 			int s;
1089 
1090 			s = splnet();
1091 			IFQ_POLL(&ifp->if_snd, m);
1092 
1093 			if (m == NULL)
1094 				*(int *)data = 0;
1095 			else
1096 				*(int *)data = m->m_pkthdr.len;
1097 			splx(s);
1098 			return 0;
1099 		}
1100 	case TIOCSPGRP:
1101 	case FIOSETOWN:
1102 		return fsetown(&sc->sc_pgid, cmd, data);
1103 	case TIOCGPGRP:
1104 	case FIOGETOWN:
1105 		return fgetown(sc->sc_pgid, cmd, data);
1106 	case FIOASYNC:
1107 		if (*(int *)data)
1108 			sc->sc_flags |= TAP_ASYNCIO;
1109 		else
1110 			sc->sc_flags &= ~TAP_ASYNCIO;
1111 		return 0;
1112 	case FIONBIO:
1113 		if (*(int *)data)
1114 			sc->sc_flags |= TAP_NBIO;
1115 		else
1116 			sc->sc_flags &= ~TAP_NBIO;
1117 		return 0;
1118 #ifdef OTAPGIFNAME
1119 	case OTAPGIFNAME:
1120 #endif
1121 	case TAPGIFNAME:
1122 		{
1123 			struct ifreq *ifr = (struct ifreq *)data;
1124 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1125 
1126 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1127 			return 0;
1128 		}
1129 	default:
1130 		return ENOTTY;
1131 	}
1132 }
1133 
1134 static int
1135 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1136 {
1137 	return tap_dev_poll(minor(dev), events, l);
1138 }
1139 
1140 static int
1141 tap_fops_poll(file_t *fp, int events)
1142 {
1143 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1144 }
1145 
1146 static int
1147 tap_dev_poll(int unit, int events, struct lwp *l)
1148 {
1149 	struct tap_softc *sc =
1150 	    device_lookup_private(&tap_cd, unit);
1151 	int revents = 0;
1152 
1153 	if (sc == NULL)
1154 		return POLLERR;
1155 
1156 	if (events & (POLLIN|POLLRDNORM)) {
1157 		struct ifnet *ifp = &sc->sc_ec.ec_if;
1158 		struct mbuf *m;
1159 		int s;
1160 
1161 		s = splnet();
1162 		IFQ_POLL(&ifp->if_snd, m);
1163 		splx(s);
1164 
1165 		if (m != NULL)
1166 			revents |= events & (POLLIN|POLLRDNORM);
1167 		else {
1168 			simple_lock(&sc->sc_kqlock);
1169 			selrecord(l, &sc->sc_rsel);
1170 			simple_unlock(&sc->sc_kqlock);
1171 		}
1172 	}
1173 	revents |= events & (POLLOUT|POLLWRNORM);
1174 
1175 	return (revents);
1176 }
1177 
1178 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1179 	tap_kqread };
1180 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1181 	filt_seltrue };
1182 
1183 static int
1184 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1185 {
1186 	return tap_dev_kqfilter(minor(dev), kn);
1187 }
1188 
1189 static int
1190 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1191 {
1192 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1193 }
1194 
1195 static int
1196 tap_dev_kqfilter(int unit, struct knote *kn)
1197 {
1198 	struct tap_softc *sc =
1199 	    device_lookup_private(&tap_cd, unit);
1200 
1201 	if (sc == NULL)
1202 		return (ENXIO);
1203 
1204 	KERNEL_LOCK(1, NULL);
1205 	switch(kn->kn_filter) {
1206 	case EVFILT_READ:
1207 		kn->kn_fop = &tap_read_filterops;
1208 		break;
1209 	case EVFILT_WRITE:
1210 		kn->kn_fop = &tap_seltrue_filterops;
1211 		break;
1212 	default:
1213 		KERNEL_UNLOCK_ONE(NULL);
1214 		return (EINVAL);
1215 	}
1216 
1217 	kn->kn_hook = sc;
1218 	simple_lock(&sc->sc_kqlock);
1219 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1220 	simple_unlock(&sc->sc_kqlock);
1221 	KERNEL_UNLOCK_ONE(NULL);
1222 	return (0);
1223 }
1224 
1225 static void
1226 tap_kqdetach(struct knote *kn)
1227 {
1228 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1229 
1230 	KERNEL_LOCK(1, NULL);
1231 	simple_lock(&sc->sc_kqlock);
1232 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1233 	simple_unlock(&sc->sc_kqlock);
1234 	KERNEL_UNLOCK_ONE(NULL);
1235 }
1236 
1237 static int
1238 tap_kqread(struct knote *kn, long hint)
1239 {
1240 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1241 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1242 	struct mbuf *m;
1243 	int s, rv;
1244 
1245 	KERNEL_LOCK(1, NULL);
1246 	s = splnet();
1247 	IFQ_POLL(&ifp->if_snd, m);
1248 
1249 	if (m == NULL)
1250 		kn->kn_data = 0;
1251 	else
1252 		kn->kn_data = m->m_pkthdr.len;
1253 	splx(s);
1254 	rv = (kn->kn_data != 0 ? 1 : 0);
1255 	KERNEL_UNLOCK_ONE(NULL);
1256 	return rv;
1257 }
1258 
1259 #if defined(COMPAT_40) || defined(MODULAR)
1260 /*
1261  * sysctl management routines
1262  * You can set the address of an interface through:
1263  * net.link.tap.tap<number>
1264  *
1265  * Note the consistent use of tap_log in order to use
1266  * sysctl_teardown at unload time.
1267  *
1268  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1269  * blocks register a function in a special section of the kernel
1270  * (called a link set) which is used at init_sysctl() time to cycle
1271  * through all those functions to create the kernel's sysctl tree.
1272  *
1273  * It is not possible to use link sets in a module, so the
1274  * easiest is to simply call our own setup routine at load time.
1275  *
1276  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1277  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1278  * whole kernel sysctl tree is built, it is not possible to add any
1279  * permanent node.
1280  *
1281  * It should be noted that we're not saving the sysctlnode pointer
1282  * we are returned when creating the "tap" node.  That structure
1283  * cannot be trusted once out of the calling function, as it might
1284  * get reused.  So we just save the MIB number, and always give the
1285  * full path starting from the root for later calls to sysctl_createv
1286  * and sysctl_destroyv.
1287  */
1288 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1289 {
1290 	const struct sysctlnode *node;
1291 	int error = 0;
1292 
1293 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1294 	    CTLFLAG_PERMANENT,
1295 	    CTLTYPE_NODE, "net", NULL,
1296 	    NULL, 0, NULL, 0,
1297 	    CTL_NET, CTL_EOL)) != 0)
1298 		return;
1299 
1300 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1301 	    CTLFLAG_PERMANENT,
1302 	    CTLTYPE_NODE, "link", NULL,
1303 	    NULL, 0, NULL, 0,
1304 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1305 		return;
1306 
1307 	/*
1308 	 * The first four parameters of sysctl_createv are for management.
1309 	 *
1310 	 * The four that follows, here starting with a '0' for the flags,
1311 	 * describe the node.
1312 	 *
1313 	 * The next series of four set its value, through various possible
1314 	 * means.
1315 	 *
1316 	 * Last but not least, the path to the node is described.  That path
1317 	 * is relative to the given root (third argument).  Here we're
1318 	 * starting from the root.
1319 	 */
1320 	if ((error = sysctl_createv(clog, 0, NULL, &node,
1321 	    CTLFLAG_PERMANENT,
1322 	    CTLTYPE_NODE, "tap", NULL,
1323 	    NULL, 0, NULL, 0,
1324 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1325 		return;
1326 	tap_node = node->sysctl_num;
1327 }
1328 
1329 /*
1330  * The helper functions make Andrew Brown's interface really
1331  * shine.  It makes possible to create value on the fly whether
1332  * the sysctl value is read or written.
1333  *
1334  * As shown as an example in the man page, the first step is to
1335  * create a copy of the node to have sysctl_lookup work on it.
1336  *
1337  * Here, we have more work to do than just a copy, since we have
1338  * to create the string.  The first step is to collect the actual
1339  * value of the node, which is a convenient pointer to the softc
1340  * of the interface.  From there we create the string and use it
1341  * as the value, but only for the *copy* of the node.
1342  *
1343  * Then we let sysctl_lookup do the magic, which consists in
1344  * setting oldp and newp as required by the operation.  When the
1345  * value is read, that means that the string will be copied to
1346  * the user, and when it is written, the new value will be copied
1347  * over in the addr array.
1348  *
1349  * If newp is NULL, the user was reading the value, so we don't
1350  * have anything else to do.  If a new value was written, we
1351  * have to check it.
1352  *
1353  * If it is incorrect, we can return an error and leave 'node' as
1354  * it is:  since it is a copy of the actual node, the change will
1355  * be forgotten.
1356  *
1357  * Upon a correct input, we commit the change to the ifnet
1358  * structure of our interface.
1359  */
1360 static int
1361 tap_sysctl_handler(SYSCTLFN_ARGS)
1362 {
1363 	struct sysctlnode node;
1364 	struct tap_softc *sc;
1365 	struct ifnet *ifp;
1366 	int error;
1367 	size_t len;
1368 	char addr[3 * ETHER_ADDR_LEN];
1369 	uint8_t enaddr[ETHER_ADDR_LEN];
1370 
1371 	node = *rnode;
1372 	sc = node.sysctl_data;
1373 	ifp = &sc->sc_ec.ec_if;
1374 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1375 	node.sysctl_data = addr;
1376 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1377 	if (error || newp == NULL)
1378 		return (error);
1379 
1380 	len = strlen(addr);
1381 	if (len < 11 || len > 17)
1382 		return (EINVAL);
1383 
1384 	/* Commit change */
1385 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1386 		return (EINVAL);
1387 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1388 	return (error);
1389 }
1390 #endif
1391