xref: /netbsd-src/sys/net/if_tap.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: if_tap.c,v 1.71 2013/08/20 12:28:12 yamt Exp $	*/
2 
3 /*
4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5  *  All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *  1. Redistributions of source code must retain the above copyright
11  *     notice, this list of conditions and the following disclaimer.
12  *  2. Redistributions in binary form must reproduce the above copyright
13  *     notice, this list of conditions and the following disclaimer in the
14  *     documentation and/or other materials provided with the distribution.
15  *
16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  *  POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
31  * device to the system, but can also be accessed by userland through a
32  * character device interface, which allows reading and injecting frames.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.71 2013/08/20 12:28:12 yamt Exp $");
37 
38 #if defined(_KERNEL_OPT)
39 
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/cprng.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/ksyms.h>
54 #include <sys/poll.h>
55 #include <sys/proc.h>
56 #include <sys/select.h>
57 #include <sys/sockio.h>
58 #if defined(COMPAT_40) || defined(MODULAR)
59 #include <sys/sysctl.h>
60 #endif
61 #include <sys/kauth.h>
62 #include <sys/mutex.h>
63 #include <sys/simplelock.h>
64 #include <sys/intr.h>
65 #include <sys/stat.h>
66 
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_ether.h>
70 #include <net/if_media.h>
71 #include <net/if_tap.h>
72 #include <net/bpf.h>
73 
74 #include <compat/sys/sockio.h>
75 
76 #if defined(COMPAT_40) || defined(MODULAR)
77 /*
78  * sysctl node management
79  *
80  * It's not really possible to use a SYSCTL_SETUP block with
81  * current module implementation, so it is easier to just define
82  * our own function.
83  *
84  * The handler function is a "helper" in Andrew Brown's sysctl
85  * framework terminology.  It is used as a gateway for sysctl
86  * requests over the nodes.
87  *
88  * tap_log allows the module to log creations of nodes and
89  * destroy them all at once using sysctl_teardown.
90  */
91 static int tap_node;
92 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
93 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
94 #endif
95 
96 /*
97  * Since we're an Ethernet device, we need the 2 following
98  * components: a struct ethercom and a struct ifmedia
99  * since we don't attach a PHY to ourselves.
100  * We could emulate one, but there's no real point.
101  */
102 
103 struct tap_softc {
104 	device_t	sc_dev;
105 	struct ifmedia	sc_im;
106 	struct ethercom	sc_ec;
107 	int		sc_flags;
108 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
109 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
110 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
111 #define TAP_GOING	0x00000008	/* interface is being destroyed */
112 	struct selinfo	sc_rsel;
113 	pid_t		sc_pgid; /* For async. IO */
114 	kmutex_t	sc_rdlock;
115 	struct simplelock	sc_kqlock;
116 	void		*sc_sih;
117 	struct timespec sc_atime;
118 	struct timespec sc_mtime;
119 	struct timespec sc_btime;
120 };
121 
122 /* autoconf(9) glue */
123 
124 void	tapattach(int);
125 
126 static int	tap_match(device_t, cfdata_t, void *);
127 static void	tap_attach(device_t, device_t, void *);
128 static int	tap_detach(device_t, int);
129 
130 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
131     tap_match, tap_attach, tap_detach, NULL);
132 extern struct cfdriver tap_cd;
133 
134 /* Real device access routines */
135 static int	tap_dev_close(struct tap_softc *);
136 static int	tap_dev_read(int, struct uio *, int);
137 static int	tap_dev_write(int, struct uio *, int);
138 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
139 static int	tap_dev_poll(int, int, struct lwp *);
140 static int	tap_dev_kqfilter(int, struct knote *);
141 
142 /* Fileops access routines */
143 static int	tap_fops_close(file_t *);
144 static int	tap_fops_read(file_t *, off_t *, struct uio *,
145     kauth_cred_t, int);
146 static int	tap_fops_write(file_t *, off_t *, struct uio *,
147     kauth_cred_t, int);
148 static int	tap_fops_ioctl(file_t *, u_long, void *);
149 static int	tap_fops_poll(file_t *, int);
150 static int	tap_fops_stat(file_t *, struct stat *);
151 static int	tap_fops_kqfilter(file_t *, struct knote *);
152 
153 static const struct fileops tap_fileops = {
154 	.fo_read = tap_fops_read,
155 	.fo_write = tap_fops_write,
156 	.fo_ioctl = tap_fops_ioctl,
157 	.fo_fcntl = fnullop_fcntl,
158 	.fo_poll = tap_fops_poll,
159 	.fo_stat = tap_fops_stat,
160 	.fo_close = tap_fops_close,
161 	.fo_kqfilter = tap_fops_kqfilter,
162 	.fo_restart = fnullop_restart,
163 };
164 
165 /* Helper for cloning open() */
166 static int	tap_dev_cloner(struct lwp *);
167 
168 /* Character device routines */
169 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
170 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
171 static int	tap_cdev_read(dev_t, struct uio *, int);
172 static int	tap_cdev_write(dev_t, struct uio *, int);
173 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
174 static int	tap_cdev_poll(dev_t, int, struct lwp *);
175 static int	tap_cdev_kqfilter(dev_t, struct knote *);
176 
177 const struct cdevsw tap_cdevsw = {
178 	tap_cdev_open, tap_cdev_close,
179 	tap_cdev_read, tap_cdev_write,
180 	tap_cdev_ioctl, nostop, notty,
181 	tap_cdev_poll, nommap,
182 	tap_cdev_kqfilter,
183 	D_OTHER,
184 };
185 
186 #define TAP_CLONER	0xfffff		/* Maximal minor value */
187 
188 /* kqueue-related routines */
189 static void	tap_kqdetach(struct knote *);
190 static int	tap_kqread(struct knote *, long);
191 
192 /*
193  * Those are needed by the if_media interface.
194  */
195 
196 static int	tap_mediachange(struct ifnet *);
197 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
198 
199 /*
200  * Those are needed by the ifnet interface, and would typically be
201  * there for any network interface driver.
202  * Some other routines are optional: watchdog and drain.
203  */
204 
205 static void	tap_start(struct ifnet *);
206 static void	tap_stop(struct ifnet *, int);
207 static int	tap_init(struct ifnet *);
208 static int	tap_ioctl(struct ifnet *, u_long, void *);
209 
210 /* Internal functions */
211 #if defined(COMPAT_40) || defined(MODULAR)
212 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
213 #endif
214 static void	tap_softintr(void *);
215 
216 /*
217  * tap is a clonable interface, although it is highly unrealistic for
218  * an Ethernet device.
219  *
220  * Here are the bits needed for a clonable interface.
221  */
222 static int	tap_clone_create(struct if_clone *, int);
223 static int	tap_clone_destroy(struct ifnet *);
224 
225 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
226 					tap_clone_create,
227 					tap_clone_destroy);
228 
229 /* Helper functionis shared by the two cloning code paths */
230 static struct tap_softc *	tap_clone_creator(int);
231 int	tap_clone_destroyer(device_t);
232 
233 void
234 tapattach(int n)
235 {
236 	int error;
237 
238 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
239 	if (error) {
240 		aprint_error("%s: unable to register cfattach\n",
241 		    tap_cd.cd_name);
242 		(void)config_cfdriver_detach(&tap_cd);
243 		return;
244 	}
245 
246 	if_clone_attach(&tap_cloners);
247 }
248 
249 /* Pretty much useless for a pseudo-device */
250 static int
251 tap_match(device_t parent, cfdata_t cfdata, void *arg)
252 {
253 
254 	return (1);
255 }
256 
257 void
258 tap_attach(device_t parent, device_t self, void *aux)
259 {
260 	struct tap_softc *sc = device_private(self);
261 	struct ifnet *ifp;
262 #if defined(COMPAT_40) || defined(MODULAR)
263 	const struct sysctlnode *node;
264 	int error;
265 #endif
266 	uint8_t enaddr[ETHER_ADDR_LEN] =
267 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
268 	char enaddrstr[3 * ETHER_ADDR_LEN];
269 
270 	sc->sc_dev = self;
271 	sc->sc_sih = NULL;
272 	getnanotime(&sc->sc_btime);
273 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
274 
275 	if (!pmf_device_register(self, NULL, NULL))
276 		aprint_error_dev(self, "couldn't establish power handler\n");
277 
278 	/*
279 	 * In order to obtain unique initial Ethernet address on a host,
280 	 * do some randomisation.  It's not meant for anything but avoiding
281 	 * hard-coding an address.
282 	 */
283 	cprng_fast(&enaddr[3], 3);
284 
285 	aprint_verbose_dev(self, "Ethernet address %s\n",
286 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
287 
288 	/*
289 	 * Why 1000baseT? Why not? You can add more.
290 	 *
291 	 * Note that there are 3 steps: init, one or several additions to
292 	 * list of supported media, and in the end, the selection of one
293 	 * of them.
294 	 */
295 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
296 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
297 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
298 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
299 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
300 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
301 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
302 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
303 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
304 
305 	/*
306 	 * One should note that an interface must do multicast in order
307 	 * to support IPv6.
308 	 */
309 	ifp = &sc->sc_ec.ec_if;
310 	strcpy(ifp->if_xname, device_xname(self));
311 	ifp->if_softc	= sc;
312 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
313 	ifp->if_ioctl	= tap_ioctl;
314 	ifp->if_start	= tap_start;
315 	ifp->if_stop	= tap_stop;
316 	ifp->if_init	= tap_init;
317 	IFQ_SET_READY(&ifp->if_snd);
318 
319 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
320 
321 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
322 	 * being common to all network interface drivers. */
323 	if_attach(ifp);
324 	ether_ifattach(ifp, enaddr);
325 
326 	sc->sc_flags = 0;
327 
328 #if defined(COMPAT_40) || defined(MODULAR)
329 	/*
330 	 * Add a sysctl node for that interface.
331 	 *
332 	 * The pointer transmitted is not a string, but instead a pointer to
333 	 * the softc structure, which we can use to build the string value on
334 	 * the fly in the helper function of the node.  See the comments for
335 	 * tap_sysctl_handler for details.
336 	 *
337 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
338 	 * component.  However, we can allocate a number ourselves, as we are
339 	 * the only consumer of the net.link.<iface> node.  In this case, the
340 	 * unit number is conveniently used to number the node.  CTL_CREATE
341 	 * would just work, too.
342 	 */
343 	if ((error = sysctl_createv(NULL, 0, NULL,
344 	    &node, CTLFLAG_READWRITE,
345 	    CTLTYPE_STRING, device_xname(self), NULL,
346 	    tap_sysctl_handler, 0, (void *)sc, 18,
347 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
348 	    CTL_EOL)) != 0)
349 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
350 		    error);
351 #endif
352 
353 	/*
354 	 * Initialize the two locks for the device.
355 	 *
356 	 * We need a lock here because even though the tap device can be
357 	 * opened only once, the file descriptor might be passed to another
358 	 * process, say a fork(2)ed child.
359 	 *
360 	 * The Giant saves us from most of the hassle, but since the read
361 	 * operation can sleep, we don't want two processes to wake up at
362 	 * the same moment and both try and dequeue a single packet.
363 	 *
364 	 * The queue for event listeners (used by kqueue(9), see below) has
365 	 * to be protected, too, but we don't need the same level of
366 	 * complexity for that lock, so a simple spinning lock is fine.
367 	 */
368 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
369 	simple_lock_init(&sc->sc_kqlock);
370 
371 	selinit(&sc->sc_rsel);
372 }
373 
374 /*
375  * When detaching, we do the inverse of what is done in the attach
376  * routine, in reversed order.
377  */
378 static int
379 tap_detach(device_t self, int flags)
380 {
381 	struct tap_softc *sc = device_private(self);
382 	struct ifnet *ifp = &sc->sc_ec.ec_if;
383 #if defined(COMPAT_40) || defined(MODULAR)
384 	int error;
385 #endif
386 	int s;
387 
388 	sc->sc_flags |= TAP_GOING;
389 	s = splnet();
390 	tap_stop(ifp, 1);
391 	if_down(ifp);
392 	splx(s);
393 
394 	if (sc->sc_sih != NULL) {
395 		softint_disestablish(sc->sc_sih);
396 		sc->sc_sih = NULL;
397 	}
398 
399 #if defined(COMPAT_40) || defined(MODULAR)
400 	/*
401 	 * Destroying a single leaf is a very straightforward operation using
402 	 * sysctl_destroyv.  One should be sure to always end the path with
403 	 * CTL_EOL.
404 	 */
405 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
406 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
407 		aprint_error_dev(self,
408 		    "sysctl_destroyv returned %d, ignoring\n", error);
409 #endif
410 	ether_ifdetach(ifp);
411 	if_detach(ifp);
412 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
413 	seldestroy(&sc->sc_rsel);
414 	mutex_destroy(&sc->sc_rdlock);
415 
416 	pmf_device_deregister(self);
417 
418 	return (0);
419 }
420 
421 /*
422  * This function is called by the ifmedia layer to notify the driver
423  * that the user requested a media change.  A real driver would
424  * reconfigure the hardware.
425  */
426 static int
427 tap_mediachange(struct ifnet *ifp)
428 {
429 	return (0);
430 }
431 
432 /*
433  * Here the user asks for the currently used media.
434  */
435 static void
436 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
437 {
438 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
439 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
440 }
441 
442 /*
443  * This is the function where we SEND packets.
444  *
445  * There is no 'receive' equivalent.  A typical driver will get
446  * interrupts from the hardware, and from there will inject new packets
447  * into the network stack.
448  *
449  * Once handled, a packet must be freed.  A real driver might not be able
450  * to fit all the pending packets into the hardware, and is allowed to
451  * return before having sent all the packets.  It should then use the
452  * if_flags flag IFF_OACTIVE to notify the upper layer.
453  *
454  * There are also other flags one should check, such as IFF_PAUSE.
455  *
456  * It is our duty to make packets available to BPF listeners.
457  *
458  * You should be aware that this function is called by the Ethernet layer
459  * at splnet().
460  *
461  * When the device is opened, we have to pass the packet(s) to the
462  * userland.  For that we stay in OACTIVE mode while the userland gets
463  * the packets, and we send a signal to the processes waiting to read.
464  *
465  * wakeup(sc) is the counterpart to the tsleep call in
466  * tap_dev_read, while selnotify() is used for kevent(2) and
467  * poll(2) (which includes select(2)) listeners.
468  */
469 static void
470 tap_start(struct ifnet *ifp)
471 {
472 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
473 	struct mbuf *m0;
474 
475 	if ((sc->sc_flags & TAP_INUSE) == 0) {
476 		/* Simply drop packets */
477 		for(;;) {
478 			IFQ_DEQUEUE(&ifp->if_snd, m0);
479 			if (m0 == NULL)
480 				return;
481 
482 			ifp->if_opackets++;
483 			bpf_mtap(ifp, m0);
484 
485 			m_freem(m0);
486 		}
487 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
488 		ifp->if_flags |= IFF_OACTIVE;
489 		wakeup(sc);
490 		selnotify(&sc->sc_rsel, 0, 1);
491 		if (sc->sc_flags & TAP_ASYNCIO)
492 			softint_schedule(sc->sc_sih);
493 	}
494 }
495 
496 static void
497 tap_softintr(void *cookie)
498 {
499 	struct tap_softc *sc;
500 	struct ifnet *ifp;
501 	int a, b;
502 
503 	sc = cookie;
504 
505 	if (sc->sc_flags & TAP_ASYNCIO) {
506 		ifp = &sc->sc_ec.ec_if;
507 		if (ifp->if_flags & IFF_RUNNING) {
508 			a = POLL_IN;
509 			b = POLLIN|POLLRDNORM;
510 		} else {
511 			a = POLL_HUP;
512 			b = 0;
513 		}
514 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
515 	}
516 }
517 
518 /*
519  * A typical driver will only contain the following handlers for
520  * ioctl calls, except SIOCSIFPHYADDR.
521  * The latter is a hack I used to set the Ethernet address of the
522  * faked device.
523  *
524  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
525  * called under splnet().
526  */
527 static int
528 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
529 {
530 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
531 	struct ifreq *ifr = (struct ifreq *)data;
532 	int s, error;
533 
534 	s = splnet();
535 
536 	switch (cmd) {
537 #ifdef OSIOCSIFMEDIA
538 	case OSIOCSIFMEDIA:
539 #endif
540 	case SIOCSIFMEDIA:
541 	case SIOCGIFMEDIA:
542 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
543 		break;
544 #if defined(COMPAT_40) || defined(MODULAR)
545 	case SIOCSIFPHYADDR:
546 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
547 		break;
548 #endif
549 	default:
550 		error = ether_ioctl(ifp, cmd, data);
551 		if (error == ENETRESET)
552 			error = 0;
553 		break;
554 	}
555 
556 	splx(s);
557 
558 	return (error);
559 }
560 
561 #if defined(COMPAT_40) || defined(MODULAR)
562 /*
563  * Helper function to set Ethernet address.  This has been replaced by
564  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
565  */
566 static int
567 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
568 {
569 	const struct sockaddr *sa = &ifra->ifra_addr;
570 
571 	if (sa->sa_family != AF_LINK)
572 		return (EINVAL);
573 
574 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
575 
576 	return (0);
577 }
578 #endif
579 
580 /*
581  * _init() would typically be called when an interface goes up,
582  * meaning it should configure itself into the state in which it
583  * can send packets.
584  */
585 static int
586 tap_init(struct ifnet *ifp)
587 {
588 	ifp->if_flags |= IFF_RUNNING;
589 
590 	tap_start(ifp);
591 
592 	return (0);
593 }
594 
595 /*
596  * _stop() is called when an interface goes down.  It is our
597  * responsability to validate that state by clearing the
598  * IFF_RUNNING flag.
599  *
600  * We have to wake up all the sleeping processes to have the pending
601  * read requests cancelled.
602  */
603 static void
604 tap_stop(struct ifnet *ifp, int disable)
605 {
606 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
607 
608 	ifp->if_flags &= ~IFF_RUNNING;
609 	wakeup(sc);
610 	selnotify(&sc->sc_rsel, 0, 1);
611 	if (sc->sc_flags & TAP_ASYNCIO)
612 		softint_schedule(sc->sc_sih);
613 }
614 
615 /*
616  * The 'create' command of ifconfig can be used to create
617  * any numbered instance of a given device.  Thus we have to
618  * make sure we have enough room in cd_devs to create the
619  * user-specified instance.  config_attach_pseudo will do this
620  * for us.
621  */
622 static int
623 tap_clone_create(struct if_clone *ifc, int unit)
624 {
625 	if (tap_clone_creator(unit) == NULL) {
626 		aprint_error("%s%d: unable to attach an instance\n",
627                     tap_cd.cd_name, unit);
628 		return (ENXIO);
629 	}
630 
631 	return (0);
632 }
633 
634 /*
635  * tap(4) can be cloned by two ways:
636  *   using 'ifconfig tap0 create', which will use the network
637  *     interface cloning API, and call tap_clone_create above.
638  *   opening the cloning device node, whose minor number is TAP_CLONER.
639  *     See below for an explanation on how this part work.
640  */
641 static struct tap_softc *
642 tap_clone_creator(int unit)
643 {
644 	struct cfdata *cf;
645 
646 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
647 	cf->cf_name = tap_cd.cd_name;
648 	cf->cf_atname = tap_ca.ca_name;
649 	if (unit == -1) {
650 		/* let autoconf find the first free one */
651 		cf->cf_unit = 0;
652 		cf->cf_fstate = FSTATE_STAR;
653 	} else {
654 		cf->cf_unit = unit;
655 		cf->cf_fstate = FSTATE_NOTFOUND;
656 	}
657 
658 	return device_private(config_attach_pseudo(cf));
659 }
660 
661 /*
662  * The clean design of if_clone and autoconf(9) makes that part
663  * really straightforward.  The second argument of config_detach
664  * means neither QUIET nor FORCED.
665  */
666 static int
667 tap_clone_destroy(struct ifnet *ifp)
668 {
669 	struct tap_softc *sc = ifp->if_softc;
670 
671 	return tap_clone_destroyer(sc->sc_dev);
672 }
673 
674 int
675 tap_clone_destroyer(device_t dev)
676 {
677 	cfdata_t cf = device_cfdata(dev);
678 	int error;
679 
680 	if ((error = config_detach(dev, 0)) != 0)
681 		aprint_error_dev(dev, "unable to detach instance\n");
682 	free(cf, M_DEVBUF);
683 
684 	return (error);
685 }
686 
687 /*
688  * tap(4) is a bit of an hybrid device.  It can be used in two different
689  * ways:
690  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
691  *  2. open /dev/tap, get a new interface created and read/write off it.
692  *     That interface is destroyed when the process that had it created exits.
693  *
694  * The first way is managed by the cdevsw structure, and you access interfaces
695  * through a (major, minor) mapping:  tap4 is obtained by the minor number
696  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
697  *
698  * The second way is the so-called "cloning" device.  It's a special minor
699  * number (chosen as the maximal number, to allow as much tap devices as
700  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
701  * call ends in tap_cdev_open.  The actual place where it is handled is
702  * tap_dev_cloner.
703  *
704  * An tap device cannot be opened more than once at a time, so the cdevsw
705  * part of open() does nothing but noting that the interface is being used and
706  * hence ready to actually handle packets.
707  */
708 
709 static int
710 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
711 {
712 	struct tap_softc *sc;
713 
714 	if (minor(dev) == TAP_CLONER)
715 		return tap_dev_cloner(l);
716 
717 	sc = device_lookup_private(&tap_cd, minor(dev));
718 	if (sc == NULL)
719 		return (ENXIO);
720 
721 	/* The device can only be opened once */
722 	if (sc->sc_flags & TAP_INUSE)
723 		return (EBUSY);
724 	sc->sc_flags |= TAP_INUSE;
725 	return (0);
726 }
727 
728 /*
729  * There are several kinds of cloning devices, and the most simple is the one
730  * tap(4) uses.  What it does is change the file descriptor with a new one,
731  * with its own fileops structure (which maps to the various read, write,
732  * ioctl functions).  It starts allocating a new file descriptor with falloc,
733  * then actually creates the new tap devices.
734  *
735  * Once those two steps are successful, we can re-wire the existing file
736  * descriptor to its new self.  This is done with fdclone():  it fills the fp
737  * structure as needed (notably f_data gets filled with the fifth parameter
738  * passed, the unit of the tap device which will allows us identifying the
739  * device later), and returns EMOVEFD.
740  *
741  * That magic value is interpreted by sys_open() which then replaces the
742  * current file descriptor by the new one (through a magic member of struct
743  * lwp, l_dupfd).
744  *
745  * The tap device is flagged as being busy since it otherwise could be
746  * externally accessed through the corresponding device node with the cdevsw
747  * interface.
748  */
749 
750 static int
751 tap_dev_cloner(struct lwp *l)
752 {
753 	struct tap_softc *sc;
754 	file_t *fp;
755 	int error, fd;
756 
757 	if ((error = fd_allocfile(&fp, &fd)) != 0)
758 		return (error);
759 
760 	if ((sc = tap_clone_creator(-1)) == NULL) {
761 		fd_abort(curproc, fp, fd);
762 		return (ENXIO);
763 	}
764 
765 	sc->sc_flags |= TAP_INUSE;
766 
767 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
768 	    (void *)(intptr_t)device_unit(sc->sc_dev));
769 }
770 
771 /*
772  * While all other operations (read, write, ioctl, poll and kqfilter) are
773  * really the same whether we are in cdevsw or fileops mode, the close()
774  * function is slightly different in the two cases.
775  *
776  * As for the other, the core of it is shared in tap_dev_close.  What
777  * it does is sufficient for the cdevsw interface, but the cloning interface
778  * needs another thing:  the interface is destroyed when the processes that
779  * created it closes it.
780  */
781 static int
782 tap_cdev_close(dev_t dev, int flags, int fmt,
783     struct lwp *l)
784 {
785 	struct tap_softc *sc =
786 	    device_lookup_private(&tap_cd, minor(dev));
787 
788 	if (sc == NULL)
789 		return (ENXIO);
790 
791 	return tap_dev_close(sc);
792 }
793 
794 /*
795  * It might happen that the administrator used ifconfig to externally destroy
796  * the interface.  In that case, tap_fops_close will be called while
797  * tap_detach is already happening.  If we called it again from here, we
798  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
799  */
800 static int
801 tap_fops_close(file_t *fp)
802 {
803 	int unit = (intptr_t)fp->f_data;
804 	struct tap_softc *sc;
805 	int error;
806 
807 	sc = device_lookup_private(&tap_cd, unit);
808 	if (sc == NULL)
809 		return (ENXIO);
810 
811 	/* tap_dev_close currently always succeeds, but it might not
812 	 * always be the case. */
813 	KERNEL_LOCK(1, NULL);
814 	if ((error = tap_dev_close(sc)) != 0) {
815 		KERNEL_UNLOCK_ONE(NULL);
816 		return (error);
817 	}
818 
819 	/* Destroy the device now that it is no longer useful,
820 	 * unless it's already being destroyed. */
821 	if ((sc->sc_flags & TAP_GOING) != 0) {
822 		KERNEL_UNLOCK_ONE(NULL);
823 		return (0);
824 	}
825 
826 	error = tap_clone_destroyer(sc->sc_dev);
827 	KERNEL_UNLOCK_ONE(NULL);
828 	return error;
829 }
830 
831 static int
832 tap_dev_close(struct tap_softc *sc)
833 {
834 	struct ifnet *ifp;
835 	int s;
836 
837 	s = splnet();
838 	/* Let tap_start handle packets again */
839 	ifp = &sc->sc_ec.ec_if;
840 	ifp->if_flags &= ~IFF_OACTIVE;
841 
842 	/* Purge output queue */
843 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
844 		struct mbuf *m;
845 
846 		for (;;) {
847 			IFQ_DEQUEUE(&ifp->if_snd, m);
848 			if (m == NULL)
849 				break;
850 
851 			ifp->if_opackets++;
852 			bpf_mtap(ifp, m);
853 			m_freem(m);
854 		}
855 	}
856 	splx(s);
857 
858 	if (sc->sc_sih != NULL) {
859 		softint_disestablish(sc->sc_sih);
860 		sc->sc_sih = NULL;
861 	}
862 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
863 
864 	return (0);
865 }
866 
867 static int
868 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
869 {
870 	return tap_dev_read(minor(dev), uio, flags);
871 }
872 
873 static int
874 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
875     kauth_cred_t cred, int flags)
876 {
877 	int error;
878 
879 	KERNEL_LOCK(1, NULL);
880 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
881 	KERNEL_UNLOCK_ONE(NULL);
882 	return error;
883 }
884 
885 static int
886 tap_dev_read(int unit, struct uio *uio, int flags)
887 {
888 	struct tap_softc *sc =
889 	    device_lookup_private(&tap_cd, unit);
890 	struct ifnet *ifp;
891 	struct mbuf *m, *n;
892 	int error = 0, s;
893 
894 	if (sc == NULL)
895 		return (ENXIO);
896 
897 	getnanotime(&sc->sc_atime);
898 
899 	ifp = &sc->sc_ec.ec_if;
900 	if ((ifp->if_flags & IFF_UP) == 0)
901 		return (EHOSTDOWN);
902 
903 	/*
904 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
905 	 */
906 	if ((sc->sc_flags & TAP_NBIO) != 0) {
907 		if (!mutex_tryenter(&sc->sc_rdlock))
908 			return (EWOULDBLOCK);
909 	} else {
910 		mutex_enter(&sc->sc_rdlock);
911 	}
912 
913 	s = splnet();
914 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
915 		ifp->if_flags &= ~IFF_OACTIVE;
916 		/*
917 		 * We must release the lock before sleeping, and re-acquire it
918 		 * after.
919 		 */
920 		mutex_exit(&sc->sc_rdlock);
921 		if (sc->sc_flags & TAP_NBIO)
922 			error = EWOULDBLOCK;
923 		else
924 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
925 		splx(s);
926 
927 		if (error != 0)
928 			return (error);
929 		/* The device might have been downed */
930 		if ((ifp->if_flags & IFF_UP) == 0)
931 			return (EHOSTDOWN);
932 		if ((sc->sc_flags & TAP_NBIO)) {
933 			if (!mutex_tryenter(&sc->sc_rdlock))
934 				return (EWOULDBLOCK);
935 		} else {
936 			mutex_enter(&sc->sc_rdlock);
937 		}
938 		s = splnet();
939 	}
940 
941 	IFQ_DEQUEUE(&ifp->if_snd, m);
942 	ifp->if_flags &= ~IFF_OACTIVE;
943 	splx(s);
944 	if (m == NULL) {
945 		error = 0;
946 		goto out;
947 	}
948 
949 	ifp->if_opackets++;
950 	bpf_mtap(ifp, m);
951 
952 	/*
953 	 * One read is one packet.
954 	 */
955 	do {
956 		error = uiomove(mtod(m, void *),
957 		    min(m->m_len, uio->uio_resid), uio);
958 		MFREE(m, n);
959 		m = n;
960 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
961 
962 	if (m != NULL)
963 		m_freem(m);
964 
965 out:
966 	mutex_exit(&sc->sc_rdlock);
967 	return (error);
968 }
969 
970 static int
971 tap_fops_stat(file_t *fp, struct stat *st)
972 {
973 	int error = 0;
974 	struct tap_softc *sc;
975 	int unit = (uintptr_t)fp->f_data;
976 
977 	(void)memset(st, 0, sizeof(*st));
978 
979 	KERNEL_LOCK(1, NULL);
980 	sc = device_lookup_private(&tap_cd, unit);
981 	if (sc == NULL) {
982 		error = ENXIO;
983 		goto out;
984 	}
985 
986 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
987 	st->st_atimespec = sc->sc_atime;
988 	st->st_mtimespec = sc->sc_mtime;
989 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
990 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
991 	st->st_gid = kauth_cred_getegid(fp->f_cred);
992 out:
993 	KERNEL_UNLOCK_ONE(NULL);
994 	return error;
995 }
996 
997 static int
998 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
999 {
1000 	return tap_dev_write(minor(dev), uio, flags);
1001 }
1002 
1003 static int
1004 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1005     kauth_cred_t cred, int flags)
1006 {
1007 	int error;
1008 
1009 	KERNEL_LOCK(1, NULL);
1010 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
1011 	KERNEL_UNLOCK_ONE(NULL);
1012 	return error;
1013 }
1014 
1015 static int
1016 tap_dev_write(int unit, struct uio *uio, int flags)
1017 {
1018 	struct tap_softc *sc =
1019 	    device_lookup_private(&tap_cd, unit);
1020 	struct ifnet *ifp;
1021 	struct mbuf *m, **mp;
1022 	int error = 0;
1023 	int s;
1024 
1025 	if (sc == NULL)
1026 		return (ENXIO);
1027 
1028 	getnanotime(&sc->sc_mtime);
1029 	ifp = &sc->sc_ec.ec_if;
1030 
1031 	/* One write, one packet, that's the rule */
1032 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1033 	if (m == NULL) {
1034 		ifp->if_ierrors++;
1035 		return (ENOBUFS);
1036 	}
1037 	m->m_pkthdr.len = uio->uio_resid;
1038 
1039 	mp = &m;
1040 	while (error == 0 && uio->uio_resid > 0) {
1041 		if (*mp != m) {
1042 			MGET(*mp, M_DONTWAIT, MT_DATA);
1043 			if (*mp == NULL) {
1044 				error = ENOBUFS;
1045 				break;
1046 			}
1047 		}
1048 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
1049 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1050 		mp = &(*mp)->m_next;
1051 	}
1052 	if (error) {
1053 		ifp->if_ierrors++;
1054 		m_freem(m);
1055 		return (error);
1056 	}
1057 
1058 	ifp->if_ipackets++;
1059 	m->m_pkthdr.rcvif = ifp;
1060 
1061 	bpf_mtap(ifp, m);
1062 	s = splnet();
1063 	(*ifp->if_input)(ifp, m);
1064 	splx(s);
1065 
1066 	return (0);
1067 }
1068 
1069 static int
1070 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1071     struct lwp *l)
1072 {
1073 	return tap_dev_ioctl(minor(dev), cmd, data, l);
1074 }
1075 
1076 static int
1077 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1078 {
1079 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1080 }
1081 
1082 static int
1083 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1084 {
1085 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1086 
1087 	if (sc == NULL)
1088 		return ENXIO;
1089 
1090 	switch (cmd) {
1091 	case FIONREAD:
1092 		{
1093 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1094 			struct mbuf *m;
1095 			int s;
1096 
1097 			s = splnet();
1098 			IFQ_POLL(&ifp->if_snd, m);
1099 
1100 			if (m == NULL)
1101 				*(int *)data = 0;
1102 			else
1103 				*(int *)data = m->m_pkthdr.len;
1104 			splx(s);
1105 			return 0;
1106 		}
1107 	case TIOCSPGRP:
1108 	case FIOSETOWN:
1109 		return fsetown(&sc->sc_pgid, cmd, data);
1110 	case TIOCGPGRP:
1111 	case FIOGETOWN:
1112 		return fgetown(sc->sc_pgid, cmd, data);
1113 	case FIOASYNC:
1114 		if (*(int *)data) {
1115 			if (sc->sc_sih == NULL) {
1116 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1117 				    tap_softintr, sc);
1118 				if (sc->sc_sih == NULL)
1119 					return EBUSY; /* XXX */
1120 			}
1121 			sc->sc_flags |= TAP_ASYNCIO;
1122 		} else {
1123 			sc->sc_flags &= ~TAP_ASYNCIO;
1124 			if (sc->sc_sih != NULL) {
1125 				softint_disestablish(sc->sc_sih);
1126 				sc->sc_sih = NULL;
1127 			}
1128 		}
1129 		return 0;
1130 	case FIONBIO:
1131 		if (*(int *)data)
1132 			sc->sc_flags |= TAP_NBIO;
1133 		else
1134 			sc->sc_flags &= ~TAP_NBIO;
1135 		return 0;
1136 #ifdef OTAPGIFNAME
1137 	case OTAPGIFNAME:
1138 #endif
1139 	case TAPGIFNAME:
1140 		{
1141 			struct ifreq *ifr = (struct ifreq *)data;
1142 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1143 
1144 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1145 			return 0;
1146 		}
1147 	default:
1148 		return ENOTTY;
1149 	}
1150 }
1151 
1152 static int
1153 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1154 {
1155 	return tap_dev_poll(minor(dev), events, l);
1156 }
1157 
1158 static int
1159 tap_fops_poll(file_t *fp, int events)
1160 {
1161 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1162 }
1163 
1164 static int
1165 tap_dev_poll(int unit, int events, struct lwp *l)
1166 {
1167 	struct tap_softc *sc =
1168 	    device_lookup_private(&tap_cd, unit);
1169 	int revents = 0;
1170 
1171 	if (sc == NULL)
1172 		return POLLERR;
1173 
1174 	if (events & (POLLIN|POLLRDNORM)) {
1175 		struct ifnet *ifp = &sc->sc_ec.ec_if;
1176 		struct mbuf *m;
1177 		int s;
1178 
1179 		s = splnet();
1180 		IFQ_POLL(&ifp->if_snd, m);
1181 		splx(s);
1182 
1183 		if (m != NULL)
1184 			revents |= events & (POLLIN|POLLRDNORM);
1185 		else {
1186 			simple_lock(&sc->sc_kqlock);
1187 			selrecord(l, &sc->sc_rsel);
1188 			simple_unlock(&sc->sc_kqlock);
1189 		}
1190 	}
1191 	revents |= events & (POLLOUT|POLLWRNORM);
1192 
1193 	return (revents);
1194 }
1195 
1196 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1197 	tap_kqread };
1198 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1199 	filt_seltrue };
1200 
1201 static int
1202 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1203 {
1204 	return tap_dev_kqfilter(minor(dev), kn);
1205 }
1206 
1207 static int
1208 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1209 {
1210 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1211 }
1212 
1213 static int
1214 tap_dev_kqfilter(int unit, struct knote *kn)
1215 {
1216 	struct tap_softc *sc =
1217 	    device_lookup_private(&tap_cd, unit);
1218 
1219 	if (sc == NULL)
1220 		return (ENXIO);
1221 
1222 	KERNEL_LOCK(1, NULL);
1223 	switch(kn->kn_filter) {
1224 	case EVFILT_READ:
1225 		kn->kn_fop = &tap_read_filterops;
1226 		break;
1227 	case EVFILT_WRITE:
1228 		kn->kn_fop = &tap_seltrue_filterops;
1229 		break;
1230 	default:
1231 		KERNEL_UNLOCK_ONE(NULL);
1232 		return (EINVAL);
1233 	}
1234 
1235 	kn->kn_hook = sc;
1236 	simple_lock(&sc->sc_kqlock);
1237 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1238 	simple_unlock(&sc->sc_kqlock);
1239 	KERNEL_UNLOCK_ONE(NULL);
1240 	return (0);
1241 }
1242 
1243 static void
1244 tap_kqdetach(struct knote *kn)
1245 {
1246 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1247 
1248 	KERNEL_LOCK(1, NULL);
1249 	simple_lock(&sc->sc_kqlock);
1250 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1251 	simple_unlock(&sc->sc_kqlock);
1252 	KERNEL_UNLOCK_ONE(NULL);
1253 }
1254 
1255 static int
1256 tap_kqread(struct knote *kn, long hint)
1257 {
1258 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1259 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1260 	struct mbuf *m;
1261 	int s, rv;
1262 
1263 	KERNEL_LOCK(1, NULL);
1264 	s = splnet();
1265 	IFQ_POLL(&ifp->if_snd, m);
1266 
1267 	if (m == NULL)
1268 		kn->kn_data = 0;
1269 	else
1270 		kn->kn_data = m->m_pkthdr.len;
1271 	splx(s);
1272 	rv = (kn->kn_data != 0 ? 1 : 0);
1273 	KERNEL_UNLOCK_ONE(NULL);
1274 	return rv;
1275 }
1276 
1277 #if defined(COMPAT_40) || defined(MODULAR)
1278 /*
1279  * sysctl management routines
1280  * You can set the address of an interface through:
1281  * net.link.tap.tap<number>
1282  *
1283  * Note the consistent use of tap_log in order to use
1284  * sysctl_teardown at unload time.
1285  *
1286  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1287  * blocks register a function in a special section of the kernel
1288  * (called a link set) which is used at init_sysctl() time to cycle
1289  * through all those functions to create the kernel's sysctl tree.
1290  *
1291  * It is not possible to use link sets in a module, so the
1292  * easiest is to simply call our own setup routine at load time.
1293  *
1294  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1295  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1296  * whole kernel sysctl tree is built, it is not possible to add any
1297  * permanent node.
1298  *
1299  * It should be noted that we're not saving the sysctlnode pointer
1300  * we are returned when creating the "tap" node.  That structure
1301  * cannot be trusted once out of the calling function, as it might
1302  * get reused.  So we just save the MIB number, and always give the
1303  * full path starting from the root for later calls to sysctl_createv
1304  * and sysctl_destroyv.
1305  */
1306 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1307 {
1308 	const struct sysctlnode *node;
1309 	int error = 0;
1310 
1311 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1312 	    CTLFLAG_PERMANENT,
1313 	    CTLTYPE_NODE, "net", NULL,
1314 	    NULL, 0, NULL, 0,
1315 	    CTL_NET, CTL_EOL)) != 0)
1316 		return;
1317 
1318 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1319 	    CTLFLAG_PERMANENT,
1320 	    CTLTYPE_NODE, "link", NULL,
1321 	    NULL, 0, NULL, 0,
1322 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1323 		return;
1324 
1325 	/*
1326 	 * The first four parameters of sysctl_createv are for management.
1327 	 *
1328 	 * The four that follows, here starting with a '0' for the flags,
1329 	 * describe the node.
1330 	 *
1331 	 * The next series of four set its value, through various possible
1332 	 * means.
1333 	 *
1334 	 * Last but not least, the path to the node is described.  That path
1335 	 * is relative to the given root (third argument).  Here we're
1336 	 * starting from the root.
1337 	 */
1338 	if ((error = sysctl_createv(clog, 0, NULL, &node,
1339 	    CTLFLAG_PERMANENT,
1340 	    CTLTYPE_NODE, "tap", NULL,
1341 	    NULL, 0, NULL, 0,
1342 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1343 		return;
1344 	tap_node = node->sysctl_num;
1345 }
1346 
1347 /*
1348  * The helper functions make Andrew Brown's interface really
1349  * shine.  It makes possible to create value on the fly whether
1350  * the sysctl value is read or written.
1351  *
1352  * As shown as an example in the man page, the first step is to
1353  * create a copy of the node to have sysctl_lookup work on it.
1354  *
1355  * Here, we have more work to do than just a copy, since we have
1356  * to create the string.  The first step is to collect the actual
1357  * value of the node, which is a convenient pointer to the softc
1358  * of the interface.  From there we create the string and use it
1359  * as the value, but only for the *copy* of the node.
1360  *
1361  * Then we let sysctl_lookup do the magic, which consists in
1362  * setting oldp and newp as required by the operation.  When the
1363  * value is read, that means that the string will be copied to
1364  * the user, and when it is written, the new value will be copied
1365  * over in the addr array.
1366  *
1367  * If newp is NULL, the user was reading the value, so we don't
1368  * have anything else to do.  If a new value was written, we
1369  * have to check it.
1370  *
1371  * If it is incorrect, we can return an error and leave 'node' as
1372  * it is:  since it is a copy of the actual node, the change will
1373  * be forgotten.
1374  *
1375  * Upon a correct input, we commit the change to the ifnet
1376  * structure of our interface.
1377  */
1378 static int
1379 tap_sysctl_handler(SYSCTLFN_ARGS)
1380 {
1381 	struct sysctlnode node;
1382 	struct tap_softc *sc;
1383 	struct ifnet *ifp;
1384 	int error;
1385 	size_t len;
1386 	char addr[3 * ETHER_ADDR_LEN];
1387 	uint8_t enaddr[ETHER_ADDR_LEN];
1388 
1389 	node = *rnode;
1390 	sc = node.sysctl_data;
1391 	ifp = &sc->sc_ec.ec_if;
1392 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1393 	node.sysctl_data = addr;
1394 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1395 	if (error || newp == NULL)
1396 		return (error);
1397 
1398 	len = strlen(addr);
1399 	if (len < 11 || len > 17)
1400 		return (EINVAL);
1401 
1402 	/* Commit change */
1403 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1404 		return (EINVAL);
1405 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1406 	return (error);
1407 }
1408 #endif
1409