1 /* $NetBSD: if_tap.c,v 1.71 2013/08/20 12:28:12 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet 31 * device to the system, but can also be accessed by userland through a 32 * character device interface, which allows reading and injecting frames. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.71 2013/08/20 12:28:12 yamt Exp $"); 37 38 #if defined(_KERNEL_OPT) 39 40 #include "opt_modular.h" 41 #include "opt_compat_netbsd.h" 42 #endif 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/malloc.h> 48 #include <sys/conf.h> 49 #include <sys/cprng.h> 50 #include <sys/device.h> 51 #include <sys/file.h> 52 #include <sys/filedesc.h> 53 #include <sys/ksyms.h> 54 #include <sys/poll.h> 55 #include <sys/proc.h> 56 #include <sys/select.h> 57 #include <sys/sockio.h> 58 #if defined(COMPAT_40) || defined(MODULAR) 59 #include <sys/sysctl.h> 60 #endif 61 #include <sys/kauth.h> 62 #include <sys/mutex.h> 63 #include <sys/simplelock.h> 64 #include <sys/intr.h> 65 #include <sys/stat.h> 66 67 #include <net/if.h> 68 #include <net/if_dl.h> 69 #include <net/if_ether.h> 70 #include <net/if_media.h> 71 #include <net/if_tap.h> 72 #include <net/bpf.h> 73 74 #include <compat/sys/sockio.h> 75 76 #if defined(COMPAT_40) || defined(MODULAR) 77 /* 78 * sysctl node management 79 * 80 * It's not really possible to use a SYSCTL_SETUP block with 81 * current module implementation, so it is easier to just define 82 * our own function. 83 * 84 * The handler function is a "helper" in Andrew Brown's sysctl 85 * framework terminology. It is used as a gateway for sysctl 86 * requests over the nodes. 87 * 88 * tap_log allows the module to log creations of nodes and 89 * destroy them all at once using sysctl_teardown. 90 */ 91 static int tap_node; 92 static int tap_sysctl_handler(SYSCTLFN_PROTO); 93 SYSCTL_SETUP_PROTO(sysctl_tap_setup); 94 #endif 95 96 /* 97 * Since we're an Ethernet device, we need the 2 following 98 * components: a struct ethercom and a struct ifmedia 99 * since we don't attach a PHY to ourselves. 100 * We could emulate one, but there's no real point. 101 */ 102 103 struct tap_softc { 104 device_t sc_dev; 105 struct ifmedia sc_im; 106 struct ethercom sc_ec; 107 int sc_flags; 108 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */ 109 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */ 110 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */ 111 #define TAP_GOING 0x00000008 /* interface is being destroyed */ 112 struct selinfo sc_rsel; 113 pid_t sc_pgid; /* For async. IO */ 114 kmutex_t sc_rdlock; 115 struct simplelock sc_kqlock; 116 void *sc_sih; 117 struct timespec sc_atime; 118 struct timespec sc_mtime; 119 struct timespec sc_btime; 120 }; 121 122 /* autoconf(9) glue */ 123 124 void tapattach(int); 125 126 static int tap_match(device_t, cfdata_t, void *); 127 static void tap_attach(device_t, device_t, void *); 128 static int tap_detach(device_t, int); 129 130 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc), 131 tap_match, tap_attach, tap_detach, NULL); 132 extern struct cfdriver tap_cd; 133 134 /* Real device access routines */ 135 static int tap_dev_close(struct tap_softc *); 136 static int tap_dev_read(int, struct uio *, int); 137 static int tap_dev_write(int, struct uio *, int); 138 static int tap_dev_ioctl(int, u_long, void *, struct lwp *); 139 static int tap_dev_poll(int, int, struct lwp *); 140 static int tap_dev_kqfilter(int, struct knote *); 141 142 /* Fileops access routines */ 143 static int tap_fops_close(file_t *); 144 static int tap_fops_read(file_t *, off_t *, struct uio *, 145 kauth_cred_t, int); 146 static int tap_fops_write(file_t *, off_t *, struct uio *, 147 kauth_cred_t, int); 148 static int tap_fops_ioctl(file_t *, u_long, void *); 149 static int tap_fops_poll(file_t *, int); 150 static int tap_fops_stat(file_t *, struct stat *); 151 static int tap_fops_kqfilter(file_t *, struct knote *); 152 153 static const struct fileops tap_fileops = { 154 .fo_read = tap_fops_read, 155 .fo_write = tap_fops_write, 156 .fo_ioctl = tap_fops_ioctl, 157 .fo_fcntl = fnullop_fcntl, 158 .fo_poll = tap_fops_poll, 159 .fo_stat = tap_fops_stat, 160 .fo_close = tap_fops_close, 161 .fo_kqfilter = tap_fops_kqfilter, 162 .fo_restart = fnullop_restart, 163 }; 164 165 /* Helper for cloning open() */ 166 static int tap_dev_cloner(struct lwp *); 167 168 /* Character device routines */ 169 static int tap_cdev_open(dev_t, int, int, struct lwp *); 170 static int tap_cdev_close(dev_t, int, int, struct lwp *); 171 static int tap_cdev_read(dev_t, struct uio *, int); 172 static int tap_cdev_write(dev_t, struct uio *, int); 173 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *); 174 static int tap_cdev_poll(dev_t, int, struct lwp *); 175 static int tap_cdev_kqfilter(dev_t, struct knote *); 176 177 const struct cdevsw tap_cdevsw = { 178 tap_cdev_open, tap_cdev_close, 179 tap_cdev_read, tap_cdev_write, 180 tap_cdev_ioctl, nostop, notty, 181 tap_cdev_poll, nommap, 182 tap_cdev_kqfilter, 183 D_OTHER, 184 }; 185 186 #define TAP_CLONER 0xfffff /* Maximal minor value */ 187 188 /* kqueue-related routines */ 189 static void tap_kqdetach(struct knote *); 190 static int tap_kqread(struct knote *, long); 191 192 /* 193 * Those are needed by the if_media interface. 194 */ 195 196 static int tap_mediachange(struct ifnet *); 197 static void tap_mediastatus(struct ifnet *, struct ifmediareq *); 198 199 /* 200 * Those are needed by the ifnet interface, and would typically be 201 * there for any network interface driver. 202 * Some other routines are optional: watchdog and drain. 203 */ 204 205 static void tap_start(struct ifnet *); 206 static void tap_stop(struct ifnet *, int); 207 static int tap_init(struct ifnet *); 208 static int tap_ioctl(struct ifnet *, u_long, void *); 209 210 /* Internal functions */ 211 #if defined(COMPAT_40) || defined(MODULAR) 212 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *); 213 #endif 214 static void tap_softintr(void *); 215 216 /* 217 * tap is a clonable interface, although it is highly unrealistic for 218 * an Ethernet device. 219 * 220 * Here are the bits needed for a clonable interface. 221 */ 222 static int tap_clone_create(struct if_clone *, int); 223 static int tap_clone_destroy(struct ifnet *); 224 225 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap", 226 tap_clone_create, 227 tap_clone_destroy); 228 229 /* Helper functionis shared by the two cloning code paths */ 230 static struct tap_softc * tap_clone_creator(int); 231 int tap_clone_destroyer(device_t); 232 233 void 234 tapattach(int n) 235 { 236 int error; 237 238 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca); 239 if (error) { 240 aprint_error("%s: unable to register cfattach\n", 241 tap_cd.cd_name); 242 (void)config_cfdriver_detach(&tap_cd); 243 return; 244 } 245 246 if_clone_attach(&tap_cloners); 247 } 248 249 /* Pretty much useless for a pseudo-device */ 250 static int 251 tap_match(device_t parent, cfdata_t cfdata, void *arg) 252 { 253 254 return (1); 255 } 256 257 void 258 tap_attach(device_t parent, device_t self, void *aux) 259 { 260 struct tap_softc *sc = device_private(self); 261 struct ifnet *ifp; 262 #if defined(COMPAT_40) || defined(MODULAR) 263 const struct sysctlnode *node; 264 int error; 265 #endif 266 uint8_t enaddr[ETHER_ADDR_LEN] = 267 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff }; 268 char enaddrstr[3 * ETHER_ADDR_LEN]; 269 270 sc->sc_dev = self; 271 sc->sc_sih = NULL; 272 getnanotime(&sc->sc_btime); 273 sc->sc_atime = sc->sc_mtime = sc->sc_btime; 274 275 if (!pmf_device_register(self, NULL, NULL)) 276 aprint_error_dev(self, "couldn't establish power handler\n"); 277 278 /* 279 * In order to obtain unique initial Ethernet address on a host, 280 * do some randomisation. It's not meant for anything but avoiding 281 * hard-coding an address. 282 */ 283 cprng_fast(&enaddr[3], 3); 284 285 aprint_verbose_dev(self, "Ethernet address %s\n", 286 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr)); 287 288 /* 289 * Why 1000baseT? Why not? You can add more. 290 * 291 * Note that there are 3 steps: init, one or several additions to 292 * list of supported media, and in the end, the selection of one 293 * of them. 294 */ 295 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus); 296 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL); 297 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL); 298 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL); 299 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); 300 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL); 301 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); 302 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL); 303 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO); 304 305 /* 306 * One should note that an interface must do multicast in order 307 * to support IPv6. 308 */ 309 ifp = &sc->sc_ec.ec_if; 310 strcpy(ifp->if_xname, device_xname(self)); 311 ifp->if_softc = sc; 312 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 313 ifp->if_ioctl = tap_ioctl; 314 ifp->if_start = tap_start; 315 ifp->if_stop = tap_stop; 316 ifp->if_init = tap_init; 317 IFQ_SET_READY(&ifp->if_snd); 318 319 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU; 320 321 /* Those steps are mandatory for an Ethernet driver, the fisrt call 322 * being common to all network interface drivers. */ 323 if_attach(ifp); 324 ether_ifattach(ifp, enaddr); 325 326 sc->sc_flags = 0; 327 328 #if defined(COMPAT_40) || defined(MODULAR) 329 /* 330 * Add a sysctl node for that interface. 331 * 332 * The pointer transmitted is not a string, but instead a pointer to 333 * the softc structure, which we can use to build the string value on 334 * the fly in the helper function of the node. See the comments for 335 * tap_sysctl_handler for details. 336 * 337 * Usually sysctl_createv is called with CTL_CREATE as the before-last 338 * component. However, we can allocate a number ourselves, as we are 339 * the only consumer of the net.link.<iface> node. In this case, the 340 * unit number is conveniently used to number the node. CTL_CREATE 341 * would just work, too. 342 */ 343 if ((error = sysctl_createv(NULL, 0, NULL, 344 &node, CTLFLAG_READWRITE, 345 CTLTYPE_STRING, device_xname(self), NULL, 346 tap_sysctl_handler, 0, (void *)sc, 18, 347 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev), 348 CTL_EOL)) != 0) 349 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n", 350 error); 351 #endif 352 353 /* 354 * Initialize the two locks for the device. 355 * 356 * We need a lock here because even though the tap device can be 357 * opened only once, the file descriptor might be passed to another 358 * process, say a fork(2)ed child. 359 * 360 * The Giant saves us from most of the hassle, but since the read 361 * operation can sleep, we don't want two processes to wake up at 362 * the same moment and both try and dequeue a single packet. 363 * 364 * The queue for event listeners (used by kqueue(9), see below) has 365 * to be protected, too, but we don't need the same level of 366 * complexity for that lock, so a simple spinning lock is fine. 367 */ 368 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE); 369 simple_lock_init(&sc->sc_kqlock); 370 371 selinit(&sc->sc_rsel); 372 } 373 374 /* 375 * When detaching, we do the inverse of what is done in the attach 376 * routine, in reversed order. 377 */ 378 static int 379 tap_detach(device_t self, int flags) 380 { 381 struct tap_softc *sc = device_private(self); 382 struct ifnet *ifp = &sc->sc_ec.ec_if; 383 #if defined(COMPAT_40) || defined(MODULAR) 384 int error; 385 #endif 386 int s; 387 388 sc->sc_flags |= TAP_GOING; 389 s = splnet(); 390 tap_stop(ifp, 1); 391 if_down(ifp); 392 splx(s); 393 394 if (sc->sc_sih != NULL) { 395 softint_disestablish(sc->sc_sih); 396 sc->sc_sih = NULL; 397 } 398 399 #if defined(COMPAT_40) || defined(MODULAR) 400 /* 401 * Destroying a single leaf is a very straightforward operation using 402 * sysctl_destroyv. One should be sure to always end the path with 403 * CTL_EOL. 404 */ 405 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node, 406 device_unit(sc->sc_dev), CTL_EOL)) != 0) 407 aprint_error_dev(self, 408 "sysctl_destroyv returned %d, ignoring\n", error); 409 #endif 410 ether_ifdetach(ifp); 411 if_detach(ifp); 412 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY); 413 seldestroy(&sc->sc_rsel); 414 mutex_destroy(&sc->sc_rdlock); 415 416 pmf_device_deregister(self); 417 418 return (0); 419 } 420 421 /* 422 * This function is called by the ifmedia layer to notify the driver 423 * that the user requested a media change. A real driver would 424 * reconfigure the hardware. 425 */ 426 static int 427 tap_mediachange(struct ifnet *ifp) 428 { 429 return (0); 430 } 431 432 /* 433 * Here the user asks for the currently used media. 434 */ 435 static void 436 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr) 437 { 438 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 439 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media; 440 } 441 442 /* 443 * This is the function where we SEND packets. 444 * 445 * There is no 'receive' equivalent. A typical driver will get 446 * interrupts from the hardware, and from there will inject new packets 447 * into the network stack. 448 * 449 * Once handled, a packet must be freed. A real driver might not be able 450 * to fit all the pending packets into the hardware, and is allowed to 451 * return before having sent all the packets. It should then use the 452 * if_flags flag IFF_OACTIVE to notify the upper layer. 453 * 454 * There are also other flags one should check, such as IFF_PAUSE. 455 * 456 * It is our duty to make packets available to BPF listeners. 457 * 458 * You should be aware that this function is called by the Ethernet layer 459 * at splnet(). 460 * 461 * When the device is opened, we have to pass the packet(s) to the 462 * userland. For that we stay in OACTIVE mode while the userland gets 463 * the packets, and we send a signal to the processes waiting to read. 464 * 465 * wakeup(sc) is the counterpart to the tsleep call in 466 * tap_dev_read, while selnotify() is used for kevent(2) and 467 * poll(2) (which includes select(2)) listeners. 468 */ 469 static void 470 tap_start(struct ifnet *ifp) 471 { 472 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 473 struct mbuf *m0; 474 475 if ((sc->sc_flags & TAP_INUSE) == 0) { 476 /* Simply drop packets */ 477 for(;;) { 478 IFQ_DEQUEUE(&ifp->if_snd, m0); 479 if (m0 == NULL) 480 return; 481 482 ifp->if_opackets++; 483 bpf_mtap(ifp, m0); 484 485 m_freem(m0); 486 } 487 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) { 488 ifp->if_flags |= IFF_OACTIVE; 489 wakeup(sc); 490 selnotify(&sc->sc_rsel, 0, 1); 491 if (sc->sc_flags & TAP_ASYNCIO) 492 softint_schedule(sc->sc_sih); 493 } 494 } 495 496 static void 497 tap_softintr(void *cookie) 498 { 499 struct tap_softc *sc; 500 struct ifnet *ifp; 501 int a, b; 502 503 sc = cookie; 504 505 if (sc->sc_flags & TAP_ASYNCIO) { 506 ifp = &sc->sc_ec.ec_if; 507 if (ifp->if_flags & IFF_RUNNING) { 508 a = POLL_IN; 509 b = POLLIN|POLLRDNORM; 510 } else { 511 a = POLL_HUP; 512 b = 0; 513 } 514 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL); 515 } 516 } 517 518 /* 519 * A typical driver will only contain the following handlers for 520 * ioctl calls, except SIOCSIFPHYADDR. 521 * The latter is a hack I used to set the Ethernet address of the 522 * faked device. 523 * 524 * Note that both ifmedia_ioctl() and ether_ioctl() have to be 525 * called under splnet(). 526 */ 527 static int 528 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data) 529 { 530 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 531 struct ifreq *ifr = (struct ifreq *)data; 532 int s, error; 533 534 s = splnet(); 535 536 switch (cmd) { 537 #ifdef OSIOCSIFMEDIA 538 case OSIOCSIFMEDIA: 539 #endif 540 case SIOCSIFMEDIA: 541 case SIOCGIFMEDIA: 542 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd); 543 break; 544 #if defined(COMPAT_40) || defined(MODULAR) 545 case SIOCSIFPHYADDR: 546 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data); 547 break; 548 #endif 549 default: 550 error = ether_ioctl(ifp, cmd, data); 551 if (error == ENETRESET) 552 error = 0; 553 break; 554 } 555 556 splx(s); 557 558 return (error); 559 } 560 561 #if defined(COMPAT_40) || defined(MODULAR) 562 /* 563 * Helper function to set Ethernet address. This has been replaced by 564 * the generic SIOCALIFADDR ioctl on a PF_LINK socket. 565 */ 566 static int 567 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra) 568 { 569 const struct sockaddr *sa = &ifra->ifra_addr; 570 571 if (sa->sa_family != AF_LINK) 572 return (EINVAL); 573 574 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false); 575 576 return (0); 577 } 578 #endif 579 580 /* 581 * _init() would typically be called when an interface goes up, 582 * meaning it should configure itself into the state in which it 583 * can send packets. 584 */ 585 static int 586 tap_init(struct ifnet *ifp) 587 { 588 ifp->if_flags |= IFF_RUNNING; 589 590 tap_start(ifp); 591 592 return (0); 593 } 594 595 /* 596 * _stop() is called when an interface goes down. It is our 597 * responsability to validate that state by clearing the 598 * IFF_RUNNING flag. 599 * 600 * We have to wake up all the sleeping processes to have the pending 601 * read requests cancelled. 602 */ 603 static void 604 tap_stop(struct ifnet *ifp, int disable) 605 { 606 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 607 608 ifp->if_flags &= ~IFF_RUNNING; 609 wakeup(sc); 610 selnotify(&sc->sc_rsel, 0, 1); 611 if (sc->sc_flags & TAP_ASYNCIO) 612 softint_schedule(sc->sc_sih); 613 } 614 615 /* 616 * The 'create' command of ifconfig can be used to create 617 * any numbered instance of a given device. Thus we have to 618 * make sure we have enough room in cd_devs to create the 619 * user-specified instance. config_attach_pseudo will do this 620 * for us. 621 */ 622 static int 623 tap_clone_create(struct if_clone *ifc, int unit) 624 { 625 if (tap_clone_creator(unit) == NULL) { 626 aprint_error("%s%d: unable to attach an instance\n", 627 tap_cd.cd_name, unit); 628 return (ENXIO); 629 } 630 631 return (0); 632 } 633 634 /* 635 * tap(4) can be cloned by two ways: 636 * using 'ifconfig tap0 create', which will use the network 637 * interface cloning API, and call tap_clone_create above. 638 * opening the cloning device node, whose minor number is TAP_CLONER. 639 * See below for an explanation on how this part work. 640 */ 641 static struct tap_softc * 642 tap_clone_creator(int unit) 643 { 644 struct cfdata *cf; 645 646 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK); 647 cf->cf_name = tap_cd.cd_name; 648 cf->cf_atname = tap_ca.ca_name; 649 if (unit == -1) { 650 /* let autoconf find the first free one */ 651 cf->cf_unit = 0; 652 cf->cf_fstate = FSTATE_STAR; 653 } else { 654 cf->cf_unit = unit; 655 cf->cf_fstate = FSTATE_NOTFOUND; 656 } 657 658 return device_private(config_attach_pseudo(cf)); 659 } 660 661 /* 662 * The clean design of if_clone and autoconf(9) makes that part 663 * really straightforward. The second argument of config_detach 664 * means neither QUIET nor FORCED. 665 */ 666 static int 667 tap_clone_destroy(struct ifnet *ifp) 668 { 669 struct tap_softc *sc = ifp->if_softc; 670 671 return tap_clone_destroyer(sc->sc_dev); 672 } 673 674 int 675 tap_clone_destroyer(device_t dev) 676 { 677 cfdata_t cf = device_cfdata(dev); 678 int error; 679 680 if ((error = config_detach(dev, 0)) != 0) 681 aprint_error_dev(dev, "unable to detach instance\n"); 682 free(cf, M_DEVBUF); 683 684 return (error); 685 } 686 687 /* 688 * tap(4) is a bit of an hybrid device. It can be used in two different 689 * ways: 690 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it. 691 * 2. open /dev/tap, get a new interface created and read/write off it. 692 * That interface is destroyed when the process that had it created exits. 693 * 694 * The first way is managed by the cdevsw structure, and you access interfaces 695 * through a (major, minor) mapping: tap4 is obtained by the minor number 696 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_. 697 * 698 * The second way is the so-called "cloning" device. It's a special minor 699 * number (chosen as the maximal number, to allow as much tap devices as 700 * possible). The user first opens the cloner (e.g., /dev/tap), and that 701 * call ends in tap_cdev_open. The actual place where it is handled is 702 * tap_dev_cloner. 703 * 704 * An tap device cannot be opened more than once at a time, so the cdevsw 705 * part of open() does nothing but noting that the interface is being used and 706 * hence ready to actually handle packets. 707 */ 708 709 static int 710 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l) 711 { 712 struct tap_softc *sc; 713 714 if (minor(dev) == TAP_CLONER) 715 return tap_dev_cloner(l); 716 717 sc = device_lookup_private(&tap_cd, minor(dev)); 718 if (sc == NULL) 719 return (ENXIO); 720 721 /* The device can only be opened once */ 722 if (sc->sc_flags & TAP_INUSE) 723 return (EBUSY); 724 sc->sc_flags |= TAP_INUSE; 725 return (0); 726 } 727 728 /* 729 * There are several kinds of cloning devices, and the most simple is the one 730 * tap(4) uses. What it does is change the file descriptor with a new one, 731 * with its own fileops structure (which maps to the various read, write, 732 * ioctl functions). It starts allocating a new file descriptor with falloc, 733 * then actually creates the new tap devices. 734 * 735 * Once those two steps are successful, we can re-wire the existing file 736 * descriptor to its new self. This is done with fdclone(): it fills the fp 737 * structure as needed (notably f_data gets filled with the fifth parameter 738 * passed, the unit of the tap device which will allows us identifying the 739 * device later), and returns EMOVEFD. 740 * 741 * That magic value is interpreted by sys_open() which then replaces the 742 * current file descriptor by the new one (through a magic member of struct 743 * lwp, l_dupfd). 744 * 745 * The tap device is flagged as being busy since it otherwise could be 746 * externally accessed through the corresponding device node with the cdevsw 747 * interface. 748 */ 749 750 static int 751 tap_dev_cloner(struct lwp *l) 752 { 753 struct tap_softc *sc; 754 file_t *fp; 755 int error, fd; 756 757 if ((error = fd_allocfile(&fp, &fd)) != 0) 758 return (error); 759 760 if ((sc = tap_clone_creator(-1)) == NULL) { 761 fd_abort(curproc, fp, fd); 762 return (ENXIO); 763 } 764 765 sc->sc_flags |= TAP_INUSE; 766 767 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops, 768 (void *)(intptr_t)device_unit(sc->sc_dev)); 769 } 770 771 /* 772 * While all other operations (read, write, ioctl, poll and kqfilter) are 773 * really the same whether we are in cdevsw or fileops mode, the close() 774 * function is slightly different in the two cases. 775 * 776 * As for the other, the core of it is shared in tap_dev_close. What 777 * it does is sufficient for the cdevsw interface, but the cloning interface 778 * needs another thing: the interface is destroyed when the processes that 779 * created it closes it. 780 */ 781 static int 782 tap_cdev_close(dev_t dev, int flags, int fmt, 783 struct lwp *l) 784 { 785 struct tap_softc *sc = 786 device_lookup_private(&tap_cd, minor(dev)); 787 788 if (sc == NULL) 789 return (ENXIO); 790 791 return tap_dev_close(sc); 792 } 793 794 /* 795 * It might happen that the administrator used ifconfig to externally destroy 796 * the interface. In that case, tap_fops_close will be called while 797 * tap_detach is already happening. If we called it again from here, we 798 * would dead lock. TAP_GOING ensures that this situation doesn't happen. 799 */ 800 static int 801 tap_fops_close(file_t *fp) 802 { 803 int unit = (intptr_t)fp->f_data; 804 struct tap_softc *sc; 805 int error; 806 807 sc = device_lookup_private(&tap_cd, unit); 808 if (sc == NULL) 809 return (ENXIO); 810 811 /* tap_dev_close currently always succeeds, but it might not 812 * always be the case. */ 813 KERNEL_LOCK(1, NULL); 814 if ((error = tap_dev_close(sc)) != 0) { 815 KERNEL_UNLOCK_ONE(NULL); 816 return (error); 817 } 818 819 /* Destroy the device now that it is no longer useful, 820 * unless it's already being destroyed. */ 821 if ((sc->sc_flags & TAP_GOING) != 0) { 822 KERNEL_UNLOCK_ONE(NULL); 823 return (0); 824 } 825 826 error = tap_clone_destroyer(sc->sc_dev); 827 KERNEL_UNLOCK_ONE(NULL); 828 return error; 829 } 830 831 static int 832 tap_dev_close(struct tap_softc *sc) 833 { 834 struct ifnet *ifp; 835 int s; 836 837 s = splnet(); 838 /* Let tap_start handle packets again */ 839 ifp = &sc->sc_ec.ec_if; 840 ifp->if_flags &= ~IFF_OACTIVE; 841 842 /* Purge output queue */ 843 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) { 844 struct mbuf *m; 845 846 for (;;) { 847 IFQ_DEQUEUE(&ifp->if_snd, m); 848 if (m == NULL) 849 break; 850 851 ifp->if_opackets++; 852 bpf_mtap(ifp, m); 853 m_freem(m); 854 } 855 } 856 splx(s); 857 858 if (sc->sc_sih != NULL) { 859 softint_disestablish(sc->sc_sih); 860 sc->sc_sih = NULL; 861 } 862 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO); 863 864 return (0); 865 } 866 867 static int 868 tap_cdev_read(dev_t dev, struct uio *uio, int flags) 869 { 870 return tap_dev_read(minor(dev), uio, flags); 871 } 872 873 static int 874 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio, 875 kauth_cred_t cred, int flags) 876 { 877 int error; 878 879 KERNEL_LOCK(1, NULL); 880 error = tap_dev_read((intptr_t)fp->f_data, uio, flags); 881 KERNEL_UNLOCK_ONE(NULL); 882 return error; 883 } 884 885 static int 886 tap_dev_read(int unit, struct uio *uio, int flags) 887 { 888 struct tap_softc *sc = 889 device_lookup_private(&tap_cd, unit); 890 struct ifnet *ifp; 891 struct mbuf *m, *n; 892 int error = 0, s; 893 894 if (sc == NULL) 895 return (ENXIO); 896 897 getnanotime(&sc->sc_atime); 898 899 ifp = &sc->sc_ec.ec_if; 900 if ((ifp->if_flags & IFF_UP) == 0) 901 return (EHOSTDOWN); 902 903 /* 904 * In the TAP_NBIO case, we have to make sure we won't be sleeping 905 */ 906 if ((sc->sc_flags & TAP_NBIO) != 0) { 907 if (!mutex_tryenter(&sc->sc_rdlock)) 908 return (EWOULDBLOCK); 909 } else { 910 mutex_enter(&sc->sc_rdlock); 911 } 912 913 s = splnet(); 914 if (IFQ_IS_EMPTY(&ifp->if_snd)) { 915 ifp->if_flags &= ~IFF_OACTIVE; 916 /* 917 * We must release the lock before sleeping, and re-acquire it 918 * after. 919 */ 920 mutex_exit(&sc->sc_rdlock); 921 if (sc->sc_flags & TAP_NBIO) 922 error = EWOULDBLOCK; 923 else 924 error = tsleep(sc, PSOCK|PCATCH, "tap", 0); 925 splx(s); 926 927 if (error != 0) 928 return (error); 929 /* The device might have been downed */ 930 if ((ifp->if_flags & IFF_UP) == 0) 931 return (EHOSTDOWN); 932 if ((sc->sc_flags & TAP_NBIO)) { 933 if (!mutex_tryenter(&sc->sc_rdlock)) 934 return (EWOULDBLOCK); 935 } else { 936 mutex_enter(&sc->sc_rdlock); 937 } 938 s = splnet(); 939 } 940 941 IFQ_DEQUEUE(&ifp->if_snd, m); 942 ifp->if_flags &= ~IFF_OACTIVE; 943 splx(s); 944 if (m == NULL) { 945 error = 0; 946 goto out; 947 } 948 949 ifp->if_opackets++; 950 bpf_mtap(ifp, m); 951 952 /* 953 * One read is one packet. 954 */ 955 do { 956 error = uiomove(mtod(m, void *), 957 min(m->m_len, uio->uio_resid), uio); 958 MFREE(m, n); 959 m = n; 960 } while (m != NULL && uio->uio_resid > 0 && error == 0); 961 962 if (m != NULL) 963 m_freem(m); 964 965 out: 966 mutex_exit(&sc->sc_rdlock); 967 return (error); 968 } 969 970 static int 971 tap_fops_stat(file_t *fp, struct stat *st) 972 { 973 int error = 0; 974 struct tap_softc *sc; 975 int unit = (uintptr_t)fp->f_data; 976 977 (void)memset(st, 0, sizeof(*st)); 978 979 KERNEL_LOCK(1, NULL); 980 sc = device_lookup_private(&tap_cd, unit); 981 if (sc == NULL) { 982 error = ENXIO; 983 goto out; 984 } 985 986 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit); 987 st->st_atimespec = sc->sc_atime; 988 st->st_mtimespec = sc->sc_mtime; 989 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime; 990 st->st_uid = kauth_cred_geteuid(fp->f_cred); 991 st->st_gid = kauth_cred_getegid(fp->f_cred); 992 out: 993 KERNEL_UNLOCK_ONE(NULL); 994 return error; 995 } 996 997 static int 998 tap_cdev_write(dev_t dev, struct uio *uio, int flags) 999 { 1000 return tap_dev_write(minor(dev), uio, flags); 1001 } 1002 1003 static int 1004 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio, 1005 kauth_cred_t cred, int flags) 1006 { 1007 int error; 1008 1009 KERNEL_LOCK(1, NULL); 1010 error = tap_dev_write((intptr_t)fp->f_data, uio, flags); 1011 KERNEL_UNLOCK_ONE(NULL); 1012 return error; 1013 } 1014 1015 static int 1016 tap_dev_write(int unit, struct uio *uio, int flags) 1017 { 1018 struct tap_softc *sc = 1019 device_lookup_private(&tap_cd, unit); 1020 struct ifnet *ifp; 1021 struct mbuf *m, **mp; 1022 int error = 0; 1023 int s; 1024 1025 if (sc == NULL) 1026 return (ENXIO); 1027 1028 getnanotime(&sc->sc_mtime); 1029 ifp = &sc->sc_ec.ec_if; 1030 1031 /* One write, one packet, that's the rule */ 1032 MGETHDR(m, M_DONTWAIT, MT_DATA); 1033 if (m == NULL) { 1034 ifp->if_ierrors++; 1035 return (ENOBUFS); 1036 } 1037 m->m_pkthdr.len = uio->uio_resid; 1038 1039 mp = &m; 1040 while (error == 0 && uio->uio_resid > 0) { 1041 if (*mp != m) { 1042 MGET(*mp, M_DONTWAIT, MT_DATA); 1043 if (*mp == NULL) { 1044 error = ENOBUFS; 1045 break; 1046 } 1047 } 1048 (*mp)->m_len = min(MHLEN, uio->uio_resid); 1049 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio); 1050 mp = &(*mp)->m_next; 1051 } 1052 if (error) { 1053 ifp->if_ierrors++; 1054 m_freem(m); 1055 return (error); 1056 } 1057 1058 ifp->if_ipackets++; 1059 m->m_pkthdr.rcvif = ifp; 1060 1061 bpf_mtap(ifp, m); 1062 s = splnet(); 1063 (*ifp->if_input)(ifp, m); 1064 splx(s); 1065 1066 return (0); 1067 } 1068 1069 static int 1070 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, 1071 struct lwp *l) 1072 { 1073 return tap_dev_ioctl(minor(dev), cmd, data, l); 1074 } 1075 1076 static int 1077 tap_fops_ioctl(file_t *fp, u_long cmd, void *data) 1078 { 1079 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp); 1080 } 1081 1082 static int 1083 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l) 1084 { 1085 struct tap_softc *sc = device_lookup_private(&tap_cd, unit); 1086 1087 if (sc == NULL) 1088 return ENXIO; 1089 1090 switch (cmd) { 1091 case FIONREAD: 1092 { 1093 struct ifnet *ifp = &sc->sc_ec.ec_if; 1094 struct mbuf *m; 1095 int s; 1096 1097 s = splnet(); 1098 IFQ_POLL(&ifp->if_snd, m); 1099 1100 if (m == NULL) 1101 *(int *)data = 0; 1102 else 1103 *(int *)data = m->m_pkthdr.len; 1104 splx(s); 1105 return 0; 1106 } 1107 case TIOCSPGRP: 1108 case FIOSETOWN: 1109 return fsetown(&sc->sc_pgid, cmd, data); 1110 case TIOCGPGRP: 1111 case FIOGETOWN: 1112 return fgetown(sc->sc_pgid, cmd, data); 1113 case FIOASYNC: 1114 if (*(int *)data) { 1115 if (sc->sc_sih == NULL) { 1116 sc->sc_sih = softint_establish(SOFTINT_CLOCK, 1117 tap_softintr, sc); 1118 if (sc->sc_sih == NULL) 1119 return EBUSY; /* XXX */ 1120 } 1121 sc->sc_flags |= TAP_ASYNCIO; 1122 } else { 1123 sc->sc_flags &= ~TAP_ASYNCIO; 1124 if (sc->sc_sih != NULL) { 1125 softint_disestablish(sc->sc_sih); 1126 sc->sc_sih = NULL; 1127 } 1128 } 1129 return 0; 1130 case FIONBIO: 1131 if (*(int *)data) 1132 sc->sc_flags |= TAP_NBIO; 1133 else 1134 sc->sc_flags &= ~TAP_NBIO; 1135 return 0; 1136 #ifdef OTAPGIFNAME 1137 case OTAPGIFNAME: 1138 #endif 1139 case TAPGIFNAME: 1140 { 1141 struct ifreq *ifr = (struct ifreq *)data; 1142 struct ifnet *ifp = &sc->sc_ec.ec_if; 1143 1144 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); 1145 return 0; 1146 } 1147 default: 1148 return ENOTTY; 1149 } 1150 } 1151 1152 static int 1153 tap_cdev_poll(dev_t dev, int events, struct lwp *l) 1154 { 1155 return tap_dev_poll(minor(dev), events, l); 1156 } 1157 1158 static int 1159 tap_fops_poll(file_t *fp, int events) 1160 { 1161 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp); 1162 } 1163 1164 static int 1165 tap_dev_poll(int unit, int events, struct lwp *l) 1166 { 1167 struct tap_softc *sc = 1168 device_lookup_private(&tap_cd, unit); 1169 int revents = 0; 1170 1171 if (sc == NULL) 1172 return POLLERR; 1173 1174 if (events & (POLLIN|POLLRDNORM)) { 1175 struct ifnet *ifp = &sc->sc_ec.ec_if; 1176 struct mbuf *m; 1177 int s; 1178 1179 s = splnet(); 1180 IFQ_POLL(&ifp->if_snd, m); 1181 splx(s); 1182 1183 if (m != NULL) 1184 revents |= events & (POLLIN|POLLRDNORM); 1185 else { 1186 simple_lock(&sc->sc_kqlock); 1187 selrecord(l, &sc->sc_rsel); 1188 simple_unlock(&sc->sc_kqlock); 1189 } 1190 } 1191 revents |= events & (POLLOUT|POLLWRNORM); 1192 1193 return (revents); 1194 } 1195 1196 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach, 1197 tap_kqread }; 1198 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach, 1199 filt_seltrue }; 1200 1201 static int 1202 tap_cdev_kqfilter(dev_t dev, struct knote *kn) 1203 { 1204 return tap_dev_kqfilter(minor(dev), kn); 1205 } 1206 1207 static int 1208 tap_fops_kqfilter(file_t *fp, struct knote *kn) 1209 { 1210 return tap_dev_kqfilter((intptr_t)fp->f_data, kn); 1211 } 1212 1213 static int 1214 tap_dev_kqfilter(int unit, struct knote *kn) 1215 { 1216 struct tap_softc *sc = 1217 device_lookup_private(&tap_cd, unit); 1218 1219 if (sc == NULL) 1220 return (ENXIO); 1221 1222 KERNEL_LOCK(1, NULL); 1223 switch(kn->kn_filter) { 1224 case EVFILT_READ: 1225 kn->kn_fop = &tap_read_filterops; 1226 break; 1227 case EVFILT_WRITE: 1228 kn->kn_fop = &tap_seltrue_filterops; 1229 break; 1230 default: 1231 KERNEL_UNLOCK_ONE(NULL); 1232 return (EINVAL); 1233 } 1234 1235 kn->kn_hook = sc; 1236 simple_lock(&sc->sc_kqlock); 1237 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext); 1238 simple_unlock(&sc->sc_kqlock); 1239 KERNEL_UNLOCK_ONE(NULL); 1240 return (0); 1241 } 1242 1243 static void 1244 tap_kqdetach(struct knote *kn) 1245 { 1246 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook; 1247 1248 KERNEL_LOCK(1, NULL); 1249 simple_lock(&sc->sc_kqlock); 1250 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext); 1251 simple_unlock(&sc->sc_kqlock); 1252 KERNEL_UNLOCK_ONE(NULL); 1253 } 1254 1255 static int 1256 tap_kqread(struct knote *kn, long hint) 1257 { 1258 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook; 1259 struct ifnet *ifp = &sc->sc_ec.ec_if; 1260 struct mbuf *m; 1261 int s, rv; 1262 1263 KERNEL_LOCK(1, NULL); 1264 s = splnet(); 1265 IFQ_POLL(&ifp->if_snd, m); 1266 1267 if (m == NULL) 1268 kn->kn_data = 0; 1269 else 1270 kn->kn_data = m->m_pkthdr.len; 1271 splx(s); 1272 rv = (kn->kn_data != 0 ? 1 : 0); 1273 KERNEL_UNLOCK_ONE(NULL); 1274 return rv; 1275 } 1276 1277 #if defined(COMPAT_40) || defined(MODULAR) 1278 /* 1279 * sysctl management routines 1280 * You can set the address of an interface through: 1281 * net.link.tap.tap<number> 1282 * 1283 * Note the consistent use of tap_log in order to use 1284 * sysctl_teardown at unload time. 1285 * 1286 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those 1287 * blocks register a function in a special section of the kernel 1288 * (called a link set) which is used at init_sysctl() time to cycle 1289 * through all those functions to create the kernel's sysctl tree. 1290 * 1291 * It is not possible to use link sets in a module, so the 1292 * easiest is to simply call our own setup routine at load time. 1293 * 1294 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the 1295 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the 1296 * whole kernel sysctl tree is built, it is not possible to add any 1297 * permanent node. 1298 * 1299 * It should be noted that we're not saving the sysctlnode pointer 1300 * we are returned when creating the "tap" node. That structure 1301 * cannot be trusted once out of the calling function, as it might 1302 * get reused. So we just save the MIB number, and always give the 1303 * full path starting from the root for later calls to sysctl_createv 1304 * and sysctl_destroyv. 1305 */ 1306 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup") 1307 { 1308 const struct sysctlnode *node; 1309 int error = 0; 1310 1311 if ((error = sysctl_createv(clog, 0, NULL, NULL, 1312 CTLFLAG_PERMANENT, 1313 CTLTYPE_NODE, "net", NULL, 1314 NULL, 0, NULL, 0, 1315 CTL_NET, CTL_EOL)) != 0) 1316 return; 1317 1318 if ((error = sysctl_createv(clog, 0, NULL, NULL, 1319 CTLFLAG_PERMANENT, 1320 CTLTYPE_NODE, "link", NULL, 1321 NULL, 0, NULL, 0, 1322 CTL_NET, AF_LINK, CTL_EOL)) != 0) 1323 return; 1324 1325 /* 1326 * The first four parameters of sysctl_createv are for management. 1327 * 1328 * The four that follows, here starting with a '0' for the flags, 1329 * describe the node. 1330 * 1331 * The next series of four set its value, through various possible 1332 * means. 1333 * 1334 * Last but not least, the path to the node is described. That path 1335 * is relative to the given root (third argument). Here we're 1336 * starting from the root. 1337 */ 1338 if ((error = sysctl_createv(clog, 0, NULL, &node, 1339 CTLFLAG_PERMANENT, 1340 CTLTYPE_NODE, "tap", NULL, 1341 NULL, 0, NULL, 0, 1342 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0) 1343 return; 1344 tap_node = node->sysctl_num; 1345 } 1346 1347 /* 1348 * The helper functions make Andrew Brown's interface really 1349 * shine. It makes possible to create value on the fly whether 1350 * the sysctl value is read or written. 1351 * 1352 * As shown as an example in the man page, the first step is to 1353 * create a copy of the node to have sysctl_lookup work on it. 1354 * 1355 * Here, we have more work to do than just a copy, since we have 1356 * to create the string. The first step is to collect the actual 1357 * value of the node, which is a convenient pointer to the softc 1358 * of the interface. From there we create the string and use it 1359 * as the value, but only for the *copy* of the node. 1360 * 1361 * Then we let sysctl_lookup do the magic, which consists in 1362 * setting oldp and newp as required by the operation. When the 1363 * value is read, that means that the string will be copied to 1364 * the user, and when it is written, the new value will be copied 1365 * over in the addr array. 1366 * 1367 * If newp is NULL, the user was reading the value, so we don't 1368 * have anything else to do. If a new value was written, we 1369 * have to check it. 1370 * 1371 * If it is incorrect, we can return an error and leave 'node' as 1372 * it is: since it is a copy of the actual node, the change will 1373 * be forgotten. 1374 * 1375 * Upon a correct input, we commit the change to the ifnet 1376 * structure of our interface. 1377 */ 1378 static int 1379 tap_sysctl_handler(SYSCTLFN_ARGS) 1380 { 1381 struct sysctlnode node; 1382 struct tap_softc *sc; 1383 struct ifnet *ifp; 1384 int error; 1385 size_t len; 1386 char addr[3 * ETHER_ADDR_LEN]; 1387 uint8_t enaddr[ETHER_ADDR_LEN]; 1388 1389 node = *rnode; 1390 sc = node.sysctl_data; 1391 ifp = &sc->sc_ec.ec_if; 1392 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl)); 1393 node.sysctl_data = addr; 1394 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1395 if (error || newp == NULL) 1396 return (error); 1397 1398 len = strlen(addr); 1399 if (len < 11 || len > 17) 1400 return (EINVAL); 1401 1402 /* Commit change */ 1403 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0) 1404 return (EINVAL); 1405 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false); 1406 return (error); 1407 } 1408 #endif 1409