1 /* $NetBSD: if_tap.c,v 1.51 2008/11/12 12:36:28 ad Exp $ */ 2 3 /* 4 * Copyright (c) 2003, 2004, 2008 The NetBSD Foundation. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet 31 * device to the system, but can also be accessed by userland through a 32 * character device interface, which allows reading and injecting frames. 33 */ 34 35 #include <sys/cdefs.h> 36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.51 2008/11/12 12:36:28 ad Exp $"); 37 38 #if defined(_KERNEL_OPT) 39 #include "bpfilter.h" 40 #endif 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/malloc.h> 46 #include <sys/conf.h> 47 #include <sys/device.h> 48 #include <sys/file.h> 49 #include <sys/filedesc.h> 50 #include <sys/ksyms.h> 51 #include <sys/poll.h> 52 #include <sys/select.h> 53 #include <sys/sockio.h> 54 #include <sys/sysctl.h> 55 #include <sys/kauth.h> 56 #include <sys/mutex.h> 57 #include <sys/simplelock.h> 58 #include <sys/intr.h> 59 60 #include <net/if.h> 61 #include <net/if_dl.h> 62 #include <net/if_ether.h> 63 #include <net/if_media.h> 64 #include <net/if_tap.h> 65 #if NBPFILTER > 0 66 #include <net/bpf.h> 67 #endif 68 69 #include <compat/sys/sockio.h> 70 71 /* 72 * sysctl node management 73 * 74 * It's not really possible to use a SYSCTL_SETUP block with 75 * current module implementation, so it is easier to just define 76 * our own function. 77 * 78 * The handler function is a "helper" in Andrew Brown's sysctl 79 * framework terminology. It is used as a gateway for sysctl 80 * requests over the nodes. 81 * 82 * tap_log allows the module to log creations of nodes and 83 * destroy them all at once using sysctl_teardown. 84 */ 85 static int tap_node; 86 static int tap_sysctl_handler(SYSCTLFN_PROTO); 87 SYSCTL_SETUP_PROTO(sysctl_tap_setup); 88 89 /* 90 * Since we're an Ethernet device, we need the 3 following 91 * components: a leading struct device, a struct ethercom, 92 * and also a struct ifmedia since we don't attach a PHY to 93 * ourselves. We could emulate one, but there's no real 94 * point. 95 */ 96 97 struct tap_softc { 98 device_t sc_dev; 99 struct ifmedia sc_im; 100 struct ethercom sc_ec; 101 int sc_flags; 102 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */ 103 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */ 104 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */ 105 #define TAP_GOING 0x00000008 /* interface is being destroyed */ 106 struct selinfo sc_rsel; 107 pid_t sc_pgid; /* For async. IO */ 108 kmutex_t sc_rdlock; 109 struct simplelock sc_kqlock; 110 void *sc_sih; 111 }; 112 113 /* autoconf(9) glue */ 114 115 void tapattach(int); 116 117 static int tap_match(device_t, cfdata_t, void *); 118 static void tap_attach(device_t, device_t, void *); 119 static int tap_detach(device_t, int); 120 121 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc), 122 tap_match, tap_attach, tap_detach, NULL); 123 extern struct cfdriver tap_cd; 124 125 /* Real device access routines */ 126 static int tap_dev_close(struct tap_softc *); 127 static int tap_dev_read(int, struct uio *, int); 128 static int tap_dev_write(int, struct uio *, int); 129 static int tap_dev_ioctl(int, u_long, void *, struct lwp *); 130 static int tap_dev_poll(int, int, struct lwp *); 131 static int tap_dev_kqfilter(int, struct knote *); 132 133 /* Fileops access routines */ 134 static int tap_fops_close(file_t *); 135 static int tap_fops_read(file_t *, off_t *, struct uio *, 136 kauth_cred_t, int); 137 static int tap_fops_write(file_t *, off_t *, struct uio *, 138 kauth_cred_t, int); 139 static int tap_fops_ioctl(file_t *, u_long, void *); 140 static int tap_fops_poll(file_t *, int); 141 static int tap_fops_kqfilter(file_t *, struct knote *); 142 143 static const struct fileops tap_fileops = { 144 tap_fops_read, 145 tap_fops_write, 146 tap_fops_ioctl, 147 fnullop_fcntl, 148 tap_fops_poll, 149 fbadop_stat, 150 tap_fops_close, 151 tap_fops_kqfilter, 152 }; 153 154 /* Helper for cloning open() */ 155 static int tap_dev_cloner(struct lwp *); 156 157 /* Character device routines */ 158 static int tap_cdev_open(dev_t, int, int, struct lwp *); 159 static int tap_cdev_close(dev_t, int, int, struct lwp *); 160 static int tap_cdev_read(dev_t, struct uio *, int); 161 static int tap_cdev_write(dev_t, struct uio *, int); 162 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *); 163 static int tap_cdev_poll(dev_t, int, struct lwp *); 164 static int tap_cdev_kqfilter(dev_t, struct knote *); 165 166 const struct cdevsw tap_cdevsw = { 167 tap_cdev_open, tap_cdev_close, 168 tap_cdev_read, tap_cdev_write, 169 tap_cdev_ioctl, nostop, notty, 170 tap_cdev_poll, nommap, 171 tap_cdev_kqfilter, 172 D_OTHER, 173 }; 174 175 #define TAP_CLONER 0xfffff /* Maximal minor value */ 176 177 /* kqueue-related routines */ 178 static void tap_kqdetach(struct knote *); 179 static int tap_kqread(struct knote *, long); 180 181 /* 182 * Those are needed by the if_media interface. 183 */ 184 185 static int tap_mediachange(struct ifnet *); 186 static void tap_mediastatus(struct ifnet *, struct ifmediareq *); 187 188 /* 189 * Those are needed by the ifnet interface, and would typically be 190 * there for any network interface driver. 191 * Some other routines are optional: watchdog and drain. 192 */ 193 194 static void tap_start(struct ifnet *); 195 static void tap_stop(struct ifnet *, int); 196 static int tap_init(struct ifnet *); 197 static int tap_ioctl(struct ifnet *, u_long, void *); 198 199 /* Internal functions */ 200 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *); 201 static void tap_softintr(void *); 202 203 /* 204 * tap is a clonable interface, although it is highly unrealistic for 205 * an Ethernet device. 206 * 207 * Here are the bits needed for a clonable interface. 208 */ 209 static int tap_clone_create(struct if_clone *, int); 210 static int tap_clone_destroy(struct ifnet *); 211 212 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap", 213 tap_clone_create, 214 tap_clone_destroy); 215 216 /* Helper functionis shared by the two cloning code paths */ 217 static struct tap_softc * tap_clone_creator(int); 218 int tap_clone_destroyer(device_t); 219 220 void 221 tapattach(int n) 222 { 223 int error; 224 225 error = config_cfattach_attach(tap_cd.cd_name, &tap_ca); 226 if (error) { 227 aprint_error("%s: unable to register cfattach\n", 228 tap_cd.cd_name); 229 (void)config_cfdriver_detach(&tap_cd); 230 return; 231 } 232 233 if_clone_attach(&tap_cloners); 234 } 235 236 /* Pretty much useless for a pseudo-device */ 237 static int 238 tap_match(device_t parent, cfdata_t cfdata, void *arg) 239 { 240 241 return (1); 242 } 243 244 void 245 tap_attach(device_t parent, device_t self, void *aux) 246 { 247 struct tap_softc *sc = device_private(self); 248 struct ifnet *ifp; 249 const struct sysctlnode *node; 250 uint8_t enaddr[ETHER_ADDR_LEN] = 251 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff }; 252 char enaddrstr[3 * ETHER_ADDR_LEN]; 253 struct timeval tv; 254 uint32_t ui; 255 int error; 256 257 sc->sc_dev = self; 258 sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc); 259 260 if (!pmf_device_register(self, NULL, NULL)) 261 aprint_error_dev(self, "couldn't establish power handler\n"); 262 263 /* 264 * In order to obtain unique initial Ethernet address on a host, 265 * do some randomisation using the current uptime. It's not meant 266 * for anything but avoiding hard-coding an address. 267 */ 268 getmicrouptime(&tv); 269 ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff; 270 memcpy(enaddr+3, (uint8_t *)&ui, 3); 271 272 aprint_verbose_dev(self, "Ethernet address %s\n", 273 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr)); 274 275 /* 276 * Why 1000baseT? Why not? You can add more. 277 * 278 * Note that there are 3 steps: init, one or several additions to 279 * list of supported media, and in the end, the selection of one 280 * of them. 281 */ 282 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus); 283 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL); 284 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL); 285 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL); 286 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); 287 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL); 288 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); 289 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL); 290 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO); 291 292 /* 293 * One should note that an interface must do multicast in order 294 * to support IPv6. 295 */ 296 ifp = &sc->sc_ec.ec_if; 297 strcpy(ifp->if_xname, device_xname(self)); 298 ifp->if_softc = sc; 299 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 300 ifp->if_ioctl = tap_ioctl; 301 ifp->if_start = tap_start; 302 ifp->if_stop = tap_stop; 303 ifp->if_init = tap_init; 304 IFQ_SET_READY(&ifp->if_snd); 305 306 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU; 307 308 /* Those steps are mandatory for an Ethernet driver, the fisrt call 309 * being common to all network interface drivers. */ 310 if_attach(ifp); 311 ether_ifattach(ifp, enaddr); 312 313 sc->sc_flags = 0; 314 315 /* 316 * Add a sysctl node for that interface. 317 * 318 * The pointer transmitted is not a string, but instead a pointer to 319 * the softc structure, which we can use to build the string value on 320 * the fly in the helper function of the node. See the comments for 321 * tap_sysctl_handler for details. 322 * 323 * Usually sysctl_createv is called with CTL_CREATE as the before-last 324 * component. However, we can allocate a number ourselves, as we are 325 * the only consumer of the net.link.<iface> node. In this case, the 326 * unit number is conveniently used to number the node. CTL_CREATE 327 * would just work, too. 328 */ 329 if ((error = sysctl_createv(NULL, 0, NULL, 330 &node, CTLFLAG_READWRITE, 331 CTLTYPE_STRING, device_xname(self), NULL, 332 tap_sysctl_handler, 0, sc, 18, 333 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev), 334 CTL_EOL)) != 0) 335 aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n", 336 error); 337 338 /* 339 * Initialize the two locks for the device. 340 * 341 * We need a lock here because even though the tap device can be 342 * opened only once, the file descriptor might be passed to another 343 * process, say a fork(2)ed child. 344 * 345 * The Giant saves us from most of the hassle, but since the read 346 * operation can sleep, we don't want two processes to wake up at 347 * the same moment and both try and dequeue a single packet. 348 * 349 * The queue for event listeners (used by kqueue(9), see below) has 350 * to be protected, too, but we don't need the same level of 351 * complexity for that lock, so a simple spinning lock is fine. 352 */ 353 mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE); 354 simple_lock_init(&sc->sc_kqlock); 355 356 selinit(&sc->sc_rsel); 357 } 358 359 /* 360 * When detaching, we do the inverse of what is done in the attach 361 * routine, in reversed order. 362 */ 363 static int 364 tap_detach(device_t self, int flags) 365 { 366 struct tap_softc *sc = device_private(self); 367 struct ifnet *ifp = &sc->sc_ec.ec_if; 368 int error, s; 369 370 sc->sc_flags |= TAP_GOING; 371 s = splnet(); 372 tap_stop(ifp, 1); 373 if_down(ifp); 374 splx(s); 375 376 softint_disestablish(sc->sc_sih); 377 378 /* 379 * Destroying a single leaf is a very straightforward operation using 380 * sysctl_destroyv. One should be sure to always end the path with 381 * CTL_EOL. 382 */ 383 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node, 384 device_unit(sc->sc_dev), CTL_EOL)) != 0) 385 aprint_error_dev(self, 386 "sysctl_destroyv returned %d, ignoring\n", error); 387 ether_ifdetach(ifp); 388 if_detach(ifp); 389 ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY); 390 seldestroy(&sc->sc_rsel); 391 mutex_destroy(&sc->sc_rdlock); 392 393 pmf_device_deregister(self); 394 395 return (0); 396 } 397 398 /* 399 * This function is called by the ifmedia layer to notify the driver 400 * that the user requested a media change. A real driver would 401 * reconfigure the hardware. 402 */ 403 static int 404 tap_mediachange(struct ifnet *ifp) 405 { 406 return (0); 407 } 408 409 /* 410 * Here the user asks for the currently used media. 411 */ 412 static void 413 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr) 414 { 415 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 416 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media; 417 } 418 419 /* 420 * This is the function where we SEND packets. 421 * 422 * There is no 'receive' equivalent. A typical driver will get 423 * interrupts from the hardware, and from there will inject new packets 424 * into the network stack. 425 * 426 * Once handled, a packet must be freed. A real driver might not be able 427 * to fit all the pending packets into the hardware, and is allowed to 428 * return before having sent all the packets. It should then use the 429 * if_flags flag IFF_OACTIVE to notify the upper layer. 430 * 431 * There are also other flags one should check, such as IFF_PAUSE. 432 * 433 * It is our duty to make packets available to BPF listeners. 434 * 435 * You should be aware that this function is called by the Ethernet layer 436 * at splnet(). 437 * 438 * When the device is opened, we have to pass the packet(s) to the 439 * userland. For that we stay in OACTIVE mode while the userland gets 440 * the packets, and we send a signal to the processes waiting to read. 441 * 442 * wakeup(sc) is the counterpart to the tsleep call in 443 * tap_dev_read, while selnotify() is used for kevent(2) and 444 * poll(2) (which includes select(2)) listeners. 445 */ 446 static void 447 tap_start(struct ifnet *ifp) 448 { 449 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 450 struct mbuf *m0; 451 452 if ((sc->sc_flags & TAP_INUSE) == 0) { 453 /* Simply drop packets */ 454 for(;;) { 455 IFQ_DEQUEUE(&ifp->if_snd, m0); 456 if (m0 == NULL) 457 return; 458 459 ifp->if_opackets++; 460 #if NBPFILTER > 0 461 if (ifp->if_bpf) 462 bpf_mtap(ifp->if_bpf, m0); 463 #endif 464 465 m_freem(m0); 466 } 467 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) { 468 ifp->if_flags |= IFF_OACTIVE; 469 wakeup(sc); 470 selnotify(&sc->sc_rsel, 0, 1); 471 if (sc->sc_flags & TAP_ASYNCIO) 472 softint_schedule(sc->sc_sih); 473 } 474 } 475 476 static void 477 tap_softintr(void *cookie) 478 { 479 struct tap_softc *sc; 480 struct ifnet *ifp; 481 int a, b; 482 483 sc = cookie; 484 485 if (sc->sc_flags & TAP_ASYNCIO) { 486 ifp = &sc->sc_ec.ec_if; 487 if (ifp->if_flags & IFF_RUNNING) { 488 a = POLL_IN; 489 b = POLLIN|POLLRDNORM; 490 } else { 491 a = POLL_HUP; 492 b = 0; 493 } 494 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL); 495 } 496 } 497 498 /* 499 * A typical driver will only contain the following handlers for 500 * ioctl calls, except SIOCSIFPHYADDR. 501 * The latter is a hack I used to set the Ethernet address of the 502 * faked device. 503 * 504 * Note that both ifmedia_ioctl() and ether_ioctl() have to be 505 * called under splnet(). 506 */ 507 static int 508 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data) 509 { 510 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 511 struct ifreq *ifr = (struct ifreq *)data; 512 int s, error; 513 514 s = splnet(); 515 516 switch (cmd) { 517 #ifdef OSIOCSIFMEDIA 518 case OSIOCSIFMEDIA: 519 #endif 520 case SIOCSIFMEDIA: 521 case SIOCGIFMEDIA: 522 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd); 523 break; 524 case SIOCSIFPHYADDR: 525 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data); 526 break; 527 default: 528 error = ether_ioctl(ifp, cmd, data); 529 if (error == ENETRESET) 530 error = 0; 531 break; 532 } 533 534 splx(s); 535 536 return (error); 537 } 538 539 /* 540 * Helper function to set Ethernet address. This shouldn't be done there, 541 * and should actually be available to all Ethernet drivers, real or not. 542 */ 543 static int 544 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra) 545 { 546 const struct sockaddr_dl *sdl = satosdl(&ifra->ifra_addr); 547 548 if (sdl->sdl_family != AF_LINK) 549 return (EINVAL); 550 551 if_set_sadl(ifp, CLLADDR(sdl), ETHER_ADDR_LEN, false); 552 553 return (0); 554 } 555 556 /* 557 * _init() would typically be called when an interface goes up, 558 * meaning it should configure itself into the state in which it 559 * can send packets. 560 */ 561 static int 562 tap_init(struct ifnet *ifp) 563 { 564 ifp->if_flags |= IFF_RUNNING; 565 566 tap_start(ifp); 567 568 return (0); 569 } 570 571 /* 572 * _stop() is called when an interface goes down. It is our 573 * responsability to validate that state by clearing the 574 * IFF_RUNNING flag. 575 * 576 * We have to wake up all the sleeping processes to have the pending 577 * read requests cancelled. 578 */ 579 static void 580 tap_stop(struct ifnet *ifp, int disable) 581 { 582 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 583 584 ifp->if_flags &= ~IFF_RUNNING; 585 wakeup(sc); 586 selnotify(&sc->sc_rsel, 0, 1); 587 if (sc->sc_flags & TAP_ASYNCIO) 588 softint_schedule(sc->sc_sih); 589 } 590 591 /* 592 * The 'create' command of ifconfig can be used to create 593 * any numbered instance of a given device. Thus we have to 594 * make sure we have enough room in cd_devs to create the 595 * user-specified instance. config_attach_pseudo will do this 596 * for us. 597 */ 598 static int 599 tap_clone_create(struct if_clone *ifc, int unit) 600 { 601 if (tap_clone_creator(unit) == NULL) { 602 aprint_error("%s%d: unable to attach an instance\n", 603 tap_cd.cd_name, unit); 604 return (ENXIO); 605 } 606 607 return (0); 608 } 609 610 /* 611 * tap(4) can be cloned by two ways: 612 * using 'ifconfig tap0 create', which will use the network 613 * interface cloning API, and call tap_clone_create above. 614 * opening the cloning device node, whose minor number is TAP_CLONER. 615 * See below for an explanation on how this part work. 616 */ 617 static struct tap_softc * 618 tap_clone_creator(int unit) 619 { 620 struct cfdata *cf; 621 622 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK); 623 cf->cf_name = tap_cd.cd_name; 624 cf->cf_atname = tap_ca.ca_name; 625 if (unit == -1) { 626 /* let autoconf find the first free one */ 627 cf->cf_unit = 0; 628 cf->cf_fstate = FSTATE_STAR; 629 } else { 630 cf->cf_unit = unit; 631 cf->cf_fstate = FSTATE_FOUND; 632 } 633 634 return device_private(config_attach_pseudo(cf)); 635 } 636 637 /* 638 * The clean design of if_clone and autoconf(9) makes that part 639 * really straightforward. The second argument of config_detach 640 * means neither QUIET nor FORCED. 641 */ 642 static int 643 tap_clone_destroy(struct ifnet *ifp) 644 { 645 struct tap_softc *sc = ifp->if_softc; 646 647 return tap_clone_destroyer(sc->sc_dev); 648 } 649 650 int 651 tap_clone_destroyer(device_t dev) 652 { 653 cfdata_t cf = device_cfdata(dev); 654 int error; 655 656 if ((error = config_detach(dev, 0)) != 0) 657 aprint_error_dev(dev, "unable to detach instance\n"); 658 free(cf, M_DEVBUF); 659 660 return (error); 661 } 662 663 /* 664 * tap(4) is a bit of an hybrid device. It can be used in two different 665 * ways: 666 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it. 667 * 2. open /dev/tap, get a new interface created and read/write off it. 668 * That interface is destroyed when the process that had it created exits. 669 * 670 * The first way is managed by the cdevsw structure, and you access interfaces 671 * through a (major, minor) mapping: tap4 is obtained by the minor number 672 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_. 673 * 674 * The second way is the so-called "cloning" device. It's a special minor 675 * number (chosen as the maximal number, to allow as much tap devices as 676 * possible). The user first opens the cloner (e.g., /dev/tap), and that 677 * call ends in tap_cdev_open. The actual place where it is handled is 678 * tap_dev_cloner. 679 * 680 * An tap device cannot be opened more than once at a time, so the cdevsw 681 * part of open() does nothing but noting that the interface is being used and 682 * hence ready to actually handle packets. 683 */ 684 685 static int 686 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l) 687 { 688 struct tap_softc *sc; 689 690 if (minor(dev) == TAP_CLONER) 691 return tap_dev_cloner(l); 692 693 sc = device_lookup_private(&tap_cd, minor(dev)); 694 if (sc == NULL) 695 return (ENXIO); 696 697 /* The device can only be opened once */ 698 if (sc->sc_flags & TAP_INUSE) 699 return (EBUSY); 700 sc->sc_flags |= TAP_INUSE; 701 return (0); 702 } 703 704 /* 705 * There are several kinds of cloning devices, and the most simple is the one 706 * tap(4) uses. What it does is change the file descriptor with a new one, 707 * with its own fileops structure (which maps to the various read, write, 708 * ioctl functions). It starts allocating a new file descriptor with falloc, 709 * then actually creates the new tap devices. 710 * 711 * Once those two steps are successful, we can re-wire the existing file 712 * descriptor to its new self. This is done with fdclone(): it fills the fp 713 * structure as needed (notably f_data gets filled with the fifth parameter 714 * passed, the unit of the tap device which will allows us identifying the 715 * device later), and returns EMOVEFD. 716 * 717 * That magic value is interpreted by sys_open() which then replaces the 718 * current file descriptor by the new one (through a magic member of struct 719 * lwp, l_dupfd). 720 * 721 * The tap device is flagged as being busy since it otherwise could be 722 * externally accessed through the corresponding device node with the cdevsw 723 * interface. 724 */ 725 726 static int 727 tap_dev_cloner(struct lwp *l) 728 { 729 struct tap_softc *sc; 730 file_t *fp; 731 int error, fd; 732 733 if ((error = fd_allocfile(&fp, &fd)) != 0) 734 return (error); 735 736 if ((sc = tap_clone_creator(-1)) == NULL) { 737 fd_abort(curproc, fp, fd); 738 return (ENXIO); 739 } 740 741 sc->sc_flags |= TAP_INUSE; 742 743 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops, 744 (void *)(intptr_t)device_unit(sc->sc_dev)); 745 } 746 747 /* 748 * While all other operations (read, write, ioctl, poll and kqfilter) are 749 * really the same whether we are in cdevsw or fileops mode, the close() 750 * function is slightly different in the two cases. 751 * 752 * As for the other, the core of it is shared in tap_dev_close. What 753 * it does is sufficient for the cdevsw interface, but the cloning interface 754 * needs another thing: the interface is destroyed when the processes that 755 * created it closes it. 756 */ 757 static int 758 tap_cdev_close(dev_t dev, int flags, int fmt, 759 struct lwp *l) 760 { 761 struct tap_softc *sc = 762 device_lookup_private(&tap_cd, minor(dev)); 763 764 if (sc == NULL) 765 return (ENXIO); 766 767 return tap_dev_close(sc); 768 } 769 770 /* 771 * It might happen that the administrator used ifconfig to externally destroy 772 * the interface. In that case, tap_fops_close will be called while 773 * tap_detach is already happening. If we called it again from here, we 774 * would dead lock. TAP_GOING ensures that this situation doesn't happen. 775 */ 776 static int 777 tap_fops_close(file_t *fp) 778 { 779 int unit = (intptr_t)fp->f_data; 780 struct tap_softc *sc; 781 int error; 782 783 sc = device_lookup_private(&tap_cd, unit); 784 if (sc == NULL) 785 return (ENXIO); 786 787 /* tap_dev_close currently always succeeds, but it might not 788 * always be the case. */ 789 KERNEL_LOCK(1, NULL); 790 if ((error = tap_dev_close(sc)) != 0) { 791 KERNEL_UNLOCK_ONE(NULL); 792 return (error); 793 } 794 795 /* Destroy the device now that it is no longer useful, 796 * unless it's already being destroyed. */ 797 if ((sc->sc_flags & TAP_GOING) != 0) { 798 KERNEL_UNLOCK_ONE(NULL); 799 return (0); 800 } 801 802 error = tap_clone_destroyer(sc->sc_dev); 803 KERNEL_UNLOCK_ONE(NULL); 804 return error; 805 } 806 807 static int 808 tap_dev_close(struct tap_softc *sc) 809 { 810 struct ifnet *ifp; 811 int s; 812 813 s = splnet(); 814 /* Let tap_start handle packets again */ 815 ifp = &sc->sc_ec.ec_if; 816 ifp->if_flags &= ~IFF_OACTIVE; 817 818 /* Purge output queue */ 819 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) { 820 struct mbuf *m; 821 822 for (;;) { 823 IFQ_DEQUEUE(&ifp->if_snd, m); 824 if (m == NULL) 825 break; 826 827 ifp->if_opackets++; 828 #if NBPFILTER > 0 829 if (ifp->if_bpf) 830 bpf_mtap(ifp->if_bpf, m); 831 #endif 832 } 833 } 834 splx(s); 835 836 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO); 837 838 return (0); 839 } 840 841 static int 842 tap_cdev_read(dev_t dev, struct uio *uio, int flags) 843 { 844 return tap_dev_read(minor(dev), uio, flags); 845 } 846 847 static int 848 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio, 849 kauth_cred_t cred, int flags) 850 { 851 int error; 852 853 KERNEL_LOCK(1, NULL); 854 error = tap_dev_read((intptr_t)fp->f_data, uio, flags); 855 KERNEL_UNLOCK_ONE(NULL); 856 return error; 857 } 858 859 static int 860 tap_dev_read(int unit, struct uio *uio, int flags) 861 { 862 struct tap_softc *sc = 863 device_lookup_private(&tap_cd, unit); 864 struct ifnet *ifp; 865 struct mbuf *m, *n; 866 int error = 0, s; 867 868 if (sc == NULL) 869 return (ENXIO); 870 871 ifp = &sc->sc_ec.ec_if; 872 if ((ifp->if_flags & IFF_UP) == 0) 873 return (EHOSTDOWN); 874 875 /* 876 * In the TAP_NBIO case, we have to make sure we won't be sleeping 877 */ 878 if ((sc->sc_flags & TAP_NBIO) != 0) { 879 if (!mutex_tryenter(&sc->sc_rdlock)) 880 return (EWOULDBLOCK); 881 } else { 882 mutex_enter(&sc->sc_rdlock); 883 } 884 885 s = splnet(); 886 if (IFQ_IS_EMPTY(&ifp->if_snd)) { 887 ifp->if_flags &= ~IFF_OACTIVE; 888 splx(s); 889 /* 890 * We must release the lock before sleeping, and re-acquire it 891 * after. 892 */ 893 mutex_exit(&sc->sc_rdlock); 894 if (sc->sc_flags & TAP_NBIO) 895 error = EWOULDBLOCK; 896 else 897 error = tsleep(sc, PSOCK|PCATCH, "tap", 0); 898 if (error != 0) 899 return (error); 900 /* The device might have been downed */ 901 if ((ifp->if_flags & IFF_UP) == 0) 902 return (EHOSTDOWN); 903 if ((sc->sc_flags & TAP_NBIO)) { 904 if (!mutex_tryenter(&sc->sc_rdlock)) 905 return (EWOULDBLOCK); 906 } else { 907 mutex_enter(&sc->sc_rdlock); 908 } 909 s = splnet(); 910 } 911 912 IFQ_DEQUEUE(&ifp->if_snd, m); 913 ifp->if_flags &= ~IFF_OACTIVE; 914 splx(s); 915 if (m == NULL) { 916 error = 0; 917 goto out; 918 } 919 920 ifp->if_opackets++; 921 #if NBPFILTER > 0 922 if (ifp->if_bpf) 923 bpf_mtap(ifp->if_bpf, m); 924 #endif 925 926 /* 927 * One read is one packet. 928 */ 929 do { 930 error = uiomove(mtod(m, void *), 931 min(m->m_len, uio->uio_resid), uio); 932 MFREE(m, n); 933 m = n; 934 } while (m != NULL && uio->uio_resid > 0 && error == 0); 935 936 if (m != NULL) 937 m_freem(m); 938 939 out: 940 mutex_exit(&sc->sc_rdlock); 941 return (error); 942 } 943 944 static int 945 tap_cdev_write(dev_t dev, struct uio *uio, int flags) 946 { 947 return tap_dev_write(minor(dev), uio, flags); 948 } 949 950 static int 951 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio, 952 kauth_cred_t cred, int flags) 953 { 954 int error; 955 956 KERNEL_LOCK(1, NULL); 957 error = tap_dev_write((intptr_t)fp->f_data, uio, flags); 958 KERNEL_UNLOCK_ONE(NULL); 959 return error; 960 } 961 962 static int 963 tap_dev_write(int unit, struct uio *uio, int flags) 964 { 965 struct tap_softc *sc = 966 device_lookup_private(&tap_cd, unit); 967 struct ifnet *ifp; 968 struct mbuf *m, **mp; 969 int error = 0; 970 int s; 971 972 if (sc == NULL) 973 return (ENXIO); 974 975 ifp = &sc->sc_ec.ec_if; 976 977 /* One write, one packet, that's the rule */ 978 MGETHDR(m, M_DONTWAIT, MT_DATA); 979 if (m == NULL) { 980 ifp->if_ierrors++; 981 return (ENOBUFS); 982 } 983 m->m_pkthdr.len = uio->uio_resid; 984 985 mp = &m; 986 while (error == 0 && uio->uio_resid > 0) { 987 if (*mp != m) { 988 MGET(*mp, M_DONTWAIT, MT_DATA); 989 if (*mp == NULL) { 990 error = ENOBUFS; 991 break; 992 } 993 } 994 (*mp)->m_len = min(MHLEN, uio->uio_resid); 995 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio); 996 mp = &(*mp)->m_next; 997 } 998 if (error) { 999 ifp->if_ierrors++; 1000 m_freem(m); 1001 return (error); 1002 } 1003 1004 ifp->if_ipackets++; 1005 m->m_pkthdr.rcvif = ifp; 1006 1007 #if NBPFILTER > 0 1008 if (ifp->if_bpf) 1009 bpf_mtap(ifp->if_bpf, m); 1010 #endif 1011 s =splnet(); 1012 (*ifp->if_input)(ifp, m); 1013 splx(s); 1014 1015 return (0); 1016 } 1017 1018 static int 1019 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, 1020 struct lwp *l) 1021 { 1022 return tap_dev_ioctl(minor(dev), cmd, data, l); 1023 } 1024 1025 static int 1026 tap_fops_ioctl(file_t *fp, u_long cmd, void *data) 1027 { 1028 return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp); 1029 } 1030 1031 static int 1032 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l) 1033 { 1034 struct tap_softc *sc = 1035 device_lookup_private(&tap_cd, unit); 1036 int error = 0; 1037 1038 if (sc == NULL) 1039 return (ENXIO); 1040 1041 switch (cmd) { 1042 case FIONREAD: 1043 { 1044 struct ifnet *ifp = &sc->sc_ec.ec_if; 1045 struct mbuf *m; 1046 int s; 1047 1048 s = splnet(); 1049 IFQ_POLL(&ifp->if_snd, m); 1050 1051 if (m == NULL) 1052 *(int *)data = 0; 1053 else 1054 *(int *)data = m->m_pkthdr.len; 1055 splx(s); 1056 } break; 1057 case TIOCSPGRP: 1058 case FIOSETOWN: 1059 error = fsetown(&sc->sc_pgid, cmd, data); 1060 break; 1061 case TIOCGPGRP: 1062 case FIOGETOWN: 1063 error = fgetown(sc->sc_pgid, cmd, data); 1064 break; 1065 case FIOASYNC: 1066 if (*(int *)data) 1067 sc->sc_flags |= TAP_ASYNCIO; 1068 else 1069 sc->sc_flags &= ~TAP_ASYNCIO; 1070 break; 1071 case FIONBIO: 1072 if (*(int *)data) 1073 sc->sc_flags |= TAP_NBIO; 1074 else 1075 sc->sc_flags &= ~TAP_NBIO; 1076 break; 1077 #ifdef OTAPGIFNAME 1078 case OTAPGIFNAME: 1079 #endif 1080 case TAPGIFNAME: 1081 { 1082 struct ifreq *ifr = (struct ifreq *)data; 1083 struct ifnet *ifp = &sc->sc_ec.ec_if; 1084 1085 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); 1086 } break; 1087 default: 1088 error = ENOTTY; 1089 break; 1090 } 1091 1092 return (0); 1093 } 1094 1095 static int 1096 tap_cdev_poll(dev_t dev, int events, struct lwp *l) 1097 { 1098 return tap_dev_poll(minor(dev), events, l); 1099 } 1100 1101 static int 1102 tap_fops_poll(file_t *fp, int events) 1103 { 1104 return tap_dev_poll((intptr_t)fp->f_data, events, curlwp); 1105 } 1106 1107 static int 1108 tap_dev_poll(int unit, int events, struct lwp *l) 1109 { 1110 struct tap_softc *sc = 1111 device_lookup_private(&tap_cd, unit); 1112 int revents = 0; 1113 1114 if (sc == NULL) 1115 return POLLERR; 1116 1117 if (events & (POLLIN|POLLRDNORM)) { 1118 struct ifnet *ifp = &sc->sc_ec.ec_if; 1119 struct mbuf *m; 1120 int s; 1121 1122 s = splnet(); 1123 IFQ_POLL(&ifp->if_snd, m); 1124 splx(s); 1125 1126 if (m != NULL) 1127 revents |= events & (POLLIN|POLLRDNORM); 1128 else { 1129 simple_lock(&sc->sc_kqlock); 1130 selrecord(l, &sc->sc_rsel); 1131 simple_unlock(&sc->sc_kqlock); 1132 } 1133 } 1134 revents |= events & (POLLOUT|POLLWRNORM); 1135 1136 return (revents); 1137 } 1138 1139 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach, 1140 tap_kqread }; 1141 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach, 1142 filt_seltrue }; 1143 1144 static int 1145 tap_cdev_kqfilter(dev_t dev, struct knote *kn) 1146 { 1147 return tap_dev_kqfilter(minor(dev), kn); 1148 } 1149 1150 static int 1151 tap_fops_kqfilter(file_t *fp, struct knote *kn) 1152 { 1153 return tap_dev_kqfilter((intptr_t)fp->f_data, kn); 1154 } 1155 1156 static int 1157 tap_dev_kqfilter(int unit, struct knote *kn) 1158 { 1159 struct tap_softc *sc = 1160 device_lookup_private(&tap_cd, unit); 1161 1162 if (sc == NULL) 1163 return (ENXIO); 1164 1165 KERNEL_LOCK(1, NULL); 1166 switch(kn->kn_filter) { 1167 case EVFILT_READ: 1168 kn->kn_fop = &tap_read_filterops; 1169 break; 1170 case EVFILT_WRITE: 1171 kn->kn_fop = &tap_seltrue_filterops; 1172 break; 1173 default: 1174 KERNEL_UNLOCK_ONE(NULL); 1175 return (EINVAL); 1176 } 1177 1178 kn->kn_hook = sc; 1179 simple_lock(&sc->sc_kqlock); 1180 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext); 1181 simple_unlock(&sc->sc_kqlock); 1182 KERNEL_UNLOCK_ONE(NULL); 1183 return (0); 1184 } 1185 1186 static void 1187 tap_kqdetach(struct knote *kn) 1188 { 1189 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook; 1190 1191 KERNEL_LOCK(1, NULL); 1192 simple_lock(&sc->sc_kqlock); 1193 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext); 1194 simple_unlock(&sc->sc_kqlock); 1195 KERNEL_UNLOCK_ONE(NULL); 1196 } 1197 1198 static int 1199 tap_kqread(struct knote *kn, long hint) 1200 { 1201 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook; 1202 struct ifnet *ifp = &sc->sc_ec.ec_if; 1203 struct mbuf *m; 1204 int s, rv; 1205 1206 KERNEL_LOCK(1, NULL); 1207 s = splnet(); 1208 IFQ_POLL(&ifp->if_snd, m); 1209 1210 if (m == NULL) 1211 kn->kn_data = 0; 1212 else 1213 kn->kn_data = m->m_pkthdr.len; 1214 splx(s); 1215 rv = (kn->kn_data != 0 ? 1 : 0); 1216 KERNEL_UNLOCK_ONE(NULL); 1217 return rv; 1218 } 1219 1220 /* 1221 * sysctl management routines 1222 * You can set the address of an interface through: 1223 * net.link.tap.tap<number> 1224 * 1225 * Note the consistent use of tap_log in order to use 1226 * sysctl_teardown at unload time. 1227 * 1228 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those 1229 * blocks register a function in a special section of the kernel 1230 * (called a link set) which is used at init_sysctl() time to cycle 1231 * through all those functions to create the kernel's sysctl tree. 1232 * 1233 * It is not possible to use link sets in a module, so the 1234 * easiest is to simply call our own setup routine at load time. 1235 * 1236 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the 1237 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the 1238 * whole kernel sysctl tree is built, it is not possible to add any 1239 * permanent node. 1240 * 1241 * It should be noted that we're not saving the sysctlnode pointer 1242 * we are returned when creating the "tap" node. That structure 1243 * cannot be trusted once out of the calling function, as it might 1244 * get reused. So we just save the MIB number, and always give the 1245 * full path starting from the root for later calls to sysctl_createv 1246 * and sysctl_destroyv. 1247 */ 1248 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup") 1249 { 1250 const struct sysctlnode *node; 1251 int error = 0; 1252 1253 if ((error = sysctl_createv(clog, 0, NULL, NULL, 1254 CTLFLAG_PERMANENT, 1255 CTLTYPE_NODE, "net", NULL, 1256 NULL, 0, NULL, 0, 1257 CTL_NET, CTL_EOL)) != 0) 1258 return; 1259 1260 if ((error = sysctl_createv(clog, 0, NULL, NULL, 1261 CTLFLAG_PERMANENT, 1262 CTLTYPE_NODE, "link", NULL, 1263 NULL, 0, NULL, 0, 1264 CTL_NET, AF_LINK, CTL_EOL)) != 0) 1265 return; 1266 1267 /* 1268 * The first four parameters of sysctl_createv are for management. 1269 * 1270 * The four that follows, here starting with a '0' for the flags, 1271 * describe the node. 1272 * 1273 * The next series of four set its value, through various possible 1274 * means. 1275 * 1276 * Last but not least, the path to the node is described. That path 1277 * is relative to the given root (third argument). Here we're 1278 * starting from the root. 1279 */ 1280 if ((error = sysctl_createv(clog, 0, NULL, &node, 1281 CTLFLAG_PERMANENT, 1282 CTLTYPE_NODE, "tap", NULL, 1283 NULL, 0, NULL, 0, 1284 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0) 1285 return; 1286 tap_node = node->sysctl_num; 1287 } 1288 1289 /* 1290 * The helper functions make Andrew Brown's interface really 1291 * shine. It makes possible to create value on the fly whether 1292 * the sysctl value is read or written. 1293 * 1294 * As shown as an example in the man page, the first step is to 1295 * create a copy of the node to have sysctl_lookup work on it. 1296 * 1297 * Here, we have more work to do than just a copy, since we have 1298 * to create the string. The first step is to collect the actual 1299 * value of the node, which is a convenient pointer to the softc 1300 * of the interface. From there we create the string and use it 1301 * as the value, but only for the *copy* of the node. 1302 * 1303 * Then we let sysctl_lookup do the magic, which consists in 1304 * setting oldp and newp as required by the operation. When the 1305 * value is read, that means that the string will be copied to 1306 * the user, and when it is written, the new value will be copied 1307 * over in the addr array. 1308 * 1309 * If newp is NULL, the user was reading the value, so we don't 1310 * have anything else to do. If a new value was written, we 1311 * have to check it. 1312 * 1313 * If it is incorrect, we can return an error and leave 'node' as 1314 * it is: since it is a copy of the actual node, the change will 1315 * be forgotten. 1316 * 1317 * Upon a correct input, we commit the change to the ifnet 1318 * structure of our interface. 1319 */ 1320 static int 1321 tap_sysctl_handler(SYSCTLFN_ARGS) 1322 { 1323 struct sysctlnode node; 1324 struct tap_softc *sc; 1325 struct ifnet *ifp; 1326 int error; 1327 size_t len; 1328 char addr[3 * ETHER_ADDR_LEN]; 1329 uint8_t enaddr[ETHER_ADDR_LEN]; 1330 1331 node = *rnode; 1332 sc = node.sysctl_data; 1333 ifp = &sc->sc_ec.ec_if; 1334 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl)); 1335 node.sysctl_data = addr; 1336 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1337 if (error || newp == NULL) 1338 return (error); 1339 1340 len = strlen(addr); 1341 if (len < 11 || len > 17) 1342 return (EINVAL); 1343 1344 /* Commit change */ 1345 if (ether_nonstatic_aton(enaddr, addr) != 0) 1346 return (EINVAL); 1347 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false); 1348 return (error); 1349 } 1350