xref: /netbsd-src/sys/net/if_tap.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: if_tap.c,v 1.62 2009/12/20 09:36:06 dsl Exp $	*/
2 
3 /*
4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5  *  All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *  1. Redistributions of source code must retain the above copyright
11  *     notice, this list of conditions and the following disclaimer.
12  *  2. Redistributions in binary form must reproduce the above copyright
13  *     notice, this list of conditions and the following disclaimer in the
14  *     documentation and/or other materials provided with the distribution.
15  *
16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  *  POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
31  * device to the system, but can also be accessed by userland through a
32  * character device interface, which allows reading and injecting frames.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.62 2009/12/20 09:36:06 dsl Exp $");
37 
38 #if defined(_KERNEL_OPT)
39 #include "bpfilter.h"
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/device.h>
50 #include <sys/file.h>
51 #include <sys/filedesc.h>
52 #include <sys/ksyms.h>
53 #include <sys/poll.h>
54 #include <sys/proc.h>
55 #include <sys/select.h>
56 #include <sys/sockio.h>
57 #if defined(COMPAT_40) || defined(MODULAR)
58 #include <sys/sysctl.h>
59 #endif
60 #include <sys/kauth.h>
61 #include <sys/mutex.h>
62 #include <sys/simplelock.h>
63 #include <sys/intr.h>
64 #include <sys/stat.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74 
75 #include <compat/sys/sockio.h>
76 
77 #if defined(COMPAT_40) || defined(MODULAR)
78 /*
79  * sysctl node management
80  *
81  * It's not really possible to use a SYSCTL_SETUP block with
82  * current module implementation, so it is easier to just define
83  * our own function.
84  *
85  * The handler function is a "helper" in Andrew Brown's sysctl
86  * framework terminology.  It is used as a gateway for sysctl
87  * requests over the nodes.
88  *
89  * tap_log allows the module to log creations of nodes and
90  * destroy them all at once using sysctl_teardown.
91  */
92 static int tap_node;
93 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
94 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
95 #endif
96 
97 /*
98  * Since we're an Ethernet device, we need the 3 following
99  * components: a leading struct device, a struct ethercom,
100  * and also a struct ifmedia since we don't attach a PHY to
101  * ourselves. We could emulate one, but there's no real
102  * point.
103  */
104 
105 struct tap_softc {
106 	device_t	sc_dev;
107 	struct ifmedia	sc_im;
108 	struct ethercom	sc_ec;
109 	int		sc_flags;
110 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
111 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
112 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
113 #define TAP_GOING	0x00000008	/* interface is being destroyed */
114 	struct selinfo	sc_rsel;
115 	pid_t		sc_pgid; /* For async. IO */
116 	kmutex_t	sc_rdlock;
117 	struct simplelock	sc_kqlock;
118 	void		*sc_sih;
119 	struct timespec sc_atime;
120 	struct timespec sc_mtime;
121 	struct timespec sc_btime;
122 };
123 
124 /* autoconf(9) glue */
125 
126 void	tapattach(int);
127 
128 static int	tap_match(device_t, cfdata_t, void *);
129 static void	tap_attach(device_t, device_t, void *);
130 static int	tap_detach(device_t, int);
131 
132 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
133     tap_match, tap_attach, tap_detach, NULL);
134 extern struct cfdriver tap_cd;
135 
136 /* Real device access routines */
137 static int	tap_dev_close(struct tap_softc *);
138 static int	tap_dev_read(int, struct uio *, int);
139 static int	tap_dev_write(int, struct uio *, int);
140 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
141 static int	tap_dev_poll(int, int, struct lwp *);
142 static int	tap_dev_kqfilter(int, struct knote *);
143 
144 /* Fileops access routines */
145 static int	tap_fops_close(file_t *);
146 static int	tap_fops_read(file_t *, off_t *, struct uio *,
147     kauth_cred_t, int);
148 static int	tap_fops_write(file_t *, off_t *, struct uio *,
149     kauth_cred_t, int);
150 static int	tap_fops_ioctl(file_t *, u_long, void *);
151 static int	tap_fops_poll(file_t *, int);
152 static int	tap_fops_stat(file_t *, struct stat *);
153 static int	tap_fops_kqfilter(file_t *, struct knote *);
154 
155 static const struct fileops tap_fileops = {
156 	.fo_read = tap_fops_read,
157 	.fo_write = tap_fops_write,
158 	.fo_ioctl = tap_fops_ioctl,
159 	.fo_fcntl = fnullop_fcntl,
160 	.fo_poll = tap_fops_poll,
161 	.fo_stat = tap_fops_stat,
162 	.fo_close = tap_fops_close,
163 	.fo_kqfilter = tap_fops_kqfilter,
164 	.fo_restart = fnullop_restart,
165 };
166 
167 /* Helper for cloning open() */
168 static int	tap_dev_cloner(struct lwp *);
169 
170 /* Character device routines */
171 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
172 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
173 static int	tap_cdev_read(dev_t, struct uio *, int);
174 static int	tap_cdev_write(dev_t, struct uio *, int);
175 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
176 static int	tap_cdev_poll(dev_t, int, struct lwp *);
177 static int	tap_cdev_kqfilter(dev_t, struct knote *);
178 
179 const struct cdevsw tap_cdevsw = {
180 	tap_cdev_open, tap_cdev_close,
181 	tap_cdev_read, tap_cdev_write,
182 	tap_cdev_ioctl, nostop, notty,
183 	tap_cdev_poll, nommap,
184 	tap_cdev_kqfilter,
185 	D_OTHER,
186 };
187 
188 #define TAP_CLONER	0xfffff		/* Maximal minor value */
189 
190 /* kqueue-related routines */
191 static void	tap_kqdetach(struct knote *);
192 static int	tap_kqread(struct knote *, long);
193 
194 /*
195  * Those are needed by the if_media interface.
196  */
197 
198 static int	tap_mediachange(struct ifnet *);
199 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
200 
201 /*
202  * Those are needed by the ifnet interface, and would typically be
203  * there for any network interface driver.
204  * Some other routines are optional: watchdog and drain.
205  */
206 
207 static void	tap_start(struct ifnet *);
208 static void	tap_stop(struct ifnet *, int);
209 static int	tap_init(struct ifnet *);
210 static int	tap_ioctl(struct ifnet *, u_long, void *);
211 
212 /* Internal functions */
213 #if defined(COMPAT_40) || defined(MODULAR)
214 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
215 #endif
216 static void	tap_softintr(void *);
217 
218 /*
219  * tap is a clonable interface, although it is highly unrealistic for
220  * an Ethernet device.
221  *
222  * Here are the bits needed for a clonable interface.
223  */
224 static int	tap_clone_create(struct if_clone *, int);
225 static int	tap_clone_destroy(struct ifnet *);
226 
227 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
228 					tap_clone_create,
229 					tap_clone_destroy);
230 
231 /* Helper functionis shared by the two cloning code paths */
232 static struct tap_softc *	tap_clone_creator(int);
233 int	tap_clone_destroyer(device_t);
234 
235 void
236 tapattach(int n)
237 {
238 	int error;
239 
240 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
241 	if (error) {
242 		aprint_error("%s: unable to register cfattach\n",
243 		    tap_cd.cd_name);
244 		(void)config_cfdriver_detach(&tap_cd);
245 		return;
246 	}
247 
248 	if_clone_attach(&tap_cloners);
249 }
250 
251 /* Pretty much useless for a pseudo-device */
252 static int
253 tap_match(device_t parent, cfdata_t cfdata, void *arg)
254 {
255 
256 	return (1);
257 }
258 
259 void
260 tap_attach(device_t parent, device_t self, void *aux)
261 {
262 	struct tap_softc *sc = device_private(self);
263 	struct ifnet *ifp;
264 #if defined(COMPAT_40) || defined(MODULAR)
265 	const struct sysctlnode *node;
266 	int error;
267 #endif
268 	uint8_t enaddr[ETHER_ADDR_LEN] =
269 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
270 	char enaddrstr[3 * ETHER_ADDR_LEN];
271 	struct timeval tv;
272 	uint32_t ui;
273 
274 	sc->sc_dev = self;
275 	sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
276 	getnanotime(&sc->sc_btime);
277 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
278 
279 	if (!pmf_device_register(self, NULL, NULL))
280 		aprint_error_dev(self, "couldn't establish power handler\n");
281 
282 	/*
283 	 * In order to obtain unique initial Ethernet address on a host,
284 	 * do some randomisation using the current uptime.  It's not meant
285 	 * for anything but avoiding hard-coding an address.
286 	 */
287 	getmicrouptime(&tv);
288 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
289 	memcpy(enaddr+3, (uint8_t *)&ui, 3);
290 
291 	aprint_verbose_dev(self, "Ethernet address %s\n",
292 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
293 
294 	/*
295 	 * Why 1000baseT? Why not? You can add more.
296 	 *
297 	 * Note that there are 3 steps: init, one or several additions to
298 	 * list of supported media, and in the end, the selection of one
299 	 * of them.
300 	 */
301 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
302 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
303 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
304 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
305 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
306 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
307 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
308 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
309 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
310 
311 	/*
312 	 * One should note that an interface must do multicast in order
313 	 * to support IPv6.
314 	 */
315 	ifp = &sc->sc_ec.ec_if;
316 	strcpy(ifp->if_xname, device_xname(self));
317 	ifp->if_softc	= sc;
318 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
319 	ifp->if_ioctl	= tap_ioctl;
320 	ifp->if_start	= tap_start;
321 	ifp->if_stop	= tap_stop;
322 	ifp->if_init	= tap_init;
323 	IFQ_SET_READY(&ifp->if_snd);
324 
325 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
326 
327 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
328 	 * being common to all network interface drivers. */
329 	if_attach(ifp);
330 	ether_ifattach(ifp, enaddr);
331 
332 	sc->sc_flags = 0;
333 
334 #if defined(COMPAT_40) || defined(MODULAR)
335 	/*
336 	 * Add a sysctl node for that interface.
337 	 *
338 	 * The pointer transmitted is not a string, but instead a pointer to
339 	 * the softc structure, which we can use to build the string value on
340 	 * the fly in the helper function of the node.  See the comments for
341 	 * tap_sysctl_handler for details.
342 	 *
343 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
344 	 * component.  However, we can allocate a number ourselves, as we are
345 	 * the only consumer of the net.link.<iface> node.  In this case, the
346 	 * unit number is conveniently used to number the node.  CTL_CREATE
347 	 * would just work, too.
348 	 */
349 	if ((error = sysctl_createv(NULL, 0, NULL,
350 	    &node, CTLFLAG_READWRITE,
351 	    CTLTYPE_STRING, device_xname(self), NULL,
352 	    tap_sysctl_handler, 0, sc, 18,
353 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
354 	    CTL_EOL)) != 0)
355 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
356 		    error);
357 #endif
358 
359 	/*
360 	 * Initialize the two locks for the device.
361 	 *
362 	 * We need a lock here because even though the tap device can be
363 	 * opened only once, the file descriptor might be passed to another
364 	 * process, say a fork(2)ed child.
365 	 *
366 	 * The Giant saves us from most of the hassle, but since the read
367 	 * operation can sleep, we don't want two processes to wake up at
368 	 * the same moment and both try and dequeue a single packet.
369 	 *
370 	 * The queue for event listeners (used by kqueue(9), see below) has
371 	 * to be protected, too, but we don't need the same level of
372 	 * complexity for that lock, so a simple spinning lock is fine.
373 	 */
374 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
375 	simple_lock_init(&sc->sc_kqlock);
376 
377 	selinit(&sc->sc_rsel);
378 }
379 
380 /*
381  * When detaching, we do the inverse of what is done in the attach
382  * routine, in reversed order.
383  */
384 static int
385 tap_detach(device_t self, int flags)
386 {
387 	struct tap_softc *sc = device_private(self);
388 	struct ifnet *ifp = &sc->sc_ec.ec_if;
389 #if defined(COMPAT_40) || defined(MODULAR)
390 	int error;
391 #endif
392 	int s;
393 
394 	sc->sc_flags |= TAP_GOING;
395 	s = splnet();
396 	tap_stop(ifp, 1);
397 	if_down(ifp);
398 	splx(s);
399 
400 	softint_disestablish(sc->sc_sih);
401 
402 #if defined(COMPAT_40) || defined(MODULAR)
403 	/*
404 	 * Destroying a single leaf is a very straightforward operation using
405 	 * sysctl_destroyv.  One should be sure to always end the path with
406 	 * CTL_EOL.
407 	 */
408 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
409 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
410 		aprint_error_dev(self,
411 		    "sysctl_destroyv returned %d, ignoring\n", error);
412 #endif
413 	ether_ifdetach(ifp);
414 	if_detach(ifp);
415 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
416 	seldestroy(&sc->sc_rsel);
417 	mutex_destroy(&sc->sc_rdlock);
418 
419 	pmf_device_deregister(self);
420 
421 	return (0);
422 }
423 
424 /*
425  * This function is called by the ifmedia layer to notify the driver
426  * that the user requested a media change.  A real driver would
427  * reconfigure the hardware.
428  */
429 static int
430 tap_mediachange(struct ifnet *ifp)
431 {
432 	return (0);
433 }
434 
435 /*
436  * Here the user asks for the currently used media.
437  */
438 static void
439 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
440 {
441 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
442 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
443 }
444 
445 /*
446  * This is the function where we SEND packets.
447  *
448  * There is no 'receive' equivalent.  A typical driver will get
449  * interrupts from the hardware, and from there will inject new packets
450  * into the network stack.
451  *
452  * Once handled, a packet must be freed.  A real driver might not be able
453  * to fit all the pending packets into the hardware, and is allowed to
454  * return before having sent all the packets.  It should then use the
455  * if_flags flag IFF_OACTIVE to notify the upper layer.
456  *
457  * There are also other flags one should check, such as IFF_PAUSE.
458  *
459  * It is our duty to make packets available to BPF listeners.
460  *
461  * You should be aware that this function is called by the Ethernet layer
462  * at splnet().
463  *
464  * When the device is opened, we have to pass the packet(s) to the
465  * userland.  For that we stay in OACTIVE mode while the userland gets
466  * the packets, and we send a signal to the processes waiting to read.
467  *
468  * wakeup(sc) is the counterpart to the tsleep call in
469  * tap_dev_read, while selnotify() is used for kevent(2) and
470  * poll(2) (which includes select(2)) listeners.
471  */
472 static void
473 tap_start(struct ifnet *ifp)
474 {
475 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
476 	struct mbuf *m0;
477 
478 	if ((sc->sc_flags & TAP_INUSE) == 0) {
479 		/* Simply drop packets */
480 		for(;;) {
481 			IFQ_DEQUEUE(&ifp->if_snd, m0);
482 			if (m0 == NULL)
483 				return;
484 
485 			ifp->if_opackets++;
486 #if NBPFILTER > 0
487 			if (ifp->if_bpf)
488 				bpf_mtap(ifp->if_bpf, m0);
489 #endif
490 
491 			m_freem(m0);
492 		}
493 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
494 		ifp->if_flags |= IFF_OACTIVE;
495 		wakeup(sc);
496 		selnotify(&sc->sc_rsel, 0, 1);
497 		if (sc->sc_flags & TAP_ASYNCIO)
498 			softint_schedule(sc->sc_sih);
499 	}
500 }
501 
502 static void
503 tap_softintr(void *cookie)
504 {
505 	struct tap_softc *sc;
506 	struct ifnet *ifp;
507 	int a, b;
508 
509 	sc = cookie;
510 
511 	if (sc->sc_flags & TAP_ASYNCIO) {
512 		ifp = &sc->sc_ec.ec_if;
513 		if (ifp->if_flags & IFF_RUNNING) {
514 			a = POLL_IN;
515 			b = POLLIN|POLLRDNORM;
516 		} else {
517 			a = POLL_HUP;
518 			b = 0;
519 		}
520 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
521 	}
522 }
523 
524 /*
525  * A typical driver will only contain the following handlers for
526  * ioctl calls, except SIOCSIFPHYADDR.
527  * The latter is a hack I used to set the Ethernet address of the
528  * faked device.
529  *
530  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
531  * called under splnet().
532  */
533 static int
534 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
535 {
536 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
537 	struct ifreq *ifr = (struct ifreq *)data;
538 	int s, error;
539 
540 	s = splnet();
541 
542 	switch (cmd) {
543 #ifdef OSIOCSIFMEDIA
544 	case OSIOCSIFMEDIA:
545 #endif
546 	case SIOCSIFMEDIA:
547 	case SIOCGIFMEDIA:
548 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
549 		break;
550 #if defined(COMPAT_40) || defined(MODULAR)
551 	case SIOCSIFPHYADDR:
552 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
553 		break;
554 #endif
555 	default:
556 		error = ether_ioctl(ifp, cmd, data);
557 		if (error == ENETRESET)
558 			error = 0;
559 		break;
560 	}
561 
562 	splx(s);
563 
564 	return (error);
565 }
566 
567 #if defined(COMPAT_40) || defined(MODULAR)
568 /*
569  * Helper function to set Ethernet address.  This has been replaced by
570  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
571  */
572 static int
573 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
574 {
575 	const struct sockaddr *sa = &ifra->ifra_addr;
576 
577 	if (sa->sa_family != AF_LINK)
578 		return (EINVAL);
579 
580 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
581 
582 	return (0);
583 }
584 #endif
585 
586 /*
587  * _init() would typically be called when an interface goes up,
588  * meaning it should configure itself into the state in which it
589  * can send packets.
590  */
591 static int
592 tap_init(struct ifnet *ifp)
593 {
594 	ifp->if_flags |= IFF_RUNNING;
595 
596 	tap_start(ifp);
597 
598 	return (0);
599 }
600 
601 /*
602  * _stop() is called when an interface goes down.  It is our
603  * responsability to validate that state by clearing the
604  * IFF_RUNNING flag.
605  *
606  * We have to wake up all the sleeping processes to have the pending
607  * read requests cancelled.
608  */
609 static void
610 tap_stop(struct ifnet *ifp, int disable)
611 {
612 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
613 
614 	ifp->if_flags &= ~IFF_RUNNING;
615 	wakeup(sc);
616 	selnotify(&sc->sc_rsel, 0, 1);
617 	if (sc->sc_flags & TAP_ASYNCIO)
618 		softint_schedule(sc->sc_sih);
619 }
620 
621 /*
622  * The 'create' command of ifconfig can be used to create
623  * any numbered instance of a given device.  Thus we have to
624  * make sure we have enough room in cd_devs to create the
625  * user-specified instance.  config_attach_pseudo will do this
626  * for us.
627  */
628 static int
629 tap_clone_create(struct if_clone *ifc, int unit)
630 {
631 	if (tap_clone_creator(unit) == NULL) {
632 		aprint_error("%s%d: unable to attach an instance\n",
633                     tap_cd.cd_name, unit);
634 		return (ENXIO);
635 	}
636 
637 	return (0);
638 }
639 
640 /*
641  * tap(4) can be cloned by two ways:
642  *   using 'ifconfig tap0 create', which will use the network
643  *     interface cloning API, and call tap_clone_create above.
644  *   opening the cloning device node, whose minor number is TAP_CLONER.
645  *     See below for an explanation on how this part work.
646  */
647 static struct tap_softc *
648 tap_clone_creator(int unit)
649 {
650 	struct cfdata *cf;
651 
652 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
653 	cf->cf_name = tap_cd.cd_name;
654 	cf->cf_atname = tap_ca.ca_name;
655 	if (unit == -1) {
656 		/* let autoconf find the first free one */
657 		cf->cf_unit = 0;
658 		cf->cf_fstate = FSTATE_STAR;
659 	} else {
660 		cf->cf_unit = unit;
661 		cf->cf_fstate = FSTATE_NOTFOUND;
662 	}
663 
664 	return device_private(config_attach_pseudo(cf));
665 }
666 
667 /*
668  * The clean design of if_clone and autoconf(9) makes that part
669  * really straightforward.  The second argument of config_detach
670  * means neither QUIET nor FORCED.
671  */
672 static int
673 tap_clone_destroy(struct ifnet *ifp)
674 {
675 	struct tap_softc *sc = ifp->if_softc;
676 
677 	return tap_clone_destroyer(sc->sc_dev);
678 }
679 
680 int
681 tap_clone_destroyer(device_t dev)
682 {
683 	cfdata_t cf = device_cfdata(dev);
684 	int error;
685 
686 	if ((error = config_detach(dev, 0)) != 0)
687 		aprint_error_dev(dev, "unable to detach instance\n");
688 	free(cf, M_DEVBUF);
689 
690 	return (error);
691 }
692 
693 /*
694  * tap(4) is a bit of an hybrid device.  It can be used in two different
695  * ways:
696  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
697  *  2. open /dev/tap, get a new interface created and read/write off it.
698  *     That interface is destroyed when the process that had it created exits.
699  *
700  * The first way is managed by the cdevsw structure, and you access interfaces
701  * through a (major, minor) mapping:  tap4 is obtained by the minor number
702  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
703  *
704  * The second way is the so-called "cloning" device.  It's a special minor
705  * number (chosen as the maximal number, to allow as much tap devices as
706  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
707  * call ends in tap_cdev_open.  The actual place where it is handled is
708  * tap_dev_cloner.
709  *
710  * An tap device cannot be opened more than once at a time, so the cdevsw
711  * part of open() does nothing but noting that the interface is being used and
712  * hence ready to actually handle packets.
713  */
714 
715 static int
716 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
717 {
718 	struct tap_softc *sc;
719 
720 	if (minor(dev) == TAP_CLONER)
721 		return tap_dev_cloner(l);
722 
723 	sc = device_lookup_private(&tap_cd, minor(dev));
724 	if (sc == NULL)
725 		return (ENXIO);
726 
727 	/* The device can only be opened once */
728 	if (sc->sc_flags & TAP_INUSE)
729 		return (EBUSY);
730 	sc->sc_flags |= TAP_INUSE;
731 	return (0);
732 }
733 
734 /*
735  * There are several kinds of cloning devices, and the most simple is the one
736  * tap(4) uses.  What it does is change the file descriptor with a new one,
737  * with its own fileops structure (which maps to the various read, write,
738  * ioctl functions).  It starts allocating a new file descriptor with falloc,
739  * then actually creates the new tap devices.
740  *
741  * Once those two steps are successful, we can re-wire the existing file
742  * descriptor to its new self.  This is done with fdclone():  it fills the fp
743  * structure as needed (notably f_data gets filled with the fifth parameter
744  * passed, the unit of the tap device which will allows us identifying the
745  * device later), and returns EMOVEFD.
746  *
747  * That magic value is interpreted by sys_open() which then replaces the
748  * current file descriptor by the new one (through a magic member of struct
749  * lwp, l_dupfd).
750  *
751  * The tap device is flagged as being busy since it otherwise could be
752  * externally accessed through the corresponding device node with the cdevsw
753  * interface.
754  */
755 
756 static int
757 tap_dev_cloner(struct lwp *l)
758 {
759 	struct tap_softc *sc;
760 	file_t *fp;
761 	int error, fd;
762 
763 	if ((error = fd_allocfile(&fp, &fd)) != 0)
764 		return (error);
765 
766 	if ((sc = tap_clone_creator(-1)) == NULL) {
767 		fd_abort(curproc, fp, fd);
768 		return (ENXIO);
769 	}
770 
771 	sc->sc_flags |= TAP_INUSE;
772 
773 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
774 	    (void *)(intptr_t)device_unit(sc->sc_dev));
775 }
776 
777 /*
778  * While all other operations (read, write, ioctl, poll and kqfilter) are
779  * really the same whether we are in cdevsw or fileops mode, the close()
780  * function is slightly different in the two cases.
781  *
782  * As for the other, the core of it is shared in tap_dev_close.  What
783  * it does is sufficient for the cdevsw interface, but the cloning interface
784  * needs another thing:  the interface is destroyed when the processes that
785  * created it closes it.
786  */
787 static int
788 tap_cdev_close(dev_t dev, int flags, int fmt,
789     struct lwp *l)
790 {
791 	struct tap_softc *sc =
792 	    device_lookup_private(&tap_cd, minor(dev));
793 
794 	if (sc == NULL)
795 		return (ENXIO);
796 
797 	return tap_dev_close(sc);
798 }
799 
800 /*
801  * It might happen that the administrator used ifconfig to externally destroy
802  * the interface.  In that case, tap_fops_close will be called while
803  * tap_detach is already happening.  If we called it again from here, we
804  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
805  */
806 static int
807 tap_fops_close(file_t *fp)
808 {
809 	int unit = (intptr_t)fp->f_data;
810 	struct tap_softc *sc;
811 	int error;
812 
813 	sc = device_lookup_private(&tap_cd, unit);
814 	if (sc == NULL)
815 		return (ENXIO);
816 
817 	/* tap_dev_close currently always succeeds, but it might not
818 	 * always be the case. */
819 	KERNEL_LOCK(1, NULL);
820 	if ((error = tap_dev_close(sc)) != 0) {
821 		KERNEL_UNLOCK_ONE(NULL);
822 		return (error);
823 	}
824 
825 	/* Destroy the device now that it is no longer useful,
826 	 * unless it's already being destroyed. */
827 	if ((sc->sc_flags & TAP_GOING) != 0) {
828 		KERNEL_UNLOCK_ONE(NULL);
829 		return (0);
830 	}
831 
832 	error = tap_clone_destroyer(sc->sc_dev);
833 	KERNEL_UNLOCK_ONE(NULL);
834 	return error;
835 }
836 
837 static int
838 tap_dev_close(struct tap_softc *sc)
839 {
840 	struct ifnet *ifp;
841 	int s;
842 
843 	s = splnet();
844 	/* Let tap_start handle packets again */
845 	ifp = &sc->sc_ec.ec_if;
846 	ifp->if_flags &= ~IFF_OACTIVE;
847 
848 	/* Purge output queue */
849 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
850 		struct mbuf *m;
851 
852 		for (;;) {
853 			IFQ_DEQUEUE(&ifp->if_snd, m);
854 			if (m == NULL)
855 				break;
856 
857 			ifp->if_opackets++;
858 #if NBPFILTER > 0
859 			if (ifp->if_bpf)
860 				bpf_mtap(ifp->if_bpf, m);
861 #endif
862 			m_freem(m);
863 		}
864 	}
865 	splx(s);
866 
867 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
868 
869 	return (0);
870 }
871 
872 static int
873 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
874 {
875 	return tap_dev_read(minor(dev), uio, flags);
876 }
877 
878 static int
879 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
880     kauth_cred_t cred, int flags)
881 {
882 	int error;
883 
884 	KERNEL_LOCK(1, NULL);
885 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
886 	KERNEL_UNLOCK_ONE(NULL);
887 	return error;
888 }
889 
890 static int
891 tap_dev_read(int unit, struct uio *uio, int flags)
892 {
893 	struct tap_softc *sc =
894 	    device_lookup_private(&tap_cd, unit);
895 	struct ifnet *ifp;
896 	struct mbuf *m, *n;
897 	int error = 0, s;
898 
899 	if (sc == NULL)
900 		return (ENXIO);
901 
902 	getnanotime(&sc->sc_atime);
903 
904 	ifp = &sc->sc_ec.ec_if;
905 	if ((ifp->if_flags & IFF_UP) == 0)
906 		return (EHOSTDOWN);
907 
908 	/*
909 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
910 	 */
911 	if ((sc->sc_flags & TAP_NBIO) != 0) {
912 		if (!mutex_tryenter(&sc->sc_rdlock))
913 			return (EWOULDBLOCK);
914 	} else {
915 		mutex_enter(&sc->sc_rdlock);
916 	}
917 
918 	s = splnet();
919 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
920 		ifp->if_flags &= ~IFF_OACTIVE;
921 		/*
922 		 * We must release the lock before sleeping, and re-acquire it
923 		 * after.
924 		 */
925 		mutex_exit(&sc->sc_rdlock);
926 		if (sc->sc_flags & TAP_NBIO)
927 			error = EWOULDBLOCK;
928 		else
929 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
930 		splx(s);
931 
932 		if (error != 0)
933 			return (error);
934 		/* The device might have been downed */
935 		if ((ifp->if_flags & IFF_UP) == 0)
936 			return (EHOSTDOWN);
937 		if ((sc->sc_flags & TAP_NBIO)) {
938 			if (!mutex_tryenter(&sc->sc_rdlock))
939 				return (EWOULDBLOCK);
940 		} else {
941 			mutex_enter(&sc->sc_rdlock);
942 		}
943 		s = splnet();
944 	}
945 
946 	IFQ_DEQUEUE(&ifp->if_snd, m);
947 	ifp->if_flags &= ~IFF_OACTIVE;
948 	splx(s);
949 	if (m == NULL) {
950 		error = 0;
951 		goto out;
952 	}
953 
954 	ifp->if_opackets++;
955 #if NBPFILTER > 0
956 	if (ifp->if_bpf)
957 		bpf_mtap(ifp->if_bpf, m);
958 #endif
959 
960 	/*
961 	 * One read is one packet.
962 	 */
963 	do {
964 		error = uiomove(mtod(m, void *),
965 		    min(m->m_len, uio->uio_resid), uio);
966 		MFREE(m, n);
967 		m = n;
968 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
969 
970 	if (m != NULL)
971 		m_freem(m);
972 
973 out:
974 	mutex_exit(&sc->sc_rdlock);
975 	return (error);
976 }
977 
978 static int
979 tap_fops_stat(file_t *fp, struct stat *st)
980 {
981 	int error = 0;
982 	struct tap_softc *sc;
983 	int unit = (uintptr_t)fp->f_data;
984 
985 	(void)memset(st, 0, sizeof(*st));
986 
987 	KERNEL_LOCK(1, NULL);
988 	sc = device_lookup_private(&tap_cd, unit);
989 	if (sc == NULL) {
990 		error = ENXIO;
991 		goto out;
992 	}
993 
994 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
995 	st->st_atimespec = sc->sc_atime;
996 	st->st_mtimespec = sc->sc_mtime;
997 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
998 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
999 	st->st_gid = kauth_cred_getegid(fp->f_cred);
1000 out:
1001 	KERNEL_UNLOCK_ONE(NULL);
1002 	return error;
1003 }
1004 
1005 static int
1006 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1007 {
1008 	return tap_dev_write(minor(dev), uio, flags);
1009 }
1010 
1011 static int
1012 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1013     kauth_cred_t cred, int flags)
1014 {
1015 	int error;
1016 
1017 	KERNEL_LOCK(1, NULL);
1018 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
1019 	KERNEL_UNLOCK_ONE(NULL);
1020 	return error;
1021 }
1022 
1023 static int
1024 tap_dev_write(int unit, struct uio *uio, int flags)
1025 {
1026 	struct tap_softc *sc =
1027 	    device_lookup_private(&tap_cd, unit);
1028 	struct ifnet *ifp;
1029 	struct mbuf *m, **mp;
1030 	int error = 0;
1031 	int s;
1032 
1033 	if (sc == NULL)
1034 		return (ENXIO);
1035 
1036 	getnanotime(&sc->sc_mtime);
1037 	ifp = &sc->sc_ec.ec_if;
1038 
1039 	/* One write, one packet, that's the rule */
1040 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1041 	if (m == NULL) {
1042 		ifp->if_ierrors++;
1043 		return (ENOBUFS);
1044 	}
1045 	m->m_pkthdr.len = uio->uio_resid;
1046 
1047 	mp = &m;
1048 	while (error == 0 && uio->uio_resid > 0) {
1049 		if (*mp != m) {
1050 			MGET(*mp, M_DONTWAIT, MT_DATA);
1051 			if (*mp == NULL) {
1052 				error = ENOBUFS;
1053 				break;
1054 			}
1055 		}
1056 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
1057 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1058 		mp = &(*mp)->m_next;
1059 	}
1060 	if (error) {
1061 		ifp->if_ierrors++;
1062 		m_freem(m);
1063 		return (error);
1064 	}
1065 
1066 	ifp->if_ipackets++;
1067 	m->m_pkthdr.rcvif = ifp;
1068 
1069 #if NBPFILTER > 0
1070 	if (ifp->if_bpf)
1071 		bpf_mtap(ifp->if_bpf, m);
1072 #endif
1073 	s =splnet();
1074 	(*ifp->if_input)(ifp, m);
1075 	splx(s);
1076 
1077 	return (0);
1078 }
1079 
1080 static int
1081 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1082     struct lwp *l)
1083 {
1084 	return tap_dev_ioctl(minor(dev), cmd, data, l);
1085 }
1086 
1087 static int
1088 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1089 {
1090 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1091 }
1092 
1093 static int
1094 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1095 {
1096 	struct tap_softc *sc =
1097 	    device_lookup_private(&tap_cd, unit);
1098 	int error = 0;
1099 
1100 	if (sc == NULL)
1101 		return (ENXIO);
1102 
1103 	switch (cmd) {
1104 	case FIONREAD:
1105 		{
1106 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1107 			struct mbuf *m;
1108 			int s;
1109 
1110 			s = splnet();
1111 			IFQ_POLL(&ifp->if_snd, m);
1112 
1113 			if (m == NULL)
1114 				*(int *)data = 0;
1115 			else
1116 				*(int *)data = m->m_pkthdr.len;
1117 			splx(s);
1118 		} break;
1119 	case TIOCSPGRP:
1120 	case FIOSETOWN:
1121 		error = fsetown(&sc->sc_pgid, cmd, data);
1122 		break;
1123 	case TIOCGPGRP:
1124 	case FIOGETOWN:
1125 		error = fgetown(sc->sc_pgid, cmd, data);
1126 		break;
1127 	case FIOASYNC:
1128 		if (*(int *)data)
1129 			sc->sc_flags |= TAP_ASYNCIO;
1130 		else
1131 			sc->sc_flags &= ~TAP_ASYNCIO;
1132 		break;
1133 	case FIONBIO:
1134 		if (*(int *)data)
1135 			sc->sc_flags |= TAP_NBIO;
1136 		else
1137 			sc->sc_flags &= ~TAP_NBIO;
1138 		break;
1139 #ifdef OTAPGIFNAME
1140 	case OTAPGIFNAME:
1141 #endif
1142 	case TAPGIFNAME:
1143 		{
1144 			struct ifreq *ifr = (struct ifreq *)data;
1145 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1146 
1147 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1148 		} break;
1149 	default:
1150 		error = ENOTTY;
1151 		break;
1152 	}
1153 
1154 	return (0);
1155 }
1156 
1157 static int
1158 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1159 {
1160 	return tap_dev_poll(minor(dev), events, l);
1161 }
1162 
1163 static int
1164 tap_fops_poll(file_t *fp, int events)
1165 {
1166 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1167 }
1168 
1169 static int
1170 tap_dev_poll(int unit, int events, struct lwp *l)
1171 {
1172 	struct tap_softc *sc =
1173 	    device_lookup_private(&tap_cd, unit);
1174 	int revents = 0;
1175 
1176 	if (sc == NULL)
1177 		return POLLERR;
1178 
1179 	if (events & (POLLIN|POLLRDNORM)) {
1180 		struct ifnet *ifp = &sc->sc_ec.ec_if;
1181 		struct mbuf *m;
1182 		int s;
1183 
1184 		s = splnet();
1185 		IFQ_POLL(&ifp->if_snd, m);
1186 		splx(s);
1187 
1188 		if (m != NULL)
1189 			revents |= events & (POLLIN|POLLRDNORM);
1190 		else {
1191 			simple_lock(&sc->sc_kqlock);
1192 			selrecord(l, &sc->sc_rsel);
1193 			simple_unlock(&sc->sc_kqlock);
1194 		}
1195 	}
1196 	revents |= events & (POLLOUT|POLLWRNORM);
1197 
1198 	return (revents);
1199 }
1200 
1201 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1202 	tap_kqread };
1203 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1204 	filt_seltrue };
1205 
1206 static int
1207 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1208 {
1209 	return tap_dev_kqfilter(minor(dev), kn);
1210 }
1211 
1212 static int
1213 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1214 {
1215 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1216 }
1217 
1218 static int
1219 tap_dev_kqfilter(int unit, struct knote *kn)
1220 {
1221 	struct tap_softc *sc =
1222 	    device_lookup_private(&tap_cd, unit);
1223 
1224 	if (sc == NULL)
1225 		return (ENXIO);
1226 
1227 	KERNEL_LOCK(1, NULL);
1228 	switch(kn->kn_filter) {
1229 	case EVFILT_READ:
1230 		kn->kn_fop = &tap_read_filterops;
1231 		break;
1232 	case EVFILT_WRITE:
1233 		kn->kn_fop = &tap_seltrue_filterops;
1234 		break;
1235 	default:
1236 		KERNEL_UNLOCK_ONE(NULL);
1237 		return (EINVAL);
1238 	}
1239 
1240 	kn->kn_hook = sc;
1241 	simple_lock(&sc->sc_kqlock);
1242 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1243 	simple_unlock(&sc->sc_kqlock);
1244 	KERNEL_UNLOCK_ONE(NULL);
1245 	return (0);
1246 }
1247 
1248 static void
1249 tap_kqdetach(struct knote *kn)
1250 {
1251 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1252 
1253 	KERNEL_LOCK(1, NULL);
1254 	simple_lock(&sc->sc_kqlock);
1255 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1256 	simple_unlock(&sc->sc_kqlock);
1257 	KERNEL_UNLOCK_ONE(NULL);
1258 }
1259 
1260 static int
1261 tap_kqread(struct knote *kn, long hint)
1262 {
1263 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1264 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1265 	struct mbuf *m;
1266 	int s, rv;
1267 
1268 	KERNEL_LOCK(1, NULL);
1269 	s = splnet();
1270 	IFQ_POLL(&ifp->if_snd, m);
1271 
1272 	if (m == NULL)
1273 		kn->kn_data = 0;
1274 	else
1275 		kn->kn_data = m->m_pkthdr.len;
1276 	splx(s);
1277 	rv = (kn->kn_data != 0 ? 1 : 0);
1278 	KERNEL_UNLOCK_ONE(NULL);
1279 	return rv;
1280 }
1281 
1282 #if defined(COMPAT_40) || defined(MODULAR)
1283 /*
1284  * sysctl management routines
1285  * You can set the address of an interface through:
1286  * net.link.tap.tap<number>
1287  *
1288  * Note the consistent use of tap_log in order to use
1289  * sysctl_teardown at unload time.
1290  *
1291  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1292  * blocks register a function in a special section of the kernel
1293  * (called a link set) which is used at init_sysctl() time to cycle
1294  * through all those functions to create the kernel's sysctl tree.
1295  *
1296  * It is not possible to use link sets in a module, so the
1297  * easiest is to simply call our own setup routine at load time.
1298  *
1299  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1300  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1301  * whole kernel sysctl tree is built, it is not possible to add any
1302  * permanent node.
1303  *
1304  * It should be noted that we're not saving the sysctlnode pointer
1305  * we are returned when creating the "tap" node.  That structure
1306  * cannot be trusted once out of the calling function, as it might
1307  * get reused.  So we just save the MIB number, and always give the
1308  * full path starting from the root for later calls to sysctl_createv
1309  * and sysctl_destroyv.
1310  */
1311 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1312 {
1313 	const struct sysctlnode *node;
1314 	int error = 0;
1315 
1316 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1317 	    CTLFLAG_PERMANENT,
1318 	    CTLTYPE_NODE, "net", NULL,
1319 	    NULL, 0, NULL, 0,
1320 	    CTL_NET, CTL_EOL)) != 0)
1321 		return;
1322 
1323 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1324 	    CTLFLAG_PERMANENT,
1325 	    CTLTYPE_NODE, "link", NULL,
1326 	    NULL, 0, NULL, 0,
1327 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1328 		return;
1329 
1330 	/*
1331 	 * The first four parameters of sysctl_createv are for management.
1332 	 *
1333 	 * The four that follows, here starting with a '0' for the flags,
1334 	 * describe the node.
1335 	 *
1336 	 * The next series of four set its value, through various possible
1337 	 * means.
1338 	 *
1339 	 * Last but not least, the path to the node is described.  That path
1340 	 * is relative to the given root (third argument).  Here we're
1341 	 * starting from the root.
1342 	 */
1343 	if ((error = sysctl_createv(clog, 0, NULL, &node,
1344 	    CTLFLAG_PERMANENT,
1345 	    CTLTYPE_NODE, "tap", NULL,
1346 	    NULL, 0, NULL, 0,
1347 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1348 		return;
1349 	tap_node = node->sysctl_num;
1350 }
1351 
1352 /*
1353  * The helper functions make Andrew Brown's interface really
1354  * shine.  It makes possible to create value on the fly whether
1355  * the sysctl value is read or written.
1356  *
1357  * As shown as an example in the man page, the first step is to
1358  * create a copy of the node to have sysctl_lookup work on it.
1359  *
1360  * Here, we have more work to do than just a copy, since we have
1361  * to create the string.  The first step is to collect the actual
1362  * value of the node, which is a convenient pointer to the softc
1363  * of the interface.  From there we create the string and use it
1364  * as the value, but only for the *copy* of the node.
1365  *
1366  * Then we let sysctl_lookup do the magic, which consists in
1367  * setting oldp and newp as required by the operation.  When the
1368  * value is read, that means that the string will be copied to
1369  * the user, and when it is written, the new value will be copied
1370  * over in the addr array.
1371  *
1372  * If newp is NULL, the user was reading the value, so we don't
1373  * have anything else to do.  If a new value was written, we
1374  * have to check it.
1375  *
1376  * If it is incorrect, we can return an error and leave 'node' as
1377  * it is:  since it is a copy of the actual node, the change will
1378  * be forgotten.
1379  *
1380  * Upon a correct input, we commit the change to the ifnet
1381  * structure of our interface.
1382  */
1383 static int
1384 tap_sysctl_handler(SYSCTLFN_ARGS)
1385 {
1386 	struct sysctlnode node;
1387 	struct tap_softc *sc;
1388 	struct ifnet *ifp;
1389 	int error;
1390 	size_t len;
1391 	char addr[3 * ETHER_ADDR_LEN];
1392 	uint8_t enaddr[ETHER_ADDR_LEN];
1393 
1394 	node = *rnode;
1395 	sc = node.sysctl_data;
1396 	ifp = &sc->sc_ec.ec_if;
1397 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1398 	node.sysctl_data = addr;
1399 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1400 	if (error || newp == NULL)
1401 		return (error);
1402 
1403 	len = strlen(addr);
1404 	if (len < 11 || len > 17)
1405 		return (EINVAL);
1406 
1407 	/* Commit change */
1408 	if (ether_nonstatic_aton(enaddr, addr) != 0)
1409 		return (EINVAL);
1410 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1411 	return (error);
1412 }
1413 #endif
1414