xref: /netbsd-src/sys/net/if_tap.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$NetBSD: if_tap.c,v 1.55 2009/04/04 10:12:51 ad Exp $	*/
2 
3 /*
4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5  *  All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *  1. Redistributions of source code must retain the above copyright
11  *     notice, this list of conditions and the following disclaimer.
12  *  2. Redistributions in binary form must reproduce the above copyright
13  *     notice, this list of conditions and the following disclaimer in the
14  *     documentation and/or other materials provided with the distribution.
15  *
16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  *  POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
31  * device to the system, but can also be accessed by userland through a
32  * character device interface, which allows reading and injecting frames.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.55 2009/04/04 10:12:51 ad Exp $");
37 
38 #if defined(_KERNEL_OPT)
39 #include "bpfilter.h"
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/device.h>
50 #include <sys/file.h>
51 #include <sys/filedesc.h>
52 #include <sys/ksyms.h>
53 #include <sys/poll.h>
54 #include <sys/proc.h>
55 #include <sys/select.h>
56 #include <sys/sockio.h>
57 #if defined(COMPAT_40) || defined(MODULAR)
58 #include <sys/sysctl.h>
59 #endif
60 #include <sys/kauth.h>
61 #include <sys/mutex.h>
62 #include <sys/simplelock.h>
63 #include <sys/intr.h>
64 
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_ether.h>
68 #include <net/if_media.h>
69 #include <net/if_tap.h>
70 #if NBPFILTER > 0
71 #include <net/bpf.h>
72 #endif
73 
74 #include <compat/sys/sockio.h>
75 
76 #if defined(COMPAT_40) || defined(MODULAR)
77 /*
78  * sysctl node management
79  *
80  * It's not really possible to use a SYSCTL_SETUP block with
81  * current module implementation, so it is easier to just define
82  * our own function.
83  *
84  * The handler function is a "helper" in Andrew Brown's sysctl
85  * framework terminology.  It is used as a gateway for sysctl
86  * requests over the nodes.
87  *
88  * tap_log allows the module to log creations of nodes and
89  * destroy them all at once using sysctl_teardown.
90  */
91 static int tap_node;
92 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
93 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
94 #endif
95 
96 /*
97  * Since we're an Ethernet device, we need the 3 following
98  * components: a leading struct device, a struct ethercom,
99  * and also a struct ifmedia since we don't attach a PHY to
100  * ourselves. We could emulate one, but there's no real
101  * point.
102  */
103 
104 struct tap_softc {
105 	device_t	sc_dev;
106 	struct ifmedia	sc_im;
107 	struct ethercom	sc_ec;
108 	int		sc_flags;
109 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
110 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
111 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
112 #define TAP_GOING	0x00000008	/* interface is being destroyed */
113 	struct selinfo	sc_rsel;
114 	pid_t		sc_pgid; /* For async. IO */
115 	kmutex_t	sc_rdlock;
116 	struct simplelock	sc_kqlock;
117 	void		*sc_sih;
118 };
119 
120 /* autoconf(9) glue */
121 
122 void	tapattach(int);
123 
124 static int	tap_match(device_t, cfdata_t, void *);
125 static void	tap_attach(device_t, device_t, void *);
126 static int	tap_detach(device_t, int);
127 
128 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
129     tap_match, tap_attach, tap_detach, NULL);
130 extern struct cfdriver tap_cd;
131 
132 /* Real device access routines */
133 static int	tap_dev_close(struct tap_softc *);
134 static int	tap_dev_read(int, struct uio *, int);
135 static int	tap_dev_write(int, struct uio *, int);
136 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
137 static int	tap_dev_poll(int, int, struct lwp *);
138 static int	tap_dev_kqfilter(int, struct knote *);
139 
140 /* Fileops access routines */
141 static int	tap_fops_close(file_t *);
142 static int	tap_fops_read(file_t *, off_t *, struct uio *,
143     kauth_cred_t, int);
144 static int	tap_fops_write(file_t *, off_t *, struct uio *,
145     kauth_cred_t, int);
146 static int	tap_fops_ioctl(file_t *, u_long, void *);
147 static int	tap_fops_poll(file_t *, int);
148 static int	tap_fops_kqfilter(file_t *, struct knote *);
149 
150 static const struct fileops tap_fileops = {
151 	.fo_read = tap_fops_read,
152 	.fo_write = tap_fops_write,
153 	.fo_ioctl = tap_fops_ioctl,
154 	.fo_fcntl = fnullop_fcntl,
155 	.fo_poll = tap_fops_poll,
156 	.fo_stat = fbadop_stat,
157 	.fo_close = tap_fops_close,
158 	.fo_kqfilter = tap_fops_kqfilter,
159 	.fo_drain = fnullop_drain,
160 };
161 
162 /* Helper for cloning open() */
163 static int	tap_dev_cloner(struct lwp *);
164 
165 /* Character device routines */
166 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
167 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
168 static int	tap_cdev_read(dev_t, struct uio *, int);
169 static int	tap_cdev_write(dev_t, struct uio *, int);
170 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
171 static int	tap_cdev_poll(dev_t, int, struct lwp *);
172 static int	tap_cdev_kqfilter(dev_t, struct knote *);
173 
174 const struct cdevsw tap_cdevsw = {
175 	tap_cdev_open, tap_cdev_close,
176 	tap_cdev_read, tap_cdev_write,
177 	tap_cdev_ioctl, nostop, notty,
178 	tap_cdev_poll, nommap,
179 	tap_cdev_kqfilter,
180 	D_OTHER,
181 };
182 
183 #define TAP_CLONER	0xfffff		/* Maximal minor value */
184 
185 /* kqueue-related routines */
186 static void	tap_kqdetach(struct knote *);
187 static int	tap_kqread(struct knote *, long);
188 
189 /*
190  * Those are needed by the if_media interface.
191  */
192 
193 static int	tap_mediachange(struct ifnet *);
194 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
195 
196 /*
197  * Those are needed by the ifnet interface, and would typically be
198  * there for any network interface driver.
199  * Some other routines are optional: watchdog and drain.
200  */
201 
202 static void	tap_start(struct ifnet *);
203 static void	tap_stop(struct ifnet *, int);
204 static int	tap_init(struct ifnet *);
205 static int	tap_ioctl(struct ifnet *, u_long, void *);
206 
207 /* Internal functions */
208 #if defined(COMPAT_40) || defined(MODULAR)
209 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
210 #endif
211 static void	tap_softintr(void *);
212 
213 /*
214  * tap is a clonable interface, although it is highly unrealistic for
215  * an Ethernet device.
216  *
217  * Here are the bits needed for a clonable interface.
218  */
219 static int	tap_clone_create(struct if_clone *, int);
220 static int	tap_clone_destroy(struct ifnet *);
221 
222 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
223 					tap_clone_create,
224 					tap_clone_destroy);
225 
226 /* Helper functionis shared by the two cloning code paths */
227 static struct tap_softc *	tap_clone_creator(int);
228 int	tap_clone_destroyer(device_t);
229 
230 void
231 tapattach(int n)
232 {
233 	int error;
234 
235 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
236 	if (error) {
237 		aprint_error("%s: unable to register cfattach\n",
238 		    tap_cd.cd_name);
239 		(void)config_cfdriver_detach(&tap_cd);
240 		return;
241 	}
242 
243 	if_clone_attach(&tap_cloners);
244 }
245 
246 /* Pretty much useless for a pseudo-device */
247 static int
248 tap_match(device_t parent, cfdata_t cfdata, void *arg)
249 {
250 
251 	return (1);
252 }
253 
254 void
255 tap_attach(device_t parent, device_t self, void *aux)
256 {
257 	struct tap_softc *sc = device_private(self);
258 	struct ifnet *ifp;
259 #if defined(COMPAT_40) || defined(MODULAR)
260 	const struct sysctlnode *node;
261 	int error;
262 #endif
263 	uint8_t enaddr[ETHER_ADDR_LEN] =
264 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
265 	char enaddrstr[3 * ETHER_ADDR_LEN];
266 	struct timeval tv;
267 	uint32_t ui;
268 
269 	sc->sc_dev = self;
270 	sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
271 
272 	if (!pmf_device_register(self, NULL, NULL))
273 		aprint_error_dev(self, "couldn't establish power handler\n");
274 
275 	/*
276 	 * In order to obtain unique initial Ethernet address on a host,
277 	 * do some randomisation using the current uptime.  It's not meant
278 	 * for anything but avoiding hard-coding an address.
279 	 */
280 	getmicrouptime(&tv);
281 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
282 	memcpy(enaddr+3, (uint8_t *)&ui, 3);
283 
284 	aprint_verbose_dev(self, "Ethernet address %s\n",
285 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
286 
287 	/*
288 	 * Why 1000baseT? Why not? You can add more.
289 	 *
290 	 * Note that there are 3 steps: init, one or several additions to
291 	 * list of supported media, and in the end, the selection of one
292 	 * of them.
293 	 */
294 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
295 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
296 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
297 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
298 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
299 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
300 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
301 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
302 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
303 
304 	/*
305 	 * One should note that an interface must do multicast in order
306 	 * to support IPv6.
307 	 */
308 	ifp = &sc->sc_ec.ec_if;
309 	strcpy(ifp->if_xname, device_xname(self));
310 	ifp->if_softc	= sc;
311 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
312 	ifp->if_ioctl	= tap_ioctl;
313 	ifp->if_start	= tap_start;
314 	ifp->if_stop	= tap_stop;
315 	ifp->if_init	= tap_init;
316 	IFQ_SET_READY(&ifp->if_snd);
317 
318 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
319 
320 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
321 	 * being common to all network interface drivers. */
322 	if_attach(ifp);
323 	ether_ifattach(ifp, enaddr);
324 
325 	sc->sc_flags = 0;
326 
327 #if defined(COMPAT_40) || defined(MODULAR)
328 	/*
329 	 * Add a sysctl node for that interface.
330 	 *
331 	 * The pointer transmitted is not a string, but instead a pointer to
332 	 * the softc structure, which we can use to build the string value on
333 	 * the fly in the helper function of the node.  See the comments for
334 	 * tap_sysctl_handler for details.
335 	 *
336 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
337 	 * component.  However, we can allocate a number ourselves, as we are
338 	 * the only consumer of the net.link.<iface> node.  In this case, the
339 	 * unit number is conveniently used to number the node.  CTL_CREATE
340 	 * would just work, too.
341 	 */
342 	if ((error = sysctl_createv(NULL, 0, NULL,
343 	    &node, CTLFLAG_READWRITE,
344 	    CTLTYPE_STRING, device_xname(self), NULL,
345 	    tap_sysctl_handler, 0, sc, 18,
346 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
347 	    CTL_EOL)) != 0)
348 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
349 		    error);
350 #endif
351 
352 	/*
353 	 * Initialize the two locks for the device.
354 	 *
355 	 * We need a lock here because even though the tap device can be
356 	 * opened only once, the file descriptor might be passed to another
357 	 * process, say a fork(2)ed child.
358 	 *
359 	 * The Giant saves us from most of the hassle, but since the read
360 	 * operation can sleep, we don't want two processes to wake up at
361 	 * the same moment and both try and dequeue a single packet.
362 	 *
363 	 * The queue for event listeners (used by kqueue(9), see below) has
364 	 * to be protected, too, but we don't need the same level of
365 	 * complexity for that lock, so a simple spinning lock is fine.
366 	 */
367 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
368 	simple_lock_init(&sc->sc_kqlock);
369 
370 	selinit(&sc->sc_rsel);
371 }
372 
373 /*
374  * When detaching, we do the inverse of what is done in the attach
375  * routine, in reversed order.
376  */
377 static int
378 tap_detach(device_t self, int flags)
379 {
380 	struct tap_softc *sc = device_private(self);
381 	struct ifnet *ifp = &sc->sc_ec.ec_if;
382 #if defined(COMPAT_40) || defined(MODULAR)
383 	int error;
384 #endif
385 	int s;
386 
387 	sc->sc_flags |= TAP_GOING;
388 	s = splnet();
389 	tap_stop(ifp, 1);
390 	if_down(ifp);
391 	splx(s);
392 
393 	softint_disestablish(sc->sc_sih);
394 
395 #if defined(COMPAT_40) || defined(MODULAR)
396 	/*
397 	 * Destroying a single leaf is a very straightforward operation using
398 	 * sysctl_destroyv.  One should be sure to always end the path with
399 	 * CTL_EOL.
400 	 */
401 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
402 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
403 		aprint_error_dev(self,
404 		    "sysctl_destroyv returned %d, ignoring\n", error);
405 #endif
406 	ether_ifdetach(ifp);
407 	if_detach(ifp);
408 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
409 	seldestroy(&sc->sc_rsel);
410 	mutex_destroy(&sc->sc_rdlock);
411 
412 	pmf_device_deregister(self);
413 
414 	return (0);
415 }
416 
417 /*
418  * This function is called by the ifmedia layer to notify the driver
419  * that the user requested a media change.  A real driver would
420  * reconfigure the hardware.
421  */
422 static int
423 tap_mediachange(struct ifnet *ifp)
424 {
425 	return (0);
426 }
427 
428 /*
429  * Here the user asks for the currently used media.
430  */
431 static void
432 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
433 {
434 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
435 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
436 }
437 
438 /*
439  * This is the function where we SEND packets.
440  *
441  * There is no 'receive' equivalent.  A typical driver will get
442  * interrupts from the hardware, and from there will inject new packets
443  * into the network stack.
444  *
445  * Once handled, a packet must be freed.  A real driver might not be able
446  * to fit all the pending packets into the hardware, and is allowed to
447  * return before having sent all the packets.  It should then use the
448  * if_flags flag IFF_OACTIVE to notify the upper layer.
449  *
450  * There are also other flags one should check, such as IFF_PAUSE.
451  *
452  * It is our duty to make packets available to BPF listeners.
453  *
454  * You should be aware that this function is called by the Ethernet layer
455  * at splnet().
456  *
457  * When the device is opened, we have to pass the packet(s) to the
458  * userland.  For that we stay in OACTIVE mode while the userland gets
459  * the packets, and we send a signal to the processes waiting to read.
460  *
461  * wakeup(sc) is the counterpart to the tsleep call in
462  * tap_dev_read, while selnotify() is used for kevent(2) and
463  * poll(2) (which includes select(2)) listeners.
464  */
465 static void
466 tap_start(struct ifnet *ifp)
467 {
468 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
469 	struct mbuf *m0;
470 
471 	if ((sc->sc_flags & TAP_INUSE) == 0) {
472 		/* Simply drop packets */
473 		for(;;) {
474 			IFQ_DEQUEUE(&ifp->if_snd, m0);
475 			if (m0 == NULL)
476 				return;
477 
478 			ifp->if_opackets++;
479 #if NBPFILTER > 0
480 			if (ifp->if_bpf)
481 				bpf_mtap(ifp->if_bpf, m0);
482 #endif
483 
484 			m_freem(m0);
485 		}
486 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
487 		ifp->if_flags |= IFF_OACTIVE;
488 		wakeup(sc);
489 		selnotify(&sc->sc_rsel, 0, 1);
490 		if (sc->sc_flags & TAP_ASYNCIO)
491 			softint_schedule(sc->sc_sih);
492 	}
493 }
494 
495 static void
496 tap_softintr(void *cookie)
497 {
498 	struct tap_softc *sc;
499 	struct ifnet *ifp;
500 	int a, b;
501 
502 	sc = cookie;
503 
504 	if (sc->sc_flags & TAP_ASYNCIO) {
505 		ifp = &sc->sc_ec.ec_if;
506 		if (ifp->if_flags & IFF_RUNNING) {
507 			a = POLL_IN;
508 			b = POLLIN|POLLRDNORM;
509 		} else {
510 			a = POLL_HUP;
511 			b = 0;
512 		}
513 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
514 	}
515 }
516 
517 /*
518  * A typical driver will only contain the following handlers for
519  * ioctl calls, except SIOCSIFPHYADDR.
520  * The latter is a hack I used to set the Ethernet address of the
521  * faked device.
522  *
523  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
524  * called under splnet().
525  */
526 static int
527 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
528 {
529 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
530 	struct ifreq *ifr = (struct ifreq *)data;
531 	int s, error;
532 
533 	s = splnet();
534 
535 	switch (cmd) {
536 #ifdef OSIOCSIFMEDIA
537 	case OSIOCSIFMEDIA:
538 #endif
539 	case SIOCSIFMEDIA:
540 	case SIOCGIFMEDIA:
541 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
542 		break;
543 #if defined(COMPAT_40) || defined(MODULAR)
544 	case SIOCSIFPHYADDR:
545 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
546 		break;
547 #endif
548 	default:
549 		error = ether_ioctl(ifp, cmd, data);
550 		if (error == ENETRESET)
551 			error = 0;
552 		break;
553 	}
554 
555 	splx(s);
556 
557 	return (error);
558 }
559 
560 #if defined(COMPAT_40) || defined(MODULAR)
561 /*
562  * Helper function to set Ethernet address.  This has been replaced by
563  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
564  */
565 static int
566 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
567 {
568 	const struct sockaddr *sa = &ifra->ifra_addr;
569 
570 	if (sa->sa_family != AF_LINK)
571 		return (EINVAL);
572 
573 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
574 
575 	return (0);
576 }
577 #endif
578 
579 /*
580  * _init() would typically be called when an interface goes up,
581  * meaning it should configure itself into the state in which it
582  * can send packets.
583  */
584 static int
585 tap_init(struct ifnet *ifp)
586 {
587 	ifp->if_flags |= IFF_RUNNING;
588 
589 	tap_start(ifp);
590 
591 	return (0);
592 }
593 
594 /*
595  * _stop() is called when an interface goes down.  It is our
596  * responsability to validate that state by clearing the
597  * IFF_RUNNING flag.
598  *
599  * We have to wake up all the sleeping processes to have the pending
600  * read requests cancelled.
601  */
602 static void
603 tap_stop(struct ifnet *ifp, int disable)
604 {
605 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
606 
607 	ifp->if_flags &= ~IFF_RUNNING;
608 	wakeup(sc);
609 	selnotify(&sc->sc_rsel, 0, 1);
610 	if (sc->sc_flags & TAP_ASYNCIO)
611 		softint_schedule(sc->sc_sih);
612 }
613 
614 /*
615  * The 'create' command of ifconfig can be used to create
616  * any numbered instance of a given device.  Thus we have to
617  * make sure we have enough room in cd_devs to create the
618  * user-specified instance.  config_attach_pseudo will do this
619  * for us.
620  */
621 static int
622 tap_clone_create(struct if_clone *ifc, int unit)
623 {
624 	if (tap_clone_creator(unit) == NULL) {
625 		aprint_error("%s%d: unable to attach an instance\n",
626                     tap_cd.cd_name, unit);
627 		return (ENXIO);
628 	}
629 
630 	return (0);
631 }
632 
633 /*
634  * tap(4) can be cloned by two ways:
635  *   using 'ifconfig tap0 create', which will use the network
636  *     interface cloning API, and call tap_clone_create above.
637  *   opening the cloning device node, whose minor number is TAP_CLONER.
638  *     See below for an explanation on how this part work.
639  */
640 static struct tap_softc *
641 tap_clone_creator(int unit)
642 {
643 	struct cfdata *cf;
644 
645 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
646 	cf->cf_name = tap_cd.cd_name;
647 	cf->cf_atname = tap_ca.ca_name;
648 	if (unit == -1) {
649 		/* let autoconf find the first free one */
650 		cf->cf_unit = 0;
651 		cf->cf_fstate = FSTATE_STAR;
652 	} else {
653 		cf->cf_unit = unit;
654 		cf->cf_fstate = FSTATE_FOUND;
655 	}
656 
657 	return device_private(config_attach_pseudo(cf));
658 }
659 
660 /*
661  * The clean design of if_clone and autoconf(9) makes that part
662  * really straightforward.  The second argument of config_detach
663  * means neither QUIET nor FORCED.
664  */
665 static int
666 tap_clone_destroy(struct ifnet *ifp)
667 {
668 	struct tap_softc *sc = ifp->if_softc;
669 
670 	return tap_clone_destroyer(sc->sc_dev);
671 }
672 
673 int
674 tap_clone_destroyer(device_t dev)
675 {
676 	cfdata_t cf = device_cfdata(dev);
677 	int error;
678 
679 	if ((error = config_detach(dev, 0)) != 0)
680 		aprint_error_dev(dev, "unable to detach instance\n");
681 	free(cf, M_DEVBUF);
682 
683 	return (error);
684 }
685 
686 /*
687  * tap(4) is a bit of an hybrid device.  It can be used in two different
688  * ways:
689  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
690  *  2. open /dev/tap, get a new interface created and read/write off it.
691  *     That interface is destroyed when the process that had it created exits.
692  *
693  * The first way is managed by the cdevsw structure, and you access interfaces
694  * through a (major, minor) mapping:  tap4 is obtained by the minor number
695  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
696  *
697  * The second way is the so-called "cloning" device.  It's a special minor
698  * number (chosen as the maximal number, to allow as much tap devices as
699  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
700  * call ends in tap_cdev_open.  The actual place where it is handled is
701  * tap_dev_cloner.
702  *
703  * An tap device cannot be opened more than once at a time, so the cdevsw
704  * part of open() does nothing but noting that the interface is being used and
705  * hence ready to actually handle packets.
706  */
707 
708 static int
709 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
710 {
711 	struct tap_softc *sc;
712 
713 	if (minor(dev) == TAP_CLONER)
714 		return tap_dev_cloner(l);
715 
716 	sc = device_lookup_private(&tap_cd, minor(dev));
717 	if (sc == NULL)
718 		return (ENXIO);
719 
720 	/* The device can only be opened once */
721 	if (sc->sc_flags & TAP_INUSE)
722 		return (EBUSY);
723 	sc->sc_flags |= TAP_INUSE;
724 	return (0);
725 }
726 
727 /*
728  * There are several kinds of cloning devices, and the most simple is the one
729  * tap(4) uses.  What it does is change the file descriptor with a new one,
730  * with its own fileops structure (which maps to the various read, write,
731  * ioctl functions).  It starts allocating a new file descriptor with falloc,
732  * then actually creates the new tap devices.
733  *
734  * Once those two steps are successful, we can re-wire the existing file
735  * descriptor to its new self.  This is done with fdclone():  it fills the fp
736  * structure as needed (notably f_data gets filled with the fifth parameter
737  * passed, the unit of the tap device which will allows us identifying the
738  * device later), and returns EMOVEFD.
739  *
740  * That magic value is interpreted by sys_open() which then replaces the
741  * current file descriptor by the new one (through a magic member of struct
742  * lwp, l_dupfd).
743  *
744  * The tap device is flagged as being busy since it otherwise could be
745  * externally accessed through the corresponding device node with the cdevsw
746  * interface.
747  */
748 
749 static int
750 tap_dev_cloner(struct lwp *l)
751 {
752 	struct tap_softc *sc;
753 	file_t *fp;
754 	int error, fd;
755 
756 	if ((error = fd_allocfile(&fp, &fd)) != 0)
757 		return (error);
758 
759 	if ((sc = tap_clone_creator(-1)) == NULL) {
760 		fd_abort(curproc, fp, fd);
761 		return (ENXIO);
762 	}
763 
764 	sc->sc_flags |= TAP_INUSE;
765 
766 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
767 	    (void *)(intptr_t)device_unit(sc->sc_dev));
768 }
769 
770 /*
771  * While all other operations (read, write, ioctl, poll and kqfilter) are
772  * really the same whether we are in cdevsw or fileops mode, the close()
773  * function is slightly different in the two cases.
774  *
775  * As for the other, the core of it is shared in tap_dev_close.  What
776  * it does is sufficient for the cdevsw interface, but the cloning interface
777  * needs another thing:  the interface is destroyed when the processes that
778  * created it closes it.
779  */
780 static int
781 tap_cdev_close(dev_t dev, int flags, int fmt,
782     struct lwp *l)
783 {
784 	struct tap_softc *sc =
785 	    device_lookup_private(&tap_cd, minor(dev));
786 
787 	if (sc == NULL)
788 		return (ENXIO);
789 
790 	return tap_dev_close(sc);
791 }
792 
793 /*
794  * It might happen that the administrator used ifconfig to externally destroy
795  * the interface.  In that case, tap_fops_close will be called while
796  * tap_detach is already happening.  If we called it again from here, we
797  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
798  */
799 static int
800 tap_fops_close(file_t *fp)
801 {
802 	int unit = (intptr_t)fp->f_data;
803 	struct tap_softc *sc;
804 	int error;
805 
806 	sc = device_lookup_private(&tap_cd, unit);
807 	if (sc == NULL)
808 		return (ENXIO);
809 
810 	/* tap_dev_close currently always succeeds, but it might not
811 	 * always be the case. */
812 	KERNEL_LOCK(1, NULL);
813 	if ((error = tap_dev_close(sc)) != 0) {
814 		KERNEL_UNLOCK_ONE(NULL);
815 		return (error);
816 	}
817 
818 	/* Destroy the device now that it is no longer useful,
819 	 * unless it's already being destroyed. */
820 	if ((sc->sc_flags & TAP_GOING) != 0) {
821 		KERNEL_UNLOCK_ONE(NULL);
822 		return (0);
823 	}
824 
825 	error = tap_clone_destroyer(sc->sc_dev);
826 	KERNEL_UNLOCK_ONE(NULL);
827 	return error;
828 }
829 
830 static int
831 tap_dev_close(struct tap_softc *sc)
832 {
833 	struct ifnet *ifp;
834 	int s;
835 
836 	s = splnet();
837 	/* Let tap_start handle packets again */
838 	ifp = &sc->sc_ec.ec_if;
839 	ifp->if_flags &= ~IFF_OACTIVE;
840 
841 	/* Purge output queue */
842 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
843 		struct mbuf *m;
844 
845 		for (;;) {
846 			IFQ_DEQUEUE(&ifp->if_snd, m);
847 			if (m == NULL)
848 				break;
849 
850 			ifp->if_opackets++;
851 #if NBPFILTER > 0
852 			if (ifp->if_bpf)
853 				bpf_mtap(ifp->if_bpf, m);
854 #endif
855 		}
856 	}
857 	splx(s);
858 
859 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
860 
861 	return (0);
862 }
863 
864 static int
865 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
866 {
867 	return tap_dev_read(minor(dev), uio, flags);
868 }
869 
870 static int
871 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
872     kauth_cred_t cred, int flags)
873 {
874 	int error;
875 
876 	KERNEL_LOCK(1, NULL);
877 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
878 	KERNEL_UNLOCK_ONE(NULL);
879 	return error;
880 }
881 
882 static int
883 tap_dev_read(int unit, struct uio *uio, int flags)
884 {
885 	struct tap_softc *sc =
886 	    device_lookup_private(&tap_cd, unit);
887 	struct ifnet *ifp;
888 	struct mbuf *m, *n;
889 	int error = 0, s;
890 
891 	if (sc == NULL)
892 		return (ENXIO);
893 
894 	ifp = &sc->sc_ec.ec_if;
895 	if ((ifp->if_flags & IFF_UP) == 0)
896 		return (EHOSTDOWN);
897 
898 	/*
899 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
900 	 */
901 	if ((sc->sc_flags & TAP_NBIO) != 0) {
902 		if (!mutex_tryenter(&sc->sc_rdlock))
903 			return (EWOULDBLOCK);
904 	} else {
905 		mutex_enter(&sc->sc_rdlock);
906 	}
907 
908 	s = splnet();
909 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
910 		ifp->if_flags &= ~IFF_OACTIVE;
911 		/*
912 		 * We must release the lock before sleeping, and re-acquire it
913 		 * after.
914 		 */
915 		mutex_exit(&sc->sc_rdlock);
916 		if (sc->sc_flags & TAP_NBIO)
917 			error = EWOULDBLOCK;
918 		else
919 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
920 		splx(s);
921 
922 		if (error != 0)
923 			return (error);
924 		/* The device might have been downed */
925 		if ((ifp->if_flags & IFF_UP) == 0)
926 			return (EHOSTDOWN);
927 		if ((sc->sc_flags & TAP_NBIO)) {
928 			if (!mutex_tryenter(&sc->sc_rdlock))
929 				return (EWOULDBLOCK);
930 		} else {
931 			mutex_enter(&sc->sc_rdlock);
932 		}
933 		s = splnet();
934 	}
935 
936 	IFQ_DEQUEUE(&ifp->if_snd, m);
937 	ifp->if_flags &= ~IFF_OACTIVE;
938 	splx(s);
939 	if (m == NULL) {
940 		error = 0;
941 		goto out;
942 	}
943 
944 	ifp->if_opackets++;
945 #if NBPFILTER > 0
946 	if (ifp->if_bpf)
947 		bpf_mtap(ifp->if_bpf, m);
948 #endif
949 
950 	/*
951 	 * One read is one packet.
952 	 */
953 	do {
954 		error = uiomove(mtod(m, void *),
955 		    min(m->m_len, uio->uio_resid), uio);
956 		MFREE(m, n);
957 		m = n;
958 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
959 
960 	if (m != NULL)
961 		m_freem(m);
962 
963 out:
964 	mutex_exit(&sc->sc_rdlock);
965 	return (error);
966 }
967 
968 static int
969 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
970 {
971 	return tap_dev_write(minor(dev), uio, flags);
972 }
973 
974 static int
975 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
976     kauth_cred_t cred, int flags)
977 {
978 	int error;
979 
980 	KERNEL_LOCK(1, NULL);
981 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
982 	KERNEL_UNLOCK_ONE(NULL);
983 	return error;
984 }
985 
986 static int
987 tap_dev_write(int unit, struct uio *uio, int flags)
988 {
989 	struct tap_softc *sc =
990 	    device_lookup_private(&tap_cd, unit);
991 	struct ifnet *ifp;
992 	struct mbuf *m, **mp;
993 	int error = 0;
994 	int s;
995 
996 	if (sc == NULL)
997 		return (ENXIO);
998 
999 	ifp = &sc->sc_ec.ec_if;
1000 
1001 	/* One write, one packet, that's the rule */
1002 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1003 	if (m == NULL) {
1004 		ifp->if_ierrors++;
1005 		return (ENOBUFS);
1006 	}
1007 	m->m_pkthdr.len = uio->uio_resid;
1008 
1009 	mp = &m;
1010 	while (error == 0 && uio->uio_resid > 0) {
1011 		if (*mp != m) {
1012 			MGET(*mp, M_DONTWAIT, MT_DATA);
1013 			if (*mp == NULL) {
1014 				error = ENOBUFS;
1015 				break;
1016 			}
1017 		}
1018 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
1019 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1020 		mp = &(*mp)->m_next;
1021 	}
1022 	if (error) {
1023 		ifp->if_ierrors++;
1024 		m_freem(m);
1025 		return (error);
1026 	}
1027 
1028 	ifp->if_ipackets++;
1029 	m->m_pkthdr.rcvif = ifp;
1030 
1031 #if NBPFILTER > 0
1032 	if (ifp->if_bpf)
1033 		bpf_mtap(ifp->if_bpf, m);
1034 #endif
1035 	s =splnet();
1036 	(*ifp->if_input)(ifp, m);
1037 	splx(s);
1038 
1039 	return (0);
1040 }
1041 
1042 static int
1043 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1044     struct lwp *l)
1045 {
1046 	return tap_dev_ioctl(minor(dev), cmd, data, l);
1047 }
1048 
1049 static int
1050 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1051 {
1052 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1053 }
1054 
1055 static int
1056 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1057 {
1058 	struct tap_softc *sc =
1059 	    device_lookup_private(&tap_cd, unit);
1060 	int error = 0;
1061 
1062 	if (sc == NULL)
1063 		return (ENXIO);
1064 
1065 	switch (cmd) {
1066 	case FIONREAD:
1067 		{
1068 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1069 			struct mbuf *m;
1070 			int s;
1071 
1072 			s = splnet();
1073 			IFQ_POLL(&ifp->if_snd, m);
1074 
1075 			if (m == NULL)
1076 				*(int *)data = 0;
1077 			else
1078 				*(int *)data = m->m_pkthdr.len;
1079 			splx(s);
1080 		} break;
1081 	case TIOCSPGRP:
1082 	case FIOSETOWN:
1083 		error = fsetown(&sc->sc_pgid, cmd, data);
1084 		break;
1085 	case TIOCGPGRP:
1086 	case FIOGETOWN:
1087 		error = fgetown(sc->sc_pgid, cmd, data);
1088 		break;
1089 	case FIOASYNC:
1090 		if (*(int *)data)
1091 			sc->sc_flags |= TAP_ASYNCIO;
1092 		else
1093 			sc->sc_flags &= ~TAP_ASYNCIO;
1094 		break;
1095 	case FIONBIO:
1096 		if (*(int *)data)
1097 			sc->sc_flags |= TAP_NBIO;
1098 		else
1099 			sc->sc_flags &= ~TAP_NBIO;
1100 		break;
1101 #ifdef OTAPGIFNAME
1102 	case OTAPGIFNAME:
1103 #endif
1104 	case TAPGIFNAME:
1105 		{
1106 			struct ifreq *ifr = (struct ifreq *)data;
1107 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1108 
1109 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1110 		} break;
1111 	default:
1112 		error = ENOTTY;
1113 		break;
1114 	}
1115 
1116 	return (0);
1117 }
1118 
1119 static int
1120 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1121 {
1122 	return tap_dev_poll(minor(dev), events, l);
1123 }
1124 
1125 static int
1126 tap_fops_poll(file_t *fp, int events)
1127 {
1128 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1129 }
1130 
1131 static int
1132 tap_dev_poll(int unit, int events, struct lwp *l)
1133 {
1134 	struct tap_softc *sc =
1135 	    device_lookup_private(&tap_cd, unit);
1136 	int revents = 0;
1137 
1138 	if (sc == NULL)
1139 		return POLLERR;
1140 
1141 	if (events & (POLLIN|POLLRDNORM)) {
1142 		struct ifnet *ifp = &sc->sc_ec.ec_if;
1143 		struct mbuf *m;
1144 		int s;
1145 
1146 		s = splnet();
1147 		IFQ_POLL(&ifp->if_snd, m);
1148 		splx(s);
1149 
1150 		if (m != NULL)
1151 			revents |= events & (POLLIN|POLLRDNORM);
1152 		else {
1153 			simple_lock(&sc->sc_kqlock);
1154 			selrecord(l, &sc->sc_rsel);
1155 			simple_unlock(&sc->sc_kqlock);
1156 		}
1157 	}
1158 	revents |= events & (POLLOUT|POLLWRNORM);
1159 
1160 	return (revents);
1161 }
1162 
1163 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1164 	tap_kqread };
1165 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1166 	filt_seltrue };
1167 
1168 static int
1169 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1170 {
1171 	return tap_dev_kqfilter(minor(dev), kn);
1172 }
1173 
1174 static int
1175 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1176 {
1177 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1178 }
1179 
1180 static int
1181 tap_dev_kqfilter(int unit, struct knote *kn)
1182 {
1183 	struct tap_softc *sc =
1184 	    device_lookup_private(&tap_cd, unit);
1185 
1186 	if (sc == NULL)
1187 		return (ENXIO);
1188 
1189 	KERNEL_LOCK(1, NULL);
1190 	switch(kn->kn_filter) {
1191 	case EVFILT_READ:
1192 		kn->kn_fop = &tap_read_filterops;
1193 		break;
1194 	case EVFILT_WRITE:
1195 		kn->kn_fop = &tap_seltrue_filterops;
1196 		break;
1197 	default:
1198 		KERNEL_UNLOCK_ONE(NULL);
1199 		return (EINVAL);
1200 	}
1201 
1202 	kn->kn_hook = sc;
1203 	simple_lock(&sc->sc_kqlock);
1204 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1205 	simple_unlock(&sc->sc_kqlock);
1206 	KERNEL_UNLOCK_ONE(NULL);
1207 	return (0);
1208 }
1209 
1210 static void
1211 tap_kqdetach(struct knote *kn)
1212 {
1213 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1214 
1215 	KERNEL_LOCK(1, NULL);
1216 	simple_lock(&sc->sc_kqlock);
1217 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1218 	simple_unlock(&sc->sc_kqlock);
1219 	KERNEL_UNLOCK_ONE(NULL);
1220 }
1221 
1222 static int
1223 tap_kqread(struct knote *kn, long hint)
1224 {
1225 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1226 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1227 	struct mbuf *m;
1228 	int s, rv;
1229 
1230 	KERNEL_LOCK(1, NULL);
1231 	s = splnet();
1232 	IFQ_POLL(&ifp->if_snd, m);
1233 
1234 	if (m == NULL)
1235 		kn->kn_data = 0;
1236 	else
1237 		kn->kn_data = m->m_pkthdr.len;
1238 	splx(s);
1239 	rv = (kn->kn_data != 0 ? 1 : 0);
1240 	KERNEL_UNLOCK_ONE(NULL);
1241 	return rv;
1242 }
1243 
1244 #if defined(COMPAT_40) || defined(MODULAR)
1245 /*
1246  * sysctl management routines
1247  * You can set the address of an interface through:
1248  * net.link.tap.tap<number>
1249  *
1250  * Note the consistent use of tap_log in order to use
1251  * sysctl_teardown at unload time.
1252  *
1253  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1254  * blocks register a function in a special section of the kernel
1255  * (called a link set) which is used at init_sysctl() time to cycle
1256  * through all those functions to create the kernel's sysctl tree.
1257  *
1258  * It is not possible to use link sets in a module, so the
1259  * easiest is to simply call our own setup routine at load time.
1260  *
1261  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1262  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1263  * whole kernel sysctl tree is built, it is not possible to add any
1264  * permanent node.
1265  *
1266  * It should be noted that we're not saving the sysctlnode pointer
1267  * we are returned when creating the "tap" node.  That structure
1268  * cannot be trusted once out of the calling function, as it might
1269  * get reused.  So we just save the MIB number, and always give the
1270  * full path starting from the root for later calls to sysctl_createv
1271  * and sysctl_destroyv.
1272  */
1273 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1274 {
1275 	const struct sysctlnode *node;
1276 	int error = 0;
1277 
1278 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1279 	    CTLFLAG_PERMANENT,
1280 	    CTLTYPE_NODE, "net", NULL,
1281 	    NULL, 0, NULL, 0,
1282 	    CTL_NET, CTL_EOL)) != 0)
1283 		return;
1284 
1285 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1286 	    CTLFLAG_PERMANENT,
1287 	    CTLTYPE_NODE, "link", NULL,
1288 	    NULL, 0, NULL, 0,
1289 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1290 		return;
1291 
1292 	/*
1293 	 * The first four parameters of sysctl_createv are for management.
1294 	 *
1295 	 * The four that follows, here starting with a '0' for the flags,
1296 	 * describe the node.
1297 	 *
1298 	 * The next series of four set its value, through various possible
1299 	 * means.
1300 	 *
1301 	 * Last but not least, the path to the node is described.  That path
1302 	 * is relative to the given root (third argument).  Here we're
1303 	 * starting from the root.
1304 	 */
1305 	if ((error = sysctl_createv(clog, 0, NULL, &node,
1306 	    CTLFLAG_PERMANENT,
1307 	    CTLTYPE_NODE, "tap", NULL,
1308 	    NULL, 0, NULL, 0,
1309 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1310 		return;
1311 	tap_node = node->sysctl_num;
1312 }
1313 
1314 /*
1315  * The helper functions make Andrew Brown's interface really
1316  * shine.  It makes possible to create value on the fly whether
1317  * the sysctl value is read or written.
1318  *
1319  * As shown as an example in the man page, the first step is to
1320  * create a copy of the node to have sysctl_lookup work on it.
1321  *
1322  * Here, we have more work to do than just a copy, since we have
1323  * to create the string.  The first step is to collect the actual
1324  * value of the node, which is a convenient pointer to the softc
1325  * of the interface.  From there we create the string and use it
1326  * as the value, but only for the *copy* of the node.
1327  *
1328  * Then we let sysctl_lookup do the magic, which consists in
1329  * setting oldp and newp as required by the operation.  When the
1330  * value is read, that means that the string will be copied to
1331  * the user, and when it is written, the new value will be copied
1332  * over in the addr array.
1333  *
1334  * If newp is NULL, the user was reading the value, so we don't
1335  * have anything else to do.  If a new value was written, we
1336  * have to check it.
1337  *
1338  * If it is incorrect, we can return an error and leave 'node' as
1339  * it is:  since it is a copy of the actual node, the change will
1340  * be forgotten.
1341  *
1342  * Upon a correct input, we commit the change to the ifnet
1343  * structure of our interface.
1344  */
1345 static int
1346 tap_sysctl_handler(SYSCTLFN_ARGS)
1347 {
1348 	struct sysctlnode node;
1349 	struct tap_softc *sc;
1350 	struct ifnet *ifp;
1351 	int error;
1352 	size_t len;
1353 	char addr[3 * ETHER_ADDR_LEN];
1354 	uint8_t enaddr[ETHER_ADDR_LEN];
1355 
1356 	node = *rnode;
1357 	sc = node.sysctl_data;
1358 	ifp = &sc->sc_ec.ec_if;
1359 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1360 	node.sysctl_data = addr;
1361 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1362 	if (error || newp == NULL)
1363 		return (error);
1364 
1365 	len = strlen(addr);
1366 	if (len < 11 || len > 17)
1367 		return (EINVAL);
1368 
1369 	/* Commit change */
1370 	if (ether_nonstatic_aton(enaddr, addr) != 0)
1371 		return (EINVAL);
1372 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1373 	return (error);
1374 }
1375 #endif
1376