xref: /netbsd-src/sys/net/if_tap.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: if_tap.c,v 1.117 2020/02/04 05:46:32 thorpej Exp $	*/
2 
3 /*
4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5  *  All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *  1. Redistributions of source code must retain the above copyright
11  *     notice, this list of conditions and the following disclaimer.
12  *  2. Redistributions in binary form must reproduce the above copyright
13  *     notice, this list of conditions and the following disclaimer in the
14  *     documentation and/or other materials provided with the distribution.
15  *
16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  *  POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
31  * device to the system, but can also be accessed by userland through a
32  * character device interface, which allows reading and injecting frames.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.117 2020/02/04 05:46:32 thorpej Exp $");
37 
38 #if defined(_KERNEL_OPT)
39 
40 #include "opt_modular.h"
41 #endif
42 
43 #include <sys/param.h>
44 #include <sys/atomic.h>
45 #include <sys/conf.h>
46 #include <sys/cprng.h>
47 #include <sys/device.h>
48 #include <sys/file.h>
49 #include <sys/filedesc.h>
50 #include <sys/intr.h>
51 #include <sys/kauth.h>
52 #include <sys/kernel.h>
53 #include <sys/kmem.h>
54 #include <sys/module.h>
55 #include <sys/mutex.h>
56 #include <sys/condvar.h>
57 #include <sys/poll.h>
58 #include <sys/proc.h>
59 #include <sys/select.h>
60 #include <sys/sockio.h>
61 #include <sys/stat.h>
62 #include <sys/sysctl.h>
63 #include <sys/systm.h>
64 
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_ether.h>
68 #include <net/if_media.h>
69 #include <net/if_tap.h>
70 #include <net/bpf.h>
71 
72 #include "ioconf.h"
73 
74 /*
75  * sysctl node management
76  *
77  * It's not really possible to use a SYSCTL_SETUP block with
78  * current module implementation, so it is easier to just define
79  * our own function.
80  *
81  * The handler function is a "helper" in Andrew Brown's sysctl
82  * framework terminology.  It is used as a gateway for sysctl
83  * requests over the nodes.
84  *
85  * tap_log allows the module to log creations of nodes and
86  * destroy them all at once using sysctl_teardown.
87  */
88 static int	tap_node;
89 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
90 static void	sysctl_tap_setup(struct sysctllog **);
91 
92 /*
93  * Since we're an Ethernet device, we need the 2 following
94  * components: a struct ethercom and a struct ifmedia
95  * since we don't attach a PHY to ourselves.
96  * We could emulate one, but there's no real point.
97  */
98 
99 struct tap_softc {
100 	device_t	sc_dev;
101 	struct ifmedia	sc_im;
102 	struct ethercom	sc_ec;
103 	int		sc_flags;
104 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
105 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
106 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
107 #define TAP_GOING	0x00000008	/* interface is being destroyed */
108 	struct selinfo	sc_rsel;
109 	pid_t		sc_pgid; /* For async. IO */
110 	kmutex_t	sc_lock;
111 	kcondvar_t	sc_cv;
112 	void		*sc_sih;
113 	struct timespec sc_atime;
114 	struct timespec sc_mtime;
115 	struct timespec sc_btime;
116 };
117 
118 /* autoconf(9) glue */
119 
120 static int	tap_match(device_t, cfdata_t, void *);
121 static void	tap_attach(device_t, device_t, void *);
122 static int	tap_detach(device_t, int);
123 
124 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
125     tap_match, tap_attach, tap_detach, NULL);
126 extern struct cfdriver tap_cd;
127 
128 /* Real device access routines */
129 static int	tap_dev_close(struct tap_softc *);
130 static int	tap_dev_read(int, struct uio *, int);
131 static int	tap_dev_write(int, struct uio *, int);
132 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
133 static int	tap_dev_poll(int, int, struct lwp *);
134 static int	tap_dev_kqfilter(int, struct knote *);
135 
136 /* Fileops access routines */
137 static int	tap_fops_close(file_t *);
138 static int	tap_fops_read(file_t *, off_t *, struct uio *,
139     kauth_cred_t, int);
140 static int	tap_fops_write(file_t *, off_t *, struct uio *,
141     kauth_cred_t, int);
142 static int	tap_fops_ioctl(file_t *, u_long, void *);
143 static int	tap_fops_poll(file_t *, int);
144 static int	tap_fops_stat(file_t *, struct stat *);
145 static int	tap_fops_kqfilter(file_t *, struct knote *);
146 
147 static const struct fileops tap_fileops = {
148 	.fo_name = "tap",
149 	.fo_read = tap_fops_read,
150 	.fo_write = tap_fops_write,
151 	.fo_ioctl = tap_fops_ioctl,
152 	.fo_fcntl = fnullop_fcntl,
153 	.fo_poll = tap_fops_poll,
154 	.fo_stat = tap_fops_stat,
155 	.fo_close = tap_fops_close,
156 	.fo_kqfilter = tap_fops_kqfilter,
157 	.fo_restart = fnullop_restart,
158 };
159 
160 /* Helper for cloning open() */
161 static int	tap_dev_cloner(struct lwp *);
162 
163 /* Character device routines */
164 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
165 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
166 static int	tap_cdev_read(dev_t, struct uio *, int);
167 static int	tap_cdev_write(dev_t, struct uio *, int);
168 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
169 static int	tap_cdev_poll(dev_t, int, struct lwp *);
170 static int	tap_cdev_kqfilter(dev_t, struct knote *);
171 
172 const struct cdevsw tap_cdevsw = {
173 	.d_open = tap_cdev_open,
174 	.d_close = tap_cdev_close,
175 	.d_read = tap_cdev_read,
176 	.d_write = tap_cdev_write,
177 	.d_ioctl = tap_cdev_ioctl,
178 	.d_stop = nostop,
179 	.d_tty = notty,
180 	.d_poll = tap_cdev_poll,
181 	.d_mmap = nommap,
182 	.d_kqfilter = tap_cdev_kqfilter,
183 	.d_discard = nodiscard,
184 	.d_flag = D_OTHER | D_MPSAFE
185 };
186 
187 #define TAP_CLONER	0xfffff		/* Maximal minor value */
188 
189 /* kqueue-related routines */
190 static void	tap_kqdetach(struct knote *);
191 static int	tap_kqread(struct knote *, long);
192 
193 /*
194  * Those are needed by the if_media interface.
195  */
196 
197 static int	tap_mediachange(struct ifnet *);
198 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
199 
200 /*
201  * Those are needed by the ifnet interface, and would typically be
202  * there for any network interface driver.
203  * Some other routines are optional: watchdog and drain.
204  */
205 
206 static void	tap_start(struct ifnet *);
207 static void	tap_stop(struct ifnet *, int);
208 static int	tap_init(struct ifnet *);
209 static int	tap_ioctl(struct ifnet *, u_long, void *);
210 
211 /* Internal functions */
212 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
213 static void	tap_softintr(void *);
214 
215 /*
216  * tap is a clonable interface, although it is highly unrealistic for
217  * an Ethernet device.
218  *
219  * Here are the bits needed for a clonable interface.
220  */
221 static int	tap_clone_create(struct if_clone *, int);
222 static int	tap_clone_destroy(struct ifnet *);
223 
224 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
225 					tap_clone_create,
226 					tap_clone_destroy);
227 
228 /* Helper functions shared by the two cloning code paths */
229 static struct tap_softc *	tap_clone_creator(int);
230 int	tap_clone_destroyer(device_t);
231 
232 static struct sysctllog *tap_sysctl_clog;
233 
234 #ifdef _MODULE
235 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
236 #endif
237 
238 static u_int tap_count;
239 
240 void
241 tapattach(int n)
242 {
243 
244 	/*
245 	 * Nothing to do here, initialization is handled by the
246 	 * module initialization code in tapinit() below).
247 	 */
248 }
249 
250 static void
251 tapinit(void)
252 {
253 	int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
254 
255 	if (error) {
256 		aprint_error("%s: unable to register cfattach\n",
257 		    tap_cd.cd_name);
258 		(void)config_cfdriver_detach(&tap_cd);
259 		return;
260 	}
261 
262 	if_clone_attach(&tap_cloners);
263 	sysctl_tap_setup(&tap_sysctl_clog);
264 #ifdef _MODULE
265 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
266 #endif
267 }
268 
269 static int
270 tapdetach(void)
271 {
272 	int error = 0;
273 
274 	if_clone_detach(&tap_cloners);
275 #ifdef _MODULE
276 	error = devsw_detach(NULL, &tap_cdevsw);
277 	if (error != 0)
278 		goto out2;
279 #endif
280 
281 	if (tap_count != 0) {
282 		error = EBUSY;
283 		goto out1;
284 	}
285 
286 	error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
287 	if (error != 0)
288 		goto out1;
289 
290 	sysctl_teardown(&tap_sysctl_clog);
291 
292 	return 0;
293 
294  out1:
295 #ifdef _MODULE
296 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
297  out2:
298 #endif
299 	if_clone_attach(&tap_cloners);
300 
301 	return error;
302 }
303 
304 /* Pretty much useless for a pseudo-device */
305 static int
306 tap_match(device_t parent, cfdata_t cfdata, void *arg)
307 {
308 
309 	return 1;
310 }
311 
312 void
313 tap_attach(device_t parent, device_t self, void *aux)
314 {
315 	struct tap_softc *sc = device_private(self);
316 	struct ifnet *ifp;
317 	const struct sysctlnode *node;
318 	int error;
319 	uint8_t enaddr[ETHER_ADDR_LEN] =
320 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
321 	char enaddrstr[3 * ETHER_ADDR_LEN];
322 
323 	sc->sc_dev = self;
324 	sc->sc_sih = NULL;
325 	getnanotime(&sc->sc_btime);
326 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
327 	sc->sc_flags = 0;
328 	selinit(&sc->sc_rsel);
329 
330 	cv_init(&sc->sc_cv, "tapread");
331 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
332 
333 	if (!pmf_device_register(self, NULL, NULL))
334 		aprint_error_dev(self, "couldn't establish power handler\n");
335 
336 	/*
337 	 * In order to obtain unique initial Ethernet address on a host,
338 	 * do some randomisation.  It's not meant for anything but avoiding
339 	 * hard-coding an address.
340 	 */
341 	cprng_fast(&enaddr[3], 3);
342 
343 	aprint_verbose_dev(self, "Ethernet address %s\n",
344 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
345 
346 	/*
347 	 * Why 1000baseT? Why not? You can add more.
348 	 *
349 	 * Note that there are 3 steps: init, one or several additions to
350 	 * list of supported media, and in the end, the selection of one
351 	 * of them.
352 	 */
353 	sc->sc_ec.ec_ifmedia = &sc->sc_im;
354 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
355 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_1000_T, 0, NULL);
356 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
357 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_100_TX, 0, NULL);
358 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
359 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_10_T, 0, NULL);
360 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
361 	ifmedia_add(&sc->sc_im, IFM_ETHER | IFM_AUTO, 0, NULL);
362 	ifmedia_set(&sc->sc_im, IFM_ETHER | IFM_AUTO);
363 
364 	/*
365 	 * One should note that an interface must do multicast in order
366 	 * to support IPv6.
367 	 */
368 	ifp = &sc->sc_ec.ec_if;
369 	strcpy(ifp->if_xname, device_xname(self));
370 	ifp->if_softc	= sc;
371 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
372 	ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
373 #ifdef NET_MPSAFE
374 	ifp->if_extflags |= IFEF_MPSAFE;
375 #endif
376 	ifp->if_ioctl	= tap_ioctl;
377 	ifp->if_start	= tap_start;
378 	ifp->if_stop	= tap_stop;
379 	ifp->if_init	= tap_init;
380 	IFQ_SET_READY(&ifp->if_snd);
381 
382 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
383 
384 	/* Those steps are mandatory for an Ethernet driver. */
385 	error = if_initialize(ifp);
386 	if (error != 0) {
387 		aprint_error_dev(self, "if_initialize failed(%d)\n", error);
388 		ifmedia_removeall(&sc->sc_im);
389 		pmf_device_deregister(self);
390 		mutex_destroy(&sc->sc_lock);
391 		seldestroy(&sc->sc_rsel);
392 
393 		return; /* Error */
394 	}
395 	ifp->if_percpuq = if_percpuq_create(ifp);
396 	ether_ifattach(ifp, enaddr);
397 	if_register(ifp);
398 
399 	/*
400 	 * Add a sysctl node for that interface.
401 	 *
402 	 * The pointer transmitted is not a string, but instead a pointer to
403 	 * the softc structure, which we can use to build the string value on
404 	 * the fly in the helper function of the node.  See the comments for
405 	 * tap_sysctl_handler for details.
406 	 *
407 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
408 	 * component.  However, we can allocate a number ourselves, as we are
409 	 * the only consumer of the net.link.<iface> node.  In this case, the
410 	 * unit number is conveniently used to number the node.  CTL_CREATE
411 	 * would just work, too.
412 	 */
413 	if ((error = sysctl_createv(NULL, 0, NULL,
414 	    &node, CTLFLAG_READWRITE,
415 	    CTLTYPE_STRING, device_xname(self), NULL,
416 	    tap_sysctl_handler, 0, (void *)sc, 18,
417 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
418 	    CTL_EOL)) != 0)
419 		aprint_error_dev(self,
420 		    "sysctl_createv returned %d, ignoring\n", error);
421 }
422 
423 /*
424  * When detaching, we do the inverse of what is done in the attach
425  * routine, in reversed order.
426  */
427 static int
428 tap_detach(device_t self, int flags)
429 {
430 	struct tap_softc *sc = device_private(self);
431 	struct ifnet *ifp = &sc->sc_ec.ec_if;
432 	int error;
433 
434 	sc->sc_flags |= TAP_GOING;
435 	tap_stop(ifp, 1);
436 	if_down(ifp);
437 
438 	if (sc->sc_sih != NULL) {
439 		softint_disestablish(sc->sc_sih);
440 		sc->sc_sih = NULL;
441 	}
442 
443 	/*
444 	 * Destroying a single leaf is a very straightforward operation using
445 	 * sysctl_destroyv.  One should be sure to always end the path with
446 	 * CTL_EOL.
447 	 */
448 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
449 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
450 		aprint_error_dev(self,
451 		    "sysctl_destroyv returned %d, ignoring\n", error);
452 	ether_ifdetach(ifp);
453 	if_detach(ifp);
454 	ifmedia_fini(&sc->sc_im);
455 	seldestroy(&sc->sc_rsel);
456 	mutex_destroy(&sc->sc_lock);
457 	cv_destroy(&sc->sc_cv);
458 
459 	pmf_device_deregister(self);
460 
461 	return 0;
462 }
463 
464 /*
465  * This function is called by the ifmedia layer to notify the driver
466  * that the user requested a media change.  A real driver would
467  * reconfigure the hardware.
468  */
469 static int
470 tap_mediachange(struct ifnet *ifp)
471 {
472 	return 0;
473 }
474 
475 /*
476  * Here the user asks for the currently used media.
477  */
478 static void
479 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
480 {
481 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
482 
483 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
484 }
485 
486 /*
487  * This is the function where we SEND packets.
488  *
489  * There is no 'receive' equivalent.  A typical driver will get
490  * interrupts from the hardware, and from there will inject new packets
491  * into the network stack.
492  *
493  * Once handled, a packet must be freed.  A real driver might not be able
494  * to fit all the pending packets into the hardware, and is allowed to
495  * return before having sent all the packets.  It should then use the
496  * if_flags flag IFF_OACTIVE to notify the upper layer.
497  *
498  * There are also other flags one should check, such as IFF_PAUSE.
499  *
500  * It is our duty to make packets available to BPF listeners.
501  *
502  * You should be aware that this function is called by the Ethernet layer
503  * at splnet().
504  *
505  * When the device is opened, we have to pass the packet(s) to the
506  * userland.  For that we stay in OACTIVE mode while the userland gets
507  * the packets, and we send a signal to the processes waiting to read.
508  *
509  * wakeup(sc) is the counterpart to the tsleep call in
510  * tap_dev_read, while selnotify() is used for kevent(2) and
511  * poll(2) (which includes select(2)) listeners.
512  */
513 static void
514 tap_start(struct ifnet *ifp)
515 {
516 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
517 	struct mbuf *m0;
518 
519 	mutex_enter(&sc->sc_lock);
520 	if ((sc->sc_flags & TAP_INUSE) == 0) {
521 		/* Simply drop packets */
522 		for (;;) {
523 			IFQ_DEQUEUE(&ifp->if_snd, m0);
524 			if (m0 == NULL)
525 				goto done;
526 
527 			if_statadd2(ifp, if_opackets, 1, if_obytes, m0->m_len);
528 			bpf_mtap(ifp, m0, BPF_D_OUT);
529 
530 			m_freem(m0);
531 		}
532 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
533 		ifp->if_flags |= IFF_OACTIVE;
534 		cv_broadcast(&sc->sc_cv);
535 		selnotify(&sc->sc_rsel, 0, 1);
536 		if (sc->sc_flags & TAP_ASYNCIO) {
537 			kpreempt_disable();
538 			softint_schedule(sc->sc_sih);
539 			kpreempt_enable();
540 		}
541 	}
542 done:
543 	mutex_exit(&sc->sc_lock);
544 }
545 
546 static void
547 tap_softintr(void *cookie)
548 {
549 	struct tap_softc *sc;
550 	struct ifnet *ifp;
551 	int a, b;
552 
553 	sc = cookie;
554 
555 	if (sc->sc_flags & TAP_ASYNCIO) {
556 		ifp = &sc->sc_ec.ec_if;
557 		if (ifp->if_flags & IFF_RUNNING) {
558 			a = POLL_IN;
559 			b = POLLIN | POLLRDNORM;
560 		} else {
561 			a = POLL_HUP;
562 			b = 0;
563 		}
564 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
565 	}
566 }
567 
568 /*
569  * A typical driver will only contain the following handlers for
570  * ioctl calls, except SIOCSIFPHYADDR.
571  * The latter is a hack I used to set the Ethernet address of the
572  * faked device.
573  *
574  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
575  * called under splnet().
576  */
577 static int
578 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
579 {
580 	int s, error;
581 
582 	s = splnet();
583 
584 	switch (cmd) {
585 	case SIOCSIFPHYADDR:
586 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
587 		break;
588 	default:
589 		error = ether_ioctl(ifp, cmd, data);
590 		if (error == ENETRESET)
591 			error = 0;
592 		break;
593 	}
594 
595 	splx(s);
596 
597 	return error;
598 }
599 
600 /*
601  * Helper function to set Ethernet address.  This has been replaced by
602  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
603  */
604 static int
605 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
606 {
607 	const struct sockaddr *sa = &ifra->ifra_addr;
608 
609 	if (sa->sa_family != AF_LINK)
610 		return EINVAL;
611 
612 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
613 
614 	return 0;
615 }
616 
617 /*
618  * _init() would typically be called when an interface goes up,
619  * meaning it should configure itself into the state in which it
620  * can send packets.
621  */
622 static int
623 tap_init(struct ifnet *ifp)
624 {
625 	ifp->if_flags |= IFF_RUNNING;
626 
627 	tap_start(ifp);
628 
629 	return 0;
630 }
631 
632 /*
633  * _stop() is called when an interface goes down.  It is our
634  * responsability to validate that state by clearing the
635  * IFF_RUNNING flag.
636  *
637  * We have to wake up all the sleeping processes to have the pending
638  * read requests cancelled.
639  */
640 static void
641 tap_stop(struct ifnet *ifp, int disable)
642 {
643 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
644 
645 	mutex_enter(&sc->sc_lock);
646 	ifp->if_flags &= ~IFF_RUNNING;
647 	cv_broadcast(&sc->sc_cv);
648 	selnotify(&sc->sc_rsel, 0, 1);
649 	if (sc->sc_flags & TAP_ASYNCIO) {
650 		kpreempt_disable();
651 		softint_schedule(sc->sc_sih);
652 		kpreempt_enable();
653 	}
654 	mutex_exit(&sc->sc_lock);
655 }
656 
657 /*
658  * The 'create' command of ifconfig can be used to create
659  * any numbered instance of a given device.  Thus we have to
660  * make sure we have enough room in cd_devs to create the
661  * user-specified instance.  config_attach_pseudo will do this
662  * for us.
663  */
664 static int
665 tap_clone_create(struct if_clone *ifc, int unit)
666 {
667 
668 	if (tap_clone_creator(unit) == NULL) {
669 		aprint_error("%s%d: unable to attach an instance\n",
670 		    tap_cd.cd_name, unit);
671 		return ENXIO;
672 	}
673 	atomic_inc_uint(&tap_count);
674 	return 0;
675 }
676 
677 /*
678  * tap(4) can be cloned by two ways:
679  *   using 'ifconfig tap0 create', which will use the network
680  *     interface cloning API, and call tap_clone_create above.
681  *   opening the cloning device node, whose minor number is TAP_CLONER.
682  *     See below for an explanation on how this part work.
683  */
684 static struct tap_softc *
685 tap_clone_creator(int unit)
686 {
687 	cfdata_t cf;
688 
689 	cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
690 	cf->cf_name = tap_cd.cd_name;
691 	cf->cf_atname = tap_ca.ca_name;
692 	if (unit == -1) {
693 		/* let autoconf find the first free one */
694 		cf->cf_unit = 0;
695 		cf->cf_fstate = FSTATE_STAR;
696 	} else {
697 		cf->cf_unit = unit;
698 		cf->cf_fstate = FSTATE_NOTFOUND;
699 	}
700 
701 	return device_private(config_attach_pseudo(cf));
702 }
703 
704 /*
705  * The clean design of if_clone and autoconf(9) makes that part
706  * really straightforward.  The second argument of config_detach
707  * means neither QUIET nor FORCED.
708  */
709 static int
710 tap_clone_destroy(struct ifnet *ifp)
711 {
712 	struct tap_softc *sc = ifp->if_softc;
713 	int error = tap_clone_destroyer(sc->sc_dev);
714 
715 	if (error == 0)
716 		atomic_dec_uint(&tap_count);
717 	return error;
718 }
719 
720 int
721 tap_clone_destroyer(device_t dev)
722 {
723 	cfdata_t cf = device_cfdata(dev);
724 	int error;
725 
726 	if ((error = config_detach(dev, 0)) != 0)
727 		aprint_error_dev(dev, "unable to detach instance\n");
728 	kmem_free(cf, sizeof(*cf));
729 
730 	return error;
731 }
732 
733 /*
734  * tap(4) is a bit of an hybrid device.  It can be used in two different
735  * ways:
736  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
737  *  2. open /dev/tap, get a new interface created and read/write off it.
738  *     That interface is destroyed when the process that had it created exits.
739  *
740  * The first way is managed by the cdevsw structure, and you access interfaces
741  * through a (major, minor) mapping:  tap4 is obtained by the minor number
742  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
743  *
744  * The second way is the so-called "cloning" device.  It's a special minor
745  * number (chosen as the maximal number, to allow as much tap devices as
746  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
747  * call ends in tap_cdev_open.  The actual place where it is handled is
748  * tap_dev_cloner.
749  *
750  * An tap device cannot be opened more than once at a time, so the cdevsw
751  * part of open() does nothing but noting that the interface is being used and
752  * hence ready to actually handle packets.
753  */
754 
755 static int
756 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
757 {
758 	struct tap_softc *sc;
759 
760 	if (minor(dev) == TAP_CLONER)
761 		return tap_dev_cloner(l);
762 
763 	sc = device_lookup_private(&tap_cd, minor(dev));
764 	if (sc == NULL)
765 		return ENXIO;
766 
767 	/* The device can only be opened once */
768 	if (sc->sc_flags & TAP_INUSE)
769 		return EBUSY;
770 	sc->sc_flags |= TAP_INUSE;
771 	return 0;
772 }
773 
774 /*
775  * There are several kinds of cloning devices, and the most simple is the one
776  * tap(4) uses.  What it does is change the file descriptor with a new one,
777  * with its own fileops structure (which maps to the various read, write,
778  * ioctl functions).  It starts allocating a new file descriptor with falloc,
779  * then actually creates the new tap devices.
780  *
781  * Once those two steps are successful, we can re-wire the existing file
782  * descriptor to its new self.  This is done with fdclone():  it fills the fp
783  * structure as needed (notably f_devunit gets filled with the fifth parameter
784  * passed, the unit of the tap device which will allows us identifying the
785  * device later), and returns EMOVEFD.
786  *
787  * That magic value is interpreted by sys_open() which then replaces the
788  * current file descriptor by the new one (through a magic member of struct
789  * lwp, l_dupfd).
790  *
791  * The tap device is flagged as being busy since it otherwise could be
792  * externally accessed through the corresponding device node with the cdevsw
793  * interface.
794  */
795 
796 static int
797 tap_dev_cloner(struct lwp *l)
798 {
799 	struct tap_softc *sc;
800 	file_t *fp;
801 	int error, fd;
802 
803 	if ((error = fd_allocfile(&fp, &fd)) != 0)
804 		return error;
805 
806 	if ((sc = tap_clone_creator(-1)) == NULL) {
807 		fd_abort(curproc, fp, fd);
808 		return ENXIO;
809 	}
810 
811 	sc->sc_flags |= TAP_INUSE;
812 
813 	return fd_clone(fp, fd, FREAD | FWRITE, &tap_fileops,
814 	    (void *)(intptr_t)device_unit(sc->sc_dev));
815 }
816 
817 /*
818  * While all other operations (read, write, ioctl, poll and kqfilter) are
819  * really the same whether we are in cdevsw or fileops mode, the close()
820  * function is slightly different in the two cases.
821  *
822  * As for the other, the core of it is shared in tap_dev_close.  What
823  * it does is sufficient for the cdevsw interface, but the cloning interface
824  * needs another thing:  the interface is destroyed when the processes that
825  * created it closes it.
826  */
827 static int
828 tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
829 {
830 	struct tap_softc *sc = device_lookup_private(&tap_cd, minor(dev));
831 
832 	if (sc == NULL)
833 		return ENXIO;
834 
835 	return tap_dev_close(sc);
836 }
837 
838 /*
839  * It might happen that the administrator used ifconfig to externally destroy
840  * the interface.  In that case, tap_fops_close will be called while
841  * tap_detach is already happening.  If we called it again from here, we
842  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
843  */
844 static int
845 tap_fops_close(file_t *fp)
846 {
847 	struct tap_softc *sc;
848 	int unit = fp->f_devunit;
849 	int error;
850 
851 	sc = device_lookup_private(&tap_cd, unit);
852 	if (sc == NULL)
853 		return ENXIO;
854 
855 	/* tap_dev_close currently always succeeds, but it might not
856 	 * always be the case. */
857 	KERNEL_LOCK(1, NULL);
858 	if ((error = tap_dev_close(sc)) != 0) {
859 		KERNEL_UNLOCK_ONE(NULL);
860 		return error;
861 	}
862 
863 	/* Destroy the device now that it is no longer useful,
864 	 * unless it's already being destroyed. */
865 	if ((sc->sc_flags & TAP_GOING) != 0) {
866 		KERNEL_UNLOCK_ONE(NULL);
867 		return 0;
868 	}
869 
870 	error = tap_clone_destroyer(sc->sc_dev);
871 	KERNEL_UNLOCK_ONE(NULL);
872 	return error;
873 }
874 
875 static int
876 tap_dev_close(struct tap_softc *sc)
877 {
878 	struct ifnet *ifp;
879 	int s;
880 
881 	s = splnet();
882 	/* Let tap_start handle packets again */
883 	ifp = &sc->sc_ec.ec_if;
884 	ifp->if_flags &= ~IFF_OACTIVE;
885 
886 	/* Purge output queue */
887 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
888 		struct mbuf *m;
889 
890 		for (;;) {
891 			IFQ_DEQUEUE(&ifp->if_snd, m);
892 			if (m == NULL)
893 				break;
894 
895 			if_statadd2(ifp, if_opackets, 1, if_obytes, m->m_len);
896 			bpf_mtap(ifp, m, BPF_D_OUT);
897 			m_freem(m);
898 		}
899 	}
900 	splx(s);
901 
902 	if (sc->sc_sih != NULL) {
903 		softint_disestablish(sc->sc_sih);
904 		sc->sc_sih = NULL;
905 	}
906 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
907 
908 	return 0;
909 }
910 
911 static int
912 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
913 {
914 
915 	return tap_dev_read(minor(dev), uio, flags);
916 }
917 
918 static int
919 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
920     kauth_cred_t cred, int flags)
921 {
922 	int error;
923 
924 	KERNEL_LOCK(1, NULL);
925 	error = tap_dev_read(fp->f_devunit, uio, flags);
926 	KERNEL_UNLOCK_ONE(NULL);
927 	return error;
928 }
929 
930 static int
931 tap_dev_read(int unit, struct uio *uio, int flags)
932 {
933 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
934 	struct ifnet *ifp;
935 	struct mbuf *m, *n;
936 	int error = 0;
937 
938 	if (sc == NULL)
939 		return ENXIO;
940 
941 	getnanotime(&sc->sc_atime);
942 
943 	ifp = &sc->sc_ec.ec_if;
944 	if ((ifp->if_flags & IFF_UP) == 0)
945 		return EHOSTDOWN;
946 
947 	/* In the TAP_NBIO case, we have to make sure we won't be sleeping */
948 	if ((sc->sc_flags & TAP_NBIO) != 0) {
949 		if (!mutex_tryenter(&sc->sc_lock))
950 			return EWOULDBLOCK;
951 	} else
952 		mutex_enter(&sc->sc_lock);
953 
954 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
955 		ifp->if_flags &= ~IFF_OACTIVE;
956 		if (sc->sc_flags & TAP_NBIO)
957 			error = EWOULDBLOCK;
958 		else
959 			error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
960 
961 		if (error != 0) {
962 			mutex_exit(&sc->sc_lock);
963 			return error;
964 		}
965 		/* The device might have been downed */
966 		if ((ifp->if_flags & IFF_UP) == 0) {
967 			mutex_exit(&sc->sc_lock);
968 			return EHOSTDOWN;
969 		}
970 	}
971 
972 	IFQ_DEQUEUE(&ifp->if_snd, m);
973 	mutex_exit(&sc->sc_lock);
974 
975 	ifp->if_flags &= ~IFF_OACTIVE;
976 	if (m == NULL) {
977 		error = 0;
978 		goto out;
979 	}
980 
981 	if_statadd2(ifp, if_opackets, 1,
982 	    if_obytes, m->m_len);		/* XXX only first in chain */
983 	bpf_mtap(ifp, m, BPF_D_OUT);
984 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
985 		goto out;
986 	if (m == NULL)
987 		goto out;
988 
989 	/*
990 	 * One read is one packet.
991 	 */
992 	do {
993 		error = uiomove(mtod(m, void *),
994 		    uimin(m->m_len, uio->uio_resid), uio);
995 		m = n = m_free(m);
996 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
997 
998 	if (m != NULL)
999 		m_freem(m);
1000 
1001 out:
1002 	return error;
1003 }
1004 
1005 static int
1006 tap_fops_stat(file_t *fp, struct stat *st)
1007 {
1008 	int error = 0;
1009 	struct tap_softc *sc;
1010 	int unit = fp->f_devunit;
1011 
1012 	(void)memset(st, 0, sizeof(*st));
1013 
1014 	KERNEL_LOCK(1, NULL);
1015 	sc = device_lookup_private(&tap_cd, unit);
1016 	if (sc == NULL) {
1017 		error = ENXIO;
1018 		goto out;
1019 	}
1020 
1021 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
1022 	st->st_atimespec = sc->sc_atime;
1023 	st->st_mtimespec = sc->sc_mtime;
1024 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
1025 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
1026 	st->st_gid = kauth_cred_getegid(fp->f_cred);
1027 out:
1028 	KERNEL_UNLOCK_ONE(NULL);
1029 	return error;
1030 }
1031 
1032 static int
1033 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1034 {
1035 
1036 	return tap_dev_write(minor(dev), uio, flags);
1037 }
1038 
1039 static int
1040 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1041     kauth_cred_t cred, int flags)
1042 {
1043 	int error;
1044 
1045 	KERNEL_LOCK(1, NULL);
1046 	error = tap_dev_write(fp->f_devunit, uio, flags);
1047 	KERNEL_UNLOCK_ONE(NULL);
1048 	return error;
1049 }
1050 
1051 static int
1052 tap_dev_write(int unit, struct uio *uio, int flags)
1053 {
1054 	struct tap_softc *sc =
1055 	    device_lookup_private(&tap_cd, unit);
1056 	struct ifnet *ifp;
1057 	struct mbuf *m, **mp;
1058 	size_t len = 0;
1059 	int error = 0;
1060 
1061 	if (sc == NULL)
1062 		return ENXIO;
1063 
1064 	getnanotime(&sc->sc_mtime);
1065 	ifp = &sc->sc_ec.ec_if;
1066 
1067 	/* One write, one packet, that's the rule */
1068 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1069 	if (m == NULL) {
1070 		if_statinc(ifp, if_ierrors);
1071 		return ENOBUFS;
1072 	}
1073 	m->m_pkthdr.len = uio->uio_resid;
1074 
1075 	mp = &m;
1076 	while (error == 0 && uio->uio_resid > 0) {
1077 		if (*mp != m) {
1078 			MGET(*mp, M_DONTWAIT, MT_DATA);
1079 			if (*mp == NULL) {
1080 				error = ENOBUFS;
1081 				break;
1082 			}
1083 		}
1084 		(*mp)->m_len = uimin(MHLEN, uio->uio_resid);
1085 		len += (*mp)->m_len;
1086 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1087 		mp = &(*mp)->m_next;
1088 	}
1089 	if (error) {
1090 		if_statinc(ifp, if_ierrors);
1091 		m_freem(m);
1092 		return error;
1093 	}
1094 
1095 	m_set_rcvif(m, ifp);
1096 
1097 	if_statadd2(ifp, if_ipackets, 1, if_ibytes, len);
1098 	bpf_mtap(ifp, m, BPF_D_IN);
1099 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN)) != 0)
1100 		return error;
1101 	if (m == NULL)
1102 		return 0;
1103 
1104 	if_percpuq_enqueue(ifp->if_percpuq, m);
1105 
1106 	return 0;
1107 }
1108 
1109 static int
1110 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
1111 {
1112 
1113 	return tap_dev_ioctl(minor(dev), cmd, data, l);
1114 }
1115 
1116 static int
1117 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1118 {
1119 
1120 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1121 }
1122 
1123 static int
1124 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1125 {
1126 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1127 
1128 	if (sc == NULL)
1129 		return ENXIO;
1130 
1131 	switch (cmd) {
1132 	case FIONREAD:
1133 		{
1134 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1135 			struct mbuf *m;
1136 			int s;
1137 
1138 			s = splnet();
1139 			IFQ_POLL(&ifp->if_snd, m);
1140 
1141 			if (m == NULL)
1142 				*(int *)data = 0;
1143 			else
1144 				*(int *)data = m->m_pkthdr.len;
1145 			splx(s);
1146 			return 0;
1147 		}
1148 	case TIOCSPGRP:
1149 	case FIOSETOWN:
1150 		return fsetown(&sc->sc_pgid, cmd, data);
1151 	case TIOCGPGRP:
1152 	case FIOGETOWN:
1153 		return fgetown(sc->sc_pgid, cmd, data);
1154 	case FIOASYNC:
1155 		if (*(int *)data) {
1156 			if (sc->sc_sih == NULL) {
1157 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1158 				    tap_softintr, sc);
1159 				if (sc->sc_sih == NULL)
1160 					return EBUSY; /* XXX */
1161 			}
1162 			sc->sc_flags |= TAP_ASYNCIO;
1163 		} else {
1164 			sc->sc_flags &= ~TAP_ASYNCIO;
1165 			if (sc->sc_sih != NULL) {
1166 				softint_disestablish(sc->sc_sih);
1167 				sc->sc_sih = NULL;
1168 			}
1169 		}
1170 		return 0;
1171 	case FIONBIO:
1172 		if (*(int *)data)
1173 			sc->sc_flags |= TAP_NBIO;
1174 		else
1175 			sc->sc_flags &= ~TAP_NBIO;
1176 		return 0;
1177 	case TAPGIFNAME:
1178 		{
1179 			struct ifreq *ifr = (struct ifreq *)data;
1180 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1181 
1182 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1183 			return 0;
1184 		}
1185 	default:
1186 		return ENOTTY;
1187 	}
1188 }
1189 
1190 static int
1191 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1192 {
1193 
1194 	return tap_dev_poll(minor(dev), events, l);
1195 }
1196 
1197 static int
1198 tap_fops_poll(file_t *fp, int events)
1199 {
1200 
1201 	return tap_dev_poll(fp->f_devunit, events, curlwp);
1202 }
1203 
1204 static int
1205 tap_dev_poll(int unit, int events, struct lwp *l)
1206 {
1207 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1208 	int revents = 0;
1209 
1210 	if (sc == NULL)
1211 		return POLLERR;
1212 
1213 	if (events & (POLLIN | POLLRDNORM)) {
1214 		struct ifnet *ifp = &sc->sc_ec.ec_if;
1215 		struct mbuf *m;
1216 		int s;
1217 
1218 		s = splnet();
1219 		IFQ_POLL(&ifp->if_snd, m);
1220 
1221 		if (m != NULL)
1222 			revents |= events & (POLLIN | POLLRDNORM);
1223 		else {
1224 			mutex_spin_enter(&sc->sc_lock);
1225 			selrecord(l, &sc->sc_rsel);
1226 			mutex_spin_exit(&sc->sc_lock);
1227 		}
1228 		splx(s);
1229 	}
1230 	revents |= events & (POLLOUT | POLLWRNORM);
1231 
1232 	return revents;
1233 }
1234 
1235 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1236 	tap_kqread };
1237 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1238 	filt_seltrue };
1239 
1240 static int
1241 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1242 {
1243 
1244 	return tap_dev_kqfilter(minor(dev), kn);
1245 }
1246 
1247 static int
1248 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1249 {
1250 
1251 	return tap_dev_kqfilter(fp->f_devunit, kn);
1252 }
1253 
1254 static int
1255 tap_dev_kqfilter(int unit, struct knote *kn)
1256 {
1257 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1258 
1259 	if (sc == NULL)
1260 		return ENXIO;
1261 
1262 	KERNEL_LOCK(1, NULL);
1263 	switch(kn->kn_filter) {
1264 	case EVFILT_READ:
1265 		kn->kn_fop = &tap_read_filterops;
1266 		break;
1267 	case EVFILT_WRITE:
1268 		kn->kn_fop = &tap_seltrue_filterops;
1269 		break;
1270 	default:
1271 		KERNEL_UNLOCK_ONE(NULL);
1272 		return EINVAL;
1273 	}
1274 
1275 	kn->kn_hook = sc;
1276 	mutex_spin_enter(&sc->sc_lock);
1277 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1278 	mutex_spin_exit(&sc->sc_lock);
1279 	KERNEL_UNLOCK_ONE(NULL);
1280 	return 0;
1281 }
1282 
1283 static void
1284 tap_kqdetach(struct knote *kn)
1285 {
1286 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1287 
1288 	KERNEL_LOCK(1, NULL);
1289 	mutex_spin_enter(&sc->sc_lock);
1290 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1291 	mutex_spin_exit(&sc->sc_lock);
1292 	KERNEL_UNLOCK_ONE(NULL);
1293 }
1294 
1295 static int
1296 tap_kqread(struct knote *kn, long hint)
1297 {
1298 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1299 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1300 	struct mbuf *m;
1301 	int s, rv;
1302 
1303 	KERNEL_LOCK(1, NULL);
1304 	s = splnet();
1305 	IFQ_POLL(&ifp->if_snd, m);
1306 
1307 	if (m == NULL)
1308 		kn->kn_data = 0;
1309 	else
1310 		kn->kn_data = m->m_pkthdr.len;
1311 	splx(s);
1312 	rv = (kn->kn_data != 0 ? 1 : 0);
1313 	KERNEL_UNLOCK_ONE(NULL);
1314 	return rv;
1315 }
1316 
1317 /*
1318  * sysctl management routines
1319  * You can set the address of an interface through:
1320  * net.link.tap.tap<number>
1321  *
1322  * Note the consistent use of tap_log in order to use
1323  * sysctl_teardown at unload time.
1324  *
1325  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1326  * blocks register a function in a special section of the kernel
1327  * (called a link set) which is used at init_sysctl() time to cycle
1328  * through all those functions to create the kernel's sysctl tree.
1329  *
1330  * It is not possible to use link sets in a module, so the
1331  * easiest is to simply call our own setup routine at load time.
1332  *
1333  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1334  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1335  * whole kernel sysctl tree is built, it is not possible to add any
1336  * permanent node.
1337  *
1338  * It should be noted that we're not saving the sysctlnode pointer
1339  * we are returned when creating the "tap" node.  That structure
1340  * cannot be trusted once out of the calling function, as it might
1341  * get reused.  So we just save the MIB number, and always give the
1342  * full path starting from the root for later calls to sysctl_createv
1343  * and sysctl_destroyv.
1344  */
1345 static void
1346 sysctl_tap_setup(struct sysctllog **clog)
1347 {
1348 	const struct sysctlnode *node;
1349 	int error = 0;
1350 
1351 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1352 	    CTLFLAG_PERMANENT,
1353 	    CTLTYPE_NODE, "link", NULL,
1354 	    NULL, 0, NULL, 0,
1355 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1356 		return;
1357 
1358 	/*
1359 	 * The first four parameters of sysctl_createv are for management.
1360 	 *
1361 	 * The four that follows, here starting with a '0' for the flags,
1362 	 * describe the node.
1363 	 *
1364 	 * The next series of four set its value, through various possible
1365 	 * means.
1366 	 *
1367 	 * Last but not least, the path to the node is described.  That path
1368 	 * is relative to the given root (third argument).  Here we're
1369 	 * starting from the root.
1370 	 */
1371 	if ((error = sysctl_createv(clog, 0, NULL, &node,
1372 	    CTLFLAG_PERMANENT,
1373 	    CTLTYPE_NODE, "tap", NULL,
1374 	    NULL, 0, NULL, 0,
1375 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1376 		return;
1377 	tap_node = node->sysctl_num;
1378 }
1379 
1380 /*
1381  * The helper functions make Andrew Brown's interface really
1382  * shine.  It makes possible to create value on the fly whether
1383  * the sysctl value is read or written.
1384  *
1385  * As shown as an example in the man page, the first step is to
1386  * create a copy of the node to have sysctl_lookup work on it.
1387  *
1388  * Here, we have more work to do than just a copy, since we have
1389  * to create the string.  The first step is to collect the actual
1390  * value of the node, which is a convenient pointer to the softc
1391  * of the interface.  From there we create the string and use it
1392  * as the value, but only for the *copy* of the node.
1393  *
1394  * Then we let sysctl_lookup do the magic, which consists in
1395  * setting oldp and newp as required by the operation.  When the
1396  * value is read, that means that the string will be copied to
1397  * the user, and when it is written, the new value will be copied
1398  * over in the addr array.
1399  *
1400  * If newp is NULL, the user was reading the value, so we don't
1401  * have anything else to do.  If a new value was written, we
1402  * have to check it.
1403  *
1404  * If it is incorrect, we can return an error and leave 'node' as
1405  * it is:  since it is a copy of the actual node, the change will
1406  * be forgotten.
1407  *
1408  * Upon a correct input, we commit the change to the ifnet
1409  * structure of our interface.
1410  */
1411 static int
1412 tap_sysctl_handler(SYSCTLFN_ARGS)
1413 {
1414 	struct sysctlnode node;
1415 	struct tap_softc *sc;
1416 	struct ifnet *ifp;
1417 	int error;
1418 	size_t len;
1419 	char addr[3 * ETHER_ADDR_LEN];
1420 	uint8_t enaddr[ETHER_ADDR_LEN];
1421 
1422 	node = *rnode;
1423 	sc = node.sysctl_data;
1424 	ifp = &sc->sc_ec.ec_if;
1425 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1426 	node.sysctl_data = addr;
1427 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1428 	if (error || newp == NULL)
1429 		return error;
1430 
1431 	len = strlen(addr);
1432 	if (len < 11 || len > 17)
1433 		return EINVAL;
1434 
1435 	/* Commit change */
1436 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1437 		return EINVAL;
1438 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1439 	return error;
1440 }
1441 
1442 /*
1443  * Module infrastructure
1444  */
1445 #include "if_module.h"
1446 
1447 IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL)
1448