1 /* $NetBSD: if_ethersubr.c,v 1.303 2021/11/08 16:50:05 christos Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.303 2021/11/08 16:50:05 christos Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_atalk.h" 69 #include "opt_mbuftrace.h" 70 #include "opt_mpls.h" 71 #include "opt_gateway.h" 72 #include "opt_pppoe.h" 73 #include "opt_net_mpsafe.h" 74 #endif 75 76 #include "vlan.h" 77 #include "pppoe.h" 78 #include "bridge.h" 79 #include "arp.h" 80 #include "agr.h" 81 82 #include <sys/sysctl.h> 83 #include <sys/mbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/ioctl.h> 86 #include <sys/errno.h> 87 #include <sys/device.h> 88 #include <sys/entropy.h> 89 #include <sys/rndsource.h> 90 #include <sys/cpu.h> 91 #include <sys/kmem.h> 92 #include <sys/hook.h> 93 94 #include <net/if.h> 95 #include <net/netisr.h> 96 #include <net/route.h> 97 #include <net/if_llc.h> 98 #include <net/if_dl.h> 99 #include <net/if_types.h> 100 #include <net/pktqueue.h> 101 102 #include <net/if_media.h> 103 #include <dev/mii/mii.h> 104 #include <dev/mii/miivar.h> 105 106 #if NARP == 0 107 /* 108 * XXX there should really be a way to issue this warning from within config(8) 109 */ 110 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK. 111 #endif 112 113 #include <net/bpf.h> 114 115 #include <net/if_ether.h> 116 #include <net/if_vlanvar.h> 117 118 #if NPPPOE > 0 119 #include <net/if_pppoe.h> 120 #endif 121 122 #if NAGR > 0 123 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */ 124 #include <net/agr/ieee8023ad.h> 125 #include <net/agr/if_agrvar.h> 126 #endif 127 128 #include <net/lagg/if_laggvar.h> 129 130 #if NBRIDGE > 0 131 #include <net/if_bridgevar.h> 132 #endif 133 134 #include <netinet/in.h> 135 #ifdef INET 136 #include <netinet/in_var.h> 137 #endif 138 #include <netinet/if_inarp.h> 139 140 #ifdef INET6 141 #ifndef INET 142 #include <netinet/in.h> 143 #endif 144 #include <netinet6/in6_var.h> 145 #include <netinet6/nd6.h> 146 #endif 147 148 #include "carp.h" 149 #if NCARP > 0 150 #include <netinet/ip_carp.h> 151 #endif 152 153 #ifdef NETATALK 154 #include <netatalk/at.h> 155 #include <netatalk/at_var.h> 156 #include <netatalk/at_extern.h> 157 158 #define llc_snap_org_code llc_un.type_snap.org_code 159 #define llc_snap_ether_type llc_un.type_snap.ether_type 160 161 extern u_char at_org_code[3]; 162 extern u_char aarp_org_code[3]; 163 #endif /* NETATALK */ 164 165 #ifdef MPLS 166 #include <netmpls/mpls.h> 167 #include <netmpls/mpls_var.h> 168 #endif 169 170 CTASSERT(sizeof(struct ether_addr) == 6); 171 CTASSERT(sizeof(struct ether_header) == 14); 172 173 #ifdef DIAGNOSTIC 174 static struct timeval bigpktppslim_last; 175 static int bigpktppslim = 2; /* XXX */ 176 static int bigpktpps_count; 177 static kmutex_t bigpktpps_lock __cacheline_aligned; 178 #endif 179 180 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = 181 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 182 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = 183 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; 184 #define senderr(e) { error = (e); goto bad;} 185 186 static pktq_rps_hash_func_t ether_pktq_rps_hash_p; 187 188 /* if_lagg(4) support */ 189 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *); 190 191 static int ether_output(struct ifnet *, struct mbuf *, 192 const struct sockaddr *, const struct rtentry *); 193 194 /* 195 * Ethernet output routine. 196 * Encapsulate a packet of type family for the local net. 197 * Assumes that ifp is actually pointer to ethercom structure. 198 */ 199 static int 200 ether_output(struct ifnet * const ifp0, struct mbuf * const m0, 201 const struct sockaddr * const dst, const struct rtentry *rt) 202 { 203 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 204 uint16_t etype = 0; 205 int error = 0, hdrcmplt = 0; 206 struct mbuf *m = m0; 207 struct mbuf *mcopy = NULL; 208 struct ether_header *eh; 209 struct ifnet *ifp = ifp0; 210 #ifdef INET 211 struct arphdr *ah; 212 #endif 213 #ifdef NETATALK 214 struct at_ifaddr *aa; 215 #endif 216 217 #ifdef MBUFTRACE 218 m_claimm(m, ifp->if_mowner); 219 #endif 220 221 #if NCARP > 0 222 if (ifp->if_type == IFT_CARP) { 223 struct ifaddr *ifa; 224 int s = pserialize_read_enter(); 225 226 /* loop back if this is going to the carp interface */ 227 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP && 228 (ifa = ifa_ifwithaddr(dst)) != NULL) { 229 if (ifa->ifa_ifp == ifp0) { 230 pserialize_read_exit(s); 231 return looutput(ifp0, m, dst, rt); 232 } 233 } 234 pserialize_read_exit(s); 235 236 ifp = ifp->if_carpdev; 237 /* ac = (struct arpcom *)ifp; */ 238 239 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) != 240 (IFF_UP | IFF_RUNNING)) 241 senderr(ENETDOWN); 242 } 243 #endif 244 245 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 246 senderr(ENETDOWN); 247 248 switch (dst->sa_family) { 249 250 #ifdef INET 251 case AF_INET: 252 if (m->m_flags & M_BCAST) { 253 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 254 } else if (m->m_flags & M_MCAST) { 255 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst); 256 } else { 257 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst)); 258 if (error) 259 return (error == EWOULDBLOCK) ? 0 : error; 260 } 261 /* If broadcasting on a simplex interface, loopback a copy */ 262 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) 263 mcopy = m_copypacket(m, M_DONTWAIT); 264 etype = htons(ETHERTYPE_IP); 265 break; 266 267 case AF_ARP: 268 ah = mtod(m, struct arphdr *); 269 if (m->m_flags & M_BCAST) { 270 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 271 } else { 272 void *tha = ar_tha(ah); 273 274 if (tha == NULL) { 275 /* fake with ARPHRD_IEEE1394 */ 276 m_freem(m); 277 return 0; 278 } 279 memcpy(edst, tha, sizeof(edst)); 280 } 281 282 ah->ar_hrd = htons(ARPHRD_ETHER); 283 284 switch (ntohs(ah->ar_op)) { 285 case ARPOP_REVREQUEST: 286 case ARPOP_REVREPLY: 287 etype = htons(ETHERTYPE_REVARP); 288 break; 289 290 case ARPOP_REQUEST: 291 case ARPOP_REPLY: 292 default: 293 etype = htons(ETHERTYPE_ARP); 294 } 295 break; 296 #endif 297 298 #ifdef INET6 299 case AF_INET6: 300 if (m->m_flags & M_BCAST) { 301 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 302 } else if (m->m_flags & M_MCAST) { 303 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 304 edst); 305 } else { 306 error = nd6_resolve(ifp0, rt, m, dst, edst, 307 sizeof(edst)); 308 if (error) 309 return (error == EWOULDBLOCK) ? 0 : error; 310 } 311 etype = htons(ETHERTYPE_IPV6); 312 break; 313 #endif 314 315 #ifdef NETATALK 316 case AF_APPLETALK: { 317 struct ifaddr *ifa; 318 int s; 319 320 KERNEL_LOCK(1, NULL); 321 322 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) { 323 KERNEL_UNLOCK_ONE(NULL); 324 return 0; 325 } 326 327 /* 328 * ifaddr is the first thing in at_ifaddr 329 */ 330 s = pserialize_read_enter(); 331 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp); 332 if (ifa == NULL) { 333 pserialize_read_exit(s); 334 KERNEL_UNLOCK_ONE(NULL); 335 senderr(EADDRNOTAVAIL); 336 } 337 aa = (struct at_ifaddr *)ifa; 338 339 /* 340 * In the phase 2 case, we need to prepend an mbuf for the 341 * llc header. 342 */ 343 if (aa->aa_flags & AFA_PHASE2) { 344 struct llc llc; 345 346 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT); 347 if (m == NULL) { 348 pserialize_read_exit(s); 349 KERNEL_UNLOCK_ONE(NULL); 350 senderr(ENOBUFS); 351 } 352 353 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 354 llc.llc_control = LLC_UI; 355 memcpy(llc.llc_snap_org_code, at_org_code, 356 sizeof(llc.llc_snap_org_code)); 357 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK); 358 memcpy(mtod(m, void *), &llc, sizeof(struct llc)); 359 } else { 360 etype = htons(ETHERTYPE_ATALK); 361 } 362 pserialize_read_exit(s); 363 KERNEL_UNLOCK_ONE(NULL); 364 break; 365 } 366 #endif /* NETATALK */ 367 368 case pseudo_AF_HDRCMPLT: 369 hdrcmplt = 1; 370 memcpy(esrc, 371 ((const struct ether_header *)dst->sa_data)->ether_shost, 372 sizeof(esrc)); 373 /* FALLTHROUGH */ 374 375 case AF_UNSPEC: 376 memcpy(edst, 377 ((const struct ether_header *)dst->sa_data)->ether_dhost, 378 sizeof(edst)); 379 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */ 380 etype = ((const struct ether_header *)dst->sa_data)->ether_type; 381 break; 382 383 default: 384 printf("%s: can't handle af%d\n", ifp->if_xname, 385 dst->sa_family); 386 senderr(EAFNOSUPPORT); 387 } 388 389 #ifdef MPLS 390 { 391 struct m_tag *mtag; 392 mtag = m_tag_find(m, PACKET_TAG_MPLS); 393 if (mtag != NULL) { 394 /* Having the tag itself indicates it's MPLS */ 395 etype = htons(ETHERTYPE_MPLS); 396 m_tag_delete(m, mtag); 397 } 398 } 399 #endif 400 401 if (mcopy) 402 (void)looutput(ifp, mcopy, dst, rt); 403 404 KASSERT((m->m_flags & M_PKTHDR) != 0); 405 406 /* 407 * If no ether type is set, this must be a 802.2 formatted packet. 408 */ 409 if (etype == 0) 410 etype = htons(m->m_pkthdr.len); 411 412 /* 413 * Add local net header. If no space in first mbuf, allocate another. 414 */ 415 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 416 if (m == NULL) 417 senderr(ENOBUFS); 418 419 eh = mtod(m, struct ether_header *); 420 /* Note: etype is already in network byte order. */ 421 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 422 memcpy(eh->ether_dhost, edst, sizeof(edst)); 423 if (hdrcmplt) { 424 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); 425 } else { 426 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl), 427 sizeof(eh->ether_shost)); 428 } 429 430 #if NCARP > 0 431 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) { 432 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl), 433 sizeof(eh->ether_shost)); 434 } 435 #endif 436 437 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 438 return error; 439 if (m == NULL) 440 return 0; 441 442 #if NBRIDGE > 0 443 /* 444 * Bridges require special output handling. 445 */ 446 if (ifp->if_bridge) 447 return bridge_output(ifp, m, NULL, NULL); 448 #endif 449 450 #if NCARP > 0 451 if (ifp != ifp0) 452 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN); 453 #endif 454 455 #ifdef ALTQ 456 KERNEL_LOCK(1, NULL); 457 /* 458 * If ALTQ is enabled on the parent interface, do 459 * classification; the queueing discipline might not 460 * require classification, but might require the 461 * address family/header pointer in the pktattr. 462 */ 463 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 464 altq_etherclassify(&ifp->if_snd, m); 465 KERNEL_UNLOCK_ONE(NULL); 466 #endif 467 return ifq_enqueue(ifp, m); 468 469 bad: 470 if_statinc(ifp, if_oerrors); 471 if (m) 472 m_freem(m); 473 return error; 474 } 475 476 #ifdef ALTQ 477 /* 478 * This routine is a slight hack to allow a packet to be classified 479 * if the Ethernet headers are present. It will go away when ALTQ's 480 * classification engine understands link headers. 481 * 482 * XXX: We may need to do m_pullups here. First to ensure struct ether_header 483 * is indeed contiguous, then to read the LLC and so on. 484 */ 485 void 486 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m) 487 { 488 struct ether_header *eh; 489 struct mbuf *mtop = m; 490 uint16_t ether_type; 491 int hlen, af, hdrsize; 492 void *hdr; 493 494 KASSERT((mtop->m_flags & M_PKTHDR) != 0); 495 496 hlen = ETHER_HDR_LEN; 497 eh = mtod(m, struct ether_header *); 498 499 ether_type = htons(eh->ether_type); 500 501 if (ether_type < ETHERMTU) { 502 /* LLC/SNAP */ 503 struct llc *llc = (struct llc *)(eh + 1); 504 hlen += 8; 505 506 if (m->m_len < hlen || 507 llc->llc_dsap != LLC_SNAP_LSAP || 508 llc->llc_ssap != LLC_SNAP_LSAP || 509 llc->llc_control != LLC_UI) { 510 /* Not SNAP. */ 511 goto bad; 512 } 513 514 ether_type = htons(llc->llc_un.type_snap.ether_type); 515 } 516 517 switch (ether_type) { 518 case ETHERTYPE_IP: 519 af = AF_INET; 520 hdrsize = 20; /* sizeof(struct ip) */ 521 break; 522 523 case ETHERTYPE_IPV6: 524 af = AF_INET6; 525 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 526 break; 527 528 default: 529 af = AF_UNSPEC; 530 hdrsize = 0; 531 break; 532 } 533 534 while (m->m_len <= hlen) { 535 hlen -= m->m_len; 536 m = m->m_next; 537 if (m == NULL) 538 goto bad; 539 } 540 541 if (m->m_len < (hlen + hdrsize)) { 542 /* 543 * protocol header not in a single mbuf. 544 * We can't cope with this situation right 545 * now (but it shouldn't ever happen, really, anyhow). 546 */ 547 #ifdef DEBUG 548 printf("altq_etherclassify: headers span multiple mbufs: " 549 "%d < %d\n", m->m_len, (hlen + hdrsize)); 550 #endif 551 goto bad; 552 } 553 554 m->m_data += hlen; 555 m->m_len -= hlen; 556 557 hdr = mtod(m, void *); 558 559 if (ALTQ_NEEDS_CLASSIFY(ifq)) { 560 mtop->m_pkthdr.pattr_class = 561 (*ifq->altq_classify)(ifq->altq_clfier, m, af); 562 } 563 mtop->m_pkthdr.pattr_af = af; 564 mtop->m_pkthdr.pattr_hdr = hdr; 565 566 m->m_data -= hlen; 567 m->m_len += hlen; 568 569 return; 570 571 bad: 572 mtop->m_pkthdr.pattr_class = NULL; 573 mtop->m_pkthdr.pattr_hdr = NULL; 574 mtop->m_pkthdr.pattr_af = AF_UNSPEC; 575 } 576 #endif /* ALTQ */ 577 578 #if defined (LLC) || defined (NETATALK) 579 static void 580 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh) 581 { 582 struct ifqueue *inq = NULL; 583 int isr = 0; 584 struct llc *l; 585 586 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) 587 goto drop; 588 589 l = (struct llc *)(eh+1); 590 switch (l->llc_dsap) { 591 #ifdef NETATALK 592 case LLC_SNAP_LSAP: 593 switch (l->llc_control) { 594 case LLC_UI: 595 if (l->llc_ssap != LLC_SNAP_LSAP) 596 goto drop; 597 598 if (memcmp(&(l->llc_snap_org_code)[0], 599 at_org_code, sizeof(at_org_code)) == 0 && 600 ntohs(l->llc_snap_ether_type) == 601 ETHERTYPE_ATALK) { 602 inq = &atintrq2; 603 m_adj(m, sizeof(struct ether_header) 604 + sizeof(struct llc)); 605 isr = NETISR_ATALK; 606 break; 607 } 608 609 if (memcmp(&(l->llc_snap_org_code)[0], 610 aarp_org_code, 611 sizeof(aarp_org_code)) == 0 && 612 ntohs(l->llc_snap_ether_type) == 613 ETHERTYPE_AARP) { 614 m_adj(m, sizeof(struct ether_header) 615 + sizeof(struct llc)); 616 aarpinput(ifp, m); /* XXX queue? */ 617 return; 618 } 619 620 default: 621 goto drop; 622 } 623 break; 624 #endif 625 default: 626 goto drop; 627 } 628 629 KASSERT(inq != NULL); 630 IFQ_ENQUEUE_ISR(inq, m, isr); 631 return; 632 633 drop: 634 m_freem(m); 635 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */ 636 return; 637 } 638 #endif /* defined (LLC) || defined (NETATALK) */ 639 640 /* 641 * Process a received Ethernet packet; 642 * the packet is in the mbuf chain m with 643 * the ether header. 644 */ 645 void 646 ether_input(struct ifnet *ifp, struct mbuf *m) 647 { 648 struct ethercom *ec = (struct ethercom *) ifp; 649 pktqueue_t *pktq = NULL; 650 struct ifqueue *inq = NULL; 651 uint16_t etype; 652 struct ether_header *eh; 653 size_t ehlen; 654 static int earlypkts; 655 int isr = 0; 656 #if NAGR > 0 657 void *agrprivate; 658 #endif 659 660 KASSERT(!cpu_intr_p()); 661 KASSERT((m->m_flags & M_PKTHDR) != 0); 662 663 if ((ifp->if_flags & IFF_UP) == 0) 664 goto drop; 665 666 #ifdef MBUFTRACE 667 m_claimm(m, &ec->ec_rx_mowner); 668 #endif 669 670 if (__predict_false(m->m_len < sizeof(*eh))) { 671 if ((m = m_pullup(m, sizeof(*eh))) == NULL) { 672 if_statinc(ifp, if_ierrors); 673 return; 674 } 675 } 676 677 eh = mtod(m, struct ether_header *); 678 etype = ntohs(eh->ether_type); 679 ehlen = sizeof(*eh); 680 681 if (__predict_false(earlypkts < 100 || 682 entropy_epoch() == (unsigned)-1)) { 683 rnd_add_data(NULL, eh, ehlen, 0); 684 earlypkts++; 685 } 686 687 /* 688 * Determine if the packet is within its size limits. For MPLS the 689 * header length is variable, so we skip the check. 690 */ 691 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len > 692 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { 693 #ifdef DIAGNOSTIC 694 mutex_enter(&bigpktpps_lock); 695 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count, 696 bigpktppslim)) { 697 printf("%s: discarding oversize frame (len=%d)\n", 698 ifp->if_xname, m->m_pkthdr.len); 699 } 700 mutex_exit(&bigpktpps_lock); 701 #endif 702 goto drop; 703 } 704 705 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 706 /* 707 * If this is not a simplex interface, drop the packet 708 * if it came from us. 709 */ 710 if ((ifp->if_flags & IFF_SIMPLEX) == 0 && 711 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost, 712 ETHER_ADDR_LEN) == 0) { 713 goto drop; 714 } 715 716 if (memcmp(etherbroadcastaddr, 717 eh->ether_dhost, ETHER_ADDR_LEN) == 0) 718 m->m_flags |= M_BCAST; 719 else 720 m->m_flags |= M_MCAST; 721 if_statinc(ifp, if_imcasts); 722 } 723 724 /* If the CRC is still on the packet, trim it off. */ 725 if (m->m_flags & M_HASFCS) { 726 m_adj(m, -ETHER_CRC_LEN); 727 m->m_flags &= ~M_HASFCS; 728 } 729 730 if_statadd(ifp, if_ibytes, m->m_pkthdr.len); 731 732 #if NCARP > 0 733 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) { 734 /* 735 * Clear M_PROMISC, in case the packet comes from a 736 * vlan. 737 */ 738 m->m_flags &= ~M_PROMISC; 739 if (carp_input(m, (uint8_t *)&eh->ether_shost, 740 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0) 741 return; 742 } 743 #endif 744 745 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 && 746 (ifp->if_flags & IFF_PROMISC) != 0 && 747 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 748 ETHER_ADDR_LEN) != 0) { 749 m->m_flags |= M_PROMISC; 750 } 751 752 if ((m->m_flags & M_PROMISC) == 0) { 753 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) 754 return; 755 if (m == NULL) 756 return; 757 758 eh = mtod(m, struct ether_header *); 759 etype = ntohs(eh->ether_type); 760 } 761 762 #if NAGR > 0 763 if (ifp->if_type != IFT_IEEE8023ADLAG) { 764 agrprivate = ifp->if_lagg; 765 } else { 766 agrprivate = NULL; 767 } 768 if (agrprivate != NULL && 769 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) { 770 m->m_flags &= ~M_PROMISC; 771 agr_input(ifp, m); 772 return; 773 } 774 #endif 775 776 /* Handle input from a lagg(4) port */ 777 if (ifp->if_type == IFT_IEEE8023ADLAG) { 778 KASSERT(lagg_input_ethernet_p != NULL); 779 m = (*lagg_input_ethernet_p)(ifp, m); 780 if (m == NULL) 781 return; 782 } 783 784 /* 785 * If VLANs are configured on the interface, check to 786 * see if the device performed the decapsulation and 787 * provided us with the tag. 788 */ 789 if (ec->ec_nvlans && vlan_has_tag(m)) { 790 #if NVLAN > 0 791 /* 792 * vlan_input() will either recursively call ether_input() 793 * or drop the packet. 794 */ 795 vlan_input(ifp, m); 796 return; 797 #else 798 goto drop; 799 #endif 800 } 801 802 /* 803 * Handle protocols that expect to have the Ethernet header 804 * (and possibly FCS) intact. 805 */ 806 switch (etype) { 807 case ETHERTYPE_VLAN: { 808 struct ether_vlan_header *evl = (void *)eh; 809 810 /* 811 * If there is a tag of 0, then the VLAN header was probably 812 * just being used to store the priority. Extract the ether 813 * type, and if IP or IPV6, let them deal with it. 814 */ 815 if (m->m_len >= sizeof(*evl) && 816 EVL_VLANOFTAG(ntohs(evl->evl_tag)) == 0) { 817 etype = ntohs(evl->evl_proto); 818 ehlen = sizeof(*evl); 819 if ((m->m_flags & M_PROMISC) == 0 && 820 (etype == ETHERTYPE_IP || 821 etype == ETHERTYPE_IPV6)) 822 break; 823 } 824 825 #if NVLAN > 0 826 /* 827 * vlan_input() will either recursively call ether_input() 828 * or drop the packet. 829 */ 830 if (ec->ec_nvlans != 0) { 831 vlan_input(ifp, m); 832 return; 833 } else 834 #endif 835 goto drop; 836 } 837 838 #if NPPPOE > 0 839 case ETHERTYPE_PPPOEDISC: 840 pppoedisc_input(ifp, m); 841 return; 842 843 case ETHERTYPE_PPPOE: 844 pppoe_input(ifp, m); 845 return; 846 #endif 847 848 case ETHERTYPE_SLOWPROTOCOLS: { 849 uint8_t subtype; 850 851 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) 852 goto drop; 853 854 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype); 855 switch (subtype) { 856 #if NAGR > 0 857 case SLOWPROTOCOLS_SUBTYPE_LACP: 858 if (agrprivate != NULL) { 859 ieee8023ad_lacp_input(ifp, m); 860 return; 861 } 862 break; 863 864 case SLOWPROTOCOLS_SUBTYPE_MARKER: 865 if (agrprivate != NULL) { 866 ieee8023ad_marker_input(ifp, m); 867 return; 868 } 869 break; 870 #endif 871 872 default: 873 if (subtype == 0 || subtype > 10) { 874 /* illegal value */ 875 goto error; 876 } 877 /* unknown subtype */ 878 break; 879 } 880 } 881 /* FALLTHROUGH */ 882 default: 883 if (m->m_flags & M_PROMISC) 884 goto drop; 885 } 886 887 /* If the CRC is still on the packet, trim it off. */ 888 if (m->m_flags & M_HASFCS) { 889 m_adj(m, -ETHER_CRC_LEN); 890 m->m_flags &= ~M_HASFCS; 891 } 892 893 /* etype represents the size of the payload in this case */ 894 if (etype <= ETHERMTU + sizeof(struct ether_header)) { 895 KASSERT(ehlen == sizeof(*eh)); 896 #if defined (LLC) || defined (NETATALK) 897 ether_input_llc(ifp, m, eh); 898 return; 899 #else 900 goto error; 901 #endif 902 } 903 904 /* Strip off the Ethernet header. */ 905 m_adj(m, ehlen); 906 907 switch (etype) { 908 #ifdef INET 909 case ETHERTYPE_IP: 910 #ifdef GATEWAY 911 if (ipflow_fastforward(m)) 912 return; 913 #endif 914 pktq = ip_pktq; 915 break; 916 917 case ETHERTYPE_ARP: 918 isr = NETISR_ARP; 919 inq = &arpintrq; 920 break; 921 922 case ETHERTYPE_REVARP: 923 revarpinput(m); /* XXX queue? */ 924 return; 925 #endif 926 927 #ifdef INET6 928 case ETHERTYPE_IPV6: 929 if (__predict_false(!in6_present)) 930 goto drop; 931 #ifdef GATEWAY 932 if (ip6flow_fastforward(&m)) 933 return; 934 #endif 935 pktq = ip6_pktq; 936 break; 937 #endif 938 939 #ifdef NETATALK 940 case ETHERTYPE_ATALK: 941 isr = NETISR_ATALK; 942 inq = &atintrq1; 943 break; 944 945 case ETHERTYPE_AARP: 946 aarpinput(ifp, m); /* XXX queue? */ 947 return; 948 #endif 949 950 #ifdef MPLS 951 case ETHERTYPE_MPLS: 952 isr = NETISR_MPLS; 953 inq = &mplsintrq; 954 break; 955 #endif 956 957 default: 958 goto drop; 959 } 960 961 if (__predict_true(pktq)) { 962 const uint32_t h = pktq_rps_hash(ðer_pktq_rps_hash_p, m); 963 if (__predict_false(!pktq_enqueue(pktq, m, h))) { 964 m_freem(m); 965 } 966 return; 967 } 968 969 if (__predict_false(!inq)) { 970 /* Should not happen. */ 971 goto error; 972 } 973 974 IFQ_ENQUEUE_ISR(inq, m, isr); 975 return; 976 977 drop: 978 m_freem(m); 979 if_statinc(ifp, if_iqdrops); /* XXX should have a dedicated counter? */ 980 return; 981 error: 982 m_freem(m); 983 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */ 984 return; 985 } 986 987 /* 988 * Convert Ethernet address to printable (loggable) representation. 989 */ 990 char * 991 ether_sprintf(const u_char *ap) 992 { 993 static char etherbuf[3 * ETHER_ADDR_LEN]; 994 return ether_snprintf(etherbuf, sizeof(etherbuf), ap); 995 } 996 997 char * 998 ether_snprintf(char *buf, size_t len, const u_char *ap) 999 { 1000 char *cp = buf; 1001 size_t i; 1002 1003 for (i = 0; i < len / 3; i++) { 1004 *cp++ = hexdigits[*ap >> 4]; 1005 *cp++ = hexdigits[*ap++ & 0xf]; 1006 *cp++ = ':'; 1007 } 1008 *--cp = '\0'; 1009 return buf; 1010 } 1011 1012 /* 1013 * Perform common duties while attaching to interface list 1014 */ 1015 void 1016 ether_ifattach(struct ifnet *ifp, const uint8_t *lla) 1017 { 1018 struct ethercom *ec = (struct ethercom *)ifp; 1019 char xnamebuf[HOOKNAMSIZ]; 1020 1021 ifp->if_type = IFT_ETHER; 1022 ifp->if_hdrlen = ETHER_HDR_LEN; 1023 ifp->if_dlt = DLT_EN10MB; 1024 ifp->if_mtu = ETHERMTU; 1025 ifp->if_output = ether_output; 1026 ifp->_if_input = ether_input; 1027 if (ifp->if_baudrate == 0) 1028 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 1029 1030 if (lla != NULL) 1031 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla)); 1032 1033 LIST_INIT(&ec->ec_multiaddrs); 1034 SIMPLEQ_INIT(&ec->ec_vids); 1035 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 1036 ec->ec_flags = 0; 1037 ifp->if_broadcastaddr = etherbroadcastaddr; 1038 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 1039 snprintf(xnamebuf, sizeof(xnamebuf), 1040 "%s-ether_ifdetachhooks", ifp->if_xname); 1041 ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf); 1042 #ifdef MBUFTRACE 1043 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx"); 1044 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx"); 1045 MOWNER_ATTACH(&ec->ec_tx_mowner); 1046 MOWNER_ATTACH(&ec->ec_rx_mowner); 1047 ifp->if_mowner = &ec->ec_tx_mowner; 1048 #endif 1049 } 1050 1051 void 1052 ether_ifdetach(struct ifnet *ifp) 1053 { 1054 struct ethercom *ec = (void *) ifp; 1055 struct ether_multi *enm; 1056 1057 IFNET_ASSERT_UNLOCKED(ifp); 1058 /* 1059 * Prevent further calls to ioctl (for example turning off 1060 * promiscuous mode from the bridge code), which eventually can 1061 * call if_init() which can cause panics because the interface 1062 * is in the process of being detached. Return device not configured 1063 * instead. 1064 */ 1065 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *), 1066 enxio); 1067 1068 simplehook_dohooks(ec->ec_ifdetach_hooks); 1069 KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks)); 1070 simplehook_destroy(ec->ec_ifdetach_hooks); 1071 1072 bpf_detach(ifp); 1073 1074 ETHER_LOCK(ec); 1075 KASSERT(ec->ec_nvlans == 0); 1076 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) { 1077 LIST_REMOVE(enm, enm_list); 1078 kmem_free(enm, sizeof(*enm)); 1079 ec->ec_multicnt--; 1080 } 1081 ETHER_UNLOCK(ec); 1082 1083 mutex_obj_free(ec->ec_lock); 1084 ec->ec_lock = NULL; 1085 1086 ifp->if_mowner = NULL; 1087 MOWNER_DETACH(&ec->ec_rx_mowner); 1088 MOWNER_DETACH(&ec->ec_tx_mowner); 1089 } 1090 1091 void * 1092 ether_ifdetachhook_establish(struct ifnet *ifp, 1093 void (*fn)(void *), void *arg) 1094 { 1095 struct ethercom *ec; 1096 khook_t *hk; 1097 1098 if (ifp->if_type != IFT_ETHER) 1099 return NULL; 1100 1101 ec = (struct ethercom *)ifp; 1102 hk = simplehook_establish(ec->ec_ifdetach_hooks, 1103 fn, arg); 1104 1105 return (void *)hk; 1106 } 1107 1108 void 1109 ether_ifdetachhook_disestablish(struct ifnet *ifp, 1110 void *vhook, kmutex_t *lock) 1111 { 1112 struct ethercom *ec; 1113 1114 if (vhook == NULL) 1115 return; 1116 1117 ec = (struct ethercom *)ifp; 1118 simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock); 1119 } 1120 1121 #if 0 1122 /* 1123 * This is for reference. We have a table-driven version 1124 * of the little-endian crc32 generator, which is faster 1125 * than the double-loop. 1126 */ 1127 uint32_t 1128 ether_crc32_le(const uint8_t *buf, size_t len) 1129 { 1130 uint32_t c, crc, carry; 1131 size_t i, j; 1132 1133 crc = 0xffffffffU; /* initial value */ 1134 1135 for (i = 0; i < len; i++) { 1136 c = buf[i]; 1137 for (j = 0; j < 8; j++) { 1138 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1139 crc >>= 1; 1140 c >>= 1; 1141 if (carry) 1142 crc = (crc ^ ETHER_CRC_POLY_LE); 1143 } 1144 } 1145 1146 return (crc); 1147 } 1148 #else 1149 uint32_t 1150 ether_crc32_le(const uint8_t *buf, size_t len) 1151 { 1152 static const uint32_t crctab[] = { 1153 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1154 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1155 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1156 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1157 }; 1158 uint32_t crc; 1159 size_t i; 1160 1161 crc = 0xffffffffU; /* initial value */ 1162 1163 for (i = 0; i < len; i++) { 1164 crc ^= buf[i]; 1165 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1166 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1167 } 1168 1169 return (crc); 1170 } 1171 #endif 1172 1173 uint32_t 1174 ether_crc32_be(const uint8_t *buf, size_t len) 1175 { 1176 uint32_t c, crc, carry; 1177 size_t i, j; 1178 1179 crc = 0xffffffffU; /* initial value */ 1180 1181 for (i = 0; i < len; i++) { 1182 c = buf[i]; 1183 for (j = 0; j < 8; j++) { 1184 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1185 crc <<= 1; 1186 c >>= 1; 1187 if (carry) 1188 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1189 } 1190 } 1191 1192 return (crc); 1193 } 1194 1195 #ifdef INET 1196 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] = 1197 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; 1198 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] = 1199 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff }; 1200 #endif 1201 #ifdef INET6 1202 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] = 1203 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 }; 1204 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] = 1205 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff }; 1206 #endif 1207 1208 /* 1209 * ether_aton implementation, not using a static buffer. 1210 */ 1211 int 1212 ether_aton_r(u_char *dest, size_t len, const char *str) 1213 { 1214 const u_char *cp = (const void *)str; 1215 u_char *ep; 1216 1217 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10)) 1218 1219 if (len < ETHER_ADDR_LEN) 1220 return ENOSPC; 1221 1222 ep = dest + ETHER_ADDR_LEN; 1223 1224 while (*cp) { 1225 if (!isxdigit(*cp)) 1226 return EINVAL; 1227 1228 *dest = atox(*cp); 1229 cp++; 1230 if (isxdigit(*cp)) { 1231 *dest = (*dest << 4) | atox(*cp); 1232 cp++; 1233 } 1234 dest++; 1235 1236 if (dest == ep) 1237 return (*cp == '\0') ? 0 : ENAMETOOLONG; 1238 1239 switch (*cp) { 1240 case ':': 1241 case '-': 1242 case '.': 1243 cp++; 1244 break; 1245 } 1246 } 1247 return ENOBUFS; 1248 } 1249 1250 /* 1251 * Convert a sockaddr into an Ethernet address or range of Ethernet 1252 * addresses. 1253 */ 1254 int 1255 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN], 1256 uint8_t addrhi[ETHER_ADDR_LEN]) 1257 { 1258 #ifdef INET 1259 const struct sockaddr_in *sin; 1260 #endif 1261 #ifdef INET6 1262 const struct sockaddr_in6 *sin6; 1263 #endif 1264 1265 switch (sa->sa_family) { 1266 1267 case AF_UNSPEC: 1268 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN); 1269 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1270 break; 1271 1272 #ifdef INET 1273 case AF_INET: 1274 sin = satocsin(sa); 1275 if (sin->sin_addr.s_addr == INADDR_ANY) { 1276 /* 1277 * An IP address of INADDR_ANY means listen to 1278 * or stop listening to all of the Ethernet 1279 * multicast addresses used for IP. 1280 * (This is for the sake of IP multicast routers.) 1281 */ 1282 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN); 1283 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN); 1284 } else { 1285 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo); 1286 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1287 } 1288 break; 1289 #endif 1290 #ifdef INET6 1291 case AF_INET6: 1292 sin6 = satocsin6(sa); 1293 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1294 /* 1295 * An IP6 address of 0 means listen to or stop 1296 * listening to all of the Ethernet multicast 1297 * address used for IP6. 1298 * (This is used for multicast routers.) 1299 */ 1300 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN); 1301 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN); 1302 } else { 1303 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo); 1304 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1305 } 1306 break; 1307 #endif 1308 1309 default: 1310 return EAFNOSUPPORT; 1311 } 1312 return 0; 1313 } 1314 1315 /* 1316 * Add an Ethernet multicast address or range of addresses to the list for a 1317 * given interface. 1318 */ 1319 int 1320 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec) 1321 { 1322 struct ether_multi *enm, *_enm; 1323 u_char addrlo[ETHER_ADDR_LEN]; 1324 u_char addrhi[ETHER_ADDR_LEN]; 1325 int error = 0; 1326 1327 /* Allocate out of lock */ 1328 enm = kmem_alloc(sizeof(*enm), KM_SLEEP); 1329 1330 ETHER_LOCK(ec); 1331 error = ether_multiaddr(sa, addrlo, addrhi); 1332 if (error != 0) 1333 goto out; 1334 1335 /* 1336 * Verify that we have valid Ethernet multicast addresses. 1337 */ 1338 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) { 1339 error = EINVAL; 1340 goto out; 1341 } 1342 1343 /* 1344 * See if the address range is already in the list. 1345 */ 1346 _enm = ether_lookup_multi(addrlo, addrhi, ec); 1347 if (_enm != NULL) { 1348 /* 1349 * Found it; just increment the reference count. 1350 */ 1351 ++_enm->enm_refcount; 1352 error = 0; 1353 goto out; 1354 } 1355 1356 /* 1357 * Link a new multicast record into the interface's multicast list. 1358 */ 1359 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN); 1360 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN); 1361 enm->enm_refcount = 1; 1362 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list); 1363 ec->ec_multicnt++; 1364 1365 /* 1366 * Return ENETRESET to inform the driver that the list has changed 1367 * and its reception filter should be adjusted accordingly. 1368 */ 1369 error = ENETRESET; 1370 enm = NULL; 1371 1372 out: 1373 ETHER_UNLOCK(ec); 1374 if (enm != NULL) 1375 kmem_free(enm, sizeof(*enm)); 1376 return error; 1377 } 1378 1379 /* 1380 * Delete a multicast address record. 1381 */ 1382 int 1383 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec) 1384 { 1385 struct ether_multi *enm; 1386 u_char addrlo[ETHER_ADDR_LEN]; 1387 u_char addrhi[ETHER_ADDR_LEN]; 1388 int error; 1389 1390 ETHER_LOCK(ec); 1391 error = ether_multiaddr(sa, addrlo, addrhi); 1392 if (error != 0) 1393 goto error; 1394 1395 /* 1396 * Look up the address in our list. 1397 */ 1398 enm = ether_lookup_multi(addrlo, addrhi, ec); 1399 if (enm == NULL) { 1400 error = ENXIO; 1401 goto error; 1402 } 1403 if (--enm->enm_refcount != 0) { 1404 /* 1405 * Still some claims to this record. 1406 */ 1407 error = 0; 1408 goto error; 1409 } 1410 1411 /* 1412 * No remaining claims to this record; unlink and free it. 1413 */ 1414 LIST_REMOVE(enm, enm_list); 1415 ec->ec_multicnt--; 1416 ETHER_UNLOCK(ec); 1417 kmem_free(enm, sizeof(*enm)); 1418 1419 /* 1420 * Return ENETRESET to inform the driver that the list has changed 1421 * and its reception filter should be adjusted accordingly. 1422 */ 1423 return ENETRESET; 1424 1425 error: 1426 ETHER_UNLOCK(ec); 1427 return error; 1428 } 1429 1430 void 1431 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb) 1432 { 1433 ec->ec_ifflags_cb = cb; 1434 } 1435 1436 void 1437 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb) 1438 { 1439 1440 ec->ec_vlan_cb = cb; 1441 } 1442 1443 static int 1444 ether_ioctl_reinit(struct ethercom *ec) 1445 { 1446 struct ifnet *ifp = &ec->ec_if; 1447 int error; 1448 1449 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1450 case IFF_RUNNING: 1451 /* 1452 * If interface is marked down and it is running, 1453 * then stop and disable it. 1454 */ 1455 (*ifp->if_stop)(ifp, 1); 1456 break; 1457 case IFF_UP: 1458 /* 1459 * If interface is marked up and it is stopped, then 1460 * start it. 1461 */ 1462 return (*ifp->if_init)(ifp); 1463 case IFF_UP | IFF_RUNNING: 1464 error = 0; 1465 if (ec->ec_ifflags_cb != NULL) { 1466 error = (*ec->ec_ifflags_cb)(ec); 1467 if (error == ENETRESET) { 1468 /* 1469 * Reset the interface to pick up 1470 * changes in any other flags that 1471 * affect the hardware state. 1472 */ 1473 return (*ifp->if_init)(ifp); 1474 } 1475 } else 1476 error = (*ifp->if_init)(ifp); 1477 return error; 1478 case 0: 1479 break; 1480 } 1481 1482 return 0; 1483 } 1484 1485 /* 1486 * Common ioctls for Ethernet interfaces. Note, we must be 1487 * called at splnet(). 1488 */ 1489 int 1490 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1491 { 1492 struct ethercom *ec = (void *)ifp; 1493 struct eccapreq *eccr; 1494 struct ifreq *ifr = (struct ifreq *)data; 1495 struct if_laddrreq *iflr = data; 1496 const struct sockaddr_dl *sdl; 1497 static const uint8_t zero[ETHER_ADDR_LEN]; 1498 int error; 1499 1500 switch (cmd) { 1501 case SIOCINITIFADDR: 1502 { 1503 struct ifaddr *ifa = (struct ifaddr *)data; 1504 if (ifa->ifa_addr->sa_family != AF_LINK 1505 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 1506 (IFF_UP | IFF_RUNNING)) { 1507 ifp->if_flags |= IFF_UP; 1508 if ((error = (*ifp->if_init)(ifp)) != 0) 1509 return error; 1510 } 1511 #ifdef INET 1512 if (ifa->ifa_addr->sa_family == AF_INET) 1513 arp_ifinit(ifp, ifa); 1514 #endif 1515 return 0; 1516 } 1517 1518 case SIOCSIFMTU: 1519 { 1520 int maxmtu; 1521 1522 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU) 1523 maxmtu = ETHERMTU_JUMBO; 1524 else 1525 maxmtu = ETHERMTU; 1526 1527 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 1528 return EINVAL; 1529 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1530 return error; 1531 else if (ifp->if_flags & IFF_UP) { 1532 /* Make sure the device notices the MTU change. */ 1533 return (*ifp->if_init)(ifp); 1534 } else 1535 return 0; 1536 } 1537 1538 case SIOCSIFFLAGS: 1539 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1540 return error; 1541 return ether_ioctl_reinit(ec); 1542 case SIOCGIFFLAGS: 1543 error = ifioctl_common(ifp, cmd, data); 1544 if (error == 0) { 1545 /* Set IFF_ALLMULTI for backcompat */ 1546 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ? 1547 IFF_ALLMULTI : 0; 1548 } 1549 return error; 1550 case SIOCGETHERCAP: 1551 eccr = (struct eccapreq *)data; 1552 eccr->eccr_capabilities = ec->ec_capabilities; 1553 eccr->eccr_capenable = ec->ec_capenable; 1554 return 0; 1555 case SIOCSETHERCAP: 1556 eccr = (struct eccapreq *)data; 1557 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0) 1558 return EINVAL; 1559 if (eccr->eccr_capenable == ec->ec_capenable) 1560 return 0; 1561 #if 0 /* notyet */ 1562 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE) 1563 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE); 1564 #else 1565 ec->ec_capenable = eccr->eccr_capenable; 1566 #endif 1567 return ether_ioctl_reinit(ec); 1568 case SIOCADDMULTI: 1569 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec); 1570 case SIOCDELMULTI: 1571 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec); 1572 case SIOCSIFMEDIA: 1573 case SIOCGIFMEDIA: 1574 if (ec->ec_mii != NULL) 1575 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, 1576 cmd); 1577 else if (ec->ec_ifmedia != NULL) 1578 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd); 1579 else 1580 return ENOTTY; 1581 break; 1582 case SIOCALIFADDR: 1583 sdl = satocsdl(sstocsa(&iflr->addr)); 1584 if (sdl->sdl_family != AF_LINK) 1585 ; 1586 else if (ETHER_IS_MULTICAST(CLLADDR(sdl))) 1587 return EINVAL; 1588 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0) 1589 return EINVAL; 1590 /*FALLTHROUGH*/ 1591 default: 1592 return ifioctl_common(ifp, cmd, data); 1593 } 1594 return 0; 1595 } 1596 1597 /* 1598 * Enable/disable passing VLAN packets if the parent interface supports it. 1599 * Return: 1600 * 0: Ok 1601 * -1: Parent interface does not support vlans 1602 * >0: Error 1603 */ 1604 int 1605 ether_enable_vlan_mtu(struct ifnet *ifp) 1606 { 1607 int error; 1608 struct ethercom *ec = (void *)ifp; 1609 1610 /* Parent does not support VLAN's */ 1611 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) 1612 return -1; 1613 1614 /* 1615 * Parent supports the VLAN_MTU capability, 1616 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames; 1617 * enable it. 1618 */ 1619 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1620 1621 /* Interface is down, defer for later */ 1622 if ((ifp->if_flags & IFF_UP) == 0) 1623 return 0; 1624 1625 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1626 return 0; 1627 1628 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1629 return error; 1630 } 1631 1632 int 1633 ether_disable_vlan_mtu(struct ifnet *ifp) 1634 { 1635 int error; 1636 struct ethercom *ec = (void *)ifp; 1637 1638 /* We still have VLAN's, defer for later */ 1639 if (ec->ec_nvlans != 0) 1640 return 0; 1641 1642 /* Parent does not support VLAB's, nothing to do. */ 1643 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0) 1644 return -1; 1645 1646 /* 1647 * Disable Tx/Rx of VLAN-sized frames. 1648 */ 1649 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1650 1651 /* Interface is down, defer for later */ 1652 if ((ifp->if_flags & IFF_UP) == 0) 1653 return 0; 1654 1655 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1656 return 0; 1657 1658 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1659 return error; 1660 } 1661 1662 static int 1663 ether_multicast_sysctl(SYSCTLFN_ARGS) 1664 { 1665 struct ether_multi *enm; 1666 struct ifnet *ifp; 1667 struct ethercom *ec; 1668 int error = 0; 1669 size_t written; 1670 struct psref psref; 1671 int bound; 1672 unsigned int multicnt; 1673 struct ether_multi_sysctl *addrs; 1674 int i; 1675 1676 if (namelen != 1) 1677 return EINVAL; 1678 1679 bound = curlwp_bind(); 1680 ifp = if_get_byindex(name[0], &psref); 1681 if (ifp == NULL) { 1682 error = ENODEV; 1683 goto out; 1684 } 1685 if (ifp->if_type != IFT_ETHER) { 1686 if_put(ifp, &psref); 1687 *oldlenp = 0; 1688 goto out; 1689 } 1690 ec = (struct ethercom *)ifp; 1691 1692 if (oldp == NULL) { 1693 if_put(ifp, &psref); 1694 *oldlenp = ec->ec_multicnt * sizeof(*addrs); 1695 goto out; 1696 } 1697 1698 /* 1699 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which 1700 * is sleepable, while holding it. Copy data to a local buffer first 1701 * with the lock taken and then call sysctl_copyout without holding it. 1702 */ 1703 retry: 1704 multicnt = ec->ec_multicnt; 1705 1706 if (multicnt == 0) { 1707 if_put(ifp, &psref); 1708 *oldlenp = 0; 1709 goto out; 1710 } 1711 1712 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP); 1713 1714 ETHER_LOCK(ec); 1715 if (multicnt != ec->ec_multicnt) { 1716 /* The number of multicast addresses has changed */ 1717 ETHER_UNLOCK(ec); 1718 kmem_free(addrs, sizeof(*addrs) * multicnt); 1719 goto retry; 1720 } 1721 1722 i = 0; 1723 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) { 1724 struct ether_multi_sysctl *addr = &addrs[i]; 1725 addr->enm_refcount = enm->enm_refcount; 1726 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN); 1727 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN); 1728 i++; 1729 } 1730 ETHER_UNLOCK(ec); 1731 1732 error = 0; 1733 written = 0; 1734 for (i = 0; i < multicnt; i++) { 1735 struct ether_multi_sysctl *addr = &addrs[i]; 1736 1737 if (written + sizeof(*addr) > *oldlenp) 1738 break; 1739 error = sysctl_copyout(l, addr, oldp, sizeof(*addr)); 1740 if (error) 1741 break; 1742 written += sizeof(*addr); 1743 oldp = (char *)oldp + sizeof(*addr); 1744 } 1745 kmem_free(addrs, sizeof(*addrs) * multicnt); 1746 1747 if_put(ifp, &psref); 1748 1749 *oldlenp = written; 1750 out: 1751 curlwp_bindx(bound); 1752 return error; 1753 } 1754 1755 static void 1756 ether_sysctl_setup(struct sysctllog **clog) 1757 { 1758 const struct sysctlnode *rnode = NULL; 1759 1760 sysctl_createv(clog, 0, NULL, &rnode, 1761 CTLFLAG_PERMANENT, 1762 CTLTYPE_NODE, "ether", 1763 SYSCTL_DESCR("Ethernet-specific information"), 1764 NULL, 0, NULL, 0, 1765 CTL_NET, CTL_CREATE, CTL_EOL); 1766 1767 sysctl_createv(clog, 0, &rnode, NULL, 1768 CTLFLAG_PERMANENT, 1769 CTLTYPE_NODE, "multicast", 1770 SYSCTL_DESCR("multicast addresses"), 1771 ether_multicast_sysctl, 0, NULL, 0, 1772 CTL_CREATE, CTL_EOL); 1773 1774 sysctl_createv(clog, 0, &rnode, NULL, 1775 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1776 CTLTYPE_STRING, "rps_hash", 1777 SYSCTL_DESCR("Interface rps hash function control"), 1778 sysctl_pktq_rps_hash_handler, 0, (void *)ðer_pktq_rps_hash_p, 1779 PKTQ_RPS_HASH_NAME_LEN, 1780 CTL_CREATE, CTL_EOL); 1781 } 1782 1783 void 1784 etherinit(void) 1785 { 1786 1787 #ifdef DIAGNOSTIC 1788 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET); 1789 #endif 1790 ether_pktq_rps_hash_p = pktq_rps_hash_default; 1791 ether_sysctl_setup(NULL); 1792 } 1793