1 /* $NetBSD: if_ethersubr.c,v 1.311 2022/04/04 06:10:00 yamaguchi Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.311 2022/04/04 06:10:00 yamaguchi Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_atalk.h" 69 #include "opt_mbuftrace.h" 70 #include "opt_mpls.h" 71 #include "opt_gateway.h" 72 #include "opt_pppoe.h" 73 #include "opt_net_mpsafe.h" 74 #endif 75 76 #include "vlan.h" 77 #include "pppoe.h" 78 #include "bridge.h" 79 #include "arp.h" 80 #include "agr.h" 81 82 #include <sys/sysctl.h> 83 #include <sys/mbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/ioctl.h> 86 #include <sys/errno.h> 87 #include <sys/device.h> 88 #include <sys/entropy.h> 89 #include <sys/rndsource.h> 90 #include <sys/cpu.h> 91 #include <sys/kmem.h> 92 #include <sys/hook.h> 93 94 #include <net/if.h> 95 #include <net/netisr.h> 96 #include <net/route.h> 97 #include <net/if_llc.h> 98 #include <net/if_dl.h> 99 #include <net/if_types.h> 100 #include <net/pktqueue.h> 101 102 #include <net/if_media.h> 103 #include <dev/mii/mii.h> 104 #include <dev/mii/miivar.h> 105 106 #if NARP == 0 107 /* 108 * XXX there should really be a way to issue this warning from within config(8) 109 */ 110 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK. 111 #endif 112 113 #include <net/bpf.h> 114 115 #include <net/if_ether.h> 116 #include <net/if_vlanvar.h> 117 118 #if NPPPOE > 0 119 #include <net/if_pppoe.h> 120 #endif 121 122 #if NAGR > 0 123 #include <net/ether_slowprotocols.h> 124 #include <net/agr/ieee8023ad.h> 125 #include <net/agr/if_agrvar.h> 126 #endif 127 128 #if NBRIDGE > 0 129 #include <net/if_bridgevar.h> 130 #endif 131 132 #include <netinet/in.h> 133 #ifdef INET 134 #include <netinet/in_var.h> 135 #endif 136 #include <netinet/if_inarp.h> 137 138 #ifdef INET6 139 #ifndef INET 140 #include <netinet/in.h> 141 #endif 142 #include <netinet6/in6_var.h> 143 #include <netinet6/nd6.h> 144 #endif 145 146 #include "carp.h" 147 #if NCARP > 0 148 #include <netinet/ip_carp.h> 149 #endif 150 151 #ifdef NETATALK 152 #include <netatalk/at.h> 153 #include <netatalk/at_var.h> 154 #include <netatalk/at_extern.h> 155 156 #define llc_snap_org_code llc_un.type_snap.org_code 157 #define llc_snap_ether_type llc_un.type_snap.ether_type 158 159 extern u_char at_org_code[3]; 160 extern u_char aarp_org_code[3]; 161 #endif /* NETATALK */ 162 163 #ifdef MPLS 164 #include <netmpls/mpls.h> 165 #include <netmpls/mpls_var.h> 166 #endif 167 168 CTASSERT(sizeof(struct ether_addr) == 6); 169 CTASSERT(sizeof(struct ether_header) == 14); 170 171 #ifdef DIAGNOSTIC 172 static struct timeval bigpktppslim_last; 173 static int bigpktppslim = 2; /* XXX */ 174 static int bigpktpps_count; 175 static kmutex_t bigpktpps_lock __cacheline_aligned; 176 #endif 177 178 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = 179 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 180 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = 181 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; 182 #define senderr(e) { error = (e); goto bad;} 183 184 static pktq_rps_hash_func_t ether_pktq_rps_hash_p; 185 186 static int ether_output(struct ifnet *, struct mbuf *, 187 const struct sockaddr *, const struct rtentry *); 188 189 /* 190 * Ethernet output routine. 191 * Encapsulate a packet of type family for the local net. 192 * Assumes that ifp is actually pointer to ethercom structure. 193 */ 194 static int 195 ether_output(struct ifnet * const ifp0, struct mbuf * const m0, 196 const struct sockaddr * const dst, const struct rtentry *rt) 197 { 198 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 199 uint16_t etype = 0; 200 int error = 0, hdrcmplt = 0; 201 struct mbuf *m = m0; 202 struct mbuf *mcopy = NULL; 203 struct ether_header *eh; 204 struct ifnet *ifp = ifp0; 205 #ifdef INET 206 struct arphdr *ah; 207 #endif 208 #ifdef NETATALK 209 struct at_ifaddr *aa; 210 #endif 211 212 #ifdef MBUFTRACE 213 m_claimm(m, ifp->if_mowner); 214 #endif 215 216 #if NCARP > 0 217 if (ifp->if_type == IFT_CARP) { 218 struct ifaddr *ifa; 219 int s = pserialize_read_enter(); 220 221 /* loop back if this is going to the carp interface */ 222 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP && 223 (ifa = ifa_ifwithaddr(dst)) != NULL) { 224 if (ifa->ifa_ifp == ifp0) { 225 pserialize_read_exit(s); 226 return looutput(ifp0, m, dst, rt); 227 } 228 } 229 pserialize_read_exit(s); 230 231 ifp = ifp->if_carpdev; 232 /* ac = (struct arpcom *)ifp; */ 233 234 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) != 235 (IFF_UP | IFF_RUNNING)) 236 senderr(ENETDOWN); 237 } 238 #endif 239 240 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 241 senderr(ENETDOWN); 242 243 switch (dst->sa_family) { 244 245 #ifdef INET 246 case AF_INET: 247 if (m->m_flags & M_BCAST) { 248 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 249 } else if (m->m_flags & M_MCAST) { 250 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst); 251 } else { 252 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst)); 253 if (error) 254 return (error == EWOULDBLOCK) ? 0 : error; 255 } 256 /* If broadcasting on a simplex interface, loopback a copy */ 257 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) 258 mcopy = m_copypacket(m, M_DONTWAIT); 259 etype = htons(ETHERTYPE_IP); 260 break; 261 262 case AF_ARP: 263 ah = mtod(m, struct arphdr *); 264 if (m->m_flags & M_BCAST) { 265 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 266 } else { 267 void *tha = ar_tha(ah); 268 269 if (tha == NULL) { 270 /* fake with ARPHRD_IEEE1394 */ 271 m_freem(m); 272 return 0; 273 } 274 memcpy(edst, tha, sizeof(edst)); 275 } 276 277 ah->ar_hrd = htons(ARPHRD_ETHER); 278 279 switch (ntohs(ah->ar_op)) { 280 case ARPOP_REVREQUEST: 281 case ARPOP_REVREPLY: 282 etype = htons(ETHERTYPE_REVARP); 283 break; 284 285 case ARPOP_REQUEST: 286 case ARPOP_REPLY: 287 default: 288 etype = htons(ETHERTYPE_ARP); 289 } 290 break; 291 #endif 292 293 #ifdef INET6 294 case AF_INET6: 295 if (m->m_flags & M_BCAST) { 296 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 297 } else if (m->m_flags & M_MCAST) { 298 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 299 edst); 300 } else { 301 error = nd6_resolve(ifp0, rt, m, dst, edst, 302 sizeof(edst)); 303 if (error) 304 return (error == EWOULDBLOCK) ? 0 : error; 305 } 306 etype = htons(ETHERTYPE_IPV6); 307 break; 308 #endif 309 310 #ifdef NETATALK 311 case AF_APPLETALK: { 312 struct ifaddr *ifa; 313 int s; 314 315 KERNEL_LOCK(1, NULL); 316 317 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) { 318 KERNEL_UNLOCK_ONE(NULL); 319 return 0; 320 } 321 322 /* 323 * ifaddr is the first thing in at_ifaddr 324 */ 325 s = pserialize_read_enter(); 326 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp); 327 if (ifa == NULL) { 328 pserialize_read_exit(s); 329 KERNEL_UNLOCK_ONE(NULL); 330 senderr(EADDRNOTAVAIL); 331 } 332 aa = (struct at_ifaddr *)ifa; 333 334 /* 335 * In the phase 2 case, we need to prepend an mbuf for the 336 * llc header. 337 */ 338 if (aa->aa_flags & AFA_PHASE2) { 339 struct llc llc; 340 341 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT); 342 if (m == NULL) { 343 pserialize_read_exit(s); 344 KERNEL_UNLOCK_ONE(NULL); 345 senderr(ENOBUFS); 346 } 347 348 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 349 llc.llc_control = LLC_UI; 350 memcpy(llc.llc_snap_org_code, at_org_code, 351 sizeof(llc.llc_snap_org_code)); 352 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK); 353 memcpy(mtod(m, void *), &llc, sizeof(struct llc)); 354 } else { 355 etype = htons(ETHERTYPE_ATALK); 356 } 357 pserialize_read_exit(s); 358 KERNEL_UNLOCK_ONE(NULL); 359 break; 360 } 361 #endif /* NETATALK */ 362 363 case pseudo_AF_HDRCMPLT: 364 hdrcmplt = 1; 365 memcpy(esrc, 366 ((const struct ether_header *)dst->sa_data)->ether_shost, 367 sizeof(esrc)); 368 /* FALLTHROUGH */ 369 370 case AF_UNSPEC: 371 memcpy(edst, 372 ((const struct ether_header *)dst->sa_data)->ether_dhost, 373 sizeof(edst)); 374 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */ 375 etype = ((const struct ether_header *)dst->sa_data)->ether_type; 376 break; 377 378 default: 379 printf("%s: can't handle af%d\n", ifp->if_xname, 380 dst->sa_family); 381 senderr(EAFNOSUPPORT); 382 } 383 384 #ifdef MPLS 385 { 386 struct m_tag *mtag; 387 mtag = m_tag_find(m, PACKET_TAG_MPLS); 388 if (mtag != NULL) { 389 /* Having the tag itself indicates it's MPLS */ 390 etype = htons(ETHERTYPE_MPLS); 391 m_tag_delete(m, mtag); 392 } 393 } 394 #endif 395 396 if (mcopy) 397 (void)looutput(ifp, mcopy, dst, rt); 398 399 KASSERT((m->m_flags & M_PKTHDR) != 0); 400 401 /* 402 * If no ether type is set, this must be a 802.2 formatted packet. 403 */ 404 if (etype == 0) 405 etype = htons(m->m_pkthdr.len); 406 407 /* 408 * Add local net header. If no space in first mbuf, allocate another. 409 */ 410 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 411 if (m == NULL) 412 senderr(ENOBUFS); 413 414 eh = mtod(m, struct ether_header *); 415 /* Note: etype is already in network byte order. */ 416 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 417 memcpy(eh->ether_dhost, edst, sizeof(edst)); 418 if (hdrcmplt) { 419 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); 420 } else { 421 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl), 422 sizeof(eh->ether_shost)); 423 } 424 425 #if NCARP > 0 426 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) { 427 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl), 428 sizeof(eh->ether_shost)); 429 } 430 #endif 431 432 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 433 return error; 434 if (m == NULL) 435 return 0; 436 437 #if NBRIDGE > 0 438 /* 439 * Bridges require special output handling. 440 */ 441 if (ifp->if_bridge) 442 return bridge_output(ifp, m, NULL, NULL); 443 #endif 444 445 #if NCARP > 0 446 if (ifp != ifp0) 447 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN); 448 #endif 449 450 #ifdef ALTQ 451 KERNEL_LOCK(1, NULL); 452 /* 453 * If ALTQ is enabled on the parent interface, do 454 * classification; the queueing discipline might not 455 * require classification, but might require the 456 * address family/header pointer in the pktattr. 457 */ 458 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 459 altq_etherclassify(&ifp->if_snd, m); 460 KERNEL_UNLOCK_ONE(NULL); 461 #endif 462 return ifq_enqueue(ifp, m); 463 464 bad: 465 if_statinc(ifp, if_oerrors); 466 if (m) 467 m_freem(m); 468 return error; 469 } 470 471 #ifdef ALTQ 472 /* 473 * This routine is a slight hack to allow a packet to be classified 474 * if the Ethernet headers are present. It will go away when ALTQ's 475 * classification engine understands link headers. 476 * 477 * XXX: We may need to do m_pullups here. First to ensure struct ether_header 478 * is indeed contiguous, then to read the LLC and so on. 479 */ 480 void 481 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m) 482 { 483 struct ether_header *eh; 484 struct mbuf *mtop = m; 485 uint16_t ether_type; 486 int hlen, af, hdrsize; 487 void *hdr; 488 489 KASSERT((mtop->m_flags & M_PKTHDR) != 0); 490 491 hlen = ETHER_HDR_LEN; 492 eh = mtod(m, struct ether_header *); 493 494 ether_type = htons(eh->ether_type); 495 496 if (ether_type < ETHERMTU) { 497 /* LLC/SNAP */ 498 struct llc *llc = (struct llc *)(eh + 1); 499 hlen += 8; 500 501 if (m->m_len < hlen || 502 llc->llc_dsap != LLC_SNAP_LSAP || 503 llc->llc_ssap != LLC_SNAP_LSAP || 504 llc->llc_control != LLC_UI) { 505 /* Not SNAP. */ 506 goto bad; 507 } 508 509 ether_type = htons(llc->llc_un.type_snap.ether_type); 510 } 511 512 switch (ether_type) { 513 case ETHERTYPE_IP: 514 af = AF_INET; 515 hdrsize = 20; /* sizeof(struct ip) */ 516 break; 517 518 case ETHERTYPE_IPV6: 519 af = AF_INET6; 520 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 521 break; 522 523 default: 524 af = AF_UNSPEC; 525 hdrsize = 0; 526 break; 527 } 528 529 while (m->m_len <= hlen) { 530 hlen -= m->m_len; 531 m = m->m_next; 532 if (m == NULL) 533 goto bad; 534 } 535 536 if (m->m_len < (hlen + hdrsize)) { 537 /* 538 * protocol header not in a single mbuf. 539 * We can't cope with this situation right 540 * now (but it shouldn't ever happen, really, anyhow). 541 */ 542 #ifdef DEBUG 543 printf("altq_etherclassify: headers span multiple mbufs: " 544 "%d < %d\n", m->m_len, (hlen + hdrsize)); 545 #endif 546 goto bad; 547 } 548 549 m->m_data += hlen; 550 m->m_len -= hlen; 551 552 hdr = mtod(m, void *); 553 554 if (ALTQ_NEEDS_CLASSIFY(ifq)) { 555 mtop->m_pkthdr.pattr_class = 556 (*ifq->altq_classify)(ifq->altq_clfier, m, af); 557 } 558 mtop->m_pkthdr.pattr_af = af; 559 mtop->m_pkthdr.pattr_hdr = hdr; 560 561 m->m_data -= hlen; 562 m->m_len += hlen; 563 564 return; 565 566 bad: 567 mtop->m_pkthdr.pattr_class = NULL; 568 mtop->m_pkthdr.pattr_hdr = NULL; 569 mtop->m_pkthdr.pattr_af = AF_UNSPEC; 570 } 571 #endif /* ALTQ */ 572 573 #if defined (LLC) || defined (NETATALK) 574 static void 575 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh) 576 { 577 struct ifqueue *inq = NULL; 578 int isr = 0; 579 struct llc *l; 580 581 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) 582 goto error; 583 584 l = (struct llc *)(eh+1); 585 switch (l->llc_dsap) { 586 #ifdef NETATALK 587 case LLC_SNAP_LSAP: 588 switch (l->llc_control) { 589 case LLC_UI: 590 if (l->llc_ssap != LLC_SNAP_LSAP) 591 goto error; 592 593 if (memcmp(&(l->llc_snap_org_code)[0], 594 at_org_code, sizeof(at_org_code)) == 0 && 595 ntohs(l->llc_snap_ether_type) == 596 ETHERTYPE_ATALK) { 597 inq = &atintrq2; 598 m_adj(m, sizeof(struct ether_header) 599 + sizeof(struct llc)); 600 isr = NETISR_ATALK; 601 break; 602 } 603 604 if (memcmp(&(l->llc_snap_org_code)[0], 605 aarp_org_code, 606 sizeof(aarp_org_code)) == 0 && 607 ntohs(l->llc_snap_ether_type) == 608 ETHERTYPE_AARP) { 609 m_adj(m, sizeof(struct ether_header) 610 + sizeof(struct llc)); 611 aarpinput(ifp, m); /* XXX queue? */ 612 return; 613 } 614 615 default: 616 goto error; 617 } 618 break; 619 #endif 620 default: 621 goto noproto; 622 } 623 624 KASSERT(inq != NULL); 625 IFQ_ENQUEUE_ISR(inq, m, isr); 626 return; 627 628 noproto: 629 m_freem(m); 630 if_statinc(ifp, if_noproto); 631 return; 632 error: 633 m_freem(m); 634 if_statinc(ifp, if_ierrors); 635 return; 636 } 637 #endif /* defined (LLC) || defined (NETATALK) */ 638 639 /* 640 * Process a received Ethernet packet; 641 * the packet is in the mbuf chain m with 642 * the ether header. 643 */ 644 void 645 ether_input(struct ifnet *ifp, struct mbuf *m) 646 { 647 struct ethercom *ec = (struct ethercom *) ifp; 648 pktqueue_t *pktq = NULL; 649 struct ifqueue *inq = NULL; 650 uint16_t etype; 651 struct ether_header *eh; 652 size_t ehlen; 653 static int earlypkts; 654 int isr = 0; 655 656 KASSERT(!cpu_intr_p()); 657 KASSERT((m->m_flags & M_PKTHDR) != 0); 658 659 if ((ifp->if_flags & IFF_UP) == 0) 660 goto drop; 661 662 #ifdef MBUFTRACE 663 m_claimm(m, &ec->ec_rx_mowner); 664 #endif 665 666 if (__predict_false(m->m_len < sizeof(*eh))) { 667 if ((m = m_pullup(m, sizeof(*eh))) == NULL) { 668 if_statinc(ifp, if_ierrors); 669 return; 670 } 671 } 672 673 eh = mtod(m, struct ether_header *); 674 etype = ntohs(eh->ether_type); 675 ehlen = sizeof(*eh); 676 677 if (__predict_false(earlypkts < 100 || 678 entropy_epoch() == (unsigned)-1)) { 679 rnd_add_data(NULL, eh, ehlen, 0); 680 earlypkts++; 681 } 682 683 /* 684 * Determine if the packet is within its size limits. For MPLS the 685 * header length is variable, so we skip the check. 686 */ 687 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len > 688 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { 689 #ifdef DIAGNOSTIC 690 mutex_enter(&bigpktpps_lock); 691 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count, 692 bigpktppslim)) { 693 printf("%s: discarding oversize frame (len=%d)\n", 694 ifp->if_xname, m->m_pkthdr.len); 695 } 696 mutex_exit(&bigpktpps_lock); 697 #endif 698 goto error; 699 } 700 701 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 702 /* 703 * If this is not a simplex interface, drop the packet 704 * if it came from us. 705 */ 706 if ((ifp->if_flags & IFF_SIMPLEX) == 0 && 707 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost, 708 ETHER_ADDR_LEN) == 0) { 709 goto drop; 710 } 711 712 if (memcmp(etherbroadcastaddr, 713 eh->ether_dhost, ETHER_ADDR_LEN) == 0) 714 m->m_flags |= M_BCAST; 715 else 716 m->m_flags |= M_MCAST; 717 if_statinc(ifp, if_imcasts); 718 } 719 720 /* If the CRC is still on the packet, trim it off. */ 721 if (m->m_flags & M_HASFCS) { 722 m_adj(m, -ETHER_CRC_LEN); 723 m->m_flags &= ~M_HASFCS; 724 } 725 726 if_statadd(ifp, if_ibytes, m->m_pkthdr.len); 727 728 #if NCARP > 0 729 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) { 730 /* 731 * Clear M_PROMISC, in case the packet comes from a 732 * vlan. 733 */ 734 m->m_flags &= ~M_PROMISC; 735 if (carp_input(m, (uint8_t *)&eh->ether_shost, 736 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0) 737 return; 738 } 739 #endif 740 741 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 && 742 (ifp->if_flags & IFF_PROMISC) != 0 && 743 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 744 ETHER_ADDR_LEN) != 0) { 745 m->m_flags |= M_PROMISC; 746 } 747 748 if ((m->m_flags & M_PROMISC) == 0) { 749 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) 750 return; 751 if (m == NULL) 752 return; 753 754 eh = mtod(m, struct ether_header *); 755 etype = ntohs(eh->ether_type); 756 } 757 758 #if NAGR > 0 759 if (ifp->if_lagg != NULL && 760 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) { 761 m->m_flags &= ~M_PROMISC; 762 agr_input(ifp, m); 763 return; 764 } 765 #endif 766 767 /* 768 * If VLANs are configured on the interface, check to 769 * see if the device performed the decapsulation and 770 * provided us with the tag. 771 */ 772 if (ec->ec_nvlans && vlan_has_tag(m)) { 773 #if NVLAN > 0 774 /* 775 * vlan_input() will either recursively call ether_input() 776 * or drop the packet. 777 */ 778 vlan_input(ifp, m); 779 return; 780 #else 781 goto noproto; 782 #endif 783 } 784 785 /* 786 * Handle protocols that expect to have the Ethernet header 787 * (and possibly FCS) intact. 788 */ 789 switch (etype) { 790 case ETHERTYPE_VLAN: { 791 struct ether_vlan_header *evl = (void *)eh; 792 793 /* 794 * If there is a tag of 0, then the VLAN header was probably 795 * just being used to store the priority. Extract the ether 796 * type, and if IP or IPV6, let them deal with it. 797 */ 798 if (m->m_len >= sizeof(*evl) && 799 EVL_VLANOFTAG(ntohs(evl->evl_tag)) == 0) { 800 etype = ntohs(evl->evl_proto); 801 ehlen = sizeof(*evl); 802 if ((m->m_flags & M_PROMISC) == 0 && 803 (etype == ETHERTYPE_IP || 804 etype == ETHERTYPE_IPV6)) 805 break; 806 } 807 808 #if NVLAN > 0 809 /* 810 * vlan_input() will either recursively call ether_input() 811 * or drop the packet. 812 */ 813 if (ec->ec_nvlans != 0) { 814 vlan_input(ifp, m); 815 return; 816 } else 817 #endif 818 goto noproto; 819 } 820 821 #if NPPPOE > 0 822 case ETHERTYPE_PPPOEDISC: 823 pppoedisc_input(ifp, m); 824 return; 825 826 case ETHERTYPE_PPPOE: 827 pppoe_input(ifp, m); 828 return; 829 #endif 830 831 case ETHERTYPE_SLOWPROTOCOLS: { 832 uint8_t subtype; 833 834 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) 835 goto error; 836 837 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype); 838 switch (subtype) { 839 #if NAGR > 0 840 case SLOWPROTOCOLS_SUBTYPE_LACP: 841 if (ifp->if_lagg != NULL) { 842 ieee8023ad_lacp_input(ifp, m); 843 return; 844 } 845 break; 846 847 case SLOWPROTOCOLS_SUBTYPE_MARKER: 848 if (ifp->if_lagg != NULL) { 849 ieee8023ad_marker_input(ifp, m); 850 return; 851 } 852 break; 853 #endif 854 855 default: 856 if (subtype == 0 || subtype > 10) { 857 /* illegal value */ 858 goto error; 859 } 860 /* unknown subtype */ 861 break; 862 } 863 } 864 /* FALLTHROUGH */ 865 default: 866 if (m->m_flags & M_PROMISC) 867 goto drop; 868 } 869 870 /* If the CRC is still on the packet, trim it off. */ 871 if (m->m_flags & M_HASFCS) { 872 m_adj(m, -ETHER_CRC_LEN); 873 m->m_flags &= ~M_HASFCS; 874 } 875 876 /* etype represents the size of the payload in this case */ 877 if (etype <= ETHERMTU + sizeof(struct ether_header)) { 878 KASSERT(ehlen == sizeof(*eh)); 879 #if defined (LLC) || defined (NETATALK) 880 ether_input_llc(ifp, m, eh); 881 return; 882 #else 883 /* ethertype of 0-1500 is regarded as noproto */ 884 goto noproto; 885 #endif 886 } 887 888 /* Strip off the Ethernet header. */ 889 m_adj(m, ehlen); 890 891 switch (etype) { 892 #ifdef INET 893 case ETHERTYPE_IP: 894 #ifdef GATEWAY 895 if (ipflow_fastforward(m)) 896 return; 897 #endif 898 pktq = ip_pktq; 899 break; 900 901 case ETHERTYPE_ARP: 902 isr = NETISR_ARP; 903 inq = &arpintrq; 904 break; 905 906 case ETHERTYPE_REVARP: 907 revarpinput(m); /* XXX queue? */ 908 return; 909 #endif 910 911 #ifdef INET6 912 case ETHERTYPE_IPV6: 913 if (__predict_false(!in6_present)) 914 goto noproto; 915 #ifdef GATEWAY 916 if (ip6flow_fastforward(&m)) 917 return; 918 #endif 919 pktq = ip6_pktq; 920 break; 921 #endif 922 923 #ifdef NETATALK 924 case ETHERTYPE_ATALK: 925 isr = NETISR_ATALK; 926 inq = &atintrq1; 927 break; 928 929 case ETHERTYPE_AARP: 930 aarpinput(ifp, m); /* XXX queue? */ 931 return; 932 #endif 933 934 #ifdef MPLS 935 case ETHERTYPE_MPLS: 936 isr = NETISR_MPLS; 937 inq = &mplsintrq; 938 break; 939 #endif 940 941 default: 942 goto noproto; 943 } 944 945 if (__predict_true(pktq)) { 946 const uint32_t h = pktq_rps_hash(ðer_pktq_rps_hash_p, m); 947 if (__predict_false(!pktq_enqueue(pktq, m, h))) { 948 m_freem(m); 949 } 950 return; 951 } 952 953 if (__predict_false(!inq)) { 954 /* Should not happen. */ 955 goto error; 956 } 957 958 IFQ_ENQUEUE_ISR(inq, m, isr); 959 return; 960 961 drop: 962 m_freem(m); 963 if_statinc(ifp, if_iqdrops); 964 return; 965 noproto: 966 m_freem(m); 967 if_statinc(ifp, if_noproto); 968 return; 969 error: 970 m_freem(m); 971 if_statinc(ifp, if_ierrors); 972 return; 973 } 974 975 /* 976 * Convert Ethernet address to printable (loggable) representation. 977 */ 978 char * 979 ether_sprintf(const u_char *ap) 980 { 981 static char etherbuf[3 * ETHER_ADDR_LEN]; 982 return ether_snprintf(etherbuf, sizeof(etherbuf), ap); 983 } 984 985 char * 986 ether_snprintf(char *buf, size_t len, const u_char *ap) 987 { 988 char *cp = buf; 989 size_t i; 990 991 for (i = 0; i < len / 3; i++) { 992 *cp++ = hexdigits[*ap >> 4]; 993 *cp++ = hexdigits[*ap++ & 0xf]; 994 *cp++ = ':'; 995 } 996 *--cp = '\0'; 997 return buf; 998 } 999 1000 /* 1001 * Perform common duties while attaching to interface list 1002 */ 1003 void 1004 ether_ifattach(struct ifnet *ifp, const uint8_t *lla) 1005 { 1006 struct ethercom *ec = (struct ethercom *)ifp; 1007 char xnamebuf[HOOKNAMSIZ]; 1008 1009 ifp->if_type = IFT_ETHER; 1010 ifp->if_hdrlen = ETHER_HDR_LEN; 1011 ifp->if_dlt = DLT_EN10MB; 1012 ifp->if_mtu = ETHERMTU; 1013 ifp->if_output = ether_output; 1014 ifp->_if_input = ether_input; 1015 if (ifp->if_baudrate == 0) 1016 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 1017 1018 if (lla != NULL) 1019 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla)); 1020 1021 LIST_INIT(&ec->ec_multiaddrs); 1022 SIMPLEQ_INIT(&ec->ec_vids); 1023 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 1024 ec->ec_flags = 0; 1025 ifp->if_broadcastaddr = etherbroadcastaddr; 1026 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 1027 snprintf(xnamebuf, sizeof(xnamebuf), 1028 "%s-ether_ifdetachhooks", ifp->if_xname); 1029 ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf); 1030 #ifdef MBUFTRACE 1031 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx"); 1032 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx"); 1033 MOWNER_ATTACH(&ec->ec_tx_mowner); 1034 MOWNER_ATTACH(&ec->ec_rx_mowner); 1035 ifp->if_mowner = &ec->ec_tx_mowner; 1036 #endif 1037 } 1038 1039 void 1040 ether_ifdetach(struct ifnet *ifp) 1041 { 1042 struct ethercom *ec = (void *) ifp; 1043 struct ether_multi *enm; 1044 1045 IFNET_ASSERT_UNLOCKED(ifp); 1046 /* 1047 * Prevent further calls to ioctl (for example turning off 1048 * promiscuous mode from the bridge code), which eventually can 1049 * call if_init() which can cause panics because the interface 1050 * is in the process of being detached. Return device not configured 1051 * instead. 1052 */ 1053 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *), 1054 enxio); 1055 1056 simplehook_dohooks(ec->ec_ifdetach_hooks); 1057 KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks)); 1058 simplehook_destroy(ec->ec_ifdetach_hooks); 1059 1060 bpf_detach(ifp); 1061 1062 ETHER_LOCK(ec); 1063 KASSERT(ec->ec_nvlans == 0); 1064 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) { 1065 LIST_REMOVE(enm, enm_list); 1066 kmem_free(enm, sizeof(*enm)); 1067 ec->ec_multicnt--; 1068 } 1069 ETHER_UNLOCK(ec); 1070 1071 mutex_obj_free(ec->ec_lock); 1072 ec->ec_lock = NULL; 1073 1074 ifp->if_mowner = NULL; 1075 MOWNER_DETACH(&ec->ec_rx_mowner); 1076 MOWNER_DETACH(&ec->ec_tx_mowner); 1077 } 1078 1079 void * 1080 ether_ifdetachhook_establish(struct ifnet *ifp, 1081 void (*fn)(void *), void *arg) 1082 { 1083 struct ethercom *ec; 1084 khook_t *hk; 1085 1086 if (ifp->if_type != IFT_ETHER) 1087 return NULL; 1088 1089 ec = (struct ethercom *)ifp; 1090 hk = simplehook_establish(ec->ec_ifdetach_hooks, 1091 fn, arg); 1092 1093 return (void *)hk; 1094 } 1095 1096 void 1097 ether_ifdetachhook_disestablish(struct ifnet *ifp, 1098 void *vhook, kmutex_t *lock) 1099 { 1100 struct ethercom *ec; 1101 1102 if (vhook == NULL) 1103 return; 1104 1105 ec = (struct ethercom *)ifp; 1106 simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock); 1107 } 1108 1109 #if 0 1110 /* 1111 * This is for reference. We have a table-driven version 1112 * of the little-endian crc32 generator, which is faster 1113 * than the double-loop. 1114 */ 1115 uint32_t 1116 ether_crc32_le(const uint8_t *buf, size_t len) 1117 { 1118 uint32_t c, crc, carry; 1119 size_t i, j; 1120 1121 crc = 0xffffffffU; /* initial value */ 1122 1123 for (i = 0; i < len; i++) { 1124 c = buf[i]; 1125 for (j = 0; j < 8; j++) { 1126 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1127 crc >>= 1; 1128 c >>= 1; 1129 if (carry) 1130 crc = (crc ^ ETHER_CRC_POLY_LE); 1131 } 1132 } 1133 1134 return (crc); 1135 } 1136 #else 1137 uint32_t 1138 ether_crc32_le(const uint8_t *buf, size_t len) 1139 { 1140 static const uint32_t crctab[] = { 1141 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1142 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1143 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1144 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1145 }; 1146 uint32_t crc; 1147 size_t i; 1148 1149 crc = 0xffffffffU; /* initial value */ 1150 1151 for (i = 0; i < len; i++) { 1152 crc ^= buf[i]; 1153 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1154 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1155 } 1156 1157 return (crc); 1158 } 1159 #endif 1160 1161 uint32_t 1162 ether_crc32_be(const uint8_t *buf, size_t len) 1163 { 1164 uint32_t c, crc, carry; 1165 size_t i, j; 1166 1167 crc = 0xffffffffU; /* initial value */ 1168 1169 for (i = 0; i < len; i++) { 1170 c = buf[i]; 1171 for (j = 0; j < 8; j++) { 1172 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1173 crc <<= 1; 1174 c >>= 1; 1175 if (carry) 1176 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1177 } 1178 } 1179 1180 return (crc); 1181 } 1182 1183 #ifdef INET 1184 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] = 1185 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; 1186 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] = 1187 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff }; 1188 #endif 1189 #ifdef INET6 1190 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] = 1191 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 }; 1192 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] = 1193 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff }; 1194 #endif 1195 1196 /* 1197 * ether_aton implementation, not using a static buffer. 1198 */ 1199 int 1200 ether_aton_r(u_char *dest, size_t len, const char *str) 1201 { 1202 const u_char *cp = (const void *)str; 1203 u_char *ep; 1204 1205 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10)) 1206 1207 if (len < ETHER_ADDR_LEN) 1208 return ENOSPC; 1209 1210 ep = dest + ETHER_ADDR_LEN; 1211 1212 while (*cp) { 1213 if (!isxdigit(*cp)) 1214 return EINVAL; 1215 1216 *dest = atox(*cp); 1217 cp++; 1218 if (isxdigit(*cp)) { 1219 *dest = (*dest << 4) | atox(*cp); 1220 cp++; 1221 } 1222 dest++; 1223 1224 if (dest == ep) 1225 return (*cp == '\0') ? 0 : ENAMETOOLONG; 1226 1227 switch (*cp) { 1228 case ':': 1229 case '-': 1230 case '.': 1231 cp++; 1232 break; 1233 } 1234 } 1235 return ENOBUFS; 1236 } 1237 1238 /* 1239 * Convert a sockaddr into an Ethernet address or range of Ethernet 1240 * addresses. 1241 */ 1242 int 1243 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN], 1244 uint8_t addrhi[ETHER_ADDR_LEN]) 1245 { 1246 #ifdef INET 1247 const struct sockaddr_in *sin; 1248 #endif 1249 #ifdef INET6 1250 const struct sockaddr_in6 *sin6; 1251 #endif 1252 1253 switch (sa->sa_family) { 1254 1255 case AF_UNSPEC: 1256 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN); 1257 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1258 break; 1259 1260 #ifdef INET 1261 case AF_INET: 1262 sin = satocsin(sa); 1263 if (sin->sin_addr.s_addr == INADDR_ANY) { 1264 /* 1265 * An IP address of INADDR_ANY means listen to 1266 * or stop listening to all of the Ethernet 1267 * multicast addresses used for IP. 1268 * (This is for the sake of IP multicast routers.) 1269 */ 1270 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN); 1271 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN); 1272 } else { 1273 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo); 1274 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1275 } 1276 break; 1277 #endif 1278 #ifdef INET6 1279 case AF_INET6: 1280 sin6 = satocsin6(sa); 1281 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1282 /* 1283 * An IP6 address of 0 means listen to or stop 1284 * listening to all of the Ethernet multicast 1285 * address used for IP6. 1286 * (This is used for multicast routers.) 1287 */ 1288 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN); 1289 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN); 1290 } else { 1291 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo); 1292 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1293 } 1294 break; 1295 #endif 1296 1297 default: 1298 return EAFNOSUPPORT; 1299 } 1300 return 0; 1301 } 1302 1303 /* 1304 * Add an Ethernet multicast address or range of addresses to the list for a 1305 * given interface. 1306 */ 1307 int 1308 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec) 1309 { 1310 struct ether_multi *enm, *_enm; 1311 u_char addrlo[ETHER_ADDR_LEN]; 1312 u_char addrhi[ETHER_ADDR_LEN]; 1313 int error = 0; 1314 1315 /* Allocate out of lock */ 1316 enm = kmem_alloc(sizeof(*enm), KM_SLEEP); 1317 1318 ETHER_LOCK(ec); 1319 error = ether_multiaddr(sa, addrlo, addrhi); 1320 if (error != 0) 1321 goto out; 1322 1323 /* 1324 * Verify that we have valid Ethernet multicast addresses. 1325 */ 1326 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) { 1327 error = EINVAL; 1328 goto out; 1329 } 1330 1331 /* 1332 * See if the address range is already in the list. 1333 */ 1334 _enm = ether_lookup_multi(addrlo, addrhi, ec); 1335 if (_enm != NULL) { 1336 /* 1337 * Found it; just increment the reference count. 1338 */ 1339 ++_enm->enm_refcount; 1340 error = 0; 1341 goto out; 1342 } 1343 1344 /* 1345 * Link a new multicast record into the interface's multicast list. 1346 */ 1347 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN); 1348 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN); 1349 enm->enm_refcount = 1; 1350 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list); 1351 ec->ec_multicnt++; 1352 1353 /* 1354 * Return ENETRESET to inform the driver that the list has changed 1355 * and its reception filter should be adjusted accordingly. 1356 */ 1357 error = ENETRESET; 1358 enm = NULL; 1359 1360 out: 1361 ETHER_UNLOCK(ec); 1362 if (enm != NULL) 1363 kmem_free(enm, sizeof(*enm)); 1364 return error; 1365 } 1366 1367 /* 1368 * Delete a multicast address record. 1369 */ 1370 int 1371 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec) 1372 { 1373 struct ether_multi *enm; 1374 u_char addrlo[ETHER_ADDR_LEN]; 1375 u_char addrhi[ETHER_ADDR_LEN]; 1376 int error; 1377 1378 ETHER_LOCK(ec); 1379 error = ether_multiaddr(sa, addrlo, addrhi); 1380 if (error != 0) 1381 goto error; 1382 1383 /* 1384 * Look up the address in our list. 1385 */ 1386 enm = ether_lookup_multi(addrlo, addrhi, ec); 1387 if (enm == NULL) { 1388 error = ENXIO; 1389 goto error; 1390 } 1391 if (--enm->enm_refcount != 0) { 1392 /* 1393 * Still some claims to this record. 1394 */ 1395 error = 0; 1396 goto error; 1397 } 1398 1399 /* 1400 * No remaining claims to this record; unlink and free it. 1401 */ 1402 LIST_REMOVE(enm, enm_list); 1403 ec->ec_multicnt--; 1404 ETHER_UNLOCK(ec); 1405 kmem_free(enm, sizeof(*enm)); 1406 1407 /* 1408 * Return ENETRESET to inform the driver that the list has changed 1409 * and its reception filter should be adjusted accordingly. 1410 */ 1411 return ENETRESET; 1412 1413 error: 1414 ETHER_UNLOCK(ec); 1415 return error; 1416 } 1417 1418 void 1419 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb) 1420 { 1421 ec->ec_ifflags_cb = cb; 1422 } 1423 1424 void 1425 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb) 1426 { 1427 1428 ec->ec_vlan_cb = cb; 1429 } 1430 1431 static int 1432 ether_ioctl_reinit(struct ethercom *ec) 1433 { 1434 struct ifnet *ifp = &ec->ec_if; 1435 int error; 1436 1437 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 1438 1439 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1440 case IFF_RUNNING: 1441 /* 1442 * If interface is marked down and it is running, 1443 * then stop and disable it. 1444 */ 1445 if_stop(ifp, 1); 1446 break; 1447 case IFF_UP: 1448 /* 1449 * If interface is marked up and it is stopped, then 1450 * start it. 1451 */ 1452 return if_init(ifp); 1453 case IFF_UP | IFF_RUNNING: 1454 error = 0; 1455 if (ec->ec_ifflags_cb != NULL) { 1456 error = (*ec->ec_ifflags_cb)(ec); 1457 if (error == ENETRESET) { 1458 /* 1459 * Reset the interface to pick up 1460 * changes in any other flags that 1461 * affect the hardware state. 1462 */ 1463 return if_init(ifp); 1464 } 1465 } else 1466 error = if_init(ifp); 1467 return error; 1468 case 0: 1469 break; 1470 } 1471 1472 return 0; 1473 } 1474 1475 /* 1476 * Common ioctls for Ethernet interfaces. Note, we must be 1477 * called at splnet(). 1478 */ 1479 int 1480 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1481 { 1482 struct ethercom *ec = (void *)ifp; 1483 struct eccapreq *eccr; 1484 struct ifreq *ifr = (struct ifreq *)data; 1485 struct if_laddrreq *iflr = data; 1486 const struct sockaddr_dl *sdl; 1487 static const uint8_t zero[ETHER_ADDR_LEN]; 1488 int error; 1489 1490 switch (cmd) { 1491 case SIOCINITIFADDR: 1492 { 1493 struct ifaddr *ifa = (struct ifaddr *)data; 1494 if (ifa->ifa_addr->sa_family != AF_LINK 1495 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 1496 (IFF_UP | IFF_RUNNING)) { 1497 ifp->if_flags |= IFF_UP; 1498 if ((error = if_init(ifp)) != 0) 1499 return error; 1500 } 1501 #ifdef INET 1502 if (ifa->ifa_addr->sa_family == AF_INET) 1503 arp_ifinit(ifp, ifa); 1504 #endif 1505 return 0; 1506 } 1507 1508 case SIOCSIFMTU: 1509 { 1510 int maxmtu; 1511 1512 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU) 1513 maxmtu = ETHERMTU_JUMBO; 1514 else 1515 maxmtu = ETHERMTU; 1516 1517 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 1518 return EINVAL; 1519 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1520 return error; 1521 else if (ifp->if_flags & IFF_UP) { 1522 /* Make sure the device notices the MTU change. */ 1523 return if_init(ifp); 1524 } else 1525 return 0; 1526 } 1527 1528 case SIOCSIFFLAGS: 1529 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1530 return error; 1531 return ether_ioctl_reinit(ec); 1532 case SIOCGIFFLAGS: 1533 error = ifioctl_common(ifp, cmd, data); 1534 if (error == 0) { 1535 /* Set IFF_ALLMULTI for backcompat */ 1536 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ? 1537 IFF_ALLMULTI : 0; 1538 } 1539 return error; 1540 case SIOCGETHERCAP: 1541 eccr = (struct eccapreq *)data; 1542 eccr->eccr_capabilities = ec->ec_capabilities; 1543 eccr->eccr_capenable = ec->ec_capenable; 1544 return 0; 1545 case SIOCSETHERCAP: 1546 eccr = (struct eccapreq *)data; 1547 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0) 1548 return EINVAL; 1549 if (eccr->eccr_capenable == ec->ec_capenable) 1550 return 0; 1551 #if 0 /* notyet */ 1552 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE) 1553 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE); 1554 #else 1555 ec->ec_capenable = eccr->eccr_capenable; 1556 #endif 1557 return ether_ioctl_reinit(ec); 1558 case SIOCADDMULTI: 1559 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec); 1560 case SIOCDELMULTI: 1561 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec); 1562 case SIOCSIFMEDIA: 1563 case SIOCGIFMEDIA: 1564 if (ec->ec_mii != NULL) 1565 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, 1566 cmd); 1567 else if (ec->ec_ifmedia != NULL) 1568 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd); 1569 else 1570 return ENOTTY; 1571 break; 1572 case SIOCALIFADDR: 1573 sdl = satocsdl(sstocsa(&iflr->addr)); 1574 if (sdl->sdl_family != AF_LINK) 1575 ; 1576 else if (ETHER_IS_MULTICAST(CLLADDR(sdl))) 1577 return EINVAL; 1578 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0) 1579 return EINVAL; 1580 /*FALLTHROUGH*/ 1581 default: 1582 return ifioctl_common(ifp, cmd, data); 1583 } 1584 return 0; 1585 } 1586 1587 /* 1588 * Enable/disable passing VLAN packets if the parent interface supports it. 1589 * Return: 1590 * 0: Ok 1591 * -1: Parent interface does not support vlans 1592 * >0: Error 1593 */ 1594 int 1595 ether_enable_vlan_mtu(struct ifnet *ifp) 1596 { 1597 int error; 1598 struct ethercom *ec = (void *)ifp; 1599 1600 /* Parent does not support VLAN's */ 1601 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) 1602 return -1; 1603 1604 /* 1605 * Parent supports the VLAN_MTU capability, 1606 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames; 1607 * enable it. 1608 */ 1609 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1610 1611 /* Interface is down, defer for later */ 1612 if ((ifp->if_flags & IFF_UP) == 0) 1613 return 0; 1614 1615 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1616 return 0; 1617 1618 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1619 return error; 1620 } 1621 1622 int 1623 ether_disable_vlan_mtu(struct ifnet *ifp) 1624 { 1625 int error; 1626 struct ethercom *ec = (void *)ifp; 1627 1628 /* We still have VLAN's, defer for later */ 1629 if (ec->ec_nvlans != 0) 1630 return 0; 1631 1632 /* Parent does not support VLAB's, nothing to do. */ 1633 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0) 1634 return -1; 1635 1636 /* 1637 * Disable Tx/Rx of VLAN-sized frames. 1638 */ 1639 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1640 1641 /* Interface is down, defer for later */ 1642 if ((ifp->if_flags & IFF_UP) == 0) 1643 return 0; 1644 1645 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1646 return 0; 1647 1648 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1649 return error; 1650 } 1651 1652 /* 1653 * Add and delete VLAN TAG 1654 */ 1655 int 1656 ether_add_vlantag(struct ifnet *ifp, uint16_t vtag, bool *vlanmtu_status) 1657 { 1658 struct ethercom *ec = (void *)ifp; 1659 struct vlanid_list *vidp; 1660 bool vlanmtu_enabled; 1661 uint16_t vid = EVL_VLANOFTAG(vtag); 1662 int error; 1663 1664 vlanmtu_enabled = false; 1665 1666 /* Add a vid to the list */ 1667 vidp = kmem_alloc(sizeof(*vidp), KM_SLEEP); 1668 vidp->vid = vid; 1669 1670 ETHER_LOCK(ec); 1671 ec->ec_nvlans++; 1672 SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidp, vid_list); 1673 ETHER_UNLOCK(ec); 1674 1675 if (ec->ec_nvlans == 1) { 1676 IFNET_LOCK(ifp); 1677 error = ether_enable_vlan_mtu(ifp); 1678 IFNET_UNLOCK(ifp); 1679 1680 if (error == 0) { 1681 vlanmtu_enabled = true; 1682 } else if (error != -1) { 1683 goto fail; 1684 } 1685 } 1686 1687 if (ec->ec_vlan_cb != NULL) { 1688 error = (*ec->ec_vlan_cb)(ec, vid, true); 1689 if (error != 0) 1690 goto fail; 1691 } 1692 1693 if (vlanmtu_status != NULL) 1694 *vlanmtu_status = vlanmtu_enabled; 1695 1696 return 0; 1697 fail: 1698 ETHER_LOCK(ec); 1699 ec->ec_nvlans--; 1700 SIMPLEQ_REMOVE(&ec->ec_vids, vidp, vlanid_list, vid_list); 1701 ETHER_UNLOCK(ec); 1702 1703 if (vlanmtu_enabled) { 1704 IFNET_LOCK(ifp); 1705 (void)ether_disable_vlan_mtu(ifp); 1706 IFNET_UNLOCK(ifp); 1707 } 1708 1709 kmem_free(vidp, sizeof(*vidp)); 1710 1711 return error; 1712 } 1713 1714 int 1715 ether_del_vlantag(struct ifnet *ifp, uint16_t vtag) 1716 { 1717 struct ethercom *ec = (void *)ifp; 1718 struct vlanid_list *vidp; 1719 uint16_t vid = EVL_VLANOFTAG(vtag); 1720 1721 ETHER_LOCK(ec); 1722 SIMPLEQ_FOREACH(vidp, &ec->ec_vids, vid_list) { 1723 if (vidp->vid == vid) { 1724 SIMPLEQ_REMOVE(&ec->ec_vids, vidp, 1725 vlanid_list, vid_list); 1726 ec->ec_nvlans--; 1727 break; 1728 } 1729 } 1730 ETHER_UNLOCK(ec); 1731 1732 if (vidp == NULL) 1733 return ENOENT; 1734 1735 if (ec->ec_vlan_cb != NULL) { 1736 (void)(*ec->ec_vlan_cb)(ec, vidp->vid, false); 1737 } 1738 1739 if (ec->ec_nvlans == 0) { 1740 IFNET_LOCK(ifp); 1741 (void)ether_disable_vlan_mtu(ifp); 1742 IFNET_UNLOCK(ifp); 1743 } 1744 1745 kmem_free(vidp, sizeof(*vidp)); 1746 1747 return 0; 1748 } 1749 1750 static int 1751 ether_multicast_sysctl(SYSCTLFN_ARGS) 1752 { 1753 struct ether_multi *enm; 1754 struct ifnet *ifp; 1755 struct ethercom *ec; 1756 int error = 0; 1757 size_t written; 1758 struct psref psref; 1759 int bound; 1760 unsigned int multicnt; 1761 struct ether_multi_sysctl *addrs; 1762 int i; 1763 1764 if (namelen != 1) 1765 return EINVAL; 1766 1767 bound = curlwp_bind(); 1768 ifp = if_get_byindex(name[0], &psref); 1769 if (ifp == NULL) { 1770 error = ENODEV; 1771 goto out; 1772 } 1773 if (ifp->if_type != IFT_ETHER) { 1774 if_put(ifp, &psref); 1775 *oldlenp = 0; 1776 goto out; 1777 } 1778 ec = (struct ethercom *)ifp; 1779 1780 if (oldp == NULL) { 1781 if_put(ifp, &psref); 1782 *oldlenp = ec->ec_multicnt * sizeof(*addrs); 1783 goto out; 1784 } 1785 1786 /* 1787 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which 1788 * is sleepable, while holding it. Copy data to a local buffer first 1789 * with the lock taken and then call sysctl_copyout without holding it. 1790 */ 1791 retry: 1792 multicnt = ec->ec_multicnt; 1793 1794 if (multicnt == 0) { 1795 if_put(ifp, &psref); 1796 *oldlenp = 0; 1797 goto out; 1798 } 1799 1800 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP); 1801 1802 ETHER_LOCK(ec); 1803 if (multicnt != ec->ec_multicnt) { 1804 /* The number of multicast addresses has changed */ 1805 ETHER_UNLOCK(ec); 1806 kmem_free(addrs, sizeof(*addrs) * multicnt); 1807 goto retry; 1808 } 1809 1810 i = 0; 1811 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) { 1812 struct ether_multi_sysctl *addr = &addrs[i]; 1813 addr->enm_refcount = enm->enm_refcount; 1814 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN); 1815 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN); 1816 i++; 1817 } 1818 ETHER_UNLOCK(ec); 1819 1820 error = 0; 1821 written = 0; 1822 for (i = 0; i < multicnt; i++) { 1823 struct ether_multi_sysctl *addr = &addrs[i]; 1824 1825 if (written + sizeof(*addr) > *oldlenp) 1826 break; 1827 error = sysctl_copyout(l, addr, oldp, sizeof(*addr)); 1828 if (error) 1829 break; 1830 written += sizeof(*addr); 1831 oldp = (char *)oldp + sizeof(*addr); 1832 } 1833 kmem_free(addrs, sizeof(*addrs) * multicnt); 1834 1835 if_put(ifp, &psref); 1836 1837 *oldlenp = written; 1838 out: 1839 curlwp_bindx(bound); 1840 return error; 1841 } 1842 1843 static void 1844 ether_sysctl_setup(struct sysctllog **clog) 1845 { 1846 const struct sysctlnode *rnode = NULL; 1847 1848 sysctl_createv(clog, 0, NULL, &rnode, 1849 CTLFLAG_PERMANENT, 1850 CTLTYPE_NODE, "ether", 1851 SYSCTL_DESCR("Ethernet-specific information"), 1852 NULL, 0, NULL, 0, 1853 CTL_NET, CTL_CREATE, CTL_EOL); 1854 1855 sysctl_createv(clog, 0, &rnode, NULL, 1856 CTLFLAG_PERMANENT, 1857 CTLTYPE_NODE, "multicast", 1858 SYSCTL_DESCR("multicast addresses"), 1859 ether_multicast_sysctl, 0, NULL, 0, 1860 CTL_CREATE, CTL_EOL); 1861 1862 sysctl_createv(clog, 0, &rnode, NULL, 1863 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1864 CTLTYPE_STRING, "rps_hash", 1865 SYSCTL_DESCR("Interface rps hash function control"), 1866 sysctl_pktq_rps_hash_handler, 0, (void *)ðer_pktq_rps_hash_p, 1867 PKTQ_RPS_HASH_NAME_LEN, 1868 CTL_CREATE, CTL_EOL); 1869 } 1870 1871 void 1872 etherinit(void) 1873 { 1874 1875 #ifdef DIAGNOSTIC 1876 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET); 1877 #endif 1878 ether_pktq_rps_hash_p = pktq_rps_hash_default; 1879 ether_sysctl_setup(NULL); 1880 } 1881