1 /* $NetBSD: if_ethersubr.c,v 1.257 2018/01/19 12:31:27 nakayama Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.257 2018/01/19 12:31:27 nakayama Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_atalk.h" 69 #include "opt_mbuftrace.h" 70 #include "opt_mpls.h" 71 #include "opt_gateway.h" 72 #include "opt_pppoe.h" 73 #include "opt_net_mpsafe.h" 74 #endif 75 76 #include "vlan.h" 77 #include "pppoe.h" 78 #include "bridge.h" 79 #include "arp.h" 80 #include "agr.h" 81 82 #include <sys/sysctl.h> 83 #include <sys/mbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/ioctl.h> 86 #include <sys/errno.h> 87 #include <sys/device.h> 88 #include <sys/rnd.h> 89 #include <sys/rndsource.h> 90 #include <sys/cpu.h> 91 #include <sys/kmem.h> 92 93 #include <net/if.h> 94 #include <net/netisr.h> 95 #include <net/route.h> 96 #include <net/if_llc.h> 97 #include <net/if_dl.h> 98 #include <net/if_types.h> 99 #include <net/pktqueue.h> 100 101 #include <net/if_media.h> 102 #include <dev/mii/mii.h> 103 #include <dev/mii/miivar.h> 104 105 #if NARP == 0 106 /* 107 * XXX there should really be a way to issue this warning from within config(8) 108 */ 109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK. 110 #endif 111 112 #include <net/bpf.h> 113 114 #include <net/if_ether.h> 115 #include <net/if_vlanvar.h> 116 117 #if NPPPOE > 0 118 #include <net/if_pppoe.h> 119 #endif 120 121 #if NAGR > 0 122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */ 123 #include <net/agr/ieee8023ad.h> 124 #include <net/agr/if_agrvar.h> 125 #endif 126 127 #if NBRIDGE > 0 128 #include <net/if_bridgevar.h> 129 #endif 130 131 #include <netinet/in.h> 132 #ifdef INET 133 #include <netinet/in_var.h> 134 #endif 135 #include <netinet/if_inarp.h> 136 137 #ifdef INET6 138 #ifndef INET 139 #include <netinet/in.h> 140 #endif 141 #include <netinet6/in6_var.h> 142 #include <netinet6/nd6.h> 143 #endif 144 145 146 #include "carp.h" 147 #if NCARP > 0 148 #include <netinet/ip_carp.h> 149 #endif 150 151 #ifdef NETATALK 152 #include <netatalk/at.h> 153 #include <netatalk/at_var.h> 154 #include <netatalk/at_extern.h> 155 156 #define llc_snap_org_code llc_un.type_snap.org_code 157 #define llc_snap_ether_type llc_un.type_snap.ether_type 158 159 extern u_char at_org_code[3]; 160 extern u_char aarp_org_code[3]; 161 #endif /* NETATALK */ 162 163 #ifdef MPLS 164 #include <netmpls/mpls.h> 165 #include <netmpls/mpls_var.h> 166 #endif 167 168 static struct timeval bigpktppslim_last; 169 static int bigpktppslim = 2; /* XXX */ 170 static int bigpktpps_count; 171 static kmutex_t bigpktpps_lock __cacheline_aligned; 172 173 174 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = 175 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 176 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = 177 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; 178 #define senderr(e) { error = (e); goto bad;} 179 180 static int ether_output(struct ifnet *, struct mbuf *, 181 const struct sockaddr *, const struct rtentry *); 182 183 /* 184 * Ethernet output routine. 185 * Encapsulate a packet of type family for the local net. 186 * Assumes that ifp is actually pointer to ethercom structure. 187 */ 188 static int 189 ether_output(struct ifnet * const ifp0, struct mbuf * const m0, 190 const struct sockaddr * const dst, const struct rtentry *rt) 191 { 192 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 193 uint16_t etype = 0; 194 int error = 0, hdrcmplt = 0; 195 struct mbuf *m = m0; 196 struct mbuf *mcopy = NULL; 197 struct ether_header *eh; 198 struct ifnet *ifp = ifp0; 199 #ifdef INET 200 struct arphdr *ah; 201 #endif /* INET */ 202 #ifdef NETATALK 203 struct at_ifaddr *aa; 204 #endif /* NETATALK */ 205 206 #ifdef MBUFTRACE 207 m_claimm(m, ifp->if_mowner); 208 #endif 209 210 #if NCARP > 0 211 if (ifp->if_type == IFT_CARP) { 212 struct ifaddr *ifa; 213 int s = pserialize_read_enter(); 214 215 /* loop back if this is going to the carp interface */ 216 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP && 217 (ifa = ifa_ifwithaddr(dst)) != NULL) { 218 if (ifa->ifa_ifp == ifp0) { 219 pserialize_read_exit(s); 220 return looutput(ifp0, m, dst, rt); 221 } 222 } 223 pserialize_read_exit(s); 224 225 ifp = ifp->if_carpdev; 226 /* ac = (struct arpcom *)ifp; */ 227 228 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) != 229 (IFF_UP | IFF_RUNNING)) 230 senderr(ENETDOWN); 231 } 232 #endif /* NCARP > 0 */ 233 234 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 235 senderr(ENETDOWN); 236 237 switch (dst->sa_family) { 238 239 #ifdef INET 240 case AF_INET: 241 if (m->m_flags & M_BCAST) 242 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 243 else if (m->m_flags & M_MCAST) 244 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst); 245 else if ((error = arpresolve(ifp, rt, m, dst, edst, 246 sizeof(edst))) != 0) { 247 return error == EWOULDBLOCK ? 0 : error; 248 } 249 /* If broadcasting on a simplex interface, loopback a copy */ 250 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) 251 mcopy = m_copy(m, 0, M_COPYALL); 252 etype = htons(ETHERTYPE_IP); 253 break; 254 255 case AF_ARP: 256 ah = mtod(m, struct arphdr *); 257 if (m->m_flags & M_BCAST) 258 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 259 else { 260 void *tha = ar_tha(ah); 261 262 if (tha == NULL) { 263 /* fake with ARPHDR_IEEE1394 */ 264 m_freem(m); 265 return 0; 266 } 267 memcpy(edst, tha, sizeof(edst)); 268 } 269 270 ah->ar_hrd = htons(ARPHRD_ETHER); 271 272 switch (ntohs(ah->ar_op)) { 273 case ARPOP_REVREQUEST: 274 case ARPOP_REVREPLY: 275 etype = htons(ETHERTYPE_REVARP); 276 break; 277 278 case ARPOP_REQUEST: 279 case ARPOP_REPLY: 280 default: 281 etype = htons(ETHERTYPE_ARP); 282 } 283 break; 284 #endif 285 286 #ifdef INET6 287 case AF_INET6: 288 if (m->m_flags & M_BCAST) 289 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 290 else if (m->m_flags & M_MCAST) { 291 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 292 edst); 293 } else { 294 error = nd6_resolve(ifp, rt, m, dst, edst, 295 sizeof(edst)); 296 if (error != 0) 297 return error == EWOULDBLOCK ? 0 : error; 298 } 299 etype = htons(ETHERTYPE_IPV6); 300 break; 301 #endif 302 303 #ifdef NETATALK 304 case AF_APPLETALK: { 305 struct ifaddr *ifa; 306 int s; 307 308 KERNEL_LOCK(1, NULL); 309 310 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) { 311 #ifdef NETATALKDEBUG 312 printf("aarpresolv failed\n"); 313 #endif 314 KERNEL_UNLOCK_ONE(NULL); 315 return (0); 316 } 317 318 /* 319 * ifaddr is the first thing in at_ifaddr 320 */ 321 s = pserialize_read_enter(); 322 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp); 323 if (ifa == NULL) { 324 pserialize_read_exit(s); 325 KERNEL_UNLOCK_ONE(NULL); 326 /* XXX error? */ 327 goto bad; 328 } 329 aa = (struct at_ifaddr *)ifa; 330 331 /* 332 * In the phase 2 case, we need to prepend an mbuf for the 333 * llc header. Since we must preserve the value of m, 334 * which is passed to us by value, we m_copy() the first 335 * mbuf, and use it for our llc header. 336 */ 337 if (aa->aa_flags & AFA_PHASE2) { 338 struct llc llc; 339 340 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT); 341 if (m == NULL) { 342 KERNEL_UNLOCK_ONE(NULL); 343 senderr(ENOBUFS); 344 } 345 346 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 347 llc.llc_control = LLC_UI; 348 memcpy(llc.llc_snap_org_code, at_org_code, 349 sizeof(llc.llc_snap_org_code)); 350 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK); 351 memcpy(mtod(m, void *), &llc, sizeof(struct llc)); 352 } else { 353 etype = htons(ETHERTYPE_ATALK); 354 } 355 pserialize_read_exit(s); 356 KERNEL_UNLOCK_ONE(NULL); 357 break; 358 } 359 #endif /* NETATALK */ 360 361 case pseudo_AF_HDRCMPLT: 362 hdrcmplt = 1; 363 memcpy(esrc, 364 ((const struct ether_header *)dst->sa_data)->ether_shost, 365 sizeof(esrc)); 366 /* FALLTHROUGH */ 367 368 case AF_UNSPEC: 369 memcpy(edst, 370 ((const struct ether_header *)dst->sa_data)->ether_dhost, 371 sizeof(edst)); 372 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */ 373 etype = ((const struct ether_header *)dst->sa_data)->ether_type; 374 break; 375 376 default: 377 printf("%s: can't handle af%d\n", ifp->if_xname, 378 dst->sa_family); 379 senderr(EAFNOSUPPORT); 380 } 381 382 #ifdef MPLS 383 KERNEL_LOCK(1, NULL); 384 { 385 struct m_tag *mtag; 386 mtag = m_tag_find(m, PACKET_TAG_MPLS, NULL); 387 if (mtag != NULL) { 388 /* Having the tag itself indicates it's MPLS */ 389 etype = htons(ETHERTYPE_MPLS); 390 m_tag_delete(m, mtag); 391 } 392 } 393 KERNEL_UNLOCK_ONE(NULL); 394 #endif 395 396 if (mcopy) 397 (void)looutput(ifp, mcopy, dst, rt); 398 399 KASSERT((m->m_flags & M_PKTHDR) != 0); 400 401 /* 402 * If no ether type is set, this must be a 802.2 formatted packet. 403 */ 404 if (etype == 0) 405 etype = htons(m->m_pkthdr.len); 406 407 /* 408 * Add local net header. If no space in first mbuf, allocate another. 409 */ 410 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 411 if (m == NULL) 412 senderr(ENOBUFS); 413 414 eh = mtod(m, struct ether_header *); 415 /* Note: etype is already in network byte order. */ 416 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 417 memcpy(eh->ether_dhost, edst, sizeof(edst)); 418 if (hdrcmplt) 419 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); 420 else 421 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl), 422 sizeof(eh->ether_shost)); 423 424 #if NCARP > 0 425 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) { 426 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl), 427 sizeof(eh->ether_shost)); 428 } 429 #endif 430 431 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 432 return (error); 433 if (m == NULL) 434 return (0); 435 436 #if NBRIDGE > 0 437 /* 438 * Bridges require special output handling. 439 */ 440 if (ifp->if_bridge) 441 return bridge_output(ifp, m, NULL, NULL); 442 #endif 443 444 #if NCARP > 0 445 if (ifp != ifp0) 446 ifp0->if_obytes += m->m_pkthdr.len + ETHER_HDR_LEN; 447 #endif 448 449 #ifdef ALTQ 450 KERNEL_LOCK(1, NULL); 451 /* 452 * If ALTQ is enabled on the parent interface, do 453 * classification; the queueing discipline might not 454 * require classification, but might require the 455 * address family/header pointer in the pktattr. 456 */ 457 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 458 altq_etherclassify(&ifp->if_snd, m); 459 KERNEL_UNLOCK_ONE(NULL); 460 #endif 461 return ifq_enqueue(ifp, m); 462 463 bad: 464 if (m) 465 m_freem(m); 466 return (error); 467 } 468 469 #ifdef ALTQ 470 /* 471 * This routine is a slight hack to allow a packet to be classified 472 * if the Ethernet headers are present. It will go away when ALTQ's 473 * classification engine understands link headers. 474 */ 475 void 476 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m) 477 { 478 struct ether_header *eh; 479 struct mbuf *mtop = m; 480 uint16_t ether_type; 481 int hlen, af, hdrsize; 482 void *hdr; 483 484 KASSERT((mtop->m_flags & M_PKTHDR) != 0); 485 486 hlen = ETHER_HDR_LEN; 487 eh = mtod(m, struct ether_header *); 488 489 ether_type = htons(eh->ether_type); 490 491 if (ether_type < ETHERMTU) { 492 /* LLC/SNAP */ 493 struct llc *llc = (struct llc *)(eh + 1); 494 hlen += 8; 495 496 if (m->m_len < hlen || 497 llc->llc_dsap != LLC_SNAP_LSAP || 498 llc->llc_ssap != LLC_SNAP_LSAP || 499 llc->llc_control != LLC_UI) { 500 /* Not SNAP. */ 501 goto bad; 502 } 503 504 ether_type = htons(llc->llc_un.type_snap.ether_type); 505 } 506 507 switch (ether_type) { 508 case ETHERTYPE_IP: 509 af = AF_INET; 510 hdrsize = 20; /* sizeof(struct ip) */ 511 break; 512 513 case ETHERTYPE_IPV6: 514 af = AF_INET6; 515 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 516 break; 517 518 default: 519 af = AF_UNSPEC; 520 hdrsize = 0; 521 break; 522 } 523 524 while (m->m_len <= hlen) { 525 hlen -= m->m_len; 526 m = m->m_next; 527 if (m == NULL) 528 goto bad; 529 } 530 531 if (m->m_len < (hlen + hdrsize)) { 532 /* 533 * protocol header not in a single mbuf. 534 * We can't cope with this situation right 535 * now (but it shouldn't ever happen, really, anyhow). 536 */ 537 #ifdef DEBUG 538 printf("altq_etherclassify: headers span multiple mbufs: " 539 "%d < %d\n", m->m_len, (hlen + hdrsize)); 540 #endif 541 goto bad; 542 } 543 544 m->m_data += hlen; 545 m->m_len -= hlen; 546 547 hdr = mtod(m, void *); 548 549 if (ALTQ_NEEDS_CLASSIFY(ifq)) { 550 mtop->m_pkthdr.pattr_class = 551 (*ifq->altq_classify)(ifq->altq_clfier, m, af); 552 } 553 mtop->m_pkthdr.pattr_af = af; 554 mtop->m_pkthdr.pattr_hdr = hdr; 555 556 m->m_data -= hlen; 557 m->m_len += hlen; 558 559 return; 560 561 bad: 562 mtop->m_pkthdr.pattr_class = NULL; 563 mtop->m_pkthdr.pattr_hdr = NULL; 564 mtop->m_pkthdr.pattr_af = AF_UNSPEC; 565 } 566 #endif /* ALTQ */ 567 568 /* 569 * Process a received Ethernet packet; 570 * the packet is in the mbuf chain m with 571 * the ether header. 572 */ 573 void 574 ether_input(struct ifnet *ifp, struct mbuf *m) 575 { 576 struct ethercom *ec = (struct ethercom *) ifp; 577 pktqueue_t *pktq = NULL; 578 struct ifqueue *inq = NULL; 579 uint16_t etype; 580 struct ether_header *eh; 581 size_t ehlen; 582 static int earlypkts; 583 int isr = 0; 584 #if defined (LLC) || defined(NETATALK) 585 struct llc *l; 586 #endif 587 588 KASSERT(!cpu_intr_p()); 589 KASSERT((m->m_flags & M_PKTHDR) != 0); 590 591 if ((ifp->if_flags & IFF_UP) == 0) { 592 m_freem(m); 593 return; 594 } 595 596 #ifdef MBUFTRACE 597 m_claimm(m, &ec->ec_rx_mowner); 598 #endif 599 eh = mtod(m, struct ether_header *); 600 etype = ntohs(eh->ether_type); 601 ehlen = sizeof(*eh); 602 603 if (__predict_false(earlypkts < 100 || !rnd_initial_entropy)) { 604 rnd_add_data(NULL, eh, ehlen, 0); 605 earlypkts++; 606 } 607 608 /* 609 * Determine if the packet is within its size limits. 610 */ 611 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len > 612 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { 613 mutex_enter(&bigpktpps_lock); 614 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count, 615 bigpktppslim)) { 616 printf("%s: discarding oversize frame (len=%d)\n", 617 ifp->if_xname, m->m_pkthdr.len); 618 } 619 mutex_exit(&bigpktpps_lock); 620 m_freem(m); 621 return; 622 } 623 624 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 625 /* 626 * If this is not a simplex interface, drop the packet 627 * if it came from us. 628 */ 629 if ((ifp->if_flags & IFF_SIMPLEX) == 0 && 630 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost, 631 ETHER_ADDR_LEN) == 0) { 632 m_freem(m); 633 return; 634 } 635 636 if (memcmp(etherbroadcastaddr, 637 eh->ether_dhost, ETHER_ADDR_LEN) == 0) 638 m->m_flags |= M_BCAST; 639 else 640 m->m_flags |= M_MCAST; 641 ifp->if_imcasts++; 642 } 643 644 /* If the CRC is still on the packet, trim it off. */ 645 if (m->m_flags & M_HASFCS) { 646 m_adj(m, -ETHER_CRC_LEN); 647 m->m_flags &= ~M_HASFCS; 648 } 649 650 ifp->if_ibytes += m->m_pkthdr.len; 651 652 #if NCARP > 0 653 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) { 654 /* 655 * clear M_PROMISC, in case the packets comes from a 656 * vlan 657 */ 658 m->m_flags &= ~M_PROMISC; 659 if (carp_input(m, (uint8_t *)&eh->ether_shost, 660 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0) 661 return; 662 } 663 #endif 664 665 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 && 666 (ifp->if_flags & IFF_PROMISC) != 0 && 667 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 668 ETHER_ADDR_LEN) != 0) { 669 m->m_flags |= M_PROMISC; 670 } 671 672 if ((m->m_flags & M_PROMISC) == 0) { 673 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) 674 return; 675 if (m == NULL) 676 return; 677 678 eh = mtod(m, struct ether_header *); 679 etype = ntohs(eh->ether_type); 680 } 681 682 #if NAGR > 0 683 if (ifp->if_agrprivate && 684 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) { 685 m->m_flags &= ~M_PROMISC; 686 agr_input(ifp, m); 687 return; 688 } 689 #endif 690 691 /* 692 * If VLANs are configured on the interface, check to 693 * see if the device performed the decapsulation and 694 * provided us with the tag. 695 */ 696 if (ec->ec_nvlans && vlan_has_tag(m)) { 697 #if NVLAN > 0 698 /* 699 * vlan_input() will either recursively call ether_input() 700 * or drop the packet. 701 */ 702 vlan_input(ifp, m); 703 #else 704 m_freem(m); 705 #endif 706 return; 707 } 708 709 /* 710 * Handle protocols that expect to have the Ethernet header 711 * (and possibly FCS) intact. 712 */ 713 switch (etype) { 714 case ETHERTYPE_VLAN: { 715 struct ether_vlan_header *evl = (void *)eh; 716 717 /* 718 * If there is a tag of 0, then the VLAN header was probably 719 * just being used to store the priority. Extract the ether 720 * type, and if IP or IPV6, let them deal with it. 721 */ 722 if (m->m_len >= sizeof(*evl) && 723 EVL_VLANOFTAG(evl->evl_tag) == 0) { 724 etype = ntohs(evl->evl_proto); 725 ehlen = sizeof(*evl); 726 if ((m->m_flags & M_PROMISC) == 0 && 727 (etype == ETHERTYPE_IP || 728 etype == ETHERTYPE_IPV6)) 729 break; 730 } 731 732 #if NVLAN > 0 733 /* 734 * vlan_input() will either recursively call ether_input() 735 * or drop the packet. 736 */ 737 if (ec->ec_nvlans != 0) 738 vlan_input(ifp, m); 739 else 740 #endif 741 m_freem(m); 742 743 return; 744 } 745 746 #if NPPPOE > 0 747 case ETHERTYPE_PPPOEDISC: 748 pppoedisc_input(ifp, m); 749 return; 750 751 case ETHERTYPE_PPPOE: 752 pppoe_input(ifp, m); 753 return; 754 #endif 755 756 case ETHERTYPE_SLOWPROTOCOLS: { 757 uint8_t subtype; 758 759 KASSERTMSG((m->m_pkthdr.len >= sizeof(*eh) + sizeof(subtype)), 760 "too short slow protocol packet"); 761 762 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype); 763 switch (subtype) { 764 #if NAGR > 0 765 case SLOWPROTOCOLS_SUBTYPE_LACP: 766 if (ifp->if_agrprivate) { 767 ieee8023ad_lacp_input(ifp, m); 768 return; 769 } 770 break; 771 772 case SLOWPROTOCOLS_SUBTYPE_MARKER: 773 if (ifp->if_agrprivate) { 774 ieee8023ad_marker_input(ifp, m); 775 return; 776 } 777 break; 778 #endif /* NAGR > 0 */ 779 780 default: 781 if (subtype == 0 || subtype > 10) { 782 /* illegal value */ 783 m_freem(m); 784 return; 785 } 786 /* unknown subtype */ 787 break; 788 } 789 /* FALLTHROUGH */ 790 } 791 792 default: 793 if (m->m_flags & M_PROMISC) { 794 m_freem(m); 795 return; 796 } 797 } 798 799 /* If the CRC is still on the packet, trim it off. */ 800 if (m->m_flags & M_HASFCS) { 801 m_adj(m, -ETHER_CRC_LEN); 802 m->m_flags &= ~M_HASFCS; 803 } 804 805 if (etype > ETHERMTU + sizeof(struct ether_header)) { 806 /* Strip off the Ethernet header. */ 807 m_adj(m, ehlen); 808 809 switch (etype) { 810 #ifdef INET 811 case ETHERTYPE_IP: 812 #ifdef GATEWAY 813 if (ipflow_fastforward(m)) 814 return; 815 #endif 816 pktq = ip_pktq; 817 break; 818 819 case ETHERTYPE_ARP: 820 isr = NETISR_ARP; 821 inq = &arpintrq; 822 break; 823 824 case ETHERTYPE_REVARP: 825 revarpinput(m); /* XXX queue? */ 826 return; 827 #endif 828 829 #ifdef INET6 830 case ETHERTYPE_IPV6: 831 if (__predict_false(!in6_present)) { 832 m_freem(m); 833 return; 834 } 835 #ifdef GATEWAY 836 if (ip6flow_fastforward(&m)) 837 return; 838 #endif 839 pktq = ip6_pktq; 840 break; 841 #endif 842 843 #ifdef NETATALK 844 case ETHERTYPE_ATALK: 845 isr = NETISR_ATALK; 846 inq = &atintrq1; 847 break; 848 849 case ETHERTYPE_AARP: 850 aarpinput(ifp, m); /* XXX queue? */ 851 return; 852 #endif 853 854 #ifdef MPLS 855 case ETHERTYPE_MPLS: 856 isr = NETISR_MPLS; 857 inq = &mplsintrq; 858 break; 859 #endif 860 861 default: 862 m_freem(m); 863 return; 864 } 865 } else { 866 KASSERT(ehlen == sizeof(*eh)); 867 #if defined (LLC) || defined (NETATALK) 868 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) { 869 goto dropanyway; 870 } 871 l = (struct llc *)(eh+1); 872 873 switch (l->llc_dsap) { 874 #ifdef NETATALK 875 case LLC_SNAP_LSAP: 876 switch (l->llc_control) { 877 case LLC_UI: 878 if (l->llc_ssap != LLC_SNAP_LSAP) { 879 goto dropanyway; 880 } 881 882 if (memcmp(&(l->llc_snap_org_code)[0], 883 at_org_code, sizeof(at_org_code)) == 0 && 884 ntohs(l->llc_snap_ether_type) == 885 ETHERTYPE_ATALK) { 886 inq = &atintrq2; 887 m_adj(m, sizeof(struct ether_header) 888 + sizeof(struct llc)); 889 isr = NETISR_ATALK; 890 break; 891 } 892 893 if (memcmp(&(l->llc_snap_org_code)[0], 894 aarp_org_code, 895 sizeof(aarp_org_code)) == 0 && 896 ntohs(l->llc_snap_ether_type) == 897 ETHERTYPE_AARP) { 898 m_adj(m, sizeof(struct ether_header) 899 + sizeof(struct llc)); 900 aarpinput(ifp, m); /* XXX */ 901 return; 902 } 903 904 default: 905 goto dropanyway; 906 } 907 break; 908 #endif 909 dropanyway: 910 default: 911 m_freem(m); 912 return; 913 } 914 #else /* LLC || NETATALK */ 915 m_freem(m); 916 return; 917 #endif /* LLC || NETATALK */ 918 } 919 920 if (__predict_true(pktq)) { 921 #ifdef NET_MPSAFE 922 const u_int h = curcpu()->ci_index; 923 #else 924 const uint32_t h = pktq_rps_hash(m); 925 #endif 926 if (__predict_false(!pktq_enqueue(pktq, m, h))) { 927 m_freem(m); 928 } 929 return; 930 } 931 932 if (__predict_false(!inq)) { 933 /* Should not happen. */ 934 m_freem(m); 935 return; 936 } 937 938 IFQ_LOCK(inq); 939 if (IF_QFULL(inq)) { 940 IF_DROP(inq); 941 IFQ_UNLOCK(inq); 942 m_freem(m); 943 } else { 944 IF_ENQUEUE(inq, m); 945 IFQ_UNLOCK(inq); 946 schednetisr(isr); 947 } 948 } 949 950 /* 951 * Convert Ethernet address to printable (loggable) representation. 952 */ 953 char * 954 ether_sprintf(const u_char *ap) 955 { 956 static char etherbuf[3 * ETHER_ADDR_LEN]; 957 return ether_snprintf(etherbuf, sizeof(etherbuf), ap); 958 } 959 960 char * 961 ether_snprintf(char *buf, size_t len, const u_char *ap) 962 { 963 char *cp = buf; 964 size_t i; 965 966 for (i = 0; i < len / 3; i++) { 967 *cp++ = hexdigits[*ap >> 4]; 968 *cp++ = hexdigits[*ap++ & 0xf]; 969 *cp++ = ':'; 970 } 971 *--cp = '\0'; 972 return buf; 973 } 974 975 /* 976 * Perform common duties while attaching to interface list 977 */ 978 void 979 ether_ifattach(struct ifnet *ifp, const uint8_t *lla) 980 { 981 struct ethercom *ec = (struct ethercom *)ifp; 982 983 ifp->if_type = IFT_ETHER; 984 ifp->if_hdrlen = ETHER_HDR_LEN; 985 ifp->if_dlt = DLT_EN10MB; 986 ifp->if_mtu = ETHERMTU; 987 ifp->if_output = ether_output; 988 ifp->_if_input = ether_input; 989 if (ifp->if_baudrate == 0) 990 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 991 992 if (lla != NULL) 993 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla)); 994 995 LIST_INIT(&ec->ec_multiaddrs); 996 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 997 ifp->if_broadcastaddr = etherbroadcastaddr; 998 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 999 #ifdef MBUFTRACE 1000 strlcpy(ec->ec_tx_mowner.mo_name, ifp->if_xname, 1001 sizeof(ec->ec_tx_mowner.mo_name)); 1002 strlcpy(ec->ec_tx_mowner.mo_descr, "tx", 1003 sizeof(ec->ec_tx_mowner.mo_descr)); 1004 strlcpy(ec->ec_rx_mowner.mo_name, ifp->if_xname, 1005 sizeof(ec->ec_rx_mowner.mo_name)); 1006 strlcpy(ec->ec_rx_mowner.mo_descr, "rx", 1007 sizeof(ec->ec_rx_mowner.mo_descr)); 1008 MOWNER_ATTACH(&ec->ec_tx_mowner); 1009 MOWNER_ATTACH(&ec->ec_rx_mowner); 1010 ifp->if_mowner = &ec->ec_tx_mowner; 1011 #endif 1012 } 1013 1014 void 1015 ether_ifdetach(struct ifnet *ifp) 1016 { 1017 struct ethercom *ec = (void *) ifp; 1018 struct ether_multi *enm; 1019 1020 /* 1021 * Prevent further calls to ioctl (for example turning off 1022 * promiscuous mode from the bridge code), which eventually can 1023 * call if_init() which can cause panics because the interface 1024 * is in the process of being detached. Return device not configured 1025 * instead. 1026 */ 1027 ifp->if_ioctl = (int (*)(struct ifnet *, u_long, void *))enxio; 1028 1029 #if NBRIDGE > 0 1030 if (ifp->if_bridge) 1031 bridge_ifdetach(ifp); 1032 #endif 1033 bpf_detach(ifp); 1034 #if NVLAN > 0 1035 if (ec->ec_nvlans) 1036 vlan_ifdetach(ifp); 1037 #endif 1038 1039 ETHER_LOCK(ec); 1040 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) { 1041 LIST_REMOVE(enm, enm_list); 1042 kmem_free(enm, sizeof(*enm)); 1043 ec->ec_multicnt--; 1044 } 1045 ETHER_UNLOCK(ec); 1046 1047 mutex_obj_free(ec->ec_lock); 1048 ec->ec_lock = NULL; 1049 1050 ifp->if_mowner = NULL; 1051 MOWNER_DETACH(&ec->ec_rx_mowner); 1052 MOWNER_DETACH(&ec->ec_tx_mowner); 1053 } 1054 1055 #if 0 1056 /* 1057 * This is for reference. We have a table-driven version 1058 * of the little-endian crc32 generator, which is faster 1059 * than the double-loop. 1060 */ 1061 uint32_t 1062 ether_crc32_le(const uint8_t *buf, size_t len) 1063 { 1064 uint32_t c, crc, carry; 1065 size_t i, j; 1066 1067 crc = 0xffffffffU; /* initial value */ 1068 1069 for (i = 0; i < len; i++) { 1070 c = buf[i]; 1071 for (j = 0; j < 8; j++) { 1072 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1073 crc >>= 1; 1074 c >>= 1; 1075 if (carry) 1076 crc = (crc ^ ETHER_CRC_POLY_LE); 1077 } 1078 } 1079 1080 return (crc); 1081 } 1082 #else 1083 uint32_t 1084 ether_crc32_le(const uint8_t *buf, size_t len) 1085 { 1086 static const uint32_t crctab[] = { 1087 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1088 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1089 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1090 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1091 }; 1092 uint32_t crc; 1093 size_t i; 1094 1095 crc = 0xffffffffU; /* initial value */ 1096 1097 for (i = 0; i < len; i++) { 1098 crc ^= buf[i]; 1099 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1100 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1101 } 1102 1103 return (crc); 1104 } 1105 #endif 1106 1107 uint32_t 1108 ether_crc32_be(const uint8_t *buf, size_t len) 1109 { 1110 uint32_t c, crc, carry; 1111 size_t i, j; 1112 1113 crc = 0xffffffffU; /* initial value */ 1114 1115 for (i = 0; i < len; i++) { 1116 c = buf[i]; 1117 for (j = 0; j < 8; j++) { 1118 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1119 crc <<= 1; 1120 c >>= 1; 1121 if (carry) 1122 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1123 } 1124 } 1125 1126 return (crc); 1127 } 1128 1129 #ifdef INET 1130 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] = 1131 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; 1132 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] = 1133 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff }; 1134 #endif 1135 #ifdef INET6 1136 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] = 1137 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 }; 1138 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] = 1139 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff }; 1140 #endif 1141 1142 /* 1143 * ether_aton implementation, not using a static buffer. 1144 */ 1145 int 1146 ether_aton_r(u_char *dest, size_t len, const char *str) 1147 { 1148 const u_char *cp = (const void *)str; 1149 u_char *ep; 1150 1151 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10)) 1152 1153 if (len < ETHER_ADDR_LEN) 1154 return ENOSPC; 1155 1156 ep = dest + ETHER_ADDR_LEN; 1157 1158 while (*cp) { 1159 if (!isxdigit(*cp)) 1160 return EINVAL; 1161 1162 *dest = atox(*cp); 1163 cp++; 1164 if (isxdigit(*cp)) { 1165 *dest = (*dest << 4) | atox(*cp); 1166 cp++; 1167 } 1168 dest++; 1169 1170 if (dest == ep) 1171 return (*cp == '\0') ? 0 : ENAMETOOLONG; 1172 1173 switch (*cp) { 1174 case ':': 1175 case '-': 1176 case '.': 1177 cp++; 1178 break; 1179 } 1180 } 1181 return ENOBUFS; 1182 } 1183 1184 /* 1185 * Convert a sockaddr into an Ethernet address or range of Ethernet 1186 * addresses. 1187 */ 1188 int 1189 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN], 1190 uint8_t addrhi[ETHER_ADDR_LEN]) 1191 { 1192 #ifdef INET 1193 const struct sockaddr_in *sin; 1194 #endif /* INET */ 1195 #ifdef INET6 1196 const struct sockaddr_in6 *sin6; 1197 #endif /* INET6 */ 1198 1199 switch (sa->sa_family) { 1200 1201 case AF_UNSPEC: 1202 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN); 1203 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1204 break; 1205 1206 #ifdef INET 1207 case AF_INET: 1208 sin = satocsin(sa); 1209 if (sin->sin_addr.s_addr == INADDR_ANY) { 1210 /* 1211 * An IP address of INADDR_ANY means listen to 1212 * or stop listening to all of the Ethernet 1213 * multicast addresses used for IP. 1214 * (This is for the sake of IP multicast routers.) 1215 */ 1216 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN); 1217 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN); 1218 } else { 1219 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo); 1220 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1221 } 1222 break; 1223 #endif 1224 #ifdef INET6 1225 case AF_INET6: 1226 sin6 = satocsin6(sa); 1227 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1228 /* 1229 * An IP6 address of 0 means listen to or stop 1230 * listening to all of the Ethernet multicast 1231 * address used for IP6. 1232 * (This is used for multicast routers.) 1233 */ 1234 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN); 1235 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN); 1236 } else { 1237 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo); 1238 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1239 } 1240 break; 1241 #endif 1242 1243 default: 1244 return EAFNOSUPPORT; 1245 } 1246 return 0; 1247 } 1248 1249 /* 1250 * Add an Ethernet multicast address or range of addresses to the list for a 1251 * given interface. 1252 */ 1253 int 1254 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec) 1255 { 1256 struct ether_multi *enm, *_enm; 1257 u_char addrlo[ETHER_ADDR_LEN]; 1258 u_char addrhi[ETHER_ADDR_LEN]; 1259 int error = 0; 1260 1261 /* Allocate out of lock */ 1262 enm = kmem_alloc(sizeof(*enm), KM_SLEEP); 1263 1264 ETHER_LOCK(ec); 1265 error = ether_multiaddr(sa, addrlo, addrhi); 1266 if (error != 0) 1267 goto out; 1268 1269 /* 1270 * Verify that we have valid Ethernet multicast addresses. 1271 */ 1272 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) { 1273 error = EINVAL; 1274 goto out; 1275 } 1276 1277 /* 1278 * See if the address range is already in the list. 1279 */ 1280 ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, _enm); 1281 if (_enm != NULL) { 1282 /* 1283 * Found it; just increment the reference count. 1284 */ 1285 ++_enm->enm_refcount; 1286 error = 0; 1287 goto out; 1288 } 1289 1290 /* 1291 * Link a new multicast record into the interface's multicast list. 1292 */ 1293 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN); 1294 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN); 1295 enm->enm_refcount = 1; 1296 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list); 1297 ec->ec_multicnt++; 1298 1299 /* 1300 * Return ENETRESET to inform the driver that the list has changed 1301 * and its reception filter should be adjusted accordingly. 1302 */ 1303 error = ENETRESET; 1304 enm = NULL; 1305 1306 out: 1307 ETHER_UNLOCK(ec); 1308 if (enm != NULL) 1309 kmem_free(enm, sizeof(*enm)); 1310 return error; 1311 } 1312 1313 /* 1314 * Delete a multicast address record. 1315 */ 1316 int 1317 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec) 1318 { 1319 struct ether_multi *enm; 1320 u_char addrlo[ETHER_ADDR_LEN]; 1321 u_char addrhi[ETHER_ADDR_LEN]; 1322 int error; 1323 1324 ETHER_LOCK(ec); 1325 error = ether_multiaddr(sa, addrlo, addrhi); 1326 if (error != 0) 1327 goto error; 1328 1329 /* 1330 * Look up the address in our list. 1331 */ 1332 ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, enm); 1333 if (enm == NULL) { 1334 error = ENXIO; 1335 goto error; 1336 } 1337 if (--enm->enm_refcount != 0) { 1338 /* 1339 * Still some claims to this record. 1340 */ 1341 error = 0; 1342 goto error; 1343 } 1344 1345 /* 1346 * No remaining claims to this record; unlink and free it. 1347 */ 1348 LIST_REMOVE(enm, enm_list); 1349 ec->ec_multicnt--; 1350 ETHER_UNLOCK(ec); 1351 kmem_free(enm, sizeof(*enm)); 1352 1353 /* 1354 * Return ENETRESET to inform the driver that the list has changed 1355 * and its reception filter should be adjusted accordingly. 1356 */ 1357 return ENETRESET; 1358 1359 error: 1360 ETHER_UNLOCK(ec); 1361 return error; 1362 } 1363 1364 void 1365 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb) 1366 { 1367 ec->ec_ifflags_cb = cb; 1368 } 1369 1370 /* 1371 * Common ioctls for Ethernet interfaces. Note, we must be 1372 * called at splnet(). 1373 */ 1374 int 1375 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1376 { 1377 struct ethercom *ec = (void *) ifp; 1378 struct eccapreq *eccr; 1379 struct ifreq *ifr = (struct ifreq *)data; 1380 struct if_laddrreq *iflr = data; 1381 const struct sockaddr_dl *sdl; 1382 static const uint8_t zero[ETHER_ADDR_LEN]; 1383 int error; 1384 1385 switch (cmd) { 1386 case SIOCINITIFADDR: 1387 { 1388 struct ifaddr *ifa = (struct ifaddr *)data; 1389 if (ifa->ifa_addr->sa_family != AF_LINK 1390 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 1391 (IFF_UP | IFF_RUNNING)) { 1392 ifp->if_flags |= IFF_UP; 1393 if ((error = (*ifp->if_init)(ifp)) != 0) 1394 return error; 1395 } 1396 #ifdef INET 1397 if (ifa->ifa_addr->sa_family == AF_INET) 1398 arp_ifinit(ifp, ifa); 1399 #endif 1400 return 0; 1401 } 1402 1403 case SIOCSIFMTU: 1404 { 1405 int maxmtu; 1406 1407 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU) 1408 maxmtu = ETHERMTU_JUMBO; 1409 else 1410 maxmtu = ETHERMTU; 1411 1412 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 1413 return EINVAL; 1414 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1415 return error; 1416 else if (ifp->if_flags & IFF_UP) { 1417 /* Make sure the device notices the MTU change. */ 1418 return (*ifp->if_init)(ifp); 1419 } else 1420 return 0; 1421 } 1422 1423 case SIOCSIFFLAGS: 1424 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1425 return error; 1426 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1427 case IFF_RUNNING: 1428 /* 1429 * If interface is marked down and it is running, 1430 * then stop and disable it. 1431 */ 1432 (*ifp->if_stop)(ifp, 1); 1433 break; 1434 case IFF_UP: 1435 /* 1436 * If interface is marked up and it is stopped, then 1437 * start it. 1438 */ 1439 return (*ifp->if_init)(ifp); 1440 case IFF_UP | IFF_RUNNING: 1441 error = 0; 1442 if (ec->ec_ifflags_cb != NULL) { 1443 error = (*ec->ec_ifflags_cb)(ec); 1444 if (error == ENETRESET) { 1445 /* 1446 * Reset the interface to pick up 1447 * changes in any other flags that 1448 * affect the hardware state. 1449 */ 1450 return (*ifp->if_init)(ifp); 1451 } 1452 } else 1453 error = (*ifp->if_init)(ifp); 1454 return error; 1455 case 0: 1456 break; 1457 } 1458 return 0; 1459 case SIOCGETHERCAP: 1460 eccr = (struct eccapreq *)data; 1461 eccr->eccr_capabilities = ec->ec_capabilities; 1462 eccr->eccr_capenable = ec->ec_capenable; 1463 return 0; 1464 case SIOCADDMULTI: 1465 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec); 1466 case SIOCDELMULTI: 1467 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec); 1468 case SIOCSIFMEDIA: 1469 case SIOCGIFMEDIA: 1470 if (ec->ec_mii == NULL) 1471 return ENOTTY; 1472 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, cmd); 1473 case SIOCALIFADDR: 1474 sdl = satocsdl(sstocsa(&iflr->addr)); 1475 if (sdl->sdl_family != AF_LINK) 1476 ; 1477 else if (ETHER_IS_MULTICAST(CLLADDR(sdl))) 1478 return EINVAL; 1479 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0) 1480 return EINVAL; 1481 /*FALLTHROUGH*/ 1482 default: 1483 return ifioctl_common(ifp, cmd, data); 1484 } 1485 return 0; 1486 } 1487 1488 /* 1489 * Enable/disable passing VLAN packets if the parent interface supports it. 1490 * Return: 1491 * 0: Ok 1492 * -1: Parent interface does not support vlans 1493 * >0: Error 1494 */ 1495 int 1496 ether_enable_vlan_mtu(struct ifnet *ifp) 1497 { 1498 int error; 1499 struct ethercom *ec = (void *)ifp; 1500 1501 /* Parent does not support VLAN's */ 1502 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) 1503 return -1; 1504 1505 /* 1506 * Parent supports the VLAN_MTU capability, 1507 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames; 1508 * enable it. 1509 */ 1510 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1511 1512 /* Interface is down, defer for later */ 1513 if ((ifp->if_flags & IFF_UP) == 0) 1514 return 0; 1515 1516 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1517 return 0; 1518 1519 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1520 return error; 1521 } 1522 1523 int 1524 ether_disable_vlan_mtu(struct ifnet *ifp) 1525 { 1526 int error; 1527 struct ethercom *ec = (void *)ifp; 1528 1529 /* We still have VLAN's, defer for later */ 1530 if (ec->ec_nvlans != 0) 1531 return 0; 1532 1533 /* Parent does not support VLAB's, nothing to do. */ 1534 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0) 1535 return -1; 1536 1537 /* 1538 * Disable Tx/Rx of VLAN-sized frames. 1539 */ 1540 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1541 1542 /* Interface is down, defer for later */ 1543 if ((ifp->if_flags & IFF_UP) == 0) 1544 return 0; 1545 1546 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1547 return 0; 1548 1549 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1550 return error; 1551 } 1552 1553 static int 1554 ether_multicast_sysctl(SYSCTLFN_ARGS) 1555 { 1556 struct ether_multi *enm; 1557 struct ifnet *ifp; 1558 struct ethercom *ec; 1559 int error = 0; 1560 size_t written; 1561 struct psref psref; 1562 int bound; 1563 unsigned int multicnt; 1564 struct ether_multi_sysctl *addrs; 1565 int i; 1566 1567 if (namelen != 1) 1568 return EINVAL; 1569 1570 bound = curlwp_bind(); 1571 ifp = if_get_byindex(name[0], &psref); 1572 if (ifp == NULL) { 1573 error = ENODEV; 1574 goto out; 1575 } 1576 if (ifp->if_type != IFT_ETHER) { 1577 if_put(ifp, &psref); 1578 *oldlenp = 0; 1579 goto out; 1580 } 1581 ec = (struct ethercom *)ifp; 1582 1583 if (oldp == NULL) { 1584 if_put(ifp, &psref); 1585 *oldlenp = ec->ec_multicnt * sizeof(*addrs); 1586 goto out; 1587 } 1588 1589 /* 1590 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which 1591 * is sleepable, while holding it. Copy data to a local buffer first 1592 * with the lock taken and then call sysctl_copyout without holding it. 1593 */ 1594 retry: 1595 multicnt = ec->ec_multicnt; 1596 1597 if (multicnt == 0) { 1598 if_put(ifp, &psref); 1599 *oldlenp = 0; 1600 goto out; 1601 } 1602 1603 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP); 1604 1605 ETHER_LOCK(ec); 1606 if (multicnt != ec->ec_multicnt) { 1607 /* The number of multicast addresses has changed */ 1608 ETHER_UNLOCK(ec); 1609 kmem_free(addrs, sizeof(*addrs) * multicnt); 1610 goto retry; 1611 } 1612 1613 i = 0; 1614 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) { 1615 struct ether_multi_sysctl *addr = &addrs[i]; 1616 addr->enm_refcount = enm->enm_refcount; 1617 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN); 1618 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN); 1619 i++; 1620 } 1621 ETHER_UNLOCK(ec); 1622 1623 error = 0; 1624 written = 0; 1625 for (i = 0; i < multicnt; i++) { 1626 struct ether_multi_sysctl *addr = &addrs[i]; 1627 1628 if (written + sizeof(*addr) > *oldlenp) 1629 break; 1630 error = sysctl_copyout(l, addr, oldp, sizeof(*addr)); 1631 if (error) 1632 break; 1633 written += sizeof(*addr); 1634 oldp = (char *)oldp + sizeof(*addr); 1635 } 1636 kmem_free(addrs, sizeof(*addrs) * multicnt); 1637 1638 if_put(ifp, &psref); 1639 1640 *oldlenp = written; 1641 out: 1642 curlwp_bindx(bound); 1643 return error; 1644 } 1645 1646 static void 1647 ether_sysctl_setup(struct sysctllog **clog) 1648 { 1649 const struct sysctlnode *rnode = NULL; 1650 1651 sysctl_createv(clog, 0, NULL, &rnode, 1652 CTLFLAG_PERMANENT, 1653 CTLTYPE_NODE, "ether", 1654 SYSCTL_DESCR("Ethernet-specific information"), 1655 NULL, 0, NULL, 0, 1656 CTL_NET, CTL_CREATE, CTL_EOL); 1657 1658 sysctl_createv(clog, 0, &rnode, NULL, 1659 CTLFLAG_PERMANENT, 1660 CTLTYPE_NODE, "multicast", 1661 SYSCTL_DESCR("multicast addresses"), 1662 ether_multicast_sysctl, 0, NULL, 0, 1663 CTL_CREATE, CTL_EOL); 1664 } 1665 1666 void 1667 etherinit(void) 1668 { 1669 1670 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET); 1671 ether_sysctl_setup(NULL); 1672 } 1673