xref: /netbsd-src/sys/net/if_ethersubr.c (revision aef5eb5f59cdfe8314f1b5f78ac04eb144e44010)
1 /*	$NetBSD: if_ethersubr.c,v 1.320 2022/09/03 02:47:59 thorpej Exp $	*/
2 
3 /*
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1982, 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the University nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  *	@(#)if_ethersubr.c	8.2 (Berkeley) 4/4/96
61  */
62 
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.320 2022/09/03 02:47:59 thorpej Exp $");
65 
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75 
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81 
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/entropy.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92 #include <sys/hook.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 #include <net/if_llc.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/pktqueue.h>
100 
101 #include <net/if_media.h>
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104 
105 #if NARP == 0
106 /*
107  * XXX there should really be a way to issue this warning from within config(8)
108  */
109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
110 #endif
111 
112 #include <net/bpf.h>
113 
114 #include <net/if_ether.h>
115 #include <net/if_vlanvar.h>
116 
117 #if NPPPOE > 0
118 #include <net/if_pppoe.h>
119 #endif
120 
121 #if NAGR > 0
122 #include <net/ether_slowprotocols.h>
123 #include <net/agr/ieee8023ad.h>
124 #include <net/agr/if_agrvar.h>
125 #endif
126 
127 #if NBRIDGE > 0
128 #include <net/if_bridgevar.h>
129 #endif
130 
131 #include <netinet/in.h>
132 #ifdef INET
133 #include <netinet/in_var.h>
134 #endif
135 #include <netinet/if_inarp.h>
136 
137 #ifdef INET6
138 #ifndef INET
139 #include <netinet/in.h>
140 #endif
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144 
145 #include "carp.h"
146 #if NCARP > 0
147 #include <netinet/ip_carp.h>
148 #endif
149 
150 #ifdef NETATALK
151 #include <netatalk/at.h>
152 #include <netatalk/at_var.h>
153 #include <netatalk/at_extern.h>
154 
155 #define llc_snap_org_code llc_un.type_snap.org_code
156 #define llc_snap_ether_type llc_un.type_snap.ether_type
157 
158 extern u_char	at_org_code[3];
159 extern u_char	aarp_org_code[3];
160 #endif /* NETATALK */
161 
162 #ifdef MPLS
163 #include <netmpls/mpls.h>
164 #include <netmpls/mpls_var.h>
165 #endif
166 
167 CTASSERT(sizeof(struct ether_addr) == 6);
168 CTASSERT(sizeof(struct ether_header) == 14);
169 
170 #ifdef DIAGNOSTIC
171 static struct timeval bigpktppslim_last;
172 static int bigpktppslim = 2;	/* XXX */
173 static int bigpktpps_count;
174 static kmutex_t bigpktpps_lock __cacheline_aligned;
175 #endif
176 
177 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
178     { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
179 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
180     { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
181 #define senderr(e) { error = (e); goto bad;}
182 
183 static pktq_rps_hash_func_t ether_pktq_rps_hash_p;
184 
185 static int ether_output(struct ifnet *, struct mbuf *,
186     const struct sockaddr *, const struct rtentry *);
187 
188 /*
189  * Ethernet output routine.
190  * Encapsulate a packet of type family for the local net.
191  * Assumes that ifp is actually pointer to ethercom structure.
192  */
193 static int
194 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
195     const struct sockaddr * const dst, const struct rtentry *rt)
196 {
197 	uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
198 	uint16_t etype = 0;
199 	int error = 0, hdrcmplt = 0;
200 	struct mbuf *m = m0;
201 	struct mbuf *mcopy = NULL;
202 	struct ether_header *eh;
203 	struct ifnet *ifp = ifp0;
204 #ifdef INET
205 	struct arphdr *ah;
206 #endif
207 #ifdef NETATALK
208 	struct at_ifaddr *aa;
209 #endif
210 
211 #ifdef MBUFTRACE
212 	m_claimm(m, ifp->if_mowner);
213 #endif
214 
215 #if NCARP > 0
216 	if (ifp->if_type == IFT_CARP) {
217 		struct ifaddr *ifa;
218 		int s = pserialize_read_enter();
219 
220 		/* loop back if this is going to the carp interface */
221 		if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
222 		    (ifa = ifa_ifwithaddr(dst)) != NULL) {
223 			if (ifa->ifa_ifp == ifp0) {
224 				pserialize_read_exit(s);
225 				return looutput(ifp0, m, dst, rt);
226 			}
227 		}
228 		pserialize_read_exit(s);
229 
230 		ifp = ifp->if_carpdev;
231 		/* ac = (struct arpcom *)ifp; */
232 
233 		if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
234 		    (IFF_UP | IFF_RUNNING))
235 			senderr(ENETDOWN);
236 	}
237 #endif
238 
239 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
240 		senderr(ENETDOWN);
241 
242 	switch (dst->sa_family) {
243 
244 #ifdef INET
245 	case AF_INET:
246 		if (m->m_flags & M_BCAST) {
247 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
248 		} else if (m->m_flags & M_MCAST) {
249 			ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
250 		} else {
251 			error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst));
252 			if (error)
253 				return (error == EWOULDBLOCK) ? 0 : error;
254 		}
255 		/* If broadcasting on a simplex interface, loopback a copy */
256 		if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
257 			mcopy = m_copypacket(m, M_DONTWAIT);
258 		etype = htons(ETHERTYPE_IP);
259 		break;
260 
261 	case AF_ARP:
262 		ah = mtod(m, struct arphdr *);
263 		if (m->m_flags & M_BCAST) {
264 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
265 		} else {
266 			void *tha = ar_tha(ah);
267 
268 			if (tha == NULL) {
269 				/* fake with ARPHRD_IEEE1394 */
270 				m_freem(m);
271 				return 0;
272 			}
273 			memcpy(edst, tha, sizeof(edst));
274 		}
275 
276 		ah->ar_hrd = htons(ARPHRD_ETHER);
277 
278 		switch (ntohs(ah->ar_op)) {
279 		case ARPOP_REVREQUEST:
280 		case ARPOP_REVREPLY:
281 			etype = htons(ETHERTYPE_REVARP);
282 			break;
283 
284 		case ARPOP_REQUEST:
285 		case ARPOP_REPLY:
286 		default:
287 			etype = htons(ETHERTYPE_ARP);
288 		}
289 		break;
290 #endif
291 
292 #ifdef INET6
293 	case AF_INET6:
294 		if (m->m_flags & M_BCAST) {
295 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
296 		} else if (m->m_flags & M_MCAST) {
297 			ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
298 			    edst);
299 		} else {
300 			error = nd6_resolve(ifp0, rt, m, dst, edst,
301 			    sizeof(edst));
302 			if (error)
303 				return (error == EWOULDBLOCK) ? 0 : error;
304 		}
305 		etype = htons(ETHERTYPE_IPV6);
306 		break;
307 #endif
308 
309 #ifdef NETATALK
310 	case AF_APPLETALK: {
311 		struct ifaddr *ifa;
312 		int s;
313 
314 		KERNEL_LOCK(1, NULL);
315 
316 		if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
317 			KERNEL_UNLOCK_ONE(NULL);
318 			return 0;
319 		}
320 
321 		/*
322 		 * ifaddr is the first thing in at_ifaddr
323 		 */
324 		s = pserialize_read_enter();
325 		ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
326 		if (ifa == NULL) {
327 			pserialize_read_exit(s);
328 			KERNEL_UNLOCK_ONE(NULL);
329 			senderr(EADDRNOTAVAIL);
330 		}
331 		aa = (struct at_ifaddr *)ifa;
332 
333 		/*
334 		 * In the phase 2 case, we need to prepend an mbuf for the
335 		 * llc header.
336 		 */
337 		if (aa->aa_flags & AFA_PHASE2) {
338 			struct llc llc;
339 
340 			M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
341 			if (m == NULL) {
342 				pserialize_read_exit(s);
343 				KERNEL_UNLOCK_ONE(NULL);
344 				senderr(ENOBUFS);
345 			}
346 
347 			llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
348 			llc.llc_control = LLC_UI;
349 			memcpy(llc.llc_snap_org_code, at_org_code,
350 			    sizeof(llc.llc_snap_org_code));
351 			llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
352 			memcpy(mtod(m, void *), &llc, sizeof(struct llc));
353 		} else {
354 			etype = htons(ETHERTYPE_ATALK);
355 		}
356 		pserialize_read_exit(s);
357 		KERNEL_UNLOCK_ONE(NULL);
358 		break;
359 	}
360 #endif /* NETATALK */
361 
362 	case pseudo_AF_HDRCMPLT:
363 		hdrcmplt = 1;
364 		memcpy(esrc,
365 		    ((const struct ether_header *)dst->sa_data)->ether_shost,
366 		    sizeof(esrc));
367 		/* FALLTHROUGH */
368 
369 	case AF_UNSPEC:
370 		memcpy(edst,
371 		    ((const struct ether_header *)dst->sa_data)->ether_dhost,
372 		    sizeof(edst));
373 		/* AF_UNSPEC doesn't swap the byte order of the ether_type. */
374 		etype = ((const struct ether_header *)dst->sa_data)->ether_type;
375 		break;
376 
377 	default:
378 		printf("%s: can't handle af%d\n", ifp->if_xname,
379 		    dst->sa_family);
380 		senderr(EAFNOSUPPORT);
381 	}
382 
383 #ifdef MPLS
384 	{
385 		struct m_tag *mtag;
386 		mtag = m_tag_find(m, PACKET_TAG_MPLS);
387 		if (mtag != NULL) {
388 			/* Having the tag itself indicates it's MPLS */
389 			etype = htons(ETHERTYPE_MPLS);
390 			m_tag_delete(m, mtag);
391 		}
392 	}
393 #endif
394 
395 	if (mcopy)
396 		(void)looutput(ifp, mcopy, dst, rt);
397 
398 	KASSERT((m->m_flags & M_PKTHDR) != 0);
399 
400 	/*
401 	 * If no ether type is set, this must be a 802.2 formatted packet.
402 	 */
403 	if (etype == 0)
404 		etype = htons(m->m_pkthdr.len);
405 
406 	/*
407 	 * Add local net header. If no space in first mbuf, allocate another.
408 	 */
409 	M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
410 	if (m == NULL)
411 		senderr(ENOBUFS);
412 
413 	eh = mtod(m, struct ether_header *);
414 	/* Note: etype is already in network byte order. */
415 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
416 	memcpy(eh->ether_dhost, edst, sizeof(edst));
417 	if (hdrcmplt) {
418 		memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
419 	} else {
420 	 	memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
421 		    sizeof(eh->ether_shost));
422 	}
423 
424 #if NCARP > 0
425 	if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
426 	 	memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
427 		    sizeof(eh->ether_shost));
428 	}
429 #endif
430 
431 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
432 		return error;
433 	if (m == NULL)
434 		return 0;
435 
436 #if NBRIDGE > 0
437 	/*
438 	 * Bridges require special output handling.
439 	 */
440 	if (ifp->if_bridge)
441 		return bridge_output(ifp, m, NULL, NULL);
442 #endif
443 
444 #if NCARP > 0
445 	if (ifp != ifp0)
446 		if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN);
447 #endif
448 
449 #ifdef ALTQ
450 	KERNEL_LOCK(1, NULL);
451 	/*
452 	 * If ALTQ is enabled on the parent interface, do
453 	 * classification; the queueing discipline might not
454 	 * require classification, but might require the
455 	 * address family/header pointer in the pktattr.
456 	 */
457 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
458 		altq_etherclassify(&ifp->if_snd, m);
459 	KERNEL_UNLOCK_ONE(NULL);
460 #endif
461 	return ifq_enqueue(ifp, m);
462 
463 bad:
464 	if_statinc(ifp, if_oerrors);
465 	if (m)
466 		m_freem(m);
467 	return error;
468 }
469 
470 #ifdef ALTQ
471 /*
472  * This routine is a slight hack to allow a packet to be classified
473  * if the Ethernet headers are present.  It will go away when ALTQ's
474  * classification engine understands link headers.
475  *
476  * XXX: We may need to do m_pullups here. First to ensure struct ether_header
477  * is indeed contiguous, then to read the LLC and so on.
478  */
479 void
480 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
481 {
482 	struct ether_header *eh;
483 	struct mbuf *mtop = m;
484 	uint16_t ether_type;
485 	int hlen, af, hdrsize;
486 	void *hdr;
487 
488 	KASSERT((mtop->m_flags & M_PKTHDR) != 0);
489 
490 	hlen = ETHER_HDR_LEN;
491 	eh = mtod(m, struct ether_header *);
492 
493 	ether_type = htons(eh->ether_type);
494 
495 	if (ether_type < ETHERMTU) {
496 		/* LLC/SNAP */
497 		struct llc *llc = (struct llc *)(eh + 1);
498 		hlen += 8;
499 
500 		if (m->m_len < hlen ||
501 		    llc->llc_dsap != LLC_SNAP_LSAP ||
502 		    llc->llc_ssap != LLC_SNAP_LSAP ||
503 		    llc->llc_control != LLC_UI) {
504 			/* Not SNAP. */
505 			goto bad;
506 		}
507 
508 		ether_type = htons(llc->llc_un.type_snap.ether_type);
509 	}
510 
511 	switch (ether_type) {
512 	case ETHERTYPE_IP:
513 		af = AF_INET;
514 		hdrsize = 20;		/* sizeof(struct ip) */
515 		break;
516 
517 	case ETHERTYPE_IPV6:
518 		af = AF_INET6;
519 		hdrsize = 40;		/* sizeof(struct ip6_hdr) */
520 		break;
521 
522 	default:
523 		af = AF_UNSPEC;
524 		hdrsize = 0;
525 		break;
526 	}
527 
528 	while (m->m_len <= hlen) {
529 		hlen -= m->m_len;
530 		m = m->m_next;
531 		if (m == NULL)
532 			goto bad;
533 	}
534 
535 	if (m->m_len < (hlen + hdrsize)) {
536 		/*
537 		 * protocol header not in a single mbuf.
538 		 * We can't cope with this situation right
539 		 * now (but it shouldn't ever happen, really, anyhow).
540 		 */
541 #ifdef DEBUG
542 		printf("altq_etherclassify: headers span multiple mbufs: "
543 		    "%d < %d\n", m->m_len, (hlen + hdrsize));
544 #endif
545 		goto bad;
546 	}
547 
548 	m->m_data += hlen;
549 	m->m_len -= hlen;
550 
551 	hdr = mtod(m, void *);
552 
553 	if (ALTQ_NEEDS_CLASSIFY(ifq)) {
554 		mtop->m_pkthdr.pattr_class =
555 		    (*ifq->altq_classify)(ifq->altq_clfier, m, af);
556 	}
557 	mtop->m_pkthdr.pattr_af = af;
558 	mtop->m_pkthdr.pattr_hdr = hdr;
559 
560 	m->m_data -= hlen;
561 	m->m_len += hlen;
562 
563 	return;
564 
565 bad:
566 	mtop->m_pkthdr.pattr_class = NULL;
567 	mtop->m_pkthdr.pattr_hdr = NULL;
568 	mtop->m_pkthdr.pattr_af = AF_UNSPEC;
569 }
570 #endif /* ALTQ */
571 
572 #if defined (LLC) || defined (NETATALK)
573 static void
574 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh)
575 {
576 	pktqueue_t *pktq = NULL;
577 	struct llc *l;
578 
579 	if (m->m_len < sizeof(*eh) + sizeof(struct llc))
580 		goto error;
581 
582 	l = (struct llc *)(eh+1);
583 	switch (l->llc_dsap) {
584 #ifdef NETATALK
585 	case LLC_SNAP_LSAP:
586 		switch (l->llc_control) {
587 		case LLC_UI:
588 			if (l->llc_ssap != LLC_SNAP_LSAP)
589 				goto error;
590 
591 			if (memcmp(&(l->llc_snap_org_code)[0],
592 			    at_org_code, sizeof(at_org_code)) == 0 &&
593 			    ntohs(l->llc_snap_ether_type) ==
594 			    ETHERTYPE_ATALK) {
595 				pktq = at_pktq2;
596 				m_adj(m, sizeof(struct ether_header)
597 				    + sizeof(struct llc));
598 				break;
599 			}
600 
601 			if (memcmp(&(l->llc_snap_org_code)[0],
602 			    aarp_org_code,
603 			    sizeof(aarp_org_code)) == 0 &&
604 			    ntohs(l->llc_snap_ether_type) ==
605 			    ETHERTYPE_AARP) {
606 				m_adj(m, sizeof(struct ether_header)
607 				    + sizeof(struct llc));
608 				aarpinput(ifp, m); /* XXX queue? */
609 				return;
610 			}
611 
612 		default:
613 			goto error;
614 		}
615 		break;
616 #endif
617 	default:
618 		goto noproto;
619 	}
620 
621 	KASSERT(pktq != NULL);
622 	if (__predict_false(!pktq_enqueue(pktq, m, 0))) {
623 		m_freem(m);
624 	}
625 	return;
626 
627 noproto:
628 	m_freem(m);
629 	if_statinc(ifp, if_noproto);
630 	return;
631 error:
632 	m_freem(m);
633 	if_statinc(ifp, if_ierrors);
634 	return;
635 }
636 #endif /* defined (LLC) || defined (NETATALK) */
637 
638 /*
639  * Process a received Ethernet packet;
640  * the packet is in the mbuf chain m with
641  * the ether header.
642  */
643 void
644 ether_input(struct ifnet *ifp, struct mbuf *m)
645 {
646 #if NVLAN > 0 || defined(MBUFTRACE)
647 	struct ethercom *ec = (struct ethercom *) ifp;
648 #endif
649 	pktqueue_t *pktq = NULL;
650 	uint16_t etype;
651 	struct ether_header *eh;
652 	size_t ehlen;
653 	static int earlypkts;
654 
655 	/* No RPS for not-IP. */
656 	pktq_rps_hash_func_t rps_hash = NULL;
657 
658 	KASSERT(!cpu_intr_p());
659 	KASSERT((m->m_flags & M_PKTHDR) != 0);
660 
661 	if ((ifp->if_flags & IFF_UP) == 0)
662 		goto drop;
663 
664 #ifdef MBUFTRACE
665 	m_claimm(m, &ec->ec_rx_mowner);
666 #endif
667 
668 	if (__predict_false(m->m_len < sizeof(*eh))) {
669 		if ((m = m_pullup(m, sizeof(*eh))) == NULL) {
670 			if_statinc(ifp, if_ierrors);
671 			return;
672 		}
673 	}
674 
675 	eh = mtod(m, struct ether_header *);
676 	etype = ntohs(eh->ether_type);
677 	ehlen = sizeof(*eh);
678 
679 	if (__predict_false(earlypkts < 100 ||
680 		entropy_epoch() == (unsigned)-1)) {
681 		rnd_add_data(NULL, eh, ehlen, 0);
682 		earlypkts++;
683 	}
684 
685 	/*
686 	 * Determine if the packet is within its size limits. For MPLS the
687 	 * header length is variable, so we skip the check.
688 	 */
689 	if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
690 	    ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
691 #ifdef DIAGNOSTIC
692 		mutex_enter(&bigpktpps_lock);
693 		if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
694 		    bigpktppslim)) {
695 			printf("%s: discarding oversize frame (len=%d)\n",
696 			    ifp->if_xname, m->m_pkthdr.len);
697 		}
698 		mutex_exit(&bigpktpps_lock);
699 #endif
700 		goto error;
701 	}
702 
703 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
704 		/*
705 		 * If this is not a simplex interface, drop the packet
706 		 * if it came from us.
707 		 */
708 		if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
709 		    memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
710 		    ETHER_ADDR_LEN) == 0) {
711 			goto drop;
712 		}
713 
714 		if (memcmp(etherbroadcastaddr,
715 		    eh->ether_dhost, ETHER_ADDR_LEN) == 0)
716 			m->m_flags |= M_BCAST;
717 		else
718 			m->m_flags |= M_MCAST;
719 		if_statinc(ifp, if_imcasts);
720 	}
721 
722 	/* If the CRC is still on the packet, trim it off. */
723 	if (m->m_flags & M_HASFCS) {
724 		m_adj(m, -ETHER_CRC_LEN);
725 		m->m_flags &= ~M_HASFCS;
726 	}
727 
728 	if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
729 
730 	if (!vlan_has_tag(m) && etype == ETHERTYPE_VLAN) {
731 		m = ether_strip_vlantag(m);
732 		if (m == NULL) {
733 			if_statinc(ifp, if_ierrors);
734 			return;
735 		}
736 
737 		eh = mtod(m, struct ether_header *);
738 		etype = ntohs(eh->ether_type);
739 		ehlen = sizeof(*eh);
740 	}
741 
742 	if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
743 	    (ifp->if_flags & IFF_PROMISC) != 0 &&
744 	    memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
745 	     ETHER_ADDR_LEN) != 0) {
746 		m->m_flags |= M_PROMISC;
747 	}
748 
749 	if ((m->m_flags & M_PROMISC) == 0) {
750 		if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
751 			return;
752 		if (m == NULL)
753 			return;
754 
755 		eh = mtod(m, struct ether_header *);
756 		etype = ntohs(eh->ether_type);
757 	}
758 
759 	/*
760 	 * Processing a logical interfaces that are able
761 	 * to configure vlan(4).
762 	*/
763 #if NAGR > 0
764 	if (ifp->if_lagg != NULL &&
765 	    __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
766 		m->m_flags &= ~M_PROMISC;
767 		agr_input(ifp, m);
768 		return;
769 	}
770 #endif
771 
772 	/*
773 	 * VLAN processing.
774 	 *
775 	 * VLAN provides service delimiting so the frames are
776 	 * processed before other handlings. If a VLAN interface
777 	 * does not exist to take those frames, they're returned
778 	 * to ether_input().
779 	 */
780 
781 	if (vlan_has_tag(m)) {
782 		if (EVL_VLANOFTAG(vlan_get_tag(m)) == 0) {
783 			if (etype == ETHERTYPE_VLAN ||
784 			     etype == ETHERTYPE_QINQ)
785 				goto drop;
786 
787 			/* XXX we should actually use the prio value? */
788 			m->m_flags &= ~M_VLANTAG;
789 		} else {
790 #if NVLAN > 0
791 			if (ec->ec_nvlans > 0) {
792 				m = vlan_input(ifp, m);
793 
794 				/* vlan_input() called ether_input() recursively */
795 				if (m == NULL)
796 					return;
797 			}
798 #endif
799 			/* drop VLAN frames not for this port. */
800 			goto noproto;
801 		}
802 	}
803 
804 #if NCARP > 0
805 	if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
806 		/*
807 		 * Clear M_PROMISC, in case the packet comes from a
808 		 * vlan.
809 		 */
810 		m->m_flags &= ~M_PROMISC;
811 		if (carp_input(m, (uint8_t *)&eh->ether_shost,
812 		    (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
813 			return;
814 	}
815 #endif
816 
817 	/*
818 	 * Handle protocols that expect to have the Ethernet header
819 	 * (and possibly FCS) intact.
820 	 */
821 	switch (etype) {
822 #if NPPPOE > 0
823 	case ETHERTYPE_PPPOEDISC:
824 		pppoedisc_input(ifp, m);
825 		return;
826 
827 	case ETHERTYPE_PPPOE:
828 		pppoe_input(ifp, m);
829 		return;
830 #endif
831 
832 	case ETHERTYPE_SLOWPROTOCOLS: {
833 		uint8_t subtype;
834 
835 		if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype))
836 			goto error;
837 
838 		m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
839 		switch (subtype) {
840 #if NAGR > 0
841 		case SLOWPROTOCOLS_SUBTYPE_LACP:
842 			if (ifp->if_lagg != NULL) {
843 				ieee8023ad_lacp_input(ifp, m);
844 				return;
845 			}
846 			break;
847 
848 		case SLOWPROTOCOLS_SUBTYPE_MARKER:
849 			if (ifp->if_lagg != NULL) {
850 				ieee8023ad_marker_input(ifp, m);
851 				return;
852 			}
853 			break;
854 #endif
855 
856 		default:
857 			if (subtype == 0 || subtype > 10) {
858 				/* illegal value */
859 				goto error;
860 			}
861 			/* unknown subtype */
862 			break;
863 		}
864 	}
865 	/* FALLTHROUGH */
866 	default:
867 		if (m->m_flags & M_PROMISC)
868 			goto drop;
869 	}
870 
871 	/* If the CRC is still on the packet, trim it off. */
872 	if (m->m_flags & M_HASFCS) {
873 		m_adj(m, -ETHER_CRC_LEN);
874 		m->m_flags &= ~M_HASFCS;
875 	}
876 
877 	/* etype represents the size of the payload in this case */
878 	if (etype <= ETHERMTU + sizeof(struct ether_header)) {
879 		KASSERT(ehlen == sizeof(*eh));
880 #if defined (LLC) || defined (NETATALK)
881 		ether_input_llc(ifp, m, eh);
882 		return;
883 #else
884 		/* ethertype of 0-1500 is regarded as noproto */
885 		goto noproto;
886 #endif
887 	}
888 
889 	/* Strip off the Ethernet header. */
890 	m_adj(m, ehlen);
891 
892 	switch (etype) {
893 #ifdef INET
894 	case ETHERTYPE_IP:
895 #ifdef GATEWAY
896 		if (ipflow_fastforward(m))
897 			return;
898 #endif
899 		pktq = ip_pktq;
900 		rps_hash = atomic_load_relaxed(&ether_pktq_rps_hash_p);
901 		break;
902 
903 	case ETHERTYPE_ARP:
904 		pktq = arp_pktq;
905 		break;
906 
907 	case ETHERTYPE_REVARP:
908 		revarpinput(m);	/* XXX queue? */
909 		return;
910 #endif
911 
912 #ifdef INET6
913 	case ETHERTYPE_IPV6:
914 		if (__predict_false(!in6_present))
915 			goto noproto;
916 #ifdef GATEWAY
917 		if (ip6flow_fastforward(&m))
918 			return;
919 #endif
920 		pktq = ip6_pktq;
921 		rps_hash = atomic_load_relaxed(&ether_pktq_rps_hash_p);
922 		break;
923 #endif
924 
925 #ifdef NETATALK
926 	case ETHERTYPE_ATALK:
927 		pktq = at_pktq1;
928 		break;
929 
930 	case ETHERTYPE_AARP:
931 		aarpinput(ifp, m); /* XXX queue? */
932 		return;
933 #endif
934 
935 #ifdef MPLS
936 	case ETHERTYPE_MPLS:
937 		pktq = mpls_pktq;
938 		break;
939 #endif
940 
941 	default:
942 		goto noproto;
943 	}
944 
945 	KASSERT(pktq != NULL);
946 	const uint32_t h = rps_hash ? pktq_rps_hash(&rps_hash, m) : 0;
947 	if (__predict_false(!pktq_enqueue(pktq, m, h))) {
948 		m_freem(m);
949 	}
950 	return;
951 
952 drop:
953 	m_freem(m);
954 	if_statinc(ifp, if_iqdrops);
955 	return;
956 noproto:
957 	m_freem(m);
958 	if_statinc(ifp, if_noproto);
959 	return;
960 error:
961 	m_freem(m);
962 	if_statinc(ifp, if_ierrors);
963 	return;
964 }
965 
966 static void
967 ether_bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
968 {
969 	struct ether_vlan_header evl;
970 	struct m_hdr mh, md;
971 
972 	KASSERT(bp != NULL);
973 
974 	if (!vlan_has_tag(m)) {
975 		bpf_mtap3(bp, m, direction);
976 		return;
977 	}
978 
979 	memcpy(&evl, mtod(m, char *), ETHER_HDR_LEN);
980 	evl.evl_proto = evl.evl_encap_proto;
981 	evl.evl_encap_proto = htons(ETHERTYPE_VLAN);
982 	evl.evl_tag = htons(vlan_get_tag(m));
983 
984 	md.mh_flags = 0;
985 	md.mh_data = m->m_data + ETHER_HDR_LEN;
986 	md.mh_len = m->m_len - ETHER_HDR_LEN;
987 	md.mh_next = m->m_next;
988 
989 	mh.mh_flags = 0;
990 	mh.mh_data = (char *)&evl;
991 	mh.mh_len = sizeof(evl);
992 	mh.mh_next = (struct mbuf *)&md;
993 
994 	bpf_mtap3(bp, (struct mbuf *)&mh, direction);
995 }
996 
997 /*
998  * Convert Ethernet address to printable (loggable) representation.
999  */
1000 char *
1001 ether_sprintf(const u_char *ap)
1002 {
1003 	static char etherbuf[3 * ETHER_ADDR_LEN];
1004 	return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
1005 }
1006 
1007 char *
1008 ether_snprintf(char *buf, size_t len, const u_char *ap)
1009 {
1010 	char *cp = buf;
1011 	size_t i;
1012 
1013 	for (i = 0; i < len / 3; i++) {
1014 		*cp++ = hexdigits[*ap >> 4];
1015 		*cp++ = hexdigits[*ap++ & 0xf];
1016 		*cp++ = ':';
1017 	}
1018 	*--cp = '\0';
1019 	return buf;
1020 }
1021 
1022 /*
1023  * Perform common duties while attaching to interface list
1024  */
1025 void
1026 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
1027 {
1028 	struct ethercom *ec = (struct ethercom *)ifp;
1029 	char xnamebuf[HOOKNAMSIZ];
1030 
1031 	ifp->if_type = IFT_ETHER;
1032 	ifp->if_hdrlen = ETHER_HDR_LEN;
1033 	ifp->if_dlt = DLT_EN10MB;
1034 	ifp->if_mtu = ETHERMTU;
1035 	ifp->if_output = ether_output;
1036 	ifp->_if_input = ether_input;
1037 	ifp->if_bpf_mtap = ether_bpf_mtap;
1038 	if (ifp->if_baudrate == 0)
1039 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
1040 
1041 	if (lla != NULL)
1042 		if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
1043 
1044 	LIST_INIT(&ec->ec_multiaddrs);
1045 	SIMPLEQ_INIT(&ec->ec_vids);
1046 	ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1047 	ec->ec_flags = 0;
1048 	ifp->if_broadcastaddr = etherbroadcastaddr;
1049 	bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1050 	snprintf(xnamebuf, sizeof(xnamebuf),
1051 	    "%s-ether_ifdetachhooks", ifp->if_xname);
1052 	ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf);
1053 #ifdef MBUFTRACE
1054 	mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx");
1055 	mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx");
1056 	MOWNER_ATTACH(&ec->ec_tx_mowner);
1057 	MOWNER_ATTACH(&ec->ec_rx_mowner);
1058 	ifp->if_mowner = &ec->ec_tx_mowner;
1059 #endif
1060 }
1061 
1062 void
1063 ether_ifdetach(struct ifnet *ifp)
1064 {
1065 	struct ethercom *ec = (void *) ifp;
1066 	struct ether_multi *enm;
1067 
1068 	IFNET_ASSERT_UNLOCKED(ifp);
1069 	/*
1070 	 * Prevent further calls to ioctl (for example turning off
1071 	 * promiscuous mode from the bridge code), which eventually can
1072 	 * call if_init() which can cause panics because the interface
1073 	 * is in the process of being detached. Return device not configured
1074 	 * instead.
1075 	 */
1076 	ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *),
1077 	    enxio);
1078 
1079 	simplehook_dohooks(ec->ec_ifdetach_hooks);
1080 	KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks));
1081 	simplehook_destroy(ec->ec_ifdetach_hooks);
1082 
1083 	bpf_detach(ifp);
1084 
1085 	ETHER_LOCK(ec);
1086 	KASSERT(ec->ec_nvlans == 0);
1087 	while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1088 		LIST_REMOVE(enm, enm_list);
1089 		kmem_free(enm, sizeof(*enm));
1090 		ec->ec_multicnt--;
1091 	}
1092 	ETHER_UNLOCK(ec);
1093 
1094 	mutex_obj_free(ec->ec_lock);
1095 	ec->ec_lock = NULL;
1096 
1097 	ifp->if_mowner = NULL;
1098 	MOWNER_DETACH(&ec->ec_rx_mowner);
1099 	MOWNER_DETACH(&ec->ec_tx_mowner);
1100 }
1101 
1102 void *
1103 ether_ifdetachhook_establish(struct ifnet *ifp,
1104     void (*fn)(void *), void *arg)
1105 {
1106 	struct ethercom *ec;
1107 	khook_t *hk;
1108 
1109 	if (ifp->if_type != IFT_ETHER)
1110 		return NULL;
1111 
1112 	ec = (struct ethercom *)ifp;
1113 	hk = simplehook_establish(ec->ec_ifdetach_hooks,
1114 	    fn, arg);
1115 
1116 	return (void *)hk;
1117 }
1118 
1119 void
1120 ether_ifdetachhook_disestablish(struct ifnet *ifp,
1121     void *vhook, kmutex_t *lock)
1122 {
1123 	struct ethercom *ec;
1124 
1125 	if (vhook == NULL)
1126 		return;
1127 
1128 	ec = (struct ethercom *)ifp;
1129 	simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock);
1130 }
1131 
1132 #if 0
1133 /*
1134  * This is for reference.  We have a table-driven version
1135  * of the little-endian crc32 generator, which is faster
1136  * than the double-loop.
1137  */
1138 uint32_t
1139 ether_crc32_le(const uint8_t *buf, size_t len)
1140 {
1141 	uint32_t c, crc, carry;
1142 	size_t i, j;
1143 
1144 	crc = 0xffffffffU;	/* initial value */
1145 
1146 	for (i = 0; i < len; i++) {
1147 		c = buf[i];
1148 		for (j = 0; j < 8; j++) {
1149 			carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1150 			crc >>= 1;
1151 			c >>= 1;
1152 			if (carry)
1153 				crc = (crc ^ ETHER_CRC_POLY_LE);
1154 		}
1155 	}
1156 
1157 	return (crc);
1158 }
1159 #else
1160 uint32_t
1161 ether_crc32_le(const uint8_t *buf, size_t len)
1162 {
1163 	static const uint32_t crctab[] = {
1164 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1165 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1166 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1167 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1168 	};
1169 	uint32_t crc;
1170 	size_t i;
1171 
1172 	crc = 0xffffffffU;	/* initial value */
1173 
1174 	for (i = 0; i < len; i++) {
1175 		crc ^= buf[i];
1176 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1177 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1178 	}
1179 
1180 	return (crc);
1181 }
1182 #endif
1183 
1184 uint32_t
1185 ether_crc32_be(const uint8_t *buf, size_t len)
1186 {
1187 	uint32_t c, crc, carry;
1188 	size_t i, j;
1189 
1190 	crc = 0xffffffffU;	/* initial value */
1191 
1192 	for (i = 0; i < len; i++) {
1193 		c = buf[i];
1194 		for (j = 0; j < 8; j++) {
1195 			carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1196 			crc <<= 1;
1197 			c >>= 1;
1198 			if (carry)
1199 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1200 		}
1201 	}
1202 
1203 	return (crc);
1204 }
1205 
1206 #ifdef INET
1207 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1208     { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1209 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1210     { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1211 #endif
1212 #ifdef INET6
1213 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1214     { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1215 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1216     { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1217 #endif
1218 
1219 /*
1220  * ether_aton implementation, not using a static buffer.
1221  */
1222 int
1223 ether_aton_r(u_char *dest, size_t len, const char *str)
1224 {
1225 	const u_char *cp = (const void *)str;
1226 	u_char *ep;
1227 
1228 #define atox(c)	(((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1229 
1230 	if (len < ETHER_ADDR_LEN)
1231 		return ENOSPC;
1232 
1233 	ep = dest + ETHER_ADDR_LEN;
1234 
1235 	while (*cp) {
1236 		if (!isxdigit(*cp))
1237 			return EINVAL;
1238 
1239 		*dest = atox(*cp);
1240 		cp++;
1241 		if (isxdigit(*cp)) {
1242 			*dest = (*dest << 4) | atox(*cp);
1243 			cp++;
1244 		}
1245 		dest++;
1246 
1247 		if (dest == ep)
1248 			return (*cp == '\0') ? 0 : ENAMETOOLONG;
1249 
1250 		switch (*cp) {
1251 		case ':':
1252 		case '-':
1253 		case '.':
1254 			cp++;
1255 			break;
1256 		}
1257 	}
1258 	return ENOBUFS;
1259 }
1260 
1261 /*
1262  * Convert a sockaddr into an Ethernet address or range of Ethernet
1263  * addresses.
1264  */
1265 int
1266 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1267     uint8_t addrhi[ETHER_ADDR_LEN])
1268 {
1269 #ifdef INET
1270 	const struct sockaddr_in *sin;
1271 #endif
1272 #ifdef INET6
1273 	const struct sockaddr_in6 *sin6;
1274 #endif
1275 
1276 	switch (sa->sa_family) {
1277 
1278 	case AF_UNSPEC:
1279 		memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1280 		memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1281 		break;
1282 
1283 #ifdef INET
1284 	case AF_INET:
1285 		sin = satocsin(sa);
1286 		if (sin->sin_addr.s_addr == INADDR_ANY) {
1287 			/*
1288 			 * An IP address of INADDR_ANY means listen to
1289 			 * or stop listening to all of the Ethernet
1290 			 * multicast addresses used for IP.
1291 			 * (This is for the sake of IP multicast routers.)
1292 			 */
1293 			memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1294 			memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1295 		} else {
1296 			ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1297 			memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1298 		}
1299 		break;
1300 #endif
1301 #ifdef INET6
1302 	case AF_INET6:
1303 		sin6 = satocsin6(sa);
1304 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1305 			/*
1306 			 * An IP6 address of 0 means listen to or stop
1307 			 * listening to all of the Ethernet multicast
1308 			 * address used for IP6.
1309 			 * (This is used for multicast routers.)
1310 			 */
1311 			memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1312 			memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1313 		} else {
1314 			ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1315 			memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1316 		}
1317 		break;
1318 #endif
1319 
1320 	default:
1321 		return EAFNOSUPPORT;
1322 	}
1323 	return 0;
1324 }
1325 
1326 /*
1327  * Add an Ethernet multicast address or range of addresses to the list for a
1328  * given interface.
1329  */
1330 int
1331 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1332 {
1333 	struct ether_multi *enm, *_enm;
1334 	u_char addrlo[ETHER_ADDR_LEN];
1335 	u_char addrhi[ETHER_ADDR_LEN];
1336 	int error = 0;
1337 
1338 	/* Allocate out of lock */
1339 	enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1340 
1341 	ETHER_LOCK(ec);
1342 	error = ether_multiaddr(sa, addrlo, addrhi);
1343 	if (error != 0)
1344 		goto out;
1345 
1346 	/*
1347 	 * Verify that we have valid Ethernet multicast addresses.
1348 	 */
1349 	if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1350 		error = EINVAL;
1351 		goto out;
1352 	}
1353 
1354 	/*
1355 	 * See if the address range is already in the list.
1356 	 */
1357 	_enm = ether_lookup_multi(addrlo, addrhi, ec);
1358 	if (_enm != NULL) {
1359 		/*
1360 		 * Found it; just increment the reference count.
1361 		 */
1362 		++_enm->enm_refcount;
1363 		error = 0;
1364 		goto out;
1365 	}
1366 
1367 	/*
1368 	 * Link a new multicast record into the interface's multicast list.
1369 	 */
1370 	memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1371 	memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1372 	enm->enm_refcount = 1;
1373 	LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1374 	ec->ec_multicnt++;
1375 
1376 	/*
1377 	 * Return ENETRESET to inform the driver that the list has changed
1378 	 * and its reception filter should be adjusted accordingly.
1379 	 */
1380 	error = ENETRESET;
1381 	enm = NULL;
1382 
1383 out:
1384 	ETHER_UNLOCK(ec);
1385 	if (enm != NULL)
1386 		kmem_free(enm, sizeof(*enm));
1387 	return error;
1388 }
1389 
1390 /*
1391  * Delete a multicast address record.
1392  */
1393 int
1394 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1395 {
1396 	struct ether_multi *enm;
1397 	u_char addrlo[ETHER_ADDR_LEN];
1398 	u_char addrhi[ETHER_ADDR_LEN];
1399 	int error;
1400 
1401 	ETHER_LOCK(ec);
1402 	error = ether_multiaddr(sa, addrlo, addrhi);
1403 	if (error != 0)
1404 		goto error;
1405 
1406 	/*
1407 	 * Look up the address in our list.
1408 	 */
1409 	enm = ether_lookup_multi(addrlo, addrhi, ec);
1410 	if (enm == NULL) {
1411 		error = ENXIO;
1412 		goto error;
1413 	}
1414 	if (--enm->enm_refcount != 0) {
1415 		/*
1416 		 * Still some claims to this record.
1417 		 */
1418 		error = 0;
1419 		goto error;
1420 	}
1421 
1422 	/*
1423 	 * No remaining claims to this record; unlink and free it.
1424 	 */
1425 	LIST_REMOVE(enm, enm_list);
1426 	ec->ec_multicnt--;
1427 	ETHER_UNLOCK(ec);
1428 	kmem_free(enm, sizeof(*enm));
1429 
1430 	/*
1431 	 * Return ENETRESET to inform the driver that the list has changed
1432 	 * and its reception filter should be adjusted accordingly.
1433 	 */
1434 	return ENETRESET;
1435 
1436 error:
1437 	ETHER_UNLOCK(ec);
1438 	return error;
1439 }
1440 
1441 void
1442 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1443 {
1444 	ec->ec_ifflags_cb = cb;
1445 }
1446 
1447 void
1448 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
1449 {
1450 
1451 	ec->ec_vlan_cb = cb;
1452 }
1453 
1454 static int
1455 ether_ioctl_reinit(struct ethercom *ec)
1456 {
1457 	struct ifnet *ifp = &ec->ec_if;
1458 	int error;
1459 
1460 	KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
1461 
1462 	switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1463 	case IFF_RUNNING:
1464 		/*
1465 		 * If interface is marked down and it is running,
1466 		 * then stop and disable it.
1467 		 */
1468 		if_stop(ifp, 1);
1469 		break;
1470 	case IFF_UP:
1471 		/*
1472 		 * If interface is marked up and it is stopped, then
1473 		 * start it.
1474 		 */
1475 		return if_init(ifp);
1476 	case IFF_UP | IFF_RUNNING:
1477 		error = 0;
1478 		if (ec->ec_ifflags_cb != NULL) {
1479 			error = (*ec->ec_ifflags_cb)(ec);
1480 			if (error == ENETRESET) {
1481 				/*
1482 				 * Reset the interface to pick up
1483 				 * changes in any other flags that
1484 				 * affect the hardware state.
1485 				 */
1486 				return if_init(ifp);
1487 			}
1488 		} else
1489 			error = if_init(ifp);
1490 		return error;
1491 	case 0:
1492 		break;
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 /*
1499  * Common ioctls for Ethernet interfaces.  Note, we must be
1500  * called at splnet().
1501  */
1502 int
1503 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1504 {
1505 	struct ethercom *ec = (void *)ifp;
1506 	struct eccapreq *eccr;
1507 	struct ifreq *ifr = (struct ifreq *)data;
1508 	struct if_laddrreq *iflr = data;
1509 	const struct sockaddr_dl *sdl;
1510 	static const uint8_t zero[ETHER_ADDR_LEN];
1511 	int error;
1512 
1513 	switch (cmd) {
1514 	case SIOCINITIFADDR:
1515 	    {
1516 		struct ifaddr *ifa = (struct ifaddr *)data;
1517 		if (ifa->ifa_addr->sa_family != AF_LINK
1518 		    && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1519 		       (IFF_UP | IFF_RUNNING)) {
1520 			ifp->if_flags |= IFF_UP;
1521 			if ((error = if_init(ifp)) != 0)
1522 				return error;
1523 		}
1524 #ifdef INET
1525 		if (ifa->ifa_addr->sa_family == AF_INET)
1526 			arp_ifinit(ifp, ifa);
1527 #endif
1528 		return 0;
1529 	    }
1530 
1531 	case SIOCSIFMTU:
1532 	    {
1533 		int maxmtu;
1534 
1535 		if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1536 			maxmtu = ETHERMTU_JUMBO;
1537 		else
1538 			maxmtu = ETHERMTU;
1539 
1540 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1541 			return EINVAL;
1542 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1543 			return error;
1544 		else if (ifp->if_flags & IFF_UP) {
1545 			/* Make sure the device notices the MTU change. */
1546 			return if_init(ifp);
1547 		} else
1548 			return 0;
1549 	    }
1550 
1551 	case SIOCSIFFLAGS:
1552 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1553 			return error;
1554 		return ether_ioctl_reinit(ec);
1555 	case SIOCGIFFLAGS:
1556 		error = ifioctl_common(ifp, cmd, data);
1557 		if (error == 0) {
1558 			/* Set IFF_ALLMULTI for backcompat */
1559 			ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
1560 			    IFF_ALLMULTI : 0;
1561 		}
1562 		return error;
1563 	case SIOCGETHERCAP:
1564 		eccr = (struct eccapreq *)data;
1565 		eccr->eccr_capabilities = ec->ec_capabilities;
1566 		eccr->eccr_capenable = ec->ec_capenable;
1567 		return 0;
1568 	case SIOCSETHERCAP:
1569 		eccr = (struct eccapreq *)data;
1570 		if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
1571 			return EINVAL;
1572 		if (eccr->eccr_capenable == ec->ec_capenable)
1573 			return 0;
1574 #if 0 /* notyet */
1575 		ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
1576 		    | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
1577 #else
1578 		ec->ec_capenable = eccr->eccr_capenable;
1579 #endif
1580 		return ether_ioctl_reinit(ec);
1581 	case SIOCADDMULTI:
1582 		return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1583 	case SIOCDELMULTI:
1584 		return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1585 	case SIOCSIFMEDIA:
1586 	case SIOCGIFMEDIA:
1587 		if (ec->ec_mii != NULL)
1588 			return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
1589 			    cmd);
1590 		else if (ec->ec_ifmedia != NULL)
1591 			return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
1592 		else
1593 			return ENOTTY;
1594 		break;
1595 	case SIOCALIFADDR:
1596 		sdl = satocsdl(sstocsa(&iflr->addr));
1597 		if (sdl->sdl_family != AF_LINK)
1598 			;
1599 		else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1600 			return EINVAL;
1601 		else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1602 			return EINVAL;
1603 		/*FALLTHROUGH*/
1604 	default:
1605 		return ifioctl_common(ifp, cmd, data);
1606 	}
1607 	return 0;
1608 }
1609 
1610 /*
1611  * Enable/disable passing VLAN packets if the parent interface supports it.
1612  * Return:
1613  * 	 0: Ok
1614  *	-1: Parent interface does not support vlans
1615  *	>0: Error
1616  */
1617 int
1618 ether_enable_vlan_mtu(struct ifnet *ifp)
1619 {
1620 	int error;
1621 	struct ethercom *ec = (void *)ifp;
1622 
1623 	/* Parent does not support VLAN's */
1624 	if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1625 		return -1;
1626 
1627 	/*
1628 	 * Parent supports the VLAN_MTU capability,
1629 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1630 	 * enable it.
1631 	 */
1632 	ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1633 
1634 	/* Interface is down, defer for later */
1635 	if ((ifp->if_flags & IFF_UP) == 0)
1636 		return 0;
1637 
1638 	if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1639 		return 0;
1640 
1641 	ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1642 	return error;
1643 }
1644 
1645 int
1646 ether_disable_vlan_mtu(struct ifnet *ifp)
1647 {
1648 	int error;
1649 	struct ethercom *ec = (void *)ifp;
1650 
1651 	/* We still have VLAN's, defer for later */
1652 	if (ec->ec_nvlans != 0)
1653 		return 0;
1654 
1655 	/* Parent does not support VLAB's, nothing to do. */
1656 	if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1657 		return -1;
1658 
1659 	/*
1660 	 * Disable Tx/Rx of VLAN-sized frames.
1661 	 */
1662 	ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1663 
1664 	/* Interface is down, defer for later */
1665 	if ((ifp->if_flags & IFF_UP) == 0)
1666 		return 0;
1667 
1668 	if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1669 		return 0;
1670 
1671 	ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1672 	return error;
1673 }
1674 
1675 /*
1676  * Add and delete VLAN TAG
1677  */
1678 int
1679 ether_add_vlantag(struct ifnet *ifp, uint16_t vtag, bool *vlanmtu_status)
1680 {
1681 	struct ethercom *ec = (void *)ifp;
1682 	struct vlanid_list *vidp;
1683 	bool vlanmtu_enabled;
1684 	uint16_t vid = EVL_VLANOFTAG(vtag);
1685 	int error;
1686 
1687 	vlanmtu_enabled = false;
1688 
1689 	/* Add a vid to the list */
1690 	vidp = kmem_alloc(sizeof(*vidp), KM_SLEEP);
1691 	vidp->vid = vid;
1692 
1693 	ETHER_LOCK(ec);
1694 	ec->ec_nvlans++;
1695 	SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidp, vid_list);
1696 	ETHER_UNLOCK(ec);
1697 
1698 	if (ec->ec_nvlans == 1) {
1699 		IFNET_LOCK(ifp);
1700 		error = ether_enable_vlan_mtu(ifp);
1701 		IFNET_UNLOCK(ifp);
1702 
1703 		if (error == 0) {
1704 			vlanmtu_enabled = true;
1705 		} else if (error != -1) {
1706 			goto fail;
1707 		}
1708 	}
1709 
1710 	if (ec->ec_vlan_cb != NULL) {
1711 		error = (*ec->ec_vlan_cb)(ec, vid, true);
1712 		if (error != 0)
1713 			goto fail;
1714 	}
1715 
1716 	if (vlanmtu_status != NULL)
1717 		*vlanmtu_status = vlanmtu_enabled;
1718 
1719 	return 0;
1720 fail:
1721 	ETHER_LOCK(ec);
1722 	ec->ec_nvlans--;
1723 	SIMPLEQ_REMOVE(&ec->ec_vids, vidp, vlanid_list, vid_list);
1724 	ETHER_UNLOCK(ec);
1725 
1726 	if (vlanmtu_enabled) {
1727 		IFNET_LOCK(ifp);
1728 		(void)ether_disable_vlan_mtu(ifp);
1729 		IFNET_UNLOCK(ifp);
1730 	}
1731 
1732 	kmem_free(vidp, sizeof(*vidp));
1733 
1734 	return error;
1735 }
1736 
1737 int
1738 ether_del_vlantag(struct ifnet *ifp, uint16_t vtag)
1739 {
1740 	struct ethercom *ec = (void *)ifp;
1741 	struct vlanid_list *vidp;
1742 	uint16_t vid = EVL_VLANOFTAG(vtag);
1743 
1744 	ETHER_LOCK(ec);
1745 	SIMPLEQ_FOREACH(vidp, &ec->ec_vids, vid_list) {
1746 		if (vidp->vid == vid) {
1747 			SIMPLEQ_REMOVE(&ec->ec_vids, vidp,
1748 			    vlanid_list, vid_list);
1749 			ec->ec_nvlans--;
1750 			break;
1751 		}
1752 	}
1753 	ETHER_UNLOCK(ec);
1754 
1755 	if (vidp == NULL)
1756 		return ENOENT;
1757 
1758 	if (ec->ec_vlan_cb != NULL) {
1759 		(void)(*ec->ec_vlan_cb)(ec, vidp->vid, false);
1760 	}
1761 
1762 	if (ec->ec_nvlans == 0) {
1763 		IFNET_LOCK(ifp);
1764 		(void)ether_disable_vlan_mtu(ifp);
1765 		IFNET_UNLOCK(ifp);
1766 	}
1767 
1768 	kmem_free(vidp, sizeof(*vidp));
1769 
1770 	return 0;
1771 }
1772 
1773 int
1774 ether_inject_vlantag(struct mbuf **mp, uint16_t etype, uint16_t tag)
1775 {
1776 	static const size_t min_data_len =
1777 	    ETHER_MIN_LEN - ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
1778 	/* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
1779 	static const char vlan_zero_pad_buff[ETHER_MIN_LEN] = { 0 };
1780 
1781 	struct ether_vlan_header *evl;
1782 	struct mbuf *m = *mp;
1783 	int error;
1784 
1785 	error = 0;
1786 
1787 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_DONTWAIT);
1788 	if (m == NULL) {
1789 		error = ENOBUFS;
1790 		goto out;
1791 	}
1792 
1793 	if (m->m_len < sizeof(*evl)) {
1794 		m = m_pullup(m, sizeof(*evl));
1795 		if (m == NULL) {
1796 			error = ENOBUFS;
1797 			goto out;
1798 		}
1799 	}
1800 
1801 	/*
1802 	 * Transform the Ethernet header into an
1803 	 * Ethernet header with 802.1Q encapsulation.
1804 	 */
1805 	memmove(mtod(m, void *),
1806 	    mtod(m, char *) + ETHER_VLAN_ENCAP_LEN,
1807 	    sizeof(struct ether_header));
1808 	evl = mtod(m, struct ether_vlan_header *);
1809 	evl->evl_proto = evl->evl_encap_proto;
1810 	evl->evl_encap_proto = htons(etype);
1811 	evl->evl_tag = htons(tag);
1812 
1813 	/*
1814 	 * To cater for VLAN-aware layer 2 ethernet
1815 	 * switches which may need to strip the tag
1816 	 * before forwarding the packet, make sure
1817 	 * the packet+tag is at least 68 bytes long.
1818 	 * This is necessary because our parent will
1819 	 * only pad to 64 bytes (ETHER_MIN_LEN) and
1820 	 * some switches will not pad by themselves
1821 	 * after deleting a tag.
1822 	 */
1823 	if (m->m_pkthdr.len < min_data_len) {
1824 		m_copyback(m, m->m_pkthdr.len,
1825 		    min_data_len - m->m_pkthdr.len,
1826 		    vlan_zero_pad_buff);
1827 	}
1828 
1829 	m->m_flags &= ~M_VLANTAG;
1830 
1831 out:
1832 	*mp = m;
1833 	return error;
1834 }
1835 
1836 struct mbuf *
1837 ether_strip_vlantag(struct mbuf *m)
1838 {
1839 	struct ether_vlan_header *evl;
1840 
1841 	if (m->m_len < sizeof(*evl) &&
1842 	    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1843 		return NULL;
1844 	}
1845 
1846 	if (m_makewritable(&m, 0, sizeof(*evl), M_DONTWAIT)) {
1847 		m_freem(m);
1848 		return NULL;
1849 	}
1850 
1851 	evl = mtod(m, struct ether_vlan_header *);
1852 	KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
1853 
1854 	vlan_set_tag(m, ntohs(evl->evl_tag));
1855 
1856 	/*
1857 	 * Restore the original ethertype.  We'll remove
1858 	 * the encapsulation after we've found the vlan
1859 	 * interface corresponding to the tag.
1860 	 */
1861 	evl->evl_encap_proto = evl->evl_proto;
1862 
1863 	/*
1864 	 * Remove the encapsulation header and append tag.
1865 	 * The original header has already been fixed up above.
1866 	 */
1867 	vlan_set_tag(m, ntohs(evl->evl_tag));
1868 	memmove((char *)evl + ETHER_VLAN_ENCAP_LEN, evl,
1869 	    offsetof(struct ether_vlan_header, evl_encap_proto));
1870 	m_adj(m, ETHER_VLAN_ENCAP_LEN);
1871 
1872 	return m;
1873 }
1874 
1875 static int
1876 ether_multicast_sysctl(SYSCTLFN_ARGS)
1877 {
1878 	struct ether_multi *enm;
1879 	struct ifnet *ifp;
1880 	struct ethercom *ec;
1881 	int error = 0;
1882 	size_t written;
1883 	struct psref psref;
1884 	int bound;
1885 	unsigned int multicnt;
1886 	struct ether_multi_sysctl *addrs;
1887 	int i;
1888 
1889 	if (namelen != 1)
1890 		return EINVAL;
1891 
1892 	bound = curlwp_bind();
1893 	ifp = if_get_byindex(name[0], &psref);
1894 	if (ifp == NULL) {
1895 		error = ENODEV;
1896 		goto out;
1897 	}
1898 	if (ifp->if_type != IFT_ETHER) {
1899 		if_put(ifp, &psref);
1900 		*oldlenp = 0;
1901 		goto out;
1902 	}
1903 	ec = (struct ethercom *)ifp;
1904 
1905 	if (oldp == NULL) {
1906 		if_put(ifp, &psref);
1907 		*oldlenp = ec->ec_multicnt * sizeof(*addrs);
1908 		goto out;
1909 	}
1910 
1911 	/*
1912 	 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1913 	 * is sleepable, while holding it. Copy data to a local buffer first
1914 	 * with the lock taken and then call sysctl_copyout without holding it.
1915 	 */
1916 retry:
1917 	multicnt = ec->ec_multicnt;
1918 
1919 	if (multicnt == 0) {
1920 		if_put(ifp, &psref);
1921 		*oldlenp = 0;
1922 		goto out;
1923 	}
1924 
1925 	addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1926 
1927 	ETHER_LOCK(ec);
1928 	if (multicnt != ec->ec_multicnt) {
1929 		/* The number of multicast addresses has changed */
1930 		ETHER_UNLOCK(ec);
1931 		kmem_free(addrs, sizeof(*addrs) * multicnt);
1932 		goto retry;
1933 	}
1934 
1935 	i = 0;
1936 	LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1937 		struct ether_multi_sysctl *addr = &addrs[i];
1938 		addr->enm_refcount = enm->enm_refcount;
1939 		memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1940 		memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1941 		i++;
1942 	}
1943 	ETHER_UNLOCK(ec);
1944 
1945 	error = 0;
1946 	written = 0;
1947 	for (i = 0; i < multicnt; i++) {
1948 		struct ether_multi_sysctl *addr = &addrs[i];
1949 
1950 		if (written + sizeof(*addr) > *oldlenp)
1951 			break;
1952 		error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1953 		if (error)
1954 			break;
1955 		written += sizeof(*addr);
1956 		oldp = (char *)oldp + sizeof(*addr);
1957 	}
1958 	kmem_free(addrs, sizeof(*addrs) * multicnt);
1959 
1960 	if_put(ifp, &psref);
1961 
1962 	*oldlenp = written;
1963 out:
1964 	curlwp_bindx(bound);
1965 	return error;
1966 }
1967 
1968 static void
1969 ether_sysctl_setup(struct sysctllog **clog)
1970 {
1971 	const struct sysctlnode *rnode = NULL;
1972 
1973 	sysctl_createv(clog, 0, NULL, &rnode,
1974 		       CTLFLAG_PERMANENT,
1975 		       CTLTYPE_NODE, "ether",
1976 		       SYSCTL_DESCR("Ethernet-specific information"),
1977 		       NULL, 0, NULL, 0,
1978 		       CTL_NET, CTL_CREATE, CTL_EOL);
1979 
1980 	sysctl_createv(clog, 0, &rnode, NULL,
1981 		       CTLFLAG_PERMANENT,
1982 		       CTLTYPE_NODE, "multicast",
1983 		       SYSCTL_DESCR("multicast addresses"),
1984 		       ether_multicast_sysctl, 0, NULL, 0,
1985 		       CTL_CREATE, CTL_EOL);
1986 
1987 	sysctl_createv(clog, 0, &rnode, NULL,
1988 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1989 		       CTLTYPE_STRING, "rps_hash",
1990 		       SYSCTL_DESCR("Interface rps hash function control"),
1991 		       sysctl_pktq_rps_hash_handler, 0, (void *)&ether_pktq_rps_hash_p,
1992 		       PKTQ_RPS_HASH_NAME_LEN,
1993 		       CTL_CREATE, CTL_EOL);
1994 }
1995 
1996 void
1997 etherinit(void)
1998 {
1999 
2000 #ifdef DIAGNOSTIC
2001 	mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
2002 #endif
2003 	ether_pktq_rps_hash_p = pktq_rps_hash_default;
2004 	ether_sysctl_setup(NULL);
2005 }
2006