1 /* $NetBSD: if_ethersubr.c,v 1.292 2021/02/14 19:35:37 roy Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.292 2021/02/14 19:35:37 roy Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_atalk.h" 69 #include "opt_mbuftrace.h" 70 #include "opt_mpls.h" 71 #include "opt_gateway.h" 72 #include "opt_pppoe.h" 73 #include "opt_net_mpsafe.h" 74 #endif 75 76 #include "vlan.h" 77 #include "pppoe.h" 78 #include "bridge.h" 79 #include "arp.h" 80 #include "agr.h" 81 82 #include <sys/sysctl.h> 83 #include <sys/mbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/ioctl.h> 86 #include <sys/errno.h> 87 #include <sys/device.h> 88 #include <sys/entropy.h> 89 #include <sys/rndsource.h> 90 #include <sys/cpu.h> 91 #include <sys/kmem.h> 92 93 #include <net/if.h> 94 #include <net/netisr.h> 95 #include <net/route.h> 96 #include <net/if_llc.h> 97 #include <net/if_dl.h> 98 #include <net/if_types.h> 99 #include <net/pktqueue.h> 100 101 #include <net/if_media.h> 102 #include <dev/mii/mii.h> 103 #include <dev/mii/miivar.h> 104 105 #if NARP == 0 106 /* 107 * XXX there should really be a way to issue this warning from within config(8) 108 */ 109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK. 110 #endif 111 112 #include <net/bpf.h> 113 114 #include <net/if_ether.h> 115 #include <net/if_vlanvar.h> 116 117 #if NPPPOE > 0 118 #include <net/if_pppoe.h> 119 #endif 120 121 #if NAGR > 0 122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */ 123 #include <net/agr/ieee8023ad.h> 124 #include <net/agr/if_agrvar.h> 125 #endif 126 127 #if NBRIDGE > 0 128 #include <net/if_bridgevar.h> 129 #endif 130 131 #include <netinet/in.h> 132 #ifdef INET 133 #include <netinet/in_var.h> 134 #endif 135 #include <netinet/if_inarp.h> 136 137 #ifdef INET6 138 #ifndef INET 139 #include <netinet/in.h> 140 #endif 141 #include <netinet6/in6_var.h> 142 #include <netinet6/nd6.h> 143 #endif 144 145 #include "carp.h" 146 #if NCARP > 0 147 #include <netinet/ip_carp.h> 148 #endif 149 150 #ifdef NETATALK 151 #include <netatalk/at.h> 152 #include <netatalk/at_var.h> 153 #include <netatalk/at_extern.h> 154 155 #define llc_snap_org_code llc_un.type_snap.org_code 156 #define llc_snap_ether_type llc_un.type_snap.ether_type 157 158 extern u_char at_org_code[3]; 159 extern u_char aarp_org_code[3]; 160 #endif /* NETATALK */ 161 162 #ifdef MPLS 163 #include <netmpls/mpls.h> 164 #include <netmpls/mpls_var.h> 165 #endif 166 167 CTASSERT(sizeof(struct ether_addr) == 6); 168 CTASSERT(sizeof(struct ether_header) == 14); 169 170 #ifdef DIAGNOSTIC 171 static struct timeval bigpktppslim_last; 172 static int bigpktppslim = 2; /* XXX */ 173 static int bigpktpps_count; 174 static kmutex_t bigpktpps_lock __cacheline_aligned; 175 #endif 176 177 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = 178 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 179 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = 180 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; 181 #define senderr(e) { error = (e); goto bad;} 182 183 static int ether_output(struct ifnet *, struct mbuf *, 184 const struct sockaddr *, const struct rtentry *); 185 186 /* 187 * Ethernet output routine. 188 * Encapsulate a packet of type family for the local net. 189 * Assumes that ifp is actually pointer to ethercom structure. 190 */ 191 static int 192 ether_output(struct ifnet * const ifp0, struct mbuf * const m0, 193 const struct sockaddr * const dst, const struct rtentry *rt) 194 { 195 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 196 uint16_t etype = 0; 197 int error = 0, hdrcmplt = 0; 198 struct mbuf *m = m0; 199 struct mbuf *mcopy = NULL; 200 struct ether_header *eh; 201 struct ifnet *ifp = ifp0; 202 #ifdef INET 203 struct arphdr *ah; 204 #endif 205 #ifdef NETATALK 206 struct at_ifaddr *aa; 207 #endif 208 209 #ifdef MBUFTRACE 210 m_claimm(m, ifp->if_mowner); 211 #endif 212 213 #if NCARP > 0 214 if (ifp->if_type == IFT_CARP) { 215 struct ifaddr *ifa; 216 int s = pserialize_read_enter(); 217 218 /* loop back if this is going to the carp interface */ 219 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP && 220 (ifa = ifa_ifwithaddr(dst)) != NULL) { 221 if (ifa->ifa_ifp == ifp0) { 222 pserialize_read_exit(s); 223 return looutput(ifp0, m, dst, rt); 224 } 225 } 226 pserialize_read_exit(s); 227 228 ifp = ifp->if_carpdev; 229 /* ac = (struct arpcom *)ifp; */ 230 231 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) != 232 (IFF_UP | IFF_RUNNING)) 233 senderr(ENETDOWN); 234 } 235 #endif 236 237 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 238 senderr(ENETDOWN); 239 240 switch (dst->sa_family) { 241 242 #ifdef INET 243 case AF_INET: 244 if (m->m_flags & M_BCAST) { 245 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 246 } else if (m->m_flags & M_MCAST) { 247 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst); 248 } else { 249 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst)); 250 if (error) 251 return (error == EWOULDBLOCK) ? 0 : error; 252 } 253 /* If broadcasting on a simplex interface, loopback a copy */ 254 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) 255 mcopy = m_copypacket(m, M_DONTWAIT); 256 etype = htons(ETHERTYPE_IP); 257 break; 258 259 case AF_ARP: 260 ah = mtod(m, struct arphdr *); 261 if (m->m_flags & M_BCAST) { 262 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 263 } else { 264 void *tha = ar_tha(ah); 265 266 if (tha == NULL) { 267 /* fake with ARPHRD_IEEE1394 */ 268 m_freem(m); 269 return 0; 270 } 271 memcpy(edst, tha, sizeof(edst)); 272 } 273 274 ah->ar_hrd = htons(ARPHRD_ETHER); 275 276 switch (ntohs(ah->ar_op)) { 277 case ARPOP_REVREQUEST: 278 case ARPOP_REVREPLY: 279 etype = htons(ETHERTYPE_REVARP); 280 break; 281 282 case ARPOP_REQUEST: 283 case ARPOP_REPLY: 284 default: 285 etype = htons(ETHERTYPE_ARP); 286 } 287 break; 288 #endif 289 290 #ifdef INET6 291 case AF_INET6: 292 if (m->m_flags & M_BCAST) { 293 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 294 } else if (m->m_flags & M_MCAST) { 295 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 296 edst); 297 } else { 298 error = nd6_resolve(ifp0, rt, m, dst, edst, 299 sizeof(edst)); 300 if (error) 301 return (error == EWOULDBLOCK) ? 0 : error; 302 } 303 etype = htons(ETHERTYPE_IPV6); 304 break; 305 #endif 306 307 #ifdef NETATALK 308 case AF_APPLETALK: { 309 struct ifaddr *ifa; 310 int s; 311 312 KERNEL_LOCK(1, NULL); 313 314 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) { 315 KERNEL_UNLOCK_ONE(NULL); 316 return 0; 317 } 318 319 /* 320 * ifaddr is the first thing in at_ifaddr 321 */ 322 s = pserialize_read_enter(); 323 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp); 324 if (ifa == NULL) { 325 pserialize_read_exit(s); 326 KERNEL_UNLOCK_ONE(NULL); 327 senderr(EADDRNOTAVAIL); 328 } 329 aa = (struct at_ifaddr *)ifa; 330 331 /* 332 * In the phase 2 case, we need to prepend an mbuf for the 333 * llc header. 334 */ 335 if (aa->aa_flags & AFA_PHASE2) { 336 struct llc llc; 337 338 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT); 339 if (m == NULL) { 340 pserialize_read_exit(s); 341 KERNEL_UNLOCK_ONE(NULL); 342 senderr(ENOBUFS); 343 } 344 345 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 346 llc.llc_control = LLC_UI; 347 memcpy(llc.llc_snap_org_code, at_org_code, 348 sizeof(llc.llc_snap_org_code)); 349 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK); 350 memcpy(mtod(m, void *), &llc, sizeof(struct llc)); 351 } else { 352 etype = htons(ETHERTYPE_ATALK); 353 } 354 pserialize_read_exit(s); 355 KERNEL_UNLOCK_ONE(NULL); 356 break; 357 } 358 #endif /* NETATALK */ 359 360 case pseudo_AF_HDRCMPLT: 361 hdrcmplt = 1; 362 memcpy(esrc, 363 ((const struct ether_header *)dst->sa_data)->ether_shost, 364 sizeof(esrc)); 365 /* FALLTHROUGH */ 366 367 case AF_UNSPEC: 368 memcpy(edst, 369 ((const struct ether_header *)dst->sa_data)->ether_dhost, 370 sizeof(edst)); 371 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */ 372 etype = ((const struct ether_header *)dst->sa_data)->ether_type; 373 break; 374 375 default: 376 printf("%s: can't handle af%d\n", ifp->if_xname, 377 dst->sa_family); 378 senderr(EAFNOSUPPORT); 379 } 380 381 #ifdef MPLS 382 { 383 struct m_tag *mtag; 384 mtag = m_tag_find(m, PACKET_TAG_MPLS); 385 if (mtag != NULL) { 386 /* Having the tag itself indicates it's MPLS */ 387 etype = htons(ETHERTYPE_MPLS); 388 m_tag_delete(m, mtag); 389 } 390 } 391 #endif 392 393 if (mcopy) 394 (void)looutput(ifp, mcopy, dst, rt); 395 396 KASSERT((m->m_flags & M_PKTHDR) != 0); 397 398 /* 399 * If no ether type is set, this must be a 802.2 formatted packet. 400 */ 401 if (etype == 0) 402 etype = htons(m->m_pkthdr.len); 403 404 /* 405 * Add local net header. If no space in first mbuf, allocate another. 406 */ 407 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 408 if (m == NULL) 409 senderr(ENOBUFS); 410 411 eh = mtod(m, struct ether_header *); 412 /* Note: etype is already in network byte order. */ 413 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 414 memcpy(eh->ether_dhost, edst, sizeof(edst)); 415 if (hdrcmplt) { 416 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); 417 } else { 418 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl), 419 sizeof(eh->ether_shost)); 420 } 421 422 #if NCARP > 0 423 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) { 424 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl), 425 sizeof(eh->ether_shost)); 426 } 427 #endif 428 429 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 430 return error; 431 if (m == NULL) 432 return 0; 433 434 #if NBRIDGE > 0 435 /* 436 * Bridges require special output handling. 437 */ 438 if (ifp->if_bridge) 439 return bridge_output(ifp, m, NULL, NULL); 440 #endif 441 442 #if NCARP > 0 443 if (ifp != ifp0) 444 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN); 445 #endif 446 447 #ifdef ALTQ 448 KERNEL_LOCK(1, NULL); 449 /* 450 * If ALTQ is enabled on the parent interface, do 451 * classification; the queueing discipline might not 452 * require classification, but might require the 453 * address family/header pointer in the pktattr. 454 */ 455 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 456 altq_etherclassify(&ifp->if_snd, m); 457 KERNEL_UNLOCK_ONE(NULL); 458 #endif 459 return ifq_enqueue(ifp, m); 460 461 bad: 462 if_statinc(ifp, if_oerrors); 463 if (m) 464 m_freem(m); 465 return error; 466 } 467 468 #ifdef ALTQ 469 /* 470 * This routine is a slight hack to allow a packet to be classified 471 * if the Ethernet headers are present. It will go away when ALTQ's 472 * classification engine understands link headers. 473 * 474 * XXX: We may need to do m_pullups here. First to ensure struct ether_header 475 * is indeed contiguous, then to read the LLC and so on. 476 */ 477 void 478 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m) 479 { 480 struct ether_header *eh; 481 struct mbuf *mtop = m; 482 uint16_t ether_type; 483 int hlen, af, hdrsize; 484 void *hdr; 485 486 KASSERT((mtop->m_flags & M_PKTHDR) != 0); 487 488 hlen = ETHER_HDR_LEN; 489 eh = mtod(m, struct ether_header *); 490 491 ether_type = htons(eh->ether_type); 492 493 if (ether_type < ETHERMTU) { 494 /* LLC/SNAP */ 495 struct llc *llc = (struct llc *)(eh + 1); 496 hlen += 8; 497 498 if (m->m_len < hlen || 499 llc->llc_dsap != LLC_SNAP_LSAP || 500 llc->llc_ssap != LLC_SNAP_LSAP || 501 llc->llc_control != LLC_UI) { 502 /* Not SNAP. */ 503 goto bad; 504 } 505 506 ether_type = htons(llc->llc_un.type_snap.ether_type); 507 } 508 509 switch (ether_type) { 510 case ETHERTYPE_IP: 511 af = AF_INET; 512 hdrsize = 20; /* sizeof(struct ip) */ 513 break; 514 515 case ETHERTYPE_IPV6: 516 af = AF_INET6; 517 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 518 break; 519 520 default: 521 af = AF_UNSPEC; 522 hdrsize = 0; 523 break; 524 } 525 526 while (m->m_len <= hlen) { 527 hlen -= m->m_len; 528 m = m->m_next; 529 if (m == NULL) 530 goto bad; 531 } 532 533 if (m->m_len < (hlen + hdrsize)) { 534 /* 535 * protocol header not in a single mbuf. 536 * We can't cope with this situation right 537 * now (but it shouldn't ever happen, really, anyhow). 538 */ 539 #ifdef DEBUG 540 printf("altq_etherclassify: headers span multiple mbufs: " 541 "%d < %d\n", m->m_len, (hlen + hdrsize)); 542 #endif 543 goto bad; 544 } 545 546 m->m_data += hlen; 547 m->m_len -= hlen; 548 549 hdr = mtod(m, void *); 550 551 if (ALTQ_NEEDS_CLASSIFY(ifq)) { 552 mtop->m_pkthdr.pattr_class = 553 (*ifq->altq_classify)(ifq->altq_clfier, m, af); 554 } 555 mtop->m_pkthdr.pattr_af = af; 556 mtop->m_pkthdr.pattr_hdr = hdr; 557 558 m->m_data -= hlen; 559 m->m_len += hlen; 560 561 return; 562 563 bad: 564 mtop->m_pkthdr.pattr_class = NULL; 565 mtop->m_pkthdr.pattr_hdr = NULL; 566 mtop->m_pkthdr.pattr_af = AF_UNSPEC; 567 } 568 #endif /* ALTQ */ 569 570 #if defined (LLC) || defined (NETATALK) 571 static void 572 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh) 573 { 574 struct ifqueue *inq = NULL; 575 int isr = 0; 576 struct llc *l; 577 578 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) 579 goto drop; 580 581 l = (struct llc *)(eh+1); 582 switch (l->llc_dsap) { 583 #ifdef NETATALK 584 case LLC_SNAP_LSAP: 585 switch (l->llc_control) { 586 case LLC_UI: 587 if (l->llc_ssap != LLC_SNAP_LSAP) 588 goto drop; 589 590 if (memcmp(&(l->llc_snap_org_code)[0], 591 at_org_code, sizeof(at_org_code)) == 0 && 592 ntohs(l->llc_snap_ether_type) == 593 ETHERTYPE_ATALK) { 594 inq = &atintrq2; 595 m_adj(m, sizeof(struct ether_header) 596 + sizeof(struct llc)); 597 isr = NETISR_ATALK; 598 break; 599 } 600 601 if (memcmp(&(l->llc_snap_org_code)[0], 602 aarp_org_code, 603 sizeof(aarp_org_code)) == 0 && 604 ntohs(l->llc_snap_ether_type) == 605 ETHERTYPE_AARP) { 606 m_adj(m, sizeof(struct ether_header) 607 + sizeof(struct llc)); 608 aarpinput(ifp, m); /* XXX queue? */ 609 return; 610 } 611 612 default: 613 goto drop; 614 } 615 break; 616 #endif 617 default: 618 goto drop; 619 } 620 621 KASSERT(inq != NULL); 622 IFQ_ENQUEUE_ISR(inq, m, isr); 623 return; 624 625 drop: 626 m_freem(m); 627 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */ 628 return; 629 } 630 #endif /* defined (LLC) || defined (NETATALK) */ 631 632 /* 633 * Process a received Ethernet packet; 634 * the packet is in the mbuf chain m with 635 * the ether header. 636 */ 637 void 638 ether_input(struct ifnet *ifp, struct mbuf *m) 639 { 640 struct ethercom *ec = (struct ethercom *) ifp; 641 pktqueue_t *pktq = NULL; 642 struct ifqueue *inq = NULL; 643 uint16_t etype; 644 struct ether_header *eh; 645 size_t ehlen; 646 static int earlypkts; 647 int isr = 0; 648 649 KASSERT(!cpu_intr_p()); 650 KASSERT((m->m_flags & M_PKTHDR) != 0); 651 652 if ((ifp->if_flags & IFF_UP) == 0) 653 goto drop; 654 655 #ifdef MBUFTRACE 656 m_claimm(m, &ec->ec_rx_mowner); 657 #endif 658 659 if (__predict_false(m->m_len < sizeof(*eh))) { 660 if ((m = m_pullup(m, sizeof(*eh))) == NULL) 661 goto dropped; 662 } 663 664 eh = mtod(m, struct ether_header *); 665 etype = ntohs(eh->ether_type); 666 ehlen = sizeof(*eh); 667 668 if (__predict_false(earlypkts < 100 || 669 entropy_epoch() == (unsigned)-1)) { 670 rnd_add_data(NULL, eh, ehlen, 0); 671 earlypkts++; 672 } 673 674 /* 675 * Determine if the packet is within its size limits. For MPLS the 676 * header length is variable, so we skip the check. 677 */ 678 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len > 679 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { 680 #ifdef DIAGNOSTIC 681 mutex_enter(&bigpktpps_lock); 682 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count, 683 bigpktppslim)) { 684 printf("%s: discarding oversize frame (len=%d)\n", 685 ifp->if_xname, m->m_pkthdr.len); 686 } 687 mutex_exit(&bigpktpps_lock); 688 #endif 689 goto drop; 690 } 691 692 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 693 /* 694 * If this is not a simplex interface, drop the packet 695 * if it came from us. 696 */ 697 if ((ifp->if_flags & IFF_SIMPLEX) == 0 && 698 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost, 699 ETHER_ADDR_LEN) == 0) { 700 goto drop; 701 } 702 703 if (memcmp(etherbroadcastaddr, 704 eh->ether_dhost, ETHER_ADDR_LEN) == 0) 705 m->m_flags |= M_BCAST; 706 else 707 m->m_flags |= M_MCAST; 708 if_statinc(ifp, if_imcasts); 709 } 710 711 /* If the CRC is still on the packet, trim it off. */ 712 if (m->m_flags & M_HASFCS) { 713 m_adj(m, -ETHER_CRC_LEN); 714 m->m_flags &= ~M_HASFCS; 715 } 716 717 if_statadd(ifp, if_ibytes, m->m_pkthdr.len); 718 719 #if NCARP > 0 720 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) { 721 /* 722 * Clear M_PROMISC, in case the packet comes from a 723 * vlan. 724 */ 725 m->m_flags &= ~M_PROMISC; 726 if (carp_input(m, (uint8_t *)&eh->ether_shost, 727 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0) 728 return; 729 } 730 #endif 731 732 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 && 733 (ifp->if_flags & IFF_PROMISC) != 0 && 734 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 735 ETHER_ADDR_LEN) != 0) { 736 m->m_flags |= M_PROMISC; 737 } 738 739 if ((m->m_flags & M_PROMISC) == 0) { 740 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) 741 return; 742 if (m == NULL) 743 return; 744 745 eh = mtod(m, struct ether_header *); 746 etype = ntohs(eh->ether_type); 747 } 748 749 #if NAGR > 0 750 if (ifp->if_agrprivate && 751 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) { 752 m->m_flags &= ~M_PROMISC; 753 agr_input(ifp, m); 754 return; 755 } 756 #endif 757 758 /* 759 * If VLANs are configured on the interface, check to 760 * see if the device performed the decapsulation and 761 * provided us with the tag. 762 */ 763 if (ec->ec_nvlans && vlan_has_tag(m)) { 764 #if NVLAN > 0 765 /* 766 * vlan_input() will either recursively call ether_input() 767 * or drop the packet. 768 */ 769 vlan_input(ifp, m); 770 return; 771 #else 772 goto drop; 773 #endif 774 } 775 776 /* 777 * Handle protocols that expect to have the Ethernet header 778 * (and possibly FCS) intact. 779 */ 780 switch (etype) { 781 case ETHERTYPE_VLAN: { 782 struct ether_vlan_header *evl = (void *)eh; 783 784 /* 785 * If there is a tag of 0, then the VLAN header was probably 786 * just being used to store the priority. Extract the ether 787 * type, and if IP or IPV6, let them deal with it. 788 */ 789 if (m->m_len >= sizeof(*evl) && 790 EVL_VLANOFTAG(evl->evl_tag) == 0) { 791 etype = ntohs(evl->evl_proto); 792 ehlen = sizeof(*evl); 793 if ((m->m_flags & M_PROMISC) == 0 && 794 (etype == ETHERTYPE_IP || 795 etype == ETHERTYPE_IPV6)) 796 break; 797 } 798 799 #if NVLAN > 0 800 /* 801 * vlan_input() will either recursively call ether_input() 802 * or drop the packet. 803 */ 804 if (ec->ec_nvlans != 0) { 805 vlan_input(ifp, m); 806 return; 807 } else 808 #endif 809 goto drop; 810 } 811 812 #if NPPPOE > 0 813 case ETHERTYPE_PPPOEDISC: 814 pppoedisc_input(ifp, m); 815 return; 816 817 case ETHERTYPE_PPPOE: 818 pppoe_input(ifp, m); 819 return; 820 #endif 821 822 case ETHERTYPE_SLOWPROTOCOLS: { 823 uint8_t subtype; 824 825 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) 826 goto drop; 827 828 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype); 829 switch (subtype) { 830 #if NAGR > 0 831 case SLOWPROTOCOLS_SUBTYPE_LACP: 832 if (ifp->if_agrprivate) { 833 ieee8023ad_lacp_input(ifp, m); 834 return; 835 } 836 break; 837 838 case SLOWPROTOCOLS_SUBTYPE_MARKER: 839 if (ifp->if_agrprivate) { 840 ieee8023ad_marker_input(ifp, m); 841 return; 842 } 843 break; 844 #endif 845 846 default: 847 if (subtype == 0 || subtype > 10) { 848 /* illegal value */ 849 goto drop; 850 } 851 /* unknown subtype */ 852 break; 853 } 854 } 855 /* FALLTHROUGH */ 856 default: 857 if (m->m_flags & M_PROMISC) 858 goto drop; 859 } 860 861 /* If the CRC is still on the packet, trim it off. */ 862 if (m->m_flags & M_HASFCS) { 863 m_adj(m, -ETHER_CRC_LEN); 864 m->m_flags &= ~M_HASFCS; 865 } 866 867 /* etype represents the size of the payload in this case */ 868 if (etype <= ETHERMTU + sizeof(struct ether_header)) { 869 KASSERT(ehlen == sizeof(*eh)); 870 #if defined (LLC) || defined (NETATALK) 871 ether_input_llc(ifp, m, eh); 872 return; 873 #else 874 goto drop; 875 #endif 876 } 877 878 /* Strip off the Ethernet header. */ 879 m_adj(m, ehlen); 880 881 switch (etype) { 882 #ifdef INET 883 case ETHERTYPE_IP: 884 #ifdef GATEWAY 885 if (ipflow_fastforward(m)) 886 return; 887 #endif 888 pktq = ip_pktq; 889 break; 890 891 case ETHERTYPE_ARP: 892 isr = NETISR_ARP; 893 inq = &arpintrq; 894 break; 895 896 case ETHERTYPE_REVARP: 897 revarpinput(m); /* XXX queue? */ 898 return; 899 #endif 900 901 #ifdef INET6 902 case ETHERTYPE_IPV6: 903 if (__predict_false(!in6_present)) 904 goto drop; 905 #ifdef GATEWAY 906 if (ip6flow_fastforward(&m)) 907 return; 908 #endif 909 pktq = ip6_pktq; 910 break; 911 #endif 912 913 #ifdef NETATALK 914 case ETHERTYPE_ATALK: 915 isr = NETISR_ATALK; 916 inq = &atintrq1; 917 break; 918 919 case ETHERTYPE_AARP: 920 aarpinput(ifp, m); /* XXX queue? */ 921 return; 922 #endif 923 924 #ifdef MPLS 925 case ETHERTYPE_MPLS: 926 isr = NETISR_MPLS; 927 inq = &mplsintrq; 928 break; 929 #endif 930 931 default: 932 goto drop; 933 } 934 935 if (__predict_true(pktq)) { 936 #ifdef NET_MPSAFE 937 const u_int h = curcpu()->ci_index; 938 #else 939 const uint32_t h = pktq_rps_hash(m); 940 #endif 941 if (__predict_false(!pktq_enqueue(pktq, m, h))) { 942 m_freem(m); 943 } 944 return; 945 } 946 947 if (__predict_false(!inq)) { 948 /* Should not happen. */ 949 goto drop; 950 } 951 952 IFQ_ENQUEUE_ISR(inq, m, isr); 953 return; 954 955 drop: 956 m_freem(m); 957 dropped: 958 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */ 959 } 960 961 /* 962 * Convert Ethernet address to printable (loggable) representation. 963 */ 964 char * 965 ether_sprintf(const u_char *ap) 966 { 967 static char etherbuf[3 * ETHER_ADDR_LEN]; 968 return ether_snprintf(etherbuf, sizeof(etherbuf), ap); 969 } 970 971 char * 972 ether_snprintf(char *buf, size_t len, const u_char *ap) 973 { 974 char *cp = buf; 975 size_t i; 976 977 for (i = 0; i < len / 3; i++) { 978 *cp++ = hexdigits[*ap >> 4]; 979 *cp++ = hexdigits[*ap++ & 0xf]; 980 *cp++ = ':'; 981 } 982 *--cp = '\0'; 983 return buf; 984 } 985 986 static void 987 ether_link_state_changed(struct ifnet *ifp, int link_state) 988 { 989 #if NVLAN > 0 990 struct ethercom *ec = (void *)ifp; 991 992 if (ec->ec_nvlans) 993 vlan_link_state_changed(ifp, link_state); 994 #endif 995 } 996 997 /* 998 * Perform common duties while attaching to interface list 999 */ 1000 void 1001 ether_ifattach(struct ifnet *ifp, const uint8_t *lla) 1002 { 1003 struct ethercom *ec = (struct ethercom *)ifp; 1004 1005 ifp->if_type = IFT_ETHER; 1006 ifp->if_hdrlen = ETHER_HDR_LEN; 1007 ifp->if_dlt = DLT_EN10MB; 1008 ifp->if_mtu = ETHERMTU; 1009 ifp->if_output = ether_output; 1010 ifp->_if_input = ether_input; 1011 ifp->if_link_state_changed = ether_link_state_changed; 1012 if (ifp->if_baudrate == 0) 1013 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 1014 1015 if (lla != NULL) 1016 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla)); 1017 1018 LIST_INIT(&ec->ec_multiaddrs); 1019 SIMPLEQ_INIT(&ec->ec_vids); 1020 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 1021 ec->ec_flags = 0; 1022 ifp->if_broadcastaddr = etherbroadcastaddr; 1023 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 1024 #ifdef MBUFTRACE 1025 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx"); 1026 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx"); 1027 MOWNER_ATTACH(&ec->ec_tx_mowner); 1028 MOWNER_ATTACH(&ec->ec_rx_mowner); 1029 ifp->if_mowner = &ec->ec_tx_mowner; 1030 #endif 1031 } 1032 1033 void 1034 ether_ifdetach(struct ifnet *ifp) 1035 { 1036 struct ethercom *ec = (void *) ifp; 1037 struct ether_multi *enm; 1038 1039 IFNET_ASSERT_UNLOCKED(ifp); 1040 /* 1041 * Prevent further calls to ioctl (for example turning off 1042 * promiscuous mode from the bridge code), which eventually can 1043 * call if_init() which can cause panics because the interface 1044 * is in the process of being detached. Return device not configured 1045 * instead. 1046 */ 1047 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *), 1048 enxio); 1049 1050 #if NBRIDGE > 0 1051 if (ifp->if_bridge) 1052 bridge_ifdetach(ifp); 1053 #endif 1054 bpf_detach(ifp); 1055 #if NVLAN > 0 1056 if (ec->ec_nvlans) 1057 vlan_ifdetach(ifp); 1058 #endif 1059 1060 ETHER_LOCK(ec); 1061 KASSERT(ec->ec_nvlans == 0); 1062 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) { 1063 LIST_REMOVE(enm, enm_list); 1064 kmem_free(enm, sizeof(*enm)); 1065 ec->ec_multicnt--; 1066 } 1067 ETHER_UNLOCK(ec); 1068 1069 mutex_obj_free(ec->ec_lock); 1070 ec->ec_lock = NULL; 1071 1072 ifp->if_mowner = NULL; 1073 MOWNER_DETACH(&ec->ec_rx_mowner); 1074 MOWNER_DETACH(&ec->ec_tx_mowner); 1075 } 1076 1077 #if 0 1078 /* 1079 * This is for reference. We have a table-driven version 1080 * of the little-endian crc32 generator, which is faster 1081 * than the double-loop. 1082 */ 1083 uint32_t 1084 ether_crc32_le(const uint8_t *buf, size_t len) 1085 { 1086 uint32_t c, crc, carry; 1087 size_t i, j; 1088 1089 crc = 0xffffffffU; /* initial value */ 1090 1091 for (i = 0; i < len; i++) { 1092 c = buf[i]; 1093 for (j = 0; j < 8; j++) { 1094 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1095 crc >>= 1; 1096 c >>= 1; 1097 if (carry) 1098 crc = (crc ^ ETHER_CRC_POLY_LE); 1099 } 1100 } 1101 1102 return (crc); 1103 } 1104 #else 1105 uint32_t 1106 ether_crc32_le(const uint8_t *buf, size_t len) 1107 { 1108 static const uint32_t crctab[] = { 1109 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1110 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1111 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1112 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1113 }; 1114 uint32_t crc; 1115 size_t i; 1116 1117 crc = 0xffffffffU; /* initial value */ 1118 1119 for (i = 0; i < len; i++) { 1120 crc ^= buf[i]; 1121 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1122 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1123 } 1124 1125 return (crc); 1126 } 1127 #endif 1128 1129 uint32_t 1130 ether_crc32_be(const uint8_t *buf, size_t len) 1131 { 1132 uint32_t c, crc, carry; 1133 size_t i, j; 1134 1135 crc = 0xffffffffU; /* initial value */ 1136 1137 for (i = 0; i < len; i++) { 1138 c = buf[i]; 1139 for (j = 0; j < 8; j++) { 1140 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1141 crc <<= 1; 1142 c >>= 1; 1143 if (carry) 1144 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1145 } 1146 } 1147 1148 return (crc); 1149 } 1150 1151 #ifdef INET 1152 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] = 1153 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; 1154 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] = 1155 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff }; 1156 #endif 1157 #ifdef INET6 1158 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] = 1159 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 }; 1160 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] = 1161 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff }; 1162 #endif 1163 1164 /* 1165 * ether_aton implementation, not using a static buffer. 1166 */ 1167 int 1168 ether_aton_r(u_char *dest, size_t len, const char *str) 1169 { 1170 const u_char *cp = (const void *)str; 1171 u_char *ep; 1172 1173 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10)) 1174 1175 if (len < ETHER_ADDR_LEN) 1176 return ENOSPC; 1177 1178 ep = dest + ETHER_ADDR_LEN; 1179 1180 while (*cp) { 1181 if (!isxdigit(*cp)) 1182 return EINVAL; 1183 1184 *dest = atox(*cp); 1185 cp++; 1186 if (isxdigit(*cp)) { 1187 *dest = (*dest << 4) | atox(*cp); 1188 cp++; 1189 } 1190 dest++; 1191 1192 if (dest == ep) 1193 return (*cp == '\0') ? 0 : ENAMETOOLONG; 1194 1195 switch (*cp) { 1196 case ':': 1197 case '-': 1198 case '.': 1199 cp++; 1200 break; 1201 } 1202 } 1203 return ENOBUFS; 1204 } 1205 1206 /* 1207 * Convert a sockaddr into an Ethernet address or range of Ethernet 1208 * addresses. 1209 */ 1210 int 1211 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN], 1212 uint8_t addrhi[ETHER_ADDR_LEN]) 1213 { 1214 #ifdef INET 1215 const struct sockaddr_in *sin; 1216 #endif 1217 #ifdef INET6 1218 const struct sockaddr_in6 *sin6; 1219 #endif 1220 1221 switch (sa->sa_family) { 1222 1223 case AF_UNSPEC: 1224 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN); 1225 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1226 break; 1227 1228 #ifdef INET 1229 case AF_INET: 1230 sin = satocsin(sa); 1231 if (sin->sin_addr.s_addr == INADDR_ANY) { 1232 /* 1233 * An IP address of INADDR_ANY means listen to 1234 * or stop listening to all of the Ethernet 1235 * multicast addresses used for IP. 1236 * (This is for the sake of IP multicast routers.) 1237 */ 1238 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN); 1239 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN); 1240 } else { 1241 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo); 1242 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1243 } 1244 break; 1245 #endif 1246 #ifdef INET6 1247 case AF_INET6: 1248 sin6 = satocsin6(sa); 1249 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1250 /* 1251 * An IP6 address of 0 means listen to or stop 1252 * listening to all of the Ethernet multicast 1253 * address used for IP6. 1254 * (This is used for multicast routers.) 1255 */ 1256 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN); 1257 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN); 1258 } else { 1259 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo); 1260 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1261 } 1262 break; 1263 #endif 1264 1265 default: 1266 return EAFNOSUPPORT; 1267 } 1268 return 0; 1269 } 1270 1271 /* 1272 * Add an Ethernet multicast address or range of addresses to the list for a 1273 * given interface. 1274 */ 1275 int 1276 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec) 1277 { 1278 struct ether_multi *enm, *_enm; 1279 u_char addrlo[ETHER_ADDR_LEN]; 1280 u_char addrhi[ETHER_ADDR_LEN]; 1281 int error = 0; 1282 1283 /* Allocate out of lock */ 1284 enm = kmem_alloc(sizeof(*enm), KM_SLEEP); 1285 1286 ETHER_LOCK(ec); 1287 error = ether_multiaddr(sa, addrlo, addrhi); 1288 if (error != 0) 1289 goto out; 1290 1291 /* 1292 * Verify that we have valid Ethernet multicast addresses. 1293 */ 1294 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) { 1295 error = EINVAL; 1296 goto out; 1297 } 1298 1299 /* 1300 * See if the address range is already in the list. 1301 */ 1302 _enm = ether_lookup_multi(addrlo, addrhi, ec); 1303 if (_enm != NULL) { 1304 /* 1305 * Found it; just increment the reference count. 1306 */ 1307 ++_enm->enm_refcount; 1308 error = 0; 1309 goto out; 1310 } 1311 1312 /* 1313 * Link a new multicast record into the interface's multicast list. 1314 */ 1315 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN); 1316 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN); 1317 enm->enm_refcount = 1; 1318 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list); 1319 ec->ec_multicnt++; 1320 1321 /* 1322 * Return ENETRESET to inform the driver that the list has changed 1323 * and its reception filter should be adjusted accordingly. 1324 */ 1325 error = ENETRESET; 1326 enm = NULL; 1327 1328 out: 1329 ETHER_UNLOCK(ec); 1330 if (enm != NULL) 1331 kmem_free(enm, sizeof(*enm)); 1332 return error; 1333 } 1334 1335 /* 1336 * Delete a multicast address record. 1337 */ 1338 int 1339 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec) 1340 { 1341 struct ether_multi *enm; 1342 u_char addrlo[ETHER_ADDR_LEN]; 1343 u_char addrhi[ETHER_ADDR_LEN]; 1344 int error; 1345 1346 ETHER_LOCK(ec); 1347 error = ether_multiaddr(sa, addrlo, addrhi); 1348 if (error != 0) 1349 goto error; 1350 1351 /* 1352 * Look up the address in our list. 1353 */ 1354 enm = ether_lookup_multi(addrlo, addrhi, ec); 1355 if (enm == NULL) { 1356 error = ENXIO; 1357 goto error; 1358 } 1359 if (--enm->enm_refcount != 0) { 1360 /* 1361 * Still some claims to this record. 1362 */ 1363 error = 0; 1364 goto error; 1365 } 1366 1367 /* 1368 * No remaining claims to this record; unlink and free it. 1369 */ 1370 LIST_REMOVE(enm, enm_list); 1371 ec->ec_multicnt--; 1372 ETHER_UNLOCK(ec); 1373 kmem_free(enm, sizeof(*enm)); 1374 1375 /* 1376 * Return ENETRESET to inform the driver that the list has changed 1377 * and its reception filter should be adjusted accordingly. 1378 */ 1379 return ENETRESET; 1380 1381 error: 1382 ETHER_UNLOCK(ec); 1383 return error; 1384 } 1385 1386 void 1387 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb) 1388 { 1389 ec->ec_ifflags_cb = cb; 1390 } 1391 1392 void 1393 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb) 1394 { 1395 1396 ec->ec_vlan_cb = cb; 1397 } 1398 1399 static int 1400 ether_ioctl_reinit(struct ethercom *ec) 1401 { 1402 struct ifnet *ifp = &ec->ec_if; 1403 int error; 1404 1405 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1406 case IFF_RUNNING: 1407 /* 1408 * If interface is marked down and it is running, 1409 * then stop and disable it. 1410 */ 1411 (*ifp->if_stop)(ifp, 1); 1412 break; 1413 case IFF_UP: 1414 /* 1415 * If interface is marked up and it is stopped, then 1416 * start it. 1417 */ 1418 return (*ifp->if_init)(ifp); 1419 case IFF_UP | IFF_RUNNING: 1420 error = 0; 1421 if (ec->ec_ifflags_cb != NULL) { 1422 error = (*ec->ec_ifflags_cb)(ec); 1423 if (error == ENETRESET) { 1424 /* 1425 * Reset the interface to pick up 1426 * changes in any other flags that 1427 * affect the hardware state. 1428 */ 1429 return (*ifp->if_init)(ifp); 1430 } 1431 } else 1432 error = (*ifp->if_init)(ifp); 1433 return error; 1434 case 0: 1435 break; 1436 } 1437 1438 return 0; 1439 } 1440 1441 /* 1442 * Common ioctls for Ethernet interfaces. Note, we must be 1443 * called at splnet(). 1444 */ 1445 int 1446 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1447 { 1448 struct ethercom *ec = (void *)ifp; 1449 struct eccapreq *eccr; 1450 struct ifreq *ifr = (struct ifreq *)data; 1451 struct if_laddrreq *iflr = data; 1452 const struct sockaddr_dl *sdl; 1453 static const uint8_t zero[ETHER_ADDR_LEN]; 1454 int error; 1455 1456 switch (cmd) { 1457 case SIOCINITIFADDR: 1458 { 1459 struct ifaddr *ifa = (struct ifaddr *)data; 1460 if (ifa->ifa_addr->sa_family != AF_LINK 1461 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 1462 (IFF_UP | IFF_RUNNING)) { 1463 ifp->if_flags |= IFF_UP; 1464 if ((error = (*ifp->if_init)(ifp)) != 0) 1465 return error; 1466 } 1467 #ifdef INET 1468 if (ifa->ifa_addr->sa_family == AF_INET) 1469 arp_ifinit(ifp, ifa); 1470 #endif 1471 return 0; 1472 } 1473 1474 case SIOCSIFMTU: 1475 { 1476 int maxmtu; 1477 1478 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU) 1479 maxmtu = ETHERMTU_JUMBO; 1480 else 1481 maxmtu = ETHERMTU; 1482 1483 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 1484 return EINVAL; 1485 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1486 return error; 1487 else if (ifp->if_flags & IFF_UP) { 1488 /* Make sure the device notices the MTU change. */ 1489 return (*ifp->if_init)(ifp); 1490 } else 1491 return 0; 1492 } 1493 1494 case SIOCSIFFLAGS: 1495 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1496 return error; 1497 return ether_ioctl_reinit(ec); 1498 case SIOCGIFFLAGS: 1499 error = ifioctl_common(ifp, cmd, data); 1500 if (error == 0) { 1501 /* Set IFF_ALLMULTI for backcompat */ 1502 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ? 1503 IFF_ALLMULTI : 0; 1504 } 1505 return error; 1506 case SIOCGETHERCAP: 1507 eccr = (struct eccapreq *)data; 1508 eccr->eccr_capabilities = ec->ec_capabilities; 1509 eccr->eccr_capenable = ec->ec_capenable; 1510 return 0; 1511 case SIOCSETHERCAP: 1512 eccr = (struct eccapreq *)data; 1513 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0) 1514 return EINVAL; 1515 if (eccr->eccr_capenable == ec->ec_capenable) 1516 return 0; 1517 #if 0 /* notyet */ 1518 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE) 1519 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE); 1520 #else 1521 ec->ec_capenable = eccr->eccr_capenable; 1522 #endif 1523 return ether_ioctl_reinit(ec); 1524 case SIOCADDMULTI: 1525 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec); 1526 case SIOCDELMULTI: 1527 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec); 1528 case SIOCSIFMEDIA: 1529 case SIOCGIFMEDIA: 1530 if (ec->ec_mii != NULL) 1531 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, 1532 cmd); 1533 else if (ec->ec_ifmedia != NULL) 1534 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd); 1535 else 1536 return ENOTTY; 1537 break; 1538 case SIOCALIFADDR: 1539 sdl = satocsdl(sstocsa(&iflr->addr)); 1540 if (sdl->sdl_family != AF_LINK) 1541 ; 1542 else if (ETHER_IS_MULTICAST(CLLADDR(sdl))) 1543 return EINVAL; 1544 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0) 1545 return EINVAL; 1546 /*FALLTHROUGH*/ 1547 default: 1548 return ifioctl_common(ifp, cmd, data); 1549 } 1550 return 0; 1551 } 1552 1553 /* 1554 * Enable/disable passing VLAN packets if the parent interface supports it. 1555 * Return: 1556 * 0: Ok 1557 * -1: Parent interface does not support vlans 1558 * >0: Error 1559 */ 1560 int 1561 ether_enable_vlan_mtu(struct ifnet *ifp) 1562 { 1563 int error; 1564 struct ethercom *ec = (void *)ifp; 1565 1566 /* Parent does not support VLAN's */ 1567 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) 1568 return -1; 1569 1570 /* 1571 * Parent supports the VLAN_MTU capability, 1572 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames; 1573 * enable it. 1574 */ 1575 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1576 1577 /* Interface is down, defer for later */ 1578 if ((ifp->if_flags & IFF_UP) == 0) 1579 return 0; 1580 1581 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1582 return 0; 1583 1584 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1585 return error; 1586 } 1587 1588 int 1589 ether_disable_vlan_mtu(struct ifnet *ifp) 1590 { 1591 int error; 1592 struct ethercom *ec = (void *)ifp; 1593 1594 /* We still have VLAN's, defer for later */ 1595 if (ec->ec_nvlans != 0) 1596 return 0; 1597 1598 /* Parent does not support VLAB's, nothing to do. */ 1599 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0) 1600 return -1; 1601 1602 /* 1603 * Disable Tx/Rx of VLAN-sized frames. 1604 */ 1605 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1606 1607 /* Interface is down, defer for later */ 1608 if ((ifp->if_flags & IFF_UP) == 0) 1609 return 0; 1610 1611 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1612 return 0; 1613 1614 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1615 return error; 1616 } 1617 1618 static int 1619 ether_multicast_sysctl(SYSCTLFN_ARGS) 1620 { 1621 struct ether_multi *enm; 1622 struct ifnet *ifp; 1623 struct ethercom *ec; 1624 int error = 0; 1625 size_t written; 1626 struct psref psref; 1627 int bound; 1628 unsigned int multicnt; 1629 struct ether_multi_sysctl *addrs; 1630 int i; 1631 1632 if (namelen != 1) 1633 return EINVAL; 1634 1635 bound = curlwp_bind(); 1636 ifp = if_get_byindex(name[0], &psref); 1637 if (ifp == NULL) { 1638 error = ENODEV; 1639 goto out; 1640 } 1641 if (ifp->if_type != IFT_ETHER) { 1642 if_put(ifp, &psref); 1643 *oldlenp = 0; 1644 goto out; 1645 } 1646 ec = (struct ethercom *)ifp; 1647 1648 if (oldp == NULL) { 1649 if_put(ifp, &psref); 1650 *oldlenp = ec->ec_multicnt * sizeof(*addrs); 1651 goto out; 1652 } 1653 1654 /* 1655 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which 1656 * is sleepable, while holding it. Copy data to a local buffer first 1657 * with the lock taken and then call sysctl_copyout without holding it. 1658 */ 1659 retry: 1660 multicnt = ec->ec_multicnt; 1661 1662 if (multicnt == 0) { 1663 if_put(ifp, &psref); 1664 *oldlenp = 0; 1665 goto out; 1666 } 1667 1668 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP); 1669 1670 ETHER_LOCK(ec); 1671 if (multicnt != ec->ec_multicnt) { 1672 /* The number of multicast addresses has changed */ 1673 ETHER_UNLOCK(ec); 1674 kmem_free(addrs, sizeof(*addrs) * multicnt); 1675 goto retry; 1676 } 1677 1678 i = 0; 1679 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) { 1680 struct ether_multi_sysctl *addr = &addrs[i]; 1681 addr->enm_refcount = enm->enm_refcount; 1682 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN); 1683 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN); 1684 i++; 1685 } 1686 ETHER_UNLOCK(ec); 1687 1688 error = 0; 1689 written = 0; 1690 for (i = 0; i < multicnt; i++) { 1691 struct ether_multi_sysctl *addr = &addrs[i]; 1692 1693 if (written + sizeof(*addr) > *oldlenp) 1694 break; 1695 error = sysctl_copyout(l, addr, oldp, sizeof(*addr)); 1696 if (error) 1697 break; 1698 written += sizeof(*addr); 1699 oldp = (char *)oldp + sizeof(*addr); 1700 } 1701 kmem_free(addrs, sizeof(*addrs) * multicnt); 1702 1703 if_put(ifp, &psref); 1704 1705 *oldlenp = written; 1706 out: 1707 curlwp_bindx(bound); 1708 return error; 1709 } 1710 1711 static void 1712 ether_sysctl_setup(struct sysctllog **clog) 1713 { 1714 const struct sysctlnode *rnode = NULL; 1715 1716 sysctl_createv(clog, 0, NULL, &rnode, 1717 CTLFLAG_PERMANENT, 1718 CTLTYPE_NODE, "ether", 1719 SYSCTL_DESCR("Ethernet-specific information"), 1720 NULL, 0, NULL, 0, 1721 CTL_NET, CTL_CREATE, CTL_EOL); 1722 1723 sysctl_createv(clog, 0, &rnode, NULL, 1724 CTLFLAG_PERMANENT, 1725 CTLTYPE_NODE, "multicast", 1726 SYSCTL_DESCR("multicast addresses"), 1727 ether_multicast_sysctl, 0, NULL, 0, 1728 CTL_CREATE, CTL_EOL); 1729 } 1730 1731 void 1732 etherinit(void) 1733 { 1734 1735 #ifdef DIAGNOSTIC 1736 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET); 1737 #endif 1738 ether_sysctl_setup(NULL); 1739 } 1740