1 /* $NetBSD: if_ethersubr.c,v 1.307 2021/12/10 01:18:29 msaitoh Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.307 2021/12/10 01:18:29 msaitoh Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_atalk.h" 69 #include "opt_mbuftrace.h" 70 #include "opt_mpls.h" 71 #include "opt_gateway.h" 72 #include "opt_pppoe.h" 73 #include "opt_net_mpsafe.h" 74 #endif 75 76 #include "vlan.h" 77 #include "pppoe.h" 78 #include "bridge.h" 79 #include "arp.h" 80 #include "agr.h" 81 82 #include <sys/sysctl.h> 83 #include <sys/mbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/ioctl.h> 86 #include <sys/errno.h> 87 #include <sys/device.h> 88 #include <sys/entropy.h> 89 #include <sys/rndsource.h> 90 #include <sys/cpu.h> 91 #include <sys/kmem.h> 92 #include <sys/hook.h> 93 94 #include <net/if.h> 95 #include <net/netisr.h> 96 #include <net/route.h> 97 #include <net/if_llc.h> 98 #include <net/if_dl.h> 99 #include <net/if_types.h> 100 #include <net/pktqueue.h> 101 102 #include <net/if_media.h> 103 #include <dev/mii/mii.h> 104 #include <dev/mii/miivar.h> 105 106 #if NARP == 0 107 /* 108 * XXX there should really be a way to issue this warning from within config(8) 109 */ 110 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK. 111 #endif 112 113 #include <net/bpf.h> 114 115 #include <net/if_ether.h> 116 #include <net/if_vlanvar.h> 117 118 #if NPPPOE > 0 119 #include <net/if_pppoe.h> 120 #endif 121 122 #if NAGR > 0 123 #include <net/ether_slowprotocols.h> 124 #include <net/agr/ieee8023ad.h> 125 #include <net/agr/if_agrvar.h> 126 #endif 127 128 #include <net/lagg/if_laggvar.h> 129 130 #if NBRIDGE > 0 131 #include <net/if_bridgevar.h> 132 #endif 133 134 #include <netinet/in.h> 135 #ifdef INET 136 #include <netinet/in_var.h> 137 #endif 138 #include <netinet/if_inarp.h> 139 140 #ifdef INET6 141 #ifndef INET 142 #include <netinet/in.h> 143 #endif 144 #include <netinet6/in6_var.h> 145 #include <netinet6/nd6.h> 146 #endif 147 148 #include "carp.h" 149 #if NCARP > 0 150 #include <netinet/ip_carp.h> 151 #endif 152 153 #ifdef NETATALK 154 #include <netatalk/at.h> 155 #include <netatalk/at_var.h> 156 #include <netatalk/at_extern.h> 157 158 #define llc_snap_org_code llc_un.type_snap.org_code 159 #define llc_snap_ether_type llc_un.type_snap.ether_type 160 161 extern u_char at_org_code[3]; 162 extern u_char aarp_org_code[3]; 163 #endif /* NETATALK */ 164 165 #ifdef MPLS 166 #include <netmpls/mpls.h> 167 #include <netmpls/mpls_var.h> 168 #endif 169 170 CTASSERT(sizeof(struct ether_addr) == 6); 171 CTASSERT(sizeof(struct ether_header) == 14); 172 173 #ifdef DIAGNOSTIC 174 static struct timeval bigpktppslim_last; 175 static int bigpktppslim = 2; /* XXX */ 176 static int bigpktpps_count; 177 static kmutex_t bigpktpps_lock __cacheline_aligned; 178 #endif 179 180 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = 181 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 182 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = 183 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; 184 #define senderr(e) { error = (e); goto bad;} 185 186 static pktq_rps_hash_func_t ether_pktq_rps_hash_p; 187 188 /* if_lagg(4) support */ 189 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *); 190 191 static int ether_output(struct ifnet *, struct mbuf *, 192 const struct sockaddr *, const struct rtentry *); 193 194 /* 195 * Ethernet output routine. 196 * Encapsulate a packet of type family for the local net. 197 * Assumes that ifp is actually pointer to ethercom structure. 198 */ 199 static int 200 ether_output(struct ifnet * const ifp0, struct mbuf * const m0, 201 const struct sockaddr * const dst, const struct rtentry *rt) 202 { 203 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 204 uint16_t etype = 0; 205 int error = 0, hdrcmplt = 0; 206 struct mbuf *m = m0; 207 struct mbuf *mcopy = NULL; 208 struct ether_header *eh; 209 struct ifnet *ifp = ifp0; 210 #ifdef INET 211 struct arphdr *ah; 212 #endif 213 #ifdef NETATALK 214 struct at_ifaddr *aa; 215 #endif 216 217 #ifdef MBUFTRACE 218 m_claimm(m, ifp->if_mowner); 219 #endif 220 221 #if NCARP > 0 222 if (ifp->if_type == IFT_CARP) { 223 struct ifaddr *ifa; 224 int s = pserialize_read_enter(); 225 226 /* loop back if this is going to the carp interface */ 227 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP && 228 (ifa = ifa_ifwithaddr(dst)) != NULL) { 229 if (ifa->ifa_ifp == ifp0) { 230 pserialize_read_exit(s); 231 return looutput(ifp0, m, dst, rt); 232 } 233 } 234 pserialize_read_exit(s); 235 236 ifp = ifp->if_carpdev; 237 /* ac = (struct arpcom *)ifp; */ 238 239 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) != 240 (IFF_UP | IFF_RUNNING)) 241 senderr(ENETDOWN); 242 } 243 #endif 244 245 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 246 senderr(ENETDOWN); 247 248 switch (dst->sa_family) { 249 250 #ifdef INET 251 case AF_INET: 252 if (m->m_flags & M_BCAST) { 253 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 254 } else if (m->m_flags & M_MCAST) { 255 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst); 256 } else { 257 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst)); 258 if (error) 259 return (error == EWOULDBLOCK) ? 0 : error; 260 } 261 /* If broadcasting on a simplex interface, loopback a copy */ 262 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) 263 mcopy = m_copypacket(m, M_DONTWAIT); 264 etype = htons(ETHERTYPE_IP); 265 break; 266 267 case AF_ARP: 268 ah = mtod(m, struct arphdr *); 269 if (m->m_flags & M_BCAST) { 270 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 271 } else { 272 void *tha = ar_tha(ah); 273 274 if (tha == NULL) { 275 /* fake with ARPHRD_IEEE1394 */ 276 m_freem(m); 277 return 0; 278 } 279 memcpy(edst, tha, sizeof(edst)); 280 } 281 282 ah->ar_hrd = htons(ARPHRD_ETHER); 283 284 switch (ntohs(ah->ar_op)) { 285 case ARPOP_REVREQUEST: 286 case ARPOP_REVREPLY: 287 etype = htons(ETHERTYPE_REVARP); 288 break; 289 290 case ARPOP_REQUEST: 291 case ARPOP_REPLY: 292 default: 293 etype = htons(ETHERTYPE_ARP); 294 } 295 break; 296 #endif 297 298 #ifdef INET6 299 case AF_INET6: 300 if (m->m_flags & M_BCAST) { 301 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 302 } else if (m->m_flags & M_MCAST) { 303 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 304 edst); 305 } else { 306 error = nd6_resolve(ifp0, rt, m, dst, edst, 307 sizeof(edst)); 308 if (error) 309 return (error == EWOULDBLOCK) ? 0 : error; 310 } 311 etype = htons(ETHERTYPE_IPV6); 312 break; 313 #endif 314 315 #ifdef NETATALK 316 case AF_APPLETALK: { 317 struct ifaddr *ifa; 318 int s; 319 320 KERNEL_LOCK(1, NULL); 321 322 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) { 323 KERNEL_UNLOCK_ONE(NULL); 324 return 0; 325 } 326 327 /* 328 * ifaddr is the first thing in at_ifaddr 329 */ 330 s = pserialize_read_enter(); 331 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp); 332 if (ifa == NULL) { 333 pserialize_read_exit(s); 334 KERNEL_UNLOCK_ONE(NULL); 335 senderr(EADDRNOTAVAIL); 336 } 337 aa = (struct at_ifaddr *)ifa; 338 339 /* 340 * In the phase 2 case, we need to prepend an mbuf for the 341 * llc header. 342 */ 343 if (aa->aa_flags & AFA_PHASE2) { 344 struct llc llc; 345 346 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT); 347 if (m == NULL) { 348 pserialize_read_exit(s); 349 KERNEL_UNLOCK_ONE(NULL); 350 senderr(ENOBUFS); 351 } 352 353 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 354 llc.llc_control = LLC_UI; 355 memcpy(llc.llc_snap_org_code, at_org_code, 356 sizeof(llc.llc_snap_org_code)); 357 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK); 358 memcpy(mtod(m, void *), &llc, sizeof(struct llc)); 359 } else { 360 etype = htons(ETHERTYPE_ATALK); 361 } 362 pserialize_read_exit(s); 363 KERNEL_UNLOCK_ONE(NULL); 364 break; 365 } 366 #endif /* NETATALK */ 367 368 case pseudo_AF_HDRCMPLT: 369 hdrcmplt = 1; 370 memcpy(esrc, 371 ((const struct ether_header *)dst->sa_data)->ether_shost, 372 sizeof(esrc)); 373 /* FALLTHROUGH */ 374 375 case AF_UNSPEC: 376 memcpy(edst, 377 ((const struct ether_header *)dst->sa_data)->ether_dhost, 378 sizeof(edst)); 379 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */ 380 etype = ((const struct ether_header *)dst->sa_data)->ether_type; 381 break; 382 383 default: 384 printf("%s: can't handle af%d\n", ifp->if_xname, 385 dst->sa_family); 386 senderr(EAFNOSUPPORT); 387 } 388 389 #ifdef MPLS 390 { 391 struct m_tag *mtag; 392 mtag = m_tag_find(m, PACKET_TAG_MPLS); 393 if (mtag != NULL) { 394 /* Having the tag itself indicates it's MPLS */ 395 etype = htons(ETHERTYPE_MPLS); 396 m_tag_delete(m, mtag); 397 } 398 } 399 #endif 400 401 if (mcopy) 402 (void)looutput(ifp, mcopy, dst, rt); 403 404 KASSERT((m->m_flags & M_PKTHDR) != 0); 405 406 /* 407 * If no ether type is set, this must be a 802.2 formatted packet. 408 */ 409 if (etype == 0) 410 etype = htons(m->m_pkthdr.len); 411 412 /* 413 * Add local net header. If no space in first mbuf, allocate another. 414 */ 415 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 416 if (m == NULL) 417 senderr(ENOBUFS); 418 419 eh = mtod(m, struct ether_header *); 420 /* Note: etype is already in network byte order. */ 421 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 422 memcpy(eh->ether_dhost, edst, sizeof(edst)); 423 if (hdrcmplt) { 424 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); 425 } else { 426 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl), 427 sizeof(eh->ether_shost)); 428 } 429 430 #if NCARP > 0 431 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) { 432 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl), 433 sizeof(eh->ether_shost)); 434 } 435 #endif 436 437 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 438 return error; 439 if (m == NULL) 440 return 0; 441 442 #if NBRIDGE > 0 443 /* 444 * Bridges require special output handling. 445 */ 446 if (ifp->if_bridge) 447 return bridge_output(ifp, m, NULL, NULL); 448 #endif 449 450 #if NCARP > 0 451 if (ifp != ifp0) 452 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN); 453 #endif 454 455 #ifdef ALTQ 456 KERNEL_LOCK(1, NULL); 457 /* 458 * If ALTQ is enabled on the parent interface, do 459 * classification; the queueing discipline might not 460 * require classification, but might require the 461 * address family/header pointer in the pktattr. 462 */ 463 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 464 altq_etherclassify(&ifp->if_snd, m); 465 KERNEL_UNLOCK_ONE(NULL); 466 #endif 467 return ifq_enqueue(ifp, m); 468 469 bad: 470 if_statinc(ifp, if_oerrors); 471 if (m) 472 m_freem(m); 473 return error; 474 } 475 476 #ifdef ALTQ 477 /* 478 * This routine is a slight hack to allow a packet to be classified 479 * if the Ethernet headers are present. It will go away when ALTQ's 480 * classification engine understands link headers. 481 * 482 * XXX: We may need to do m_pullups here. First to ensure struct ether_header 483 * is indeed contiguous, then to read the LLC and so on. 484 */ 485 void 486 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m) 487 { 488 struct ether_header *eh; 489 struct mbuf *mtop = m; 490 uint16_t ether_type; 491 int hlen, af, hdrsize; 492 void *hdr; 493 494 KASSERT((mtop->m_flags & M_PKTHDR) != 0); 495 496 hlen = ETHER_HDR_LEN; 497 eh = mtod(m, struct ether_header *); 498 499 ether_type = htons(eh->ether_type); 500 501 if (ether_type < ETHERMTU) { 502 /* LLC/SNAP */ 503 struct llc *llc = (struct llc *)(eh + 1); 504 hlen += 8; 505 506 if (m->m_len < hlen || 507 llc->llc_dsap != LLC_SNAP_LSAP || 508 llc->llc_ssap != LLC_SNAP_LSAP || 509 llc->llc_control != LLC_UI) { 510 /* Not SNAP. */ 511 goto bad; 512 } 513 514 ether_type = htons(llc->llc_un.type_snap.ether_type); 515 } 516 517 switch (ether_type) { 518 case ETHERTYPE_IP: 519 af = AF_INET; 520 hdrsize = 20; /* sizeof(struct ip) */ 521 break; 522 523 case ETHERTYPE_IPV6: 524 af = AF_INET6; 525 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 526 break; 527 528 default: 529 af = AF_UNSPEC; 530 hdrsize = 0; 531 break; 532 } 533 534 while (m->m_len <= hlen) { 535 hlen -= m->m_len; 536 m = m->m_next; 537 if (m == NULL) 538 goto bad; 539 } 540 541 if (m->m_len < (hlen + hdrsize)) { 542 /* 543 * protocol header not in a single mbuf. 544 * We can't cope with this situation right 545 * now (but it shouldn't ever happen, really, anyhow). 546 */ 547 #ifdef DEBUG 548 printf("altq_etherclassify: headers span multiple mbufs: " 549 "%d < %d\n", m->m_len, (hlen + hdrsize)); 550 #endif 551 goto bad; 552 } 553 554 m->m_data += hlen; 555 m->m_len -= hlen; 556 557 hdr = mtod(m, void *); 558 559 if (ALTQ_NEEDS_CLASSIFY(ifq)) { 560 mtop->m_pkthdr.pattr_class = 561 (*ifq->altq_classify)(ifq->altq_clfier, m, af); 562 } 563 mtop->m_pkthdr.pattr_af = af; 564 mtop->m_pkthdr.pattr_hdr = hdr; 565 566 m->m_data -= hlen; 567 m->m_len += hlen; 568 569 return; 570 571 bad: 572 mtop->m_pkthdr.pattr_class = NULL; 573 mtop->m_pkthdr.pattr_hdr = NULL; 574 mtop->m_pkthdr.pattr_af = AF_UNSPEC; 575 } 576 #endif /* ALTQ */ 577 578 #if defined (LLC) || defined (NETATALK) 579 static void 580 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh) 581 { 582 struct ifqueue *inq = NULL; 583 int isr = 0; 584 struct llc *l; 585 586 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) 587 goto error; 588 589 l = (struct llc *)(eh+1); 590 switch (l->llc_dsap) { 591 #ifdef NETATALK 592 case LLC_SNAP_LSAP: 593 switch (l->llc_control) { 594 case LLC_UI: 595 if (l->llc_ssap != LLC_SNAP_LSAP) 596 goto error; 597 598 if (memcmp(&(l->llc_snap_org_code)[0], 599 at_org_code, sizeof(at_org_code)) == 0 && 600 ntohs(l->llc_snap_ether_type) == 601 ETHERTYPE_ATALK) { 602 inq = &atintrq2; 603 m_adj(m, sizeof(struct ether_header) 604 + sizeof(struct llc)); 605 isr = NETISR_ATALK; 606 break; 607 } 608 609 if (memcmp(&(l->llc_snap_org_code)[0], 610 aarp_org_code, 611 sizeof(aarp_org_code)) == 0 && 612 ntohs(l->llc_snap_ether_type) == 613 ETHERTYPE_AARP) { 614 m_adj(m, sizeof(struct ether_header) 615 + sizeof(struct llc)); 616 aarpinput(ifp, m); /* XXX queue? */ 617 return; 618 } 619 620 default: 621 goto error; 622 } 623 break; 624 #endif 625 default: 626 goto noproto; 627 } 628 629 KASSERT(inq != NULL); 630 IFQ_ENQUEUE_ISR(inq, m, isr); 631 return; 632 633 noproto: 634 m_freem(m); 635 if_statinc(ifp, if_noproto); 636 return; 637 error: 638 m_freem(m); 639 if_statinc(ifp, if_ierrors); 640 return; 641 } 642 #endif /* defined (LLC) || defined (NETATALK) */ 643 644 /* 645 * Process a received Ethernet packet; 646 * the packet is in the mbuf chain m with 647 * the ether header. 648 */ 649 void 650 ether_input(struct ifnet *ifp, struct mbuf *m) 651 { 652 struct ethercom *ec = (struct ethercom *) ifp; 653 pktqueue_t *pktq = NULL; 654 struct ifqueue *inq = NULL; 655 uint16_t etype; 656 struct ether_header *eh; 657 size_t ehlen; 658 static int earlypkts; 659 int isr = 0; 660 #if NAGR > 0 661 void *agrprivate; 662 #endif 663 664 KASSERT(!cpu_intr_p()); 665 KASSERT((m->m_flags & M_PKTHDR) != 0); 666 667 if ((ifp->if_flags & IFF_UP) == 0) 668 goto drop; 669 670 #ifdef MBUFTRACE 671 m_claimm(m, &ec->ec_rx_mowner); 672 #endif 673 674 if (__predict_false(m->m_len < sizeof(*eh))) { 675 if ((m = m_pullup(m, sizeof(*eh))) == NULL) { 676 if_statinc(ifp, if_ierrors); 677 return; 678 } 679 } 680 681 eh = mtod(m, struct ether_header *); 682 etype = ntohs(eh->ether_type); 683 ehlen = sizeof(*eh); 684 685 if (__predict_false(earlypkts < 100 || 686 entropy_epoch() == (unsigned)-1)) { 687 rnd_add_data(NULL, eh, ehlen, 0); 688 earlypkts++; 689 } 690 691 /* 692 * Determine if the packet is within its size limits. For MPLS the 693 * header length is variable, so we skip the check. 694 */ 695 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len > 696 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { 697 #ifdef DIAGNOSTIC 698 mutex_enter(&bigpktpps_lock); 699 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count, 700 bigpktppslim)) { 701 printf("%s: discarding oversize frame (len=%d)\n", 702 ifp->if_xname, m->m_pkthdr.len); 703 } 704 mutex_exit(&bigpktpps_lock); 705 #endif 706 goto error; 707 } 708 709 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 710 /* 711 * If this is not a simplex interface, drop the packet 712 * if it came from us. 713 */ 714 if ((ifp->if_flags & IFF_SIMPLEX) == 0 && 715 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost, 716 ETHER_ADDR_LEN) == 0) { 717 goto drop; 718 } 719 720 if (memcmp(etherbroadcastaddr, 721 eh->ether_dhost, ETHER_ADDR_LEN) == 0) 722 m->m_flags |= M_BCAST; 723 else 724 m->m_flags |= M_MCAST; 725 if_statinc(ifp, if_imcasts); 726 } 727 728 /* If the CRC is still on the packet, trim it off. */ 729 if (m->m_flags & M_HASFCS) { 730 m_adj(m, -ETHER_CRC_LEN); 731 m->m_flags &= ~M_HASFCS; 732 } 733 734 if_statadd(ifp, if_ibytes, m->m_pkthdr.len); 735 736 #if NCARP > 0 737 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) { 738 /* 739 * Clear M_PROMISC, in case the packet comes from a 740 * vlan. 741 */ 742 m->m_flags &= ~M_PROMISC; 743 if (carp_input(m, (uint8_t *)&eh->ether_shost, 744 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0) 745 return; 746 } 747 #endif 748 749 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 && 750 (ifp->if_flags & IFF_PROMISC) != 0 && 751 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 752 ETHER_ADDR_LEN) != 0) { 753 m->m_flags |= M_PROMISC; 754 } 755 756 if ((m->m_flags & M_PROMISC) == 0) { 757 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) 758 return; 759 if (m == NULL) 760 return; 761 762 eh = mtod(m, struct ether_header *); 763 etype = ntohs(eh->ether_type); 764 } 765 766 #if NAGR > 0 767 if (ifp->if_type != IFT_IEEE8023ADLAG) { 768 agrprivate = ifp->if_lagg; 769 } else { 770 agrprivate = NULL; 771 } 772 if (agrprivate != NULL && 773 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) { 774 m->m_flags &= ~M_PROMISC; 775 agr_input(ifp, m); 776 return; 777 } 778 #endif 779 780 /* Handle input from a lagg(4) port */ 781 if (ifp->if_type == IFT_IEEE8023ADLAG) { 782 KASSERT(lagg_input_ethernet_p != NULL); 783 m = (*lagg_input_ethernet_p)(ifp, m); 784 if (m == NULL) 785 return; 786 } 787 788 /* 789 * If VLANs are configured on the interface, check to 790 * see if the device performed the decapsulation and 791 * provided us with the tag. 792 */ 793 if (ec->ec_nvlans && vlan_has_tag(m)) { 794 #if NVLAN > 0 795 /* 796 * vlan_input() will either recursively call ether_input() 797 * or drop the packet. 798 */ 799 vlan_input(ifp, m); 800 return; 801 #else 802 goto noproto; 803 #endif 804 } 805 806 /* 807 * Handle protocols that expect to have the Ethernet header 808 * (and possibly FCS) intact. 809 */ 810 switch (etype) { 811 case ETHERTYPE_VLAN: { 812 struct ether_vlan_header *evl = (void *)eh; 813 814 /* 815 * If there is a tag of 0, then the VLAN header was probably 816 * just being used to store the priority. Extract the ether 817 * type, and if IP or IPV6, let them deal with it. 818 */ 819 if (m->m_len >= sizeof(*evl) && 820 EVL_VLANOFTAG(ntohs(evl->evl_tag)) == 0) { 821 etype = ntohs(evl->evl_proto); 822 ehlen = sizeof(*evl); 823 if ((m->m_flags & M_PROMISC) == 0 && 824 (etype == ETHERTYPE_IP || 825 etype == ETHERTYPE_IPV6)) 826 break; 827 } 828 829 #if NVLAN > 0 830 /* 831 * vlan_input() will either recursively call ether_input() 832 * or drop the packet. 833 */ 834 if (ec->ec_nvlans != 0) { 835 vlan_input(ifp, m); 836 return; 837 } else 838 #endif 839 goto noproto; 840 } 841 842 #if NPPPOE > 0 843 case ETHERTYPE_PPPOEDISC: 844 pppoedisc_input(ifp, m); 845 return; 846 847 case ETHERTYPE_PPPOE: 848 pppoe_input(ifp, m); 849 return; 850 #endif 851 852 case ETHERTYPE_SLOWPROTOCOLS: { 853 uint8_t subtype; 854 855 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) 856 goto error; 857 858 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype); 859 switch (subtype) { 860 #if NAGR > 0 861 case SLOWPROTOCOLS_SUBTYPE_LACP: 862 if (agrprivate != NULL) { 863 ieee8023ad_lacp_input(ifp, m); 864 return; 865 } 866 break; 867 868 case SLOWPROTOCOLS_SUBTYPE_MARKER: 869 if (agrprivate != NULL) { 870 ieee8023ad_marker_input(ifp, m); 871 return; 872 } 873 break; 874 #endif 875 876 default: 877 if (subtype == 0 || subtype > 10) { 878 /* illegal value */ 879 goto error; 880 } 881 /* unknown subtype */ 882 break; 883 } 884 } 885 /* FALLTHROUGH */ 886 default: 887 if (m->m_flags & M_PROMISC) 888 goto drop; 889 } 890 891 /* If the CRC is still on the packet, trim it off. */ 892 if (m->m_flags & M_HASFCS) { 893 m_adj(m, -ETHER_CRC_LEN); 894 m->m_flags &= ~M_HASFCS; 895 } 896 897 /* etype represents the size of the payload in this case */ 898 if (etype <= ETHERMTU + sizeof(struct ether_header)) { 899 KASSERT(ehlen == sizeof(*eh)); 900 #if defined (LLC) || defined (NETATALK) 901 ether_input_llc(ifp, m, eh); 902 return; 903 #else 904 /* ethertype of 0-1500 is regarded as noproto */ 905 goto noproto; 906 #endif 907 } 908 909 /* Strip off the Ethernet header. */ 910 m_adj(m, ehlen); 911 912 switch (etype) { 913 #ifdef INET 914 case ETHERTYPE_IP: 915 #ifdef GATEWAY 916 if (ipflow_fastforward(m)) 917 return; 918 #endif 919 pktq = ip_pktq; 920 break; 921 922 case ETHERTYPE_ARP: 923 isr = NETISR_ARP; 924 inq = &arpintrq; 925 break; 926 927 case ETHERTYPE_REVARP: 928 revarpinput(m); /* XXX queue? */ 929 return; 930 #endif 931 932 #ifdef INET6 933 case ETHERTYPE_IPV6: 934 if (__predict_false(!in6_present)) 935 goto noproto; 936 #ifdef GATEWAY 937 if (ip6flow_fastforward(&m)) 938 return; 939 #endif 940 pktq = ip6_pktq; 941 break; 942 #endif 943 944 #ifdef NETATALK 945 case ETHERTYPE_ATALK: 946 isr = NETISR_ATALK; 947 inq = &atintrq1; 948 break; 949 950 case ETHERTYPE_AARP: 951 aarpinput(ifp, m); /* XXX queue? */ 952 return; 953 #endif 954 955 #ifdef MPLS 956 case ETHERTYPE_MPLS: 957 isr = NETISR_MPLS; 958 inq = &mplsintrq; 959 break; 960 #endif 961 962 default: 963 goto noproto; 964 } 965 966 if (__predict_true(pktq)) { 967 const uint32_t h = pktq_rps_hash(ðer_pktq_rps_hash_p, m); 968 if (__predict_false(!pktq_enqueue(pktq, m, h))) { 969 m_freem(m); 970 } 971 return; 972 } 973 974 if (__predict_false(!inq)) { 975 /* Should not happen. */ 976 goto error; 977 } 978 979 IFQ_ENQUEUE_ISR(inq, m, isr); 980 return; 981 982 drop: 983 m_freem(m); 984 if_statinc(ifp, if_iqdrops); 985 return; 986 noproto: 987 m_freem(m); 988 if_statinc(ifp, if_noproto); 989 return; 990 error: 991 m_freem(m); 992 if_statinc(ifp, if_ierrors); 993 return; 994 } 995 996 /* 997 * Convert Ethernet address to printable (loggable) representation. 998 */ 999 char * 1000 ether_sprintf(const u_char *ap) 1001 { 1002 static char etherbuf[3 * ETHER_ADDR_LEN]; 1003 return ether_snprintf(etherbuf, sizeof(etherbuf), ap); 1004 } 1005 1006 char * 1007 ether_snprintf(char *buf, size_t len, const u_char *ap) 1008 { 1009 char *cp = buf; 1010 size_t i; 1011 1012 for (i = 0; i < len / 3; i++) { 1013 *cp++ = hexdigits[*ap >> 4]; 1014 *cp++ = hexdigits[*ap++ & 0xf]; 1015 *cp++ = ':'; 1016 } 1017 *--cp = '\0'; 1018 return buf; 1019 } 1020 1021 /* 1022 * Perform common duties while attaching to interface list 1023 */ 1024 void 1025 ether_ifattach(struct ifnet *ifp, const uint8_t *lla) 1026 { 1027 struct ethercom *ec = (struct ethercom *)ifp; 1028 char xnamebuf[HOOKNAMSIZ]; 1029 1030 ifp->if_type = IFT_ETHER; 1031 ifp->if_hdrlen = ETHER_HDR_LEN; 1032 ifp->if_dlt = DLT_EN10MB; 1033 ifp->if_mtu = ETHERMTU; 1034 ifp->if_output = ether_output; 1035 ifp->_if_input = ether_input; 1036 if (ifp->if_baudrate == 0) 1037 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 1038 1039 if (lla != NULL) 1040 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla)); 1041 1042 LIST_INIT(&ec->ec_multiaddrs); 1043 SIMPLEQ_INIT(&ec->ec_vids); 1044 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 1045 ec->ec_flags = 0; 1046 ifp->if_broadcastaddr = etherbroadcastaddr; 1047 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 1048 snprintf(xnamebuf, sizeof(xnamebuf), 1049 "%s-ether_ifdetachhooks", ifp->if_xname); 1050 ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf); 1051 #ifdef MBUFTRACE 1052 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx"); 1053 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx"); 1054 MOWNER_ATTACH(&ec->ec_tx_mowner); 1055 MOWNER_ATTACH(&ec->ec_rx_mowner); 1056 ifp->if_mowner = &ec->ec_tx_mowner; 1057 #endif 1058 } 1059 1060 void 1061 ether_ifdetach(struct ifnet *ifp) 1062 { 1063 struct ethercom *ec = (void *) ifp; 1064 struct ether_multi *enm; 1065 1066 IFNET_ASSERT_UNLOCKED(ifp); 1067 /* 1068 * Prevent further calls to ioctl (for example turning off 1069 * promiscuous mode from the bridge code), which eventually can 1070 * call if_init() which can cause panics because the interface 1071 * is in the process of being detached. Return device not configured 1072 * instead. 1073 */ 1074 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *), 1075 enxio); 1076 1077 simplehook_dohooks(ec->ec_ifdetach_hooks); 1078 KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks)); 1079 simplehook_destroy(ec->ec_ifdetach_hooks); 1080 1081 bpf_detach(ifp); 1082 1083 ETHER_LOCK(ec); 1084 KASSERT(ec->ec_nvlans == 0); 1085 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) { 1086 LIST_REMOVE(enm, enm_list); 1087 kmem_free(enm, sizeof(*enm)); 1088 ec->ec_multicnt--; 1089 } 1090 ETHER_UNLOCK(ec); 1091 1092 mutex_obj_free(ec->ec_lock); 1093 ec->ec_lock = NULL; 1094 1095 ifp->if_mowner = NULL; 1096 MOWNER_DETACH(&ec->ec_rx_mowner); 1097 MOWNER_DETACH(&ec->ec_tx_mowner); 1098 } 1099 1100 void * 1101 ether_ifdetachhook_establish(struct ifnet *ifp, 1102 void (*fn)(void *), void *arg) 1103 { 1104 struct ethercom *ec; 1105 khook_t *hk; 1106 1107 if (ifp->if_type != IFT_ETHER) 1108 return NULL; 1109 1110 ec = (struct ethercom *)ifp; 1111 hk = simplehook_establish(ec->ec_ifdetach_hooks, 1112 fn, arg); 1113 1114 return (void *)hk; 1115 } 1116 1117 void 1118 ether_ifdetachhook_disestablish(struct ifnet *ifp, 1119 void *vhook, kmutex_t *lock) 1120 { 1121 struct ethercom *ec; 1122 1123 if (vhook == NULL) 1124 return; 1125 1126 ec = (struct ethercom *)ifp; 1127 simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock); 1128 } 1129 1130 #if 0 1131 /* 1132 * This is for reference. We have a table-driven version 1133 * of the little-endian crc32 generator, which is faster 1134 * than the double-loop. 1135 */ 1136 uint32_t 1137 ether_crc32_le(const uint8_t *buf, size_t len) 1138 { 1139 uint32_t c, crc, carry; 1140 size_t i, j; 1141 1142 crc = 0xffffffffU; /* initial value */ 1143 1144 for (i = 0; i < len; i++) { 1145 c = buf[i]; 1146 for (j = 0; j < 8; j++) { 1147 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1148 crc >>= 1; 1149 c >>= 1; 1150 if (carry) 1151 crc = (crc ^ ETHER_CRC_POLY_LE); 1152 } 1153 } 1154 1155 return (crc); 1156 } 1157 #else 1158 uint32_t 1159 ether_crc32_le(const uint8_t *buf, size_t len) 1160 { 1161 static const uint32_t crctab[] = { 1162 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1163 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1164 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1165 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1166 }; 1167 uint32_t crc; 1168 size_t i; 1169 1170 crc = 0xffffffffU; /* initial value */ 1171 1172 for (i = 0; i < len; i++) { 1173 crc ^= buf[i]; 1174 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1175 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1176 } 1177 1178 return (crc); 1179 } 1180 #endif 1181 1182 uint32_t 1183 ether_crc32_be(const uint8_t *buf, size_t len) 1184 { 1185 uint32_t c, crc, carry; 1186 size_t i, j; 1187 1188 crc = 0xffffffffU; /* initial value */ 1189 1190 for (i = 0; i < len; i++) { 1191 c = buf[i]; 1192 for (j = 0; j < 8; j++) { 1193 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1194 crc <<= 1; 1195 c >>= 1; 1196 if (carry) 1197 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1198 } 1199 } 1200 1201 return (crc); 1202 } 1203 1204 #ifdef INET 1205 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] = 1206 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; 1207 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] = 1208 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff }; 1209 #endif 1210 #ifdef INET6 1211 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] = 1212 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 }; 1213 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] = 1214 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff }; 1215 #endif 1216 1217 /* 1218 * ether_aton implementation, not using a static buffer. 1219 */ 1220 int 1221 ether_aton_r(u_char *dest, size_t len, const char *str) 1222 { 1223 const u_char *cp = (const void *)str; 1224 u_char *ep; 1225 1226 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10)) 1227 1228 if (len < ETHER_ADDR_LEN) 1229 return ENOSPC; 1230 1231 ep = dest + ETHER_ADDR_LEN; 1232 1233 while (*cp) { 1234 if (!isxdigit(*cp)) 1235 return EINVAL; 1236 1237 *dest = atox(*cp); 1238 cp++; 1239 if (isxdigit(*cp)) { 1240 *dest = (*dest << 4) | atox(*cp); 1241 cp++; 1242 } 1243 dest++; 1244 1245 if (dest == ep) 1246 return (*cp == '\0') ? 0 : ENAMETOOLONG; 1247 1248 switch (*cp) { 1249 case ':': 1250 case '-': 1251 case '.': 1252 cp++; 1253 break; 1254 } 1255 } 1256 return ENOBUFS; 1257 } 1258 1259 /* 1260 * Convert a sockaddr into an Ethernet address or range of Ethernet 1261 * addresses. 1262 */ 1263 int 1264 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN], 1265 uint8_t addrhi[ETHER_ADDR_LEN]) 1266 { 1267 #ifdef INET 1268 const struct sockaddr_in *sin; 1269 #endif 1270 #ifdef INET6 1271 const struct sockaddr_in6 *sin6; 1272 #endif 1273 1274 switch (sa->sa_family) { 1275 1276 case AF_UNSPEC: 1277 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN); 1278 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1279 break; 1280 1281 #ifdef INET 1282 case AF_INET: 1283 sin = satocsin(sa); 1284 if (sin->sin_addr.s_addr == INADDR_ANY) { 1285 /* 1286 * An IP address of INADDR_ANY means listen to 1287 * or stop listening to all of the Ethernet 1288 * multicast addresses used for IP. 1289 * (This is for the sake of IP multicast routers.) 1290 */ 1291 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN); 1292 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN); 1293 } else { 1294 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo); 1295 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1296 } 1297 break; 1298 #endif 1299 #ifdef INET6 1300 case AF_INET6: 1301 sin6 = satocsin6(sa); 1302 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1303 /* 1304 * An IP6 address of 0 means listen to or stop 1305 * listening to all of the Ethernet multicast 1306 * address used for IP6. 1307 * (This is used for multicast routers.) 1308 */ 1309 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN); 1310 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN); 1311 } else { 1312 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo); 1313 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1314 } 1315 break; 1316 #endif 1317 1318 default: 1319 return EAFNOSUPPORT; 1320 } 1321 return 0; 1322 } 1323 1324 /* 1325 * Add an Ethernet multicast address or range of addresses to the list for a 1326 * given interface. 1327 */ 1328 int 1329 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec) 1330 { 1331 struct ether_multi *enm, *_enm; 1332 u_char addrlo[ETHER_ADDR_LEN]; 1333 u_char addrhi[ETHER_ADDR_LEN]; 1334 int error = 0; 1335 1336 /* Allocate out of lock */ 1337 enm = kmem_alloc(sizeof(*enm), KM_SLEEP); 1338 1339 ETHER_LOCK(ec); 1340 error = ether_multiaddr(sa, addrlo, addrhi); 1341 if (error != 0) 1342 goto out; 1343 1344 /* 1345 * Verify that we have valid Ethernet multicast addresses. 1346 */ 1347 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) { 1348 error = EINVAL; 1349 goto out; 1350 } 1351 1352 /* 1353 * See if the address range is already in the list. 1354 */ 1355 _enm = ether_lookup_multi(addrlo, addrhi, ec); 1356 if (_enm != NULL) { 1357 /* 1358 * Found it; just increment the reference count. 1359 */ 1360 ++_enm->enm_refcount; 1361 error = 0; 1362 goto out; 1363 } 1364 1365 /* 1366 * Link a new multicast record into the interface's multicast list. 1367 */ 1368 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN); 1369 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN); 1370 enm->enm_refcount = 1; 1371 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list); 1372 ec->ec_multicnt++; 1373 1374 /* 1375 * Return ENETRESET to inform the driver that the list has changed 1376 * and its reception filter should be adjusted accordingly. 1377 */ 1378 error = ENETRESET; 1379 enm = NULL; 1380 1381 out: 1382 ETHER_UNLOCK(ec); 1383 if (enm != NULL) 1384 kmem_free(enm, sizeof(*enm)); 1385 return error; 1386 } 1387 1388 /* 1389 * Delete a multicast address record. 1390 */ 1391 int 1392 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec) 1393 { 1394 struct ether_multi *enm; 1395 u_char addrlo[ETHER_ADDR_LEN]; 1396 u_char addrhi[ETHER_ADDR_LEN]; 1397 int error; 1398 1399 ETHER_LOCK(ec); 1400 error = ether_multiaddr(sa, addrlo, addrhi); 1401 if (error != 0) 1402 goto error; 1403 1404 /* 1405 * Look up the address in our list. 1406 */ 1407 enm = ether_lookup_multi(addrlo, addrhi, ec); 1408 if (enm == NULL) { 1409 error = ENXIO; 1410 goto error; 1411 } 1412 if (--enm->enm_refcount != 0) { 1413 /* 1414 * Still some claims to this record. 1415 */ 1416 error = 0; 1417 goto error; 1418 } 1419 1420 /* 1421 * No remaining claims to this record; unlink and free it. 1422 */ 1423 LIST_REMOVE(enm, enm_list); 1424 ec->ec_multicnt--; 1425 ETHER_UNLOCK(ec); 1426 kmem_free(enm, sizeof(*enm)); 1427 1428 /* 1429 * Return ENETRESET to inform the driver that the list has changed 1430 * and its reception filter should be adjusted accordingly. 1431 */ 1432 return ENETRESET; 1433 1434 error: 1435 ETHER_UNLOCK(ec); 1436 return error; 1437 } 1438 1439 void 1440 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb) 1441 { 1442 ec->ec_ifflags_cb = cb; 1443 } 1444 1445 void 1446 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb) 1447 { 1448 1449 ec->ec_vlan_cb = cb; 1450 } 1451 1452 static int 1453 ether_ioctl_reinit(struct ethercom *ec) 1454 { 1455 struct ifnet *ifp = &ec->ec_if; 1456 int error; 1457 1458 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1459 case IFF_RUNNING: 1460 /* 1461 * If interface is marked down and it is running, 1462 * then stop and disable it. 1463 */ 1464 (*ifp->if_stop)(ifp, 1); 1465 break; 1466 case IFF_UP: 1467 /* 1468 * If interface is marked up and it is stopped, then 1469 * start it. 1470 */ 1471 return (*ifp->if_init)(ifp); 1472 case IFF_UP | IFF_RUNNING: 1473 error = 0; 1474 if (ec->ec_ifflags_cb != NULL) { 1475 error = (*ec->ec_ifflags_cb)(ec); 1476 if (error == ENETRESET) { 1477 /* 1478 * Reset the interface to pick up 1479 * changes in any other flags that 1480 * affect the hardware state. 1481 */ 1482 return (*ifp->if_init)(ifp); 1483 } 1484 } else 1485 error = (*ifp->if_init)(ifp); 1486 return error; 1487 case 0: 1488 break; 1489 } 1490 1491 return 0; 1492 } 1493 1494 /* 1495 * Common ioctls for Ethernet interfaces. Note, we must be 1496 * called at splnet(). 1497 */ 1498 int 1499 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1500 { 1501 struct ethercom *ec = (void *)ifp; 1502 struct eccapreq *eccr; 1503 struct ifreq *ifr = (struct ifreq *)data; 1504 struct if_laddrreq *iflr = data; 1505 const struct sockaddr_dl *sdl; 1506 static const uint8_t zero[ETHER_ADDR_LEN]; 1507 int error; 1508 1509 switch (cmd) { 1510 case SIOCINITIFADDR: 1511 { 1512 struct ifaddr *ifa = (struct ifaddr *)data; 1513 if (ifa->ifa_addr->sa_family != AF_LINK 1514 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 1515 (IFF_UP | IFF_RUNNING)) { 1516 ifp->if_flags |= IFF_UP; 1517 if ((error = (*ifp->if_init)(ifp)) != 0) 1518 return error; 1519 } 1520 #ifdef INET 1521 if (ifa->ifa_addr->sa_family == AF_INET) 1522 arp_ifinit(ifp, ifa); 1523 #endif 1524 return 0; 1525 } 1526 1527 case SIOCSIFMTU: 1528 { 1529 int maxmtu; 1530 1531 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU) 1532 maxmtu = ETHERMTU_JUMBO; 1533 else 1534 maxmtu = ETHERMTU; 1535 1536 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 1537 return EINVAL; 1538 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1539 return error; 1540 else if (ifp->if_flags & IFF_UP) { 1541 /* Make sure the device notices the MTU change. */ 1542 return (*ifp->if_init)(ifp); 1543 } else 1544 return 0; 1545 } 1546 1547 case SIOCSIFFLAGS: 1548 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1549 return error; 1550 return ether_ioctl_reinit(ec); 1551 case SIOCGIFFLAGS: 1552 error = ifioctl_common(ifp, cmd, data); 1553 if (error == 0) { 1554 /* Set IFF_ALLMULTI for backcompat */ 1555 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ? 1556 IFF_ALLMULTI : 0; 1557 } 1558 return error; 1559 case SIOCGETHERCAP: 1560 eccr = (struct eccapreq *)data; 1561 eccr->eccr_capabilities = ec->ec_capabilities; 1562 eccr->eccr_capenable = ec->ec_capenable; 1563 return 0; 1564 case SIOCSETHERCAP: 1565 eccr = (struct eccapreq *)data; 1566 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0) 1567 return EINVAL; 1568 if (eccr->eccr_capenable == ec->ec_capenable) 1569 return 0; 1570 #if 0 /* notyet */ 1571 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE) 1572 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE); 1573 #else 1574 ec->ec_capenable = eccr->eccr_capenable; 1575 #endif 1576 return ether_ioctl_reinit(ec); 1577 case SIOCADDMULTI: 1578 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec); 1579 case SIOCDELMULTI: 1580 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec); 1581 case SIOCSIFMEDIA: 1582 case SIOCGIFMEDIA: 1583 if (ec->ec_mii != NULL) 1584 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, 1585 cmd); 1586 else if (ec->ec_ifmedia != NULL) 1587 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd); 1588 else 1589 return ENOTTY; 1590 break; 1591 case SIOCALIFADDR: 1592 sdl = satocsdl(sstocsa(&iflr->addr)); 1593 if (sdl->sdl_family != AF_LINK) 1594 ; 1595 else if (ETHER_IS_MULTICAST(CLLADDR(sdl))) 1596 return EINVAL; 1597 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0) 1598 return EINVAL; 1599 /*FALLTHROUGH*/ 1600 default: 1601 return ifioctl_common(ifp, cmd, data); 1602 } 1603 return 0; 1604 } 1605 1606 /* 1607 * Enable/disable passing VLAN packets if the parent interface supports it. 1608 * Return: 1609 * 0: Ok 1610 * -1: Parent interface does not support vlans 1611 * >0: Error 1612 */ 1613 int 1614 ether_enable_vlan_mtu(struct ifnet *ifp) 1615 { 1616 int error; 1617 struct ethercom *ec = (void *)ifp; 1618 1619 /* Parent does not support VLAN's */ 1620 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) 1621 return -1; 1622 1623 /* 1624 * Parent supports the VLAN_MTU capability, 1625 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames; 1626 * enable it. 1627 */ 1628 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1629 1630 /* Interface is down, defer for later */ 1631 if ((ifp->if_flags & IFF_UP) == 0) 1632 return 0; 1633 1634 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1635 return 0; 1636 1637 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1638 return error; 1639 } 1640 1641 int 1642 ether_disable_vlan_mtu(struct ifnet *ifp) 1643 { 1644 int error; 1645 struct ethercom *ec = (void *)ifp; 1646 1647 /* We still have VLAN's, defer for later */ 1648 if (ec->ec_nvlans != 0) 1649 return 0; 1650 1651 /* Parent does not support VLAB's, nothing to do. */ 1652 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0) 1653 return -1; 1654 1655 /* 1656 * Disable Tx/Rx of VLAN-sized frames. 1657 */ 1658 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1659 1660 /* Interface is down, defer for later */ 1661 if ((ifp->if_flags & IFF_UP) == 0) 1662 return 0; 1663 1664 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1665 return 0; 1666 1667 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1668 return error; 1669 } 1670 1671 /* 1672 * Add and delete VLAN TAG 1673 */ 1674 int 1675 ether_add_vlantag(struct ifnet *ifp, uint16_t vtag, bool *vlanmtu_status) 1676 { 1677 struct ethercom *ec = (void *)ifp; 1678 struct vlanid_list *vidp; 1679 bool vlanmtu_enabled; 1680 uint16_t vid = EVL_VLANOFTAG(vtag); 1681 int error; 1682 1683 vlanmtu_enabled = false; 1684 1685 /* Add a vid to the list */ 1686 vidp = kmem_alloc(sizeof(*vidp), KM_SLEEP); 1687 vidp->vid = vid; 1688 1689 ETHER_LOCK(ec); 1690 ec->ec_nvlans++; 1691 SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidp, vid_list); 1692 ETHER_UNLOCK(ec); 1693 1694 if (ec->ec_nvlans == 1) { 1695 IFNET_LOCK(ifp); 1696 error = ether_enable_vlan_mtu(ifp); 1697 IFNET_UNLOCK(ifp); 1698 1699 if (error == 0) { 1700 vlanmtu_enabled = true; 1701 } else if (error != -1) { 1702 goto fail; 1703 } 1704 } 1705 1706 if (ec->ec_vlan_cb != NULL) { 1707 error = (*ec->ec_vlan_cb)(ec, vid, true); 1708 if (error != 0) 1709 goto fail; 1710 } 1711 1712 if (vlanmtu_status != NULL) 1713 *vlanmtu_status = vlanmtu_enabled; 1714 1715 return 0; 1716 fail: 1717 ETHER_LOCK(ec); 1718 ec->ec_nvlans--; 1719 SIMPLEQ_REMOVE(&ec->ec_vids, vidp, vlanid_list, vid_list); 1720 ETHER_UNLOCK(ec); 1721 1722 if (vlanmtu_enabled) { 1723 IFNET_LOCK(ifp); 1724 (void)ether_disable_vlan_mtu(ifp); 1725 IFNET_UNLOCK(ifp); 1726 } 1727 1728 kmem_free(vidp, sizeof(*vidp)); 1729 1730 return error; 1731 } 1732 1733 int 1734 ether_del_vlantag(struct ifnet *ifp, uint16_t vtag) 1735 { 1736 struct ethercom *ec = (void *)ifp; 1737 struct vlanid_list *vidp; 1738 uint16_t vid = EVL_VLANOFTAG(vtag); 1739 1740 ETHER_LOCK(ec); 1741 SIMPLEQ_FOREACH(vidp, &ec->ec_vids, vid_list) { 1742 if (vidp->vid == vid) { 1743 SIMPLEQ_REMOVE(&ec->ec_vids, vidp, 1744 vlanid_list, vid_list); 1745 ec->ec_nvlans--; 1746 break; 1747 } 1748 } 1749 ETHER_UNLOCK(ec); 1750 1751 if (vidp == NULL) 1752 return ENOENT; 1753 1754 if (ec->ec_vlan_cb != NULL) { 1755 (void)(*ec->ec_vlan_cb)(ec, vidp->vid, false); 1756 } 1757 1758 if (ec->ec_nvlans == 0) { 1759 IFNET_LOCK(ifp); 1760 (void)ether_disable_vlan_mtu(ifp); 1761 IFNET_UNLOCK(ifp); 1762 } 1763 1764 kmem_free(vidp, sizeof(*vidp)); 1765 1766 return 0; 1767 } 1768 1769 static int 1770 ether_multicast_sysctl(SYSCTLFN_ARGS) 1771 { 1772 struct ether_multi *enm; 1773 struct ifnet *ifp; 1774 struct ethercom *ec; 1775 int error = 0; 1776 size_t written; 1777 struct psref psref; 1778 int bound; 1779 unsigned int multicnt; 1780 struct ether_multi_sysctl *addrs; 1781 int i; 1782 1783 if (namelen != 1) 1784 return EINVAL; 1785 1786 bound = curlwp_bind(); 1787 ifp = if_get_byindex(name[0], &psref); 1788 if (ifp == NULL) { 1789 error = ENODEV; 1790 goto out; 1791 } 1792 if (ifp->if_type != IFT_ETHER) { 1793 if_put(ifp, &psref); 1794 *oldlenp = 0; 1795 goto out; 1796 } 1797 ec = (struct ethercom *)ifp; 1798 1799 if (oldp == NULL) { 1800 if_put(ifp, &psref); 1801 *oldlenp = ec->ec_multicnt * sizeof(*addrs); 1802 goto out; 1803 } 1804 1805 /* 1806 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which 1807 * is sleepable, while holding it. Copy data to a local buffer first 1808 * with the lock taken and then call sysctl_copyout without holding it. 1809 */ 1810 retry: 1811 multicnt = ec->ec_multicnt; 1812 1813 if (multicnt == 0) { 1814 if_put(ifp, &psref); 1815 *oldlenp = 0; 1816 goto out; 1817 } 1818 1819 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP); 1820 1821 ETHER_LOCK(ec); 1822 if (multicnt != ec->ec_multicnt) { 1823 /* The number of multicast addresses has changed */ 1824 ETHER_UNLOCK(ec); 1825 kmem_free(addrs, sizeof(*addrs) * multicnt); 1826 goto retry; 1827 } 1828 1829 i = 0; 1830 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) { 1831 struct ether_multi_sysctl *addr = &addrs[i]; 1832 addr->enm_refcount = enm->enm_refcount; 1833 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN); 1834 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN); 1835 i++; 1836 } 1837 ETHER_UNLOCK(ec); 1838 1839 error = 0; 1840 written = 0; 1841 for (i = 0; i < multicnt; i++) { 1842 struct ether_multi_sysctl *addr = &addrs[i]; 1843 1844 if (written + sizeof(*addr) > *oldlenp) 1845 break; 1846 error = sysctl_copyout(l, addr, oldp, sizeof(*addr)); 1847 if (error) 1848 break; 1849 written += sizeof(*addr); 1850 oldp = (char *)oldp + sizeof(*addr); 1851 } 1852 kmem_free(addrs, sizeof(*addrs) * multicnt); 1853 1854 if_put(ifp, &psref); 1855 1856 *oldlenp = written; 1857 out: 1858 curlwp_bindx(bound); 1859 return error; 1860 } 1861 1862 static void 1863 ether_sysctl_setup(struct sysctllog **clog) 1864 { 1865 const struct sysctlnode *rnode = NULL; 1866 1867 sysctl_createv(clog, 0, NULL, &rnode, 1868 CTLFLAG_PERMANENT, 1869 CTLTYPE_NODE, "ether", 1870 SYSCTL_DESCR("Ethernet-specific information"), 1871 NULL, 0, NULL, 0, 1872 CTL_NET, CTL_CREATE, CTL_EOL); 1873 1874 sysctl_createv(clog, 0, &rnode, NULL, 1875 CTLFLAG_PERMANENT, 1876 CTLTYPE_NODE, "multicast", 1877 SYSCTL_DESCR("multicast addresses"), 1878 ether_multicast_sysctl, 0, NULL, 0, 1879 CTL_CREATE, CTL_EOL); 1880 1881 sysctl_createv(clog, 0, &rnode, NULL, 1882 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1883 CTLTYPE_STRING, "rps_hash", 1884 SYSCTL_DESCR("Interface rps hash function control"), 1885 sysctl_pktq_rps_hash_handler, 0, (void *)ðer_pktq_rps_hash_p, 1886 PKTQ_RPS_HASH_NAME_LEN, 1887 CTL_CREATE, CTL_EOL); 1888 } 1889 1890 void 1891 etherinit(void) 1892 { 1893 1894 #ifdef DIAGNOSTIC 1895 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET); 1896 #endif 1897 ether_pktq_rps_hash_p = pktq_rps_hash_default; 1898 ether_sysctl_setup(NULL); 1899 } 1900