1 /* $NetBSD: if_ethersubr.c,v 1.228 2016/10/03 11:06:06 ozaki-r Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.228 2016/10/03 11:06:06 ozaki-r Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_atalk.h" 69 #include "opt_mbuftrace.h" 70 #include "opt_mpls.h" 71 #include "opt_gateway.h" 72 #include "opt_pppoe.h" 73 #include "opt_net_mpsafe.h" 74 #endif 75 76 #include "vlan.h" 77 #include "pppoe.h" 78 #include "bridge.h" 79 #include "arp.h" 80 #include "agr.h" 81 82 #include <sys/sysctl.h> 83 #include <sys/malloc.h> 84 #include <sys/mbuf.h> 85 #include <sys/mutex.h> 86 #include <sys/ioctl.h> 87 #include <sys/errno.h> 88 #include <sys/device.h> 89 #include <sys/rnd.h> 90 #include <sys/rndsource.h> 91 #include <sys/cpu.h> 92 93 #include <net/if.h> 94 #include <net/netisr.h> 95 #include <net/route.h> 96 #include <net/if_llc.h> 97 #include <net/if_dl.h> 98 #include <net/if_types.h> 99 #include <net/pktqueue.h> 100 101 #include <net/if_media.h> 102 #include <dev/mii/mii.h> 103 #include <dev/mii/miivar.h> 104 105 #if NARP == 0 106 /* 107 * XXX there should really be a way to issue this warning from within config(8) 108 */ 109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK. 110 #endif 111 112 #include <net/bpf.h> 113 114 #include <net/if_ether.h> 115 #include <net/if_vlanvar.h> 116 117 #if NPPPOE > 0 118 #include <net/if_pppoe.h> 119 #endif 120 121 #if NAGR > 0 122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */ 123 #include <net/agr/ieee8023ad.h> 124 #include <net/agr/if_agrvar.h> 125 #endif 126 127 #if NBRIDGE > 0 128 #include <net/if_bridgevar.h> 129 #endif 130 131 #include <netinet/in.h> 132 #ifdef INET 133 #include <netinet/in_var.h> 134 #endif 135 #include <netinet/if_inarp.h> 136 137 #ifdef INET6 138 #ifndef INET 139 #include <netinet/in.h> 140 #endif 141 #include <netinet6/in6_var.h> 142 #include <netinet6/nd6.h> 143 #endif 144 145 146 #include "carp.h" 147 #if NCARP > 0 148 #include <netinet/ip_carp.h> 149 #endif 150 151 #ifdef NETATALK 152 #include <netatalk/at.h> 153 #include <netatalk/at_var.h> 154 #include <netatalk/at_extern.h> 155 156 #define llc_snap_org_code llc_un.type_snap.org_code 157 #define llc_snap_ether_type llc_un.type_snap.ether_type 158 159 extern u_char at_org_code[3]; 160 extern u_char aarp_org_code[3]; 161 #endif /* NETATALK */ 162 163 #ifdef MPLS 164 #include <netmpls/mpls.h> 165 #include <netmpls/mpls_var.h> 166 #endif 167 168 static struct timeval bigpktppslim_last; 169 static int bigpktppslim = 2; /* XXX */ 170 static int bigpktpps_count; 171 static kmutex_t bigpktpps_lock __cacheline_aligned; 172 173 174 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = 175 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 176 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = 177 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; 178 #define senderr(e) { error = (e); goto bad;} 179 180 static int ether_output(struct ifnet *, struct mbuf *, 181 const struct sockaddr *, const struct rtentry *); 182 183 /* 184 * Ethernet output routine. 185 * Encapsulate a packet of type family for the local net. 186 * Assumes that ifp is actually pointer to ethercom structure. 187 */ 188 static int 189 ether_output(struct ifnet * const ifp0, struct mbuf * const m0, 190 const struct sockaddr * const dst, 191 const struct rtentry *rt) 192 { 193 uint16_t etype = 0; 194 int error = 0, hdrcmplt = 0; 195 uint8_t esrc[6], edst[6]; 196 struct mbuf *m = m0; 197 struct mbuf *mcopy = NULL; 198 struct ether_header *eh; 199 struct ifnet *ifp = ifp0; 200 #ifdef INET 201 struct arphdr *ah; 202 #endif /* INET */ 203 #ifdef NETATALK 204 struct at_ifaddr *aa; 205 #endif /* NETATALK */ 206 207 /* 208 * some paths such as carp_output() call ethr_output() with "ifp" 209 * argument as other than ether ifnet. 210 */ 211 KASSERT(ifp->if_output != ether_output 212 || ifp->if_extflags & IFEF_OUTPUT_MPSAFE); 213 214 #ifdef MBUFTRACE 215 m_claimm(m, ifp->if_mowner); 216 #endif 217 218 #if NCARP > 0 219 if (ifp->if_type == IFT_CARP) { 220 struct ifaddr *ifa; 221 int s = pserialize_read_enter(); 222 223 /* loop back if this is going to the carp interface */ 224 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP && 225 (ifa = ifa_ifwithaddr(dst)) != NULL) { 226 if (ifa->ifa_ifp == ifp0) { 227 pserialize_read_exit(s); 228 return looutput(ifp0, m, dst, rt); 229 } 230 } 231 pserialize_read_exit(s); 232 233 ifp = ifp->if_carpdev; 234 /* ac = (struct arpcom *)ifp; */ 235 236 if ((ifp0->if_flags & (IFF_UP|IFF_RUNNING)) != 237 (IFF_UP|IFF_RUNNING)) 238 senderr(ENETDOWN); 239 } 240 #endif /* NCARP > 0 */ 241 242 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) 243 senderr(ENETDOWN); 244 245 switch (dst->sa_family) { 246 247 #ifdef INET 248 case AF_INET: 249 KERNEL_LOCK(1, NULL); 250 if (m->m_flags & M_BCAST) 251 (void)memcpy(edst, etherbroadcastaddr, sizeof(edst)); 252 else if (m->m_flags & M_MCAST) 253 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst); 254 else if ((error = arpresolve(ifp, rt, m, dst, edst, 255 sizeof(edst))) != 0) { 256 KERNEL_UNLOCK_ONE(NULL); 257 return error == EWOULDBLOCK ? 0 : error; 258 } 259 KERNEL_UNLOCK_ONE(NULL); 260 /* If broadcasting on a simplex interface, loopback a copy */ 261 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) 262 mcopy = m_copy(m, 0, (int)M_COPYALL); 263 etype = htons(ETHERTYPE_IP); 264 break; 265 266 case AF_ARP: 267 ah = mtod(m, struct arphdr *); 268 if (m->m_flags & M_BCAST) 269 (void)memcpy(edst, etherbroadcastaddr, sizeof(edst)); 270 else { 271 void *tha = ar_tha(ah); 272 273 if (tha == NULL) { 274 /* fake with ARPHDR_IEEE1394 */ 275 return 0; 276 } 277 memcpy(edst, tha, sizeof(edst)); 278 } 279 280 ah->ar_hrd = htons(ARPHRD_ETHER); 281 282 switch (ntohs(ah->ar_op)) { 283 case ARPOP_REVREQUEST: 284 case ARPOP_REVREPLY: 285 etype = htons(ETHERTYPE_REVARP); 286 break; 287 288 case ARPOP_REQUEST: 289 case ARPOP_REPLY: 290 default: 291 etype = htons(ETHERTYPE_ARP); 292 } 293 294 break; 295 #endif 296 #ifdef INET6 297 case AF_INET6: 298 if (!nd6_storelladdr(ifp, rt, m, dst, edst, sizeof(edst))){ 299 /* something bad happened */ 300 return (0); 301 } 302 etype = htons(ETHERTYPE_IPV6); 303 break; 304 #endif 305 #ifdef NETATALK 306 case AF_APPLETALK: { 307 struct ifaddr *ifa; 308 int s; 309 310 KERNEL_LOCK(1, NULL); 311 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) { 312 #ifdef NETATALKDEBUG 313 printf("aarpresolv failed\n"); 314 #endif /* NETATALKDEBUG */ 315 KERNEL_UNLOCK_ONE(NULL); 316 return (0); 317 } 318 /* 319 * ifaddr is the first thing in at_ifaddr 320 */ 321 s = pserialize_read_enter(); 322 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp); 323 if (ifa == NULL) { 324 pserialize_read_exit(s); 325 KERNEL_UNLOCK_ONE(NULL); 326 goto bad; 327 } 328 aa = (struct at_ifaddr *)ifa; 329 330 /* 331 * In the phase 2 case, we need to prepend an mbuf for the 332 * llc header. Since we must preserve the value of m, 333 * which is passed to us by value, we m_copy() the first 334 * mbuf, and use it for our llc header. 335 */ 336 if (aa->aa_flags & AFA_PHASE2) { 337 struct llc llc; 338 339 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT); 340 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 341 llc.llc_control = LLC_UI; 342 memcpy(llc.llc_snap_org_code, at_org_code, 343 sizeof(llc.llc_snap_org_code)); 344 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK); 345 memcpy(mtod(m, void *), &llc, sizeof(struct llc)); 346 } else { 347 etype = htons(ETHERTYPE_ATALK); 348 } 349 pserialize_read_exit(s); 350 KERNEL_UNLOCK_ONE(NULL); 351 break; 352 } 353 #endif /* NETATALK */ 354 case pseudo_AF_HDRCMPLT: 355 hdrcmplt = 1; 356 memcpy(esrc, 357 ((const struct ether_header *)dst->sa_data)->ether_shost, 358 sizeof(esrc)); 359 /* FALLTHROUGH */ 360 361 case AF_UNSPEC: 362 memcpy(edst, 363 ((const struct ether_header *)dst->sa_data)->ether_dhost, 364 sizeof(edst)); 365 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */ 366 etype = ((const struct ether_header *)dst->sa_data)->ether_type; 367 break; 368 369 default: 370 printf("%s: can't handle af%d\n", ifp->if_xname, 371 dst->sa_family); 372 senderr(EAFNOSUPPORT); 373 } 374 375 #ifdef MPLS 376 KERNEL_LOCK(1, NULL); 377 { 378 struct m_tag *mtag; 379 mtag = m_tag_find(m, PACKET_TAG_MPLS, NULL); 380 if (mtag != NULL) { 381 /* Having the tag itself indicates it's MPLS */ 382 etype = htons(ETHERTYPE_MPLS); 383 m_tag_delete(m, mtag); 384 } 385 } 386 KERNEL_UNLOCK_ONE(NULL); 387 #endif 388 389 if (mcopy) 390 (void)looutput(ifp, mcopy, dst, rt); 391 392 /* If no ether type is set, this must be a 802.2 formatted packet. 393 */ 394 if (etype == 0) 395 etype = htons(m->m_pkthdr.len); 396 /* 397 * Add local net header. If no space in first mbuf, 398 * allocate another. 399 */ 400 M_PREPEND(m, sizeof (struct ether_header), M_DONTWAIT); 401 if (m == 0) 402 senderr(ENOBUFS); 403 eh = mtod(m, struct ether_header *); 404 /* Note: etype is already in network byte order. */ 405 (void)memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 406 memcpy(eh->ether_dhost, edst, sizeof(edst)); 407 if (hdrcmplt) 408 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); 409 else 410 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl), 411 sizeof(eh->ether_shost)); 412 413 #if NCARP > 0 414 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) { 415 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl), 416 sizeof(eh->ether_shost)); 417 } 418 #endif /* NCARP > 0 */ 419 420 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 421 return (error); 422 if (m == NULL) 423 return (0); 424 425 #if NBRIDGE > 0 426 /* 427 * Bridges require special output handling. 428 */ 429 if (ifp->if_bridge) 430 return (bridge_output(ifp, m, NULL, NULL)); 431 #endif 432 433 #if NCARP > 0 434 if (ifp != ifp0) 435 ifp0->if_obytes += m->m_pkthdr.len + ETHER_HDR_LEN; 436 #endif /* NCARP > 0 */ 437 438 #ifdef ALTQ 439 KERNEL_LOCK(1, NULL); 440 /* 441 * If ALTQ is enabled on the parent interface, do 442 * classification; the queueing discipline might not 443 * require classification, but might require the 444 * address family/header pointer in the pktattr. 445 */ 446 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 447 altq_etherclassify(&ifp->if_snd, m); 448 KERNEL_UNLOCK_ONE(NULL); 449 #endif 450 return ifq_enqueue(ifp, m); 451 452 bad: 453 if (m) 454 m_freem(m); 455 return (error); 456 } 457 458 #ifdef ALTQ 459 /* 460 * This routine is a slight hack to allow a packet to be classified 461 * if the Ethernet headers are present. It will go away when ALTQ's 462 * classification engine understands link headers. 463 */ 464 void 465 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m) 466 { 467 struct ether_header *eh; 468 uint16_t ether_type; 469 int hlen, af, hdrsize; 470 void *hdr; 471 472 hlen = ETHER_HDR_LEN; 473 eh = mtod(m, struct ether_header *); 474 475 ether_type = htons(eh->ether_type); 476 477 if (ether_type < ETHERMTU) { 478 /* LLC/SNAP */ 479 struct llc *llc = (struct llc *)(eh + 1); 480 hlen += 8; 481 482 if (m->m_len < hlen || 483 llc->llc_dsap != LLC_SNAP_LSAP || 484 llc->llc_ssap != LLC_SNAP_LSAP || 485 llc->llc_control != LLC_UI) { 486 /* Not SNAP. */ 487 goto bad; 488 } 489 490 ether_type = htons(llc->llc_un.type_snap.ether_type); 491 } 492 493 switch (ether_type) { 494 case ETHERTYPE_IP: 495 af = AF_INET; 496 hdrsize = 20; /* sizeof(struct ip) */ 497 break; 498 499 case ETHERTYPE_IPV6: 500 af = AF_INET6; 501 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 502 break; 503 504 default: 505 af = AF_UNSPEC; 506 hdrsize = 0; 507 break; 508 } 509 510 while (m->m_len <= hlen) { 511 hlen -= m->m_len; 512 m = m->m_next; 513 } 514 if (m->m_len < (hlen + hdrsize)) { 515 /* 516 * protocol header not in a single mbuf. 517 * We can't cope with this situation right 518 * now (but it shouldn't ever happen, really, anyhow). 519 */ 520 #ifdef DEBUG 521 printf("altq_etherclassify: headers span multiple mbufs: " 522 "%d < %d\n", m->m_len, (hlen + hdrsize)); 523 #endif 524 goto bad; 525 } 526 527 m->m_data += hlen; 528 m->m_len -= hlen; 529 530 hdr = mtod(m, void *); 531 532 if (ALTQ_NEEDS_CLASSIFY(ifq)) 533 m->m_pkthdr.pattr_class = 534 (*ifq->altq_classify)(ifq->altq_clfier, m, af); 535 m->m_pkthdr.pattr_af = af; 536 m->m_pkthdr.pattr_hdr = hdr; 537 538 m->m_data -= hlen; 539 m->m_len += hlen; 540 541 return; 542 543 bad: 544 m->m_pkthdr.pattr_class = NULL; 545 m->m_pkthdr.pattr_hdr = NULL; 546 m->m_pkthdr.pattr_af = AF_UNSPEC; 547 } 548 #endif /* ALTQ */ 549 550 /* 551 * Process a received Ethernet packet; 552 * the packet is in the mbuf chain m with 553 * the ether header. 554 */ 555 void 556 ether_input(struct ifnet *ifp, struct mbuf *m) 557 { 558 struct ethercom *ec = (struct ethercom *) ifp; 559 pktqueue_t *pktq = NULL; 560 struct ifqueue *inq = NULL; 561 uint16_t etype; 562 struct ether_header *eh; 563 size_t ehlen; 564 static int earlypkts; 565 int isr = 0; 566 #if defined (LLC) || defined(NETATALK) 567 struct llc *l; 568 #endif 569 570 KASSERT(!cpu_intr_p()); 571 572 if ((ifp->if_flags & IFF_UP) == 0) { 573 m_freem(m); 574 return; 575 } 576 577 #ifdef MBUFTRACE 578 m_claimm(m, &ec->ec_rx_mowner); 579 #endif 580 eh = mtod(m, struct ether_header *); 581 etype = ntohs(eh->ether_type); 582 ehlen = sizeof(*eh); 583 584 if(__predict_false(earlypkts < 100 || !rnd_initial_entropy)) { 585 rnd_add_data(NULL, eh, ehlen, 0); 586 earlypkts++; 587 } 588 589 /* 590 * Determine if the packet is within its size limits. 591 */ 592 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len > 593 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { 594 mutex_enter(&bigpktpps_lock); 595 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count, 596 bigpktppslim)) { 597 printf("%s: discarding oversize frame (len=%d)\n", 598 ifp->if_xname, m->m_pkthdr.len); 599 } 600 mutex_exit(&bigpktpps_lock); 601 m_freem(m); 602 return; 603 } 604 605 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 606 /* 607 * If this is not a simplex interface, drop the packet 608 * if it came from us. 609 */ 610 if ((ifp->if_flags & IFF_SIMPLEX) == 0 && 611 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost, 612 ETHER_ADDR_LEN) == 0) { 613 m_freem(m); 614 return; 615 } 616 617 if (memcmp(etherbroadcastaddr, 618 eh->ether_dhost, ETHER_ADDR_LEN) == 0) 619 m->m_flags |= M_BCAST; 620 else 621 m->m_flags |= M_MCAST; 622 ifp->if_imcasts++; 623 } 624 625 /* If the CRC is still on the packet, trim it off. */ 626 if (m->m_flags & M_HASFCS) { 627 m_adj(m, -ETHER_CRC_LEN); 628 m->m_flags &= ~M_HASFCS; 629 } 630 631 ifp->if_ibytes += m->m_pkthdr.len; 632 633 #if NCARP > 0 634 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) { 635 /* 636 * clear M_PROMISC, in case the packets comes from a 637 * vlan 638 */ 639 m->m_flags &= ~M_PROMISC; 640 if (carp_input(m, (uint8_t *)&eh->ether_shost, 641 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0) 642 return; 643 } 644 #endif /* NCARP > 0 */ 645 if ((m->m_flags & (M_BCAST|M_MCAST|M_PROMISC)) == 0 && 646 (ifp->if_flags & IFF_PROMISC) != 0 && 647 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 648 ETHER_ADDR_LEN) != 0) { 649 m->m_flags |= M_PROMISC; 650 } 651 652 if ((m->m_flags & M_PROMISC) == 0) { 653 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) 654 return; 655 if (m == NULL) 656 return; 657 658 eh = mtod(m, struct ether_header *); 659 etype = ntohs(eh->ether_type); 660 ehlen = sizeof(*eh); 661 } 662 663 #if NAGR > 0 664 if (ifp->if_agrprivate && 665 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) { 666 m->m_flags &= ~M_PROMISC; 667 agr_input(ifp, m); 668 return; 669 } 670 #endif /* NAGR > 0 */ 671 672 /* 673 * If VLANs are configured on the interface, check to 674 * see if the device performed the decapsulation and 675 * provided us with the tag. 676 */ 677 if (ec->ec_nvlans && m_tag_find(m, PACKET_TAG_VLAN, NULL) != NULL) { 678 #if NVLAN > 0 679 /* 680 * vlan_input() will either recursively call ether_input() 681 * or drop the packet. 682 */ 683 vlan_input(ifp, m); 684 #else 685 m_freem(m); 686 #endif 687 return; 688 } 689 690 /* 691 * Handle protocols that expect to have the Ethernet header 692 * (and possibly FCS) intact. 693 */ 694 switch (etype) { 695 case ETHERTYPE_VLAN: { 696 struct ether_vlan_header *evl = (void *)eh; 697 /* 698 * If there is a tag of 0, then the VLAN header was probably 699 * just being used to store the priority. Extract the ether 700 * type, and if IP or IPV6, let them deal with it. 701 */ 702 if (m->m_len <= sizeof(*evl) 703 && EVL_VLANOFTAG(evl->evl_tag) == 0) { 704 etype = ntohs(evl->evl_proto); 705 ehlen = sizeof(*evl); 706 if ((m->m_flags & M_PROMISC) == 0 707 && (etype == ETHERTYPE_IP 708 || etype == ETHERTYPE_IPV6)) 709 break; 710 } 711 #if NVLAN > 0 712 /* 713 * vlan_input() will either recursively call ether_input() 714 * or drop the packet. 715 */ 716 if (((struct ethercom *)ifp)->ec_nvlans != 0) 717 vlan_input(ifp, m); 718 else 719 #endif /* NVLAN > 0 */ 720 m_freem(m); 721 return; 722 } 723 #if NPPPOE > 0 724 case ETHERTYPE_PPPOEDISC: 725 pppoedisc_input(ifp, m); 726 return; 727 case ETHERTYPE_PPPOE: 728 pppoe_input(ifp, m); 729 return; 730 #endif /* NPPPOE > 0 */ 731 case ETHERTYPE_SLOWPROTOCOLS: { 732 uint8_t subtype; 733 734 #if defined(DIAGNOSTIC) 735 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) { 736 panic("ether_input: too short slow protocol packet"); 737 } 738 #endif 739 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype); 740 switch (subtype) { 741 #if NAGR > 0 742 case SLOWPROTOCOLS_SUBTYPE_LACP: 743 if (ifp->if_agrprivate) { 744 ieee8023ad_lacp_input(ifp, m); 745 return; 746 } 747 break; 748 749 case SLOWPROTOCOLS_SUBTYPE_MARKER: 750 if (ifp->if_agrprivate) { 751 ieee8023ad_marker_input(ifp, m); 752 return; 753 } 754 break; 755 #endif /* NAGR > 0 */ 756 default: 757 if (subtype == 0 || subtype > 10) { 758 /* illegal value */ 759 m_freem(m); 760 return; 761 } 762 /* unknown subtype */ 763 break; 764 } 765 /* FALLTHROUGH */ 766 } 767 default: 768 if (m->m_flags & M_PROMISC) { 769 m_freem(m); 770 return; 771 } 772 } 773 774 /* If the CRC is still on the packet, trim it off. */ 775 if (m->m_flags & M_HASFCS) { 776 m_adj(m, -ETHER_CRC_LEN); 777 m->m_flags &= ~M_HASFCS; 778 } 779 780 if (etype > ETHERMTU + sizeof (struct ether_header)) { 781 /* Strip off the Ethernet header. */ 782 m_adj(m, ehlen); 783 784 switch (etype) { 785 #ifdef INET 786 case ETHERTYPE_IP: 787 #ifdef GATEWAY 788 if (ipflow_fastforward(m)) 789 return; 790 #endif 791 pktq = ip_pktq; 792 break; 793 794 case ETHERTYPE_ARP: 795 isr = NETISR_ARP; 796 inq = &arpintrq; 797 break; 798 799 case ETHERTYPE_REVARP: 800 revarpinput(m); /* XXX queue? */ 801 return; 802 #endif 803 #ifdef INET6 804 case ETHERTYPE_IPV6: 805 if (__predict_false(!in6_present)) { 806 m_freem(m); 807 return; 808 } 809 #ifdef GATEWAY 810 if (ip6flow_fastforward(&m)) 811 return; 812 #endif 813 pktq = ip6_pktq; 814 break; 815 #endif 816 #ifdef NETATALK 817 case ETHERTYPE_ATALK: 818 isr = NETISR_ATALK; 819 inq = &atintrq1; 820 break; 821 case ETHERTYPE_AARP: 822 /* probably this should be done with a NETISR as well */ 823 aarpinput(ifp, m); /* XXX */ 824 return; 825 #endif /* NETATALK */ 826 #ifdef MPLS 827 case ETHERTYPE_MPLS: 828 isr = NETISR_MPLS; 829 inq = &mplsintrq; 830 break; 831 #endif 832 default: 833 m_freem(m); 834 return; 835 } 836 } else { 837 #if defined (LLC) || defined (NETATALK) 838 l = (struct llc *)(eh+1); 839 switch (l->llc_dsap) { 840 #ifdef NETATALK 841 case LLC_SNAP_LSAP: 842 switch (l->llc_control) { 843 case LLC_UI: 844 if (l->llc_ssap != LLC_SNAP_LSAP) { 845 goto dropanyway; 846 } 847 848 if (memcmp(&(l->llc_snap_org_code)[0], 849 at_org_code, sizeof(at_org_code)) == 0 && 850 ntohs(l->llc_snap_ether_type) == 851 ETHERTYPE_ATALK) { 852 inq = &atintrq2; 853 m_adj(m, sizeof(struct ether_header) 854 + sizeof(struct llc)); 855 isr = NETISR_ATALK; 856 break; 857 } 858 859 if (memcmp(&(l->llc_snap_org_code)[0], 860 aarp_org_code, 861 sizeof(aarp_org_code)) == 0 && 862 ntohs(l->llc_snap_ether_type) == 863 ETHERTYPE_AARP) { 864 m_adj( m, sizeof(struct ether_header) 865 + sizeof(struct llc)); 866 aarpinput(ifp, m); /* XXX */ 867 return; 868 } 869 870 default: 871 goto dropanyway; 872 } 873 break; 874 dropanyway: 875 #endif 876 default: 877 m_freem(m); 878 return; 879 } 880 #else /* ISO || LLC || NETATALK*/ 881 m_freem(m); 882 return; 883 #endif /* ISO || LLC || NETATALK*/ 884 } 885 886 if (__predict_true(pktq)) { 887 const uint32_t h = pktq_rps_hash(m); 888 if (__predict_false(!pktq_enqueue(pktq, m, h))) { 889 m_freem(m); 890 } 891 return; 892 } 893 894 if (__predict_false(!inq)) { 895 /* Should not happen. */ 896 m_freem(m); 897 return; 898 } 899 900 IFQ_LOCK(inq); 901 if (IF_QFULL(inq)) { 902 IF_DROP(inq); 903 IFQ_UNLOCK(inq); 904 m_freem(m); 905 } else { 906 IF_ENQUEUE(inq, m); 907 IFQ_UNLOCK(inq); 908 schednetisr(isr); 909 } 910 } 911 912 /* 913 * Convert Ethernet address to printable (loggable) representation. 914 */ 915 char * 916 ether_sprintf(const u_char *ap) 917 { 918 static char etherbuf[3 * ETHER_ADDR_LEN]; 919 return ether_snprintf(etherbuf, sizeof(etherbuf), ap); 920 } 921 922 char * 923 ether_snprintf(char *buf, size_t len, const u_char *ap) 924 { 925 char *cp = buf; 926 size_t i; 927 928 for (i = 0; i < len / 3; i++) { 929 *cp++ = hexdigits[*ap >> 4]; 930 *cp++ = hexdigits[*ap++ & 0xf]; 931 *cp++ = ':'; 932 } 933 *--cp = '\0'; 934 return buf; 935 } 936 937 /* 938 * Perform common duties while attaching to interface list 939 */ 940 void 941 ether_ifattach(struct ifnet *ifp, const uint8_t *lla) 942 { 943 struct ethercom *ec = (struct ethercom *)ifp; 944 945 ifp->if_extflags |= IFEF_OUTPUT_MPSAFE; 946 ifp->if_type = IFT_ETHER; 947 ifp->if_hdrlen = ETHER_HDR_LEN; 948 ifp->if_dlt = DLT_EN10MB; 949 ifp->if_mtu = ETHERMTU; 950 ifp->if_output = ether_output; 951 ifp->_if_input = ether_input; 952 if (ifp->if_baudrate == 0) 953 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 954 955 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla)); 956 957 LIST_INIT(&ec->ec_multiaddrs); 958 ifp->if_broadcastaddr = etherbroadcastaddr; 959 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 960 #ifdef MBUFTRACE 961 strlcpy(ec->ec_tx_mowner.mo_name, ifp->if_xname, 962 sizeof(ec->ec_tx_mowner.mo_name)); 963 strlcpy(ec->ec_tx_mowner.mo_descr, "tx", 964 sizeof(ec->ec_tx_mowner.mo_descr)); 965 strlcpy(ec->ec_rx_mowner.mo_name, ifp->if_xname, 966 sizeof(ec->ec_rx_mowner.mo_name)); 967 strlcpy(ec->ec_rx_mowner.mo_descr, "rx", 968 sizeof(ec->ec_rx_mowner.mo_descr)); 969 MOWNER_ATTACH(&ec->ec_tx_mowner); 970 MOWNER_ATTACH(&ec->ec_rx_mowner); 971 ifp->if_mowner = &ec->ec_tx_mowner; 972 #endif 973 } 974 975 void 976 ether_ifdetach(struct ifnet *ifp) 977 { 978 struct ethercom *ec = (void *) ifp; 979 struct ether_multi *enm; 980 int s; 981 982 /* 983 * Prevent further calls to ioctl (for example turning off 984 * promiscuous mode from the bridge code), which eventually can 985 * call if_init() which can cause panics because the interface 986 * is in the process of being detached. Return device not configured 987 * instead. 988 */ 989 ifp->if_ioctl = (int (*)(struct ifnet *, u_long, void *))enxio; 990 991 #if NBRIDGE > 0 992 if (ifp->if_bridge) 993 bridge_ifdetach(ifp); 994 #endif 995 996 bpf_detach(ifp); 997 998 #if NVLAN > 0 999 if (ec->ec_nvlans) 1000 vlan_ifdetach(ifp); 1001 #endif 1002 1003 s = splnet(); 1004 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) { 1005 LIST_REMOVE(enm, enm_list); 1006 free(enm, M_IFMADDR); 1007 ec->ec_multicnt--; 1008 } 1009 splx(s); 1010 1011 ifp->if_mowner = NULL; 1012 MOWNER_DETACH(&ec->ec_rx_mowner); 1013 MOWNER_DETACH(&ec->ec_tx_mowner); 1014 } 1015 1016 #if 0 1017 /* 1018 * This is for reference. We have a table-driven version 1019 * of the little-endian crc32 generator, which is faster 1020 * than the double-loop. 1021 */ 1022 uint32_t 1023 ether_crc32_le(const uint8_t *buf, size_t len) 1024 { 1025 uint32_t c, crc, carry; 1026 size_t i, j; 1027 1028 crc = 0xffffffffU; /* initial value */ 1029 1030 for (i = 0; i < len; i++) { 1031 c = buf[i]; 1032 for (j = 0; j < 8; j++) { 1033 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1034 crc >>= 1; 1035 c >>= 1; 1036 if (carry) 1037 crc = (crc ^ ETHER_CRC_POLY_LE); 1038 } 1039 } 1040 1041 return (crc); 1042 } 1043 #else 1044 uint32_t 1045 ether_crc32_le(const uint8_t *buf, size_t len) 1046 { 1047 static const uint32_t crctab[] = { 1048 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1049 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1050 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1051 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1052 }; 1053 uint32_t crc; 1054 size_t i; 1055 1056 crc = 0xffffffffU; /* initial value */ 1057 1058 for (i = 0; i < len; i++) { 1059 crc ^= buf[i]; 1060 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1061 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1062 } 1063 1064 return (crc); 1065 } 1066 #endif 1067 1068 uint32_t 1069 ether_crc32_be(const uint8_t *buf, size_t len) 1070 { 1071 uint32_t c, crc, carry; 1072 size_t i, j; 1073 1074 crc = 0xffffffffU; /* initial value */ 1075 1076 for (i = 0; i < len; i++) { 1077 c = buf[i]; 1078 for (j = 0; j < 8; j++) { 1079 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1080 crc <<= 1; 1081 c >>= 1; 1082 if (carry) 1083 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1084 } 1085 } 1086 1087 return (crc); 1088 } 1089 1090 #ifdef INET 1091 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] = 1092 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; 1093 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] = 1094 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff }; 1095 #endif 1096 #ifdef INET6 1097 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] = 1098 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 }; 1099 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] = 1100 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff }; 1101 #endif 1102 1103 /* 1104 * ether_aton implementation, not using a static buffer. 1105 */ 1106 int 1107 ether_aton_r(u_char *dest, size_t len, const char *str) 1108 { 1109 const u_char *cp = (const void *)str; 1110 u_char *ep; 1111 1112 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10)) 1113 1114 if (len < ETHER_ADDR_LEN) 1115 return ENOSPC; 1116 1117 ep = dest + ETHER_ADDR_LEN; 1118 1119 while (*cp) { 1120 if (!isxdigit(*cp)) 1121 return EINVAL; 1122 *dest = atox(*cp); 1123 cp++; 1124 if (isxdigit(*cp)) { 1125 *dest = (*dest << 4) | atox(*cp); 1126 dest++; 1127 cp++; 1128 } else 1129 dest++; 1130 if (dest == ep) 1131 return *cp == '\0' ? 0 : ENAMETOOLONG; 1132 switch (*cp) { 1133 case ':': 1134 case '-': 1135 case '.': 1136 cp++; 1137 break; 1138 } 1139 } 1140 return ENOBUFS; 1141 } 1142 1143 /* 1144 * Convert a sockaddr into an Ethernet address or range of Ethernet 1145 * addresses. 1146 */ 1147 int 1148 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN], 1149 uint8_t addrhi[ETHER_ADDR_LEN]) 1150 { 1151 #ifdef INET 1152 const struct sockaddr_in *sin; 1153 #endif /* INET */ 1154 #ifdef INET6 1155 const struct sockaddr_in6 *sin6; 1156 #endif /* INET6 */ 1157 1158 switch (sa->sa_family) { 1159 1160 case AF_UNSPEC: 1161 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN); 1162 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1163 break; 1164 1165 #ifdef INET 1166 case AF_INET: 1167 sin = satocsin(sa); 1168 if (sin->sin_addr.s_addr == INADDR_ANY) { 1169 /* 1170 * An IP address of INADDR_ANY means listen to 1171 * or stop listening to all of the Ethernet 1172 * multicast addresses used for IP. 1173 * (This is for the sake of IP multicast routers.) 1174 */ 1175 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN); 1176 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN); 1177 } 1178 else { 1179 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo); 1180 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1181 } 1182 break; 1183 #endif 1184 #ifdef INET6 1185 case AF_INET6: 1186 sin6 = satocsin6(sa); 1187 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1188 /* 1189 * An IP6 address of 0 means listen to or stop 1190 * listening to all of the Ethernet multicast 1191 * address used for IP6. 1192 * (This is used for multicast routers.) 1193 */ 1194 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN); 1195 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN); 1196 } else { 1197 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo); 1198 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1199 } 1200 break; 1201 #endif 1202 1203 default: 1204 return EAFNOSUPPORT; 1205 } 1206 return 0; 1207 } 1208 1209 /* 1210 * Add an Ethernet multicast address or range of addresses to the list for a 1211 * given interface. 1212 */ 1213 int 1214 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec) 1215 { 1216 struct ether_multi *enm; 1217 u_char addrlo[ETHER_ADDR_LEN]; 1218 u_char addrhi[ETHER_ADDR_LEN]; 1219 int s = splnet(), error; 1220 1221 error = ether_multiaddr(sa, addrlo, addrhi); 1222 if (error != 0) { 1223 splx(s); 1224 return error; 1225 } 1226 1227 /* 1228 * Verify that we have valid Ethernet multicast addresses. 1229 */ 1230 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) { 1231 splx(s); 1232 return EINVAL; 1233 } 1234 /* 1235 * See if the address range is already in the list. 1236 */ 1237 ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, enm); 1238 if (enm != NULL) { 1239 /* 1240 * Found it; just increment the reference count. 1241 */ 1242 ++enm->enm_refcount; 1243 splx(s); 1244 return 0; 1245 } 1246 /* 1247 * New address or range; malloc a new multicast record 1248 * and link it into the interface's multicast list. 1249 */ 1250 enm = (struct ether_multi *)malloc(sizeof(*enm), M_IFMADDR, M_NOWAIT); 1251 if (enm == NULL) { 1252 splx(s); 1253 return ENOBUFS; 1254 } 1255 memcpy(enm->enm_addrlo, addrlo, 6); 1256 memcpy(enm->enm_addrhi, addrhi, 6); 1257 enm->enm_refcount = 1; 1258 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list); 1259 ec->ec_multicnt++; 1260 splx(s); 1261 /* 1262 * Return ENETRESET to inform the driver that the list has changed 1263 * and its reception filter should be adjusted accordingly. 1264 */ 1265 return ENETRESET; 1266 } 1267 1268 /* 1269 * Delete a multicast address record. 1270 */ 1271 int 1272 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec) 1273 { 1274 struct ether_multi *enm; 1275 u_char addrlo[ETHER_ADDR_LEN]; 1276 u_char addrhi[ETHER_ADDR_LEN]; 1277 int s = splnet(), error; 1278 1279 error = ether_multiaddr(sa, addrlo, addrhi); 1280 if (error != 0) { 1281 splx(s); 1282 return (error); 1283 } 1284 1285 /* 1286 * Look ur the address in our list. 1287 */ 1288 ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, enm); 1289 if (enm == NULL) { 1290 splx(s); 1291 return (ENXIO); 1292 } 1293 if (--enm->enm_refcount != 0) { 1294 /* 1295 * Still some claims to this record. 1296 */ 1297 splx(s); 1298 return (0); 1299 } 1300 /* 1301 * No remaining claims to this record; unlink and free it. 1302 */ 1303 LIST_REMOVE(enm, enm_list); 1304 free(enm, M_IFMADDR); 1305 ec->ec_multicnt--; 1306 splx(s); 1307 /* 1308 * Return ENETRESET to inform the driver that the list has changed 1309 * and its reception filter should be adjusted accordingly. 1310 */ 1311 return (ENETRESET); 1312 } 1313 1314 void 1315 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb) 1316 { 1317 ec->ec_ifflags_cb = cb; 1318 } 1319 1320 /* 1321 * Common ioctls for Ethernet interfaces. Note, we must be 1322 * called at splnet(). 1323 */ 1324 int 1325 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1326 { 1327 struct ethercom *ec = (void *) ifp; 1328 struct eccapreq *eccr; 1329 struct ifreq *ifr = (struct ifreq *)data; 1330 struct if_laddrreq *iflr = data; 1331 const struct sockaddr_dl *sdl; 1332 static const uint8_t zero[ETHER_ADDR_LEN]; 1333 int error; 1334 1335 switch (cmd) { 1336 case SIOCINITIFADDR: 1337 { 1338 struct ifaddr *ifa = (struct ifaddr *)data; 1339 if (ifa->ifa_addr->sa_family != AF_LINK 1340 && (ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 1341 (IFF_UP|IFF_RUNNING)) { 1342 ifp->if_flags |= IFF_UP; 1343 if ((error = (*ifp->if_init)(ifp)) != 0) 1344 return error; 1345 } 1346 #ifdef INET 1347 if (ifa->ifa_addr->sa_family == AF_INET) 1348 arp_ifinit(ifp, ifa); 1349 #endif /* INET */ 1350 return 0; 1351 } 1352 1353 case SIOCSIFMTU: 1354 { 1355 int maxmtu; 1356 1357 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU) 1358 maxmtu = ETHERMTU_JUMBO; 1359 else 1360 maxmtu = ETHERMTU; 1361 1362 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 1363 return EINVAL; 1364 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1365 return error; 1366 else if (ifp->if_flags & IFF_UP) { 1367 /* Make sure the device notices the MTU change. */ 1368 return (*ifp->if_init)(ifp); 1369 } else 1370 return 0; 1371 } 1372 1373 case SIOCSIFFLAGS: 1374 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1375 return error; 1376 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 1377 case IFF_RUNNING: 1378 /* 1379 * If interface is marked down and it is running, 1380 * then stop and disable it. 1381 */ 1382 (*ifp->if_stop)(ifp, 1); 1383 break; 1384 case IFF_UP: 1385 /* 1386 * If interface is marked up and it is stopped, then 1387 * start it. 1388 */ 1389 return (*ifp->if_init)(ifp); 1390 case IFF_UP|IFF_RUNNING: 1391 error = 0; 1392 if (ec->ec_ifflags_cb == NULL || 1393 (error = (*ec->ec_ifflags_cb)(ec)) == ENETRESET) { 1394 /* 1395 * Reset the interface to pick up 1396 * changes in any other flags that 1397 * affect the hardware state. 1398 */ 1399 return (*ifp->if_init)(ifp); 1400 } else 1401 return error; 1402 case 0: 1403 break; 1404 } 1405 return 0; 1406 case SIOCGETHERCAP: 1407 eccr = (struct eccapreq *)data; 1408 eccr->eccr_capabilities = ec->ec_capabilities; 1409 eccr->eccr_capenable = ec->ec_capenable; 1410 return 0; 1411 case SIOCADDMULTI: 1412 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec); 1413 case SIOCDELMULTI: 1414 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec); 1415 case SIOCSIFMEDIA: 1416 case SIOCGIFMEDIA: 1417 if (ec->ec_mii == NULL) 1418 return ENOTTY; 1419 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, cmd); 1420 case SIOCALIFADDR: 1421 sdl = satocsdl(sstocsa(&iflr->addr)); 1422 if (sdl->sdl_family != AF_LINK) 1423 ; 1424 else if (ETHER_IS_MULTICAST(CLLADDR(sdl))) 1425 return EINVAL; 1426 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0) 1427 return EINVAL; 1428 /*FALLTHROUGH*/ 1429 default: 1430 return ifioctl_common(ifp, cmd, data); 1431 } 1432 return 0; 1433 } 1434 1435 /* 1436 * Enable/disable passing VLAN packets if the parent interface supports it. 1437 * Return: 1438 * 0: Ok 1439 * -1: Parent interface does not support vlans 1440 * >0: Error 1441 */ 1442 int 1443 ether_enable_vlan_mtu(struct ifnet *ifp) 1444 { 1445 int error; 1446 struct ethercom *ec = (void *)ifp; 1447 1448 /* Already have VLAN's do nothing. */ 1449 if (ec->ec_nvlans != 0) 1450 return 0; 1451 1452 /* Parent does not support VLAN's */ 1453 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) 1454 return -1; 1455 1456 /* 1457 * Parent supports the VLAN_MTU capability, 1458 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames; 1459 * enable it. 1460 */ 1461 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1462 1463 /* Interface is down, defer for later */ 1464 if ((ifp->if_flags & IFF_UP) == 0) 1465 return 0; 1466 1467 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1468 return 0; 1469 1470 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1471 return error; 1472 } 1473 1474 int 1475 ether_disable_vlan_mtu(struct ifnet *ifp) 1476 { 1477 int error; 1478 struct ethercom *ec = (void *)ifp; 1479 1480 /* We still have VLAN's, defer for later */ 1481 if (ec->ec_nvlans != 0) 1482 return 0; 1483 1484 /* Parent does not support VLAB's, nothing to do. */ 1485 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0) 1486 return -1; 1487 1488 /* 1489 * Disable Tx/Rx of VLAN-sized frames. 1490 */ 1491 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1492 1493 /* Interface is down, defer for later */ 1494 if ((ifp->if_flags & IFF_UP) == 0) 1495 return 0; 1496 1497 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1498 return 0; 1499 1500 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1501 return error; 1502 } 1503 1504 static int 1505 ether_multicast_sysctl(SYSCTLFN_ARGS) 1506 { 1507 struct ether_multi *enm; 1508 struct ether_multi_sysctl addr; 1509 struct ifnet *ifp; 1510 struct ethercom *ec; 1511 int error = 0; 1512 size_t written; 1513 struct psref psref; 1514 int bound; 1515 1516 if (namelen != 1) 1517 return EINVAL; 1518 1519 bound = curlwp_bind(); 1520 ifp = if_get_byindex(name[0], &psref); 1521 if (ifp == NULL) { 1522 error = ENODEV; 1523 goto out; 1524 } 1525 if (ifp->if_type != IFT_ETHER) { 1526 if_put(ifp, &psref); 1527 *oldlenp = 0; 1528 goto out; 1529 } 1530 ec = (struct ethercom *)ifp; 1531 1532 if (oldp == NULL) { 1533 if_put(ifp, &psref); 1534 *oldlenp = ec->ec_multicnt * sizeof(addr); 1535 goto out; 1536 } 1537 1538 memset(&addr, 0, sizeof(addr)); 1539 error = 0; 1540 written = 0; 1541 1542 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) { 1543 if (written + sizeof(addr) > *oldlenp) 1544 break; 1545 addr.enm_refcount = enm->enm_refcount; 1546 memcpy(addr.enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN); 1547 memcpy(addr.enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN); 1548 error = sysctl_copyout(l, &addr, oldp, sizeof(addr)); 1549 if (error) 1550 break; 1551 written += sizeof(addr); 1552 oldp = (char *)oldp + sizeof(addr); 1553 } 1554 if_put(ifp, &psref); 1555 1556 *oldlenp = written; 1557 out: 1558 curlwp_bindx(bound); 1559 return error; 1560 } 1561 1562 SYSCTL_SETUP(sysctl_net_ether_setup, "sysctl net.ether subtree setup") 1563 { 1564 const struct sysctlnode *rnode = NULL; 1565 1566 sysctl_createv(clog, 0, NULL, &rnode, 1567 CTLFLAG_PERMANENT, 1568 CTLTYPE_NODE, "ether", 1569 SYSCTL_DESCR("Ethernet-specific information"), 1570 NULL, 0, NULL, 0, 1571 CTL_NET, CTL_CREATE, CTL_EOL); 1572 1573 sysctl_createv(clog, 0, &rnode, NULL, 1574 CTLFLAG_PERMANENT, 1575 CTLTYPE_NODE, "multicast", 1576 SYSCTL_DESCR("multicast addresses"), 1577 ether_multicast_sysctl, 0, NULL, 0, 1578 CTL_CREATE, CTL_EOL); 1579 } 1580 1581 void 1582 etherinit(void) 1583 { 1584 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET); 1585 } 1586