1 /* $NetBSD: if_ethersubr.c,v 1.288 2020/08/28 06:27:49 ozaki-r Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.288 2020/08/28 06:27:49 ozaki-r Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_atalk.h" 69 #include "opt_mbuftrace.h" 70 #include "opt_mpls.h" 71 #include "opt_gateway.h" 72 #include "opt_pppoe.h" 73 #include "opt_net_mpsafe.h" 74 #endif 75 76 #include "vlan.h" 77 #include "pppoe.h" 78 #include "bridge.h" 79 #include "arp.h" 80 #include "agr.h" 81 82 #include <sys/sysctl.h> 83 #include <sys/mbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/ioctl.h> 86 #include <sys/errno.h> 87 #include <sys/device.h> 88 #include <sys/entropy.h> 89 #include <sys/rndsource.h> 90 #include <sys/cpu.h> 91 #include <sys/kmem.h> 92 93 #include <net/if.h> 94 #include <net/netisr.h> 95 #include <net/route.h> 96 #include <net/if_llc.h> 97 #include <net/if_dl.h> 98 #include <net/if_types.h> 99 #include <net/pktqueue.h> 100 101 #include <net/if_media.h> 102 #include <dev/mii/mii.h> 103 #include <dev/mii/miivar.h> 104 105 #if NARP == 0 106 /* 107 * XXX there should really be a way to issue this warning from within config(8) 108 */ 109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK. 110 #endif 111 112 #include <net/bpf.h> 113 114 #include <net/if_ether.h> 115 #include <net/if_vlanvar.h> 116 117 #if NPPPOE > 0 118 #include <net/if_pppoe.h> 119 #endif 120 121 #if NAGR > 0 122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */ 123 #include <net/agr/ieee8023ad.h> 124 #include <net/agr/if_agrvar.h> 125 #endif 126 127 #if NBRIDGE > 0 128 #include <net/if_bridgevar.h> 129 #endif 130 131 #include <netinet/in.h> 132 #ifdef INET 133 #include <netinet/in_var.h> 134 #endif 135 #include <netinet/if_inarp.h> 136 137 #ifdef INET6 138 #ifndef INET 139 #include <netinet/in.h> 140 #endif 141 #include <netinet6/in6_var.h> 142 #include <netinet6/nd6.h> 143 #endif 144 145 #include "carp.h" 146 #if NCARP > 0 147 #include <netinet/ip_carp.h> 148 #endif 149 150 #ifdef NETATALK 151 #include <netatalk/at.h> 152 #include <netatalk/at_var.h> 153 #include <netatalk/at_extern.h> 154 155 #define llc_snap_org_code llc_un.type_snap.org_code 156 #define llc_snap_ether_type llc_un.type_snap.ether_type 157 158 extern u_char at_org_code[3]; 159 extern u_char aarp_org_code[3]; 160 #endif /* NETATALK */ 161 162 #ifdef MPLS 163 #include <netmpls/mpls.h> 164 #include <netmpls/mpls_var.h> 165 #endif 166 167 #ifdef DIAGNOSTIC 168 static struct timeval bigpktppslim_last; 169 static int bigpktppslim = 2; /* XXX */ 170 static int bigpktpps_count; 171 static kmutex_t bigpktpps_lock __cacheline_aligned; 172 #endif 173 174 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = 175 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 176 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = 177 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; 178 #define senderr(e) { error = (e); goto bad;} 179 180 static int ether_output(struct ifnet *, struct mbuf *, 181 const struct sockaddr *, const struct rtentry *); 182 183 /* 184 * Ethernet output routine. 185 * Encapsulate a packet of type family for the local net. 186 * Assumes that ifp is actually pointer to ethercom structure. 187 */ 188 static int 189 ether_output(struct ifnet * const ifp0, struct mbuf * const m0, 190 const struct sockaddr * const dst, const struct rtentry *rt) 191 { 192 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 193 uint16_t etype = 0; 194 int error = 0, hdrcmplt = 0; 195 struct mbuf *m = m0; 196 struct mbuf *mcopy = NULL; 197 struct ether_header *eh; 198 struct ifnet *ifp = ifp0; 199 #ifdef INET 200 struct arphdr *ah; 201 #endif 202 #ifdef NETATALK 203 struct at_ifaddr *aa; 204 #endif 205 206 #ifdef MBUFTRACE 207 m_claimm(m, ifp->if_mowner); 208 #endif 209 210 #if NCARP > 0 211 if (ifp->if_type == IFT_CARP) { 212 struct ifaddr *ifa; 213 int s = pserialize_read_enter(); 214 215 /* loop back if this is going to the carp interface */ 216 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP && 217 (ifa = ifa_ifwithaddr(dst)) != NULL) { 218 if (ifa->ifa_ifp == ifp0) { 219 pserialize_read_exit(s); 220 return looutput(ifp0, m, dst, rt); 221 } 222 } 223 pserialize_read_exit(s); 224 225 ifp = ifp->if_carpdev; 226 /* ac = (struct arpcom *)ifp; */ 227 228 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) != 229 (IFF_UP | IFF_RUNNING)) 230 senderr(ENETDOWN); 231 } 232 #endif 233 234 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 235 senderr(ENETDOWN); 236 237 switch (dst->sa_family) { 238 239 #ifdef INET 240 case AF_INET: 241 if (m->m_flags & M_BCAST) { 242 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 243 } else if (m->m_flags & M_MCAST) { 244 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst); 245 } else { 246 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst)); 247 if (error) 248 return (error == EWOULDBLOCK) ? 0 : error; 249 } 250 /* If broadcasting on a simplex interface, loopback a copy */ 251 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) 252 mcopy = m_copypacket(m, M_DONTWAIT); 253 etype = htons(ETHERTYPE_IP); 254 break; 255 256 case AF_ARP: 257 ah = mtod(m, struct arphdr *); 258 if (m->m_flags & M_BCAST) { 259 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 260 } else { 261 void *tha = ar_tha(ah); 262 263 if (tha == NULL) { 264 /* fake with ARPHRD_IEEE1394 */ 265 m_freem(m); 266 return 0; 267 } 268 memcpy(edst, tha, sizeof(edst)); 269 } 270 271 ah->ar_hrd = htons(ARPHRD_ETHER); 272 273 switch (ntohs(ah->ar_op)) { 274 case ARPOP_REVREQUEST: 275 case ARPOP_REVREPLY: 276 etype = htons(ETHERTYPE_REVARP); 277 break; 278 279 case ARPOP_REQUEST: 280 case ARPOP_REPLY: 281 default: 282 etype = htons(ETHERTYPE_ARP); 283 } 284 break; 285 #endif 286 287 #ifdef INET6 288 case AF_INET6: 289 if (m->m_flags & M_BCAST) { 290 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 291 } else if (m->m_flags & M_MCAST) { 292 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 293 edst); 294 } else { 295 error = nd6_resolve(ifp0, rt, m, dst, edst, 296 sizeof(edst)); 297 if (error) 298 return (error == EWOULDBLOCK) ? 0 : error; 299 } 300 etype = htons(ETHERTYPE_IPV6); 301 break; 302 #endif 303 304 #ifdef NETATALK 305 case AF_APPLETALK: { 306 struct ifaddr *ifa; 307 int s; 308 309 KERNEL_LOCK(1, NULL); 310 311 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) { 312 KERNEL_UNLOCK_ONE(NULL); 313 return 0; 314 } 315 316 /* 317 * ifaddr is the first thing in at_ifaddr 318 */ 319 s = pserialize_read_enter(); 320 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp); 321 if (ifa == NULL) { 322 pserialize_read_exit(s); 323 KERNEL_UNLOCK_ONE(NULL); 324 senderr(EADDRNOTAVAIL); 325 } 326 aa = (struct at_ifaddr *)ifa; 327 328 /* 329 * In the phase 2 case, we need to prepend an mbuf for the 330 * llc header. 331 */ 332 if (aa->aa_flags & AFA_PHASE2) { 333 struct llc llc; 334 335 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT); 336 if (m == NULL) { 337 pserialize_read_exit(s); 338 KERNEL_UNLOCK_ONE(NULL); 339 senderr(ENOBUFS); 340 } 341 342 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 343 llc.llc_control = LLC_UI; 344 memcpy(llc.llc_snap_org_code, at_org_code, 345 sizeof(llc.llc_snap_org_code)); 346 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK); 347 memcpy(mtod(m, void *), &llc, sizeof(struct llc)); 348 } else { 349 etype = htons(ETHERTYPE_ATALK); 350 } 351 pserialize_read_exit(s); 352 KERNEL_UNLOCK_ONE(NULL); 353 break; 354 } 355 #endif /* NETATALK */ 356 357 case pseudo_AF_HDRCMPLT: 358 hdrcmplt = 1; 359 memcpy(esrc, 360 ((const struct ether_header *)dst->sa_data)->ether_shost, 361 sizeof(esrc)); 362 /* FALLTHROUGH */ 363 364 case AF_UNSPEC: 365 memcpy(edst, 366 ((const struct ether_header *)dst->sa_data)->ether_dhost, 367 sizeof(edst)); 368 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */ 369 etype = ((const struct ether_header *)dst->sa_data)->ether_type; 370 break; 371 372 default: 373 printf("%s: can't handle af%d\n", ifp->if_xname, 374 dst->sa_family); 375 senderr(EAFNOSUPPORT); 376 } 377 378 #ifdef MPLS 379 { 380 struct m_tag *mtag; 381 mtag = m_tag_find(m, PACKET_TAG_MPLS); 382 if (mtag != NULL) { 383 /* Having the tag itself indicates it's MPLS */ 384 etype = htons(ETHERTYPE_MPLS); 385 m_tag_delete(m, mtag); 386 } 387 } 388 #endif 389 390 if (mcopy) 391 (void)looutput(ifp, mcopy, dst, rt); 392 393 KASSERT((m->m_flags & M_PKTHDR) != 0); 394 395 /* 396 * If no ether type is set, this must be a 802.2 formatted packet. 397 */ 398 if (etype == 0) 399 etype = htons(m->m_pkthdr.len); 400 401 /* 402 * Add local net header. If no space in first mbuf, allocate another. 403 */ 404 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 405 if (m == NULL) 406 senderr(ENOBUFS); 407 408 eh = mtod(m, struct ether_header *); 409 /* Note: etype is already in network byte order. */ 410 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 411 memcpy(eh->ether_dhost, edst, sizeof(edst)); 412 if (hdrcmplt) { 413 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); 414 } else { 415 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl), 416 sizeof(eh->ether_shost)); 417 } 418 419 #if NCARP > 0 420 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) { 421 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl), 422 sizeof(eh->ether_shost)); 423 } 424 #endif 425 426 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 427 return error; 428 if (m == NULL) 429 return 0; 430 431 #if NBRIDGE > 0 432 /* 433 * Bridges require special output handling. 434 */ 435 if (ifp->if_bridge) 436 return bridge_output(ifp, m, NULL, NULL); 437 #endif 438 439 #if NCARP > 0 440 if (ifp != ifp0) 441 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN); 442 #endif 443 444 #ifdef ALTQ 445 KERNEL_LOCK(1, NULL); 446 /* 447 * If ALTQ is enabled on the parent interface, do 448 * classification; the queueing discipline might not 449 * require classification, but might require the 450 * address family/header pointer in the pktattr. 451 */ 452 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 453 altq_etherclassify(&ifp->if_snd, m); 454 KERNEL_UNLOCK_ONE(NULL); 455 #endif 456 return ifq_enqueue(ifp, m); 457 458 bad: 459 if_statinc(ifp, if_oerrors); 460 if (m) 461 m_freem(m); 462 return error; 463 } 464 465 #ifdef ALTQ 466 /* 467 * This routine is a slight hack to allow a packet to be classified 468 * if the Ethernet headers are present. It will go away when ALTQ's 469 * classification engine understands link headers. 470 * 471 * XXX: We may need to do m_pullups here. First to ensure struct ether_header 472 * is indeed contiguous, then to read the LLC and so on. 473 */ 474 void 475 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m) 476 { 477 struct ether_header *eh; 478 struct mbuf *mtop = m; 479 uint16_t ether_type; 480 int hlen, af, hdrsize; 481 void *hdr; 482 483 KASSERT((mtop->m_flags & M_PKTHDR) != 0); 484 485 hlen = ETHER_HDR_LEN; 486 eh = mtod(m, struct ether_header *); 487 488 ether_type = htons(eh->ether_type); 489 490 if (ether_type < ETHERMTU) { 491 /* LLC/SNAP */ 492 struct llc *llc = (struct llc *)(eh + 1); 493 hlen += 8; 494 495 if (m->m_len < hlen || 496 llc->llc_dsap != LLC_SNAP_LSAP || 497 llc->llc_ssap != LLC_SNAP_LSAP || 498 llc->llc_control != LLC_UI) { 499 /* Not SNAP. */ 500 goto bad; 501 } 502 503 ether_type = htons(llc->llc_un.type_snap.ether_type); 504 } 505 506 switch (ether_type) { 507 case ETHERTYPE_IP: 508 af = AF_INET; 509 hdrsize = 20; /* sizeof(struct ip) */ 510 break; 511 512 case ETHERTYPE_IPV6: 513 af = AF_INET6; 514 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 515 break; 516 517 default: 518 af = AF_UNSPEC; 519 hdrsize = 0; 520 break; 521 } 522 523 while (m->m_len <= hlen) { 524 hlen -= m->m_len; 525 m = m->m_next; 526 if (m == NULL) 527 goto bad; 528 } 529 530 if (m->m_len < (hlen + hdrsize)) { 531 /* 532 * protocol header not in a single mbuf. 533 * We can't cope with this situation right 534 * now (but it shouldn't ever happen, really, anyhow). 535 */ 536 #ifdef DEBUG 537 printf("altq_etherclassify: headers span multiple mbufs: " 538 "%d < %d\n", m->m_len, (hlen + hdrsize)); 539 #endif 540 goto bad; 541 } 542 543 m->m_data += hlen; 544 m->m_len -= hlen; 545 546 hdr = mtod(m, void *); 547 548 if (ALTQ_NEEDS_CLASSIFY(ifq)) { 549 mtop->m_pkthdr.pattr_class = 550 (*ifq->altq_classify)(ifq->altq_clfier, m, af); 551 } 552 mtop->m_pkthdr.pattr_af = af; 553 mtop->m_pkthdr.pattr_hdr = hdr; 554 555 m->m_data -= hlen; 556 m->m_len += hlen; 557 558 return; 559 560 bad: 561 mtop->m_pkthdr.pattr_class = NULL; 562 mtop->m_pkthdr.pattr_hdr = NULL; 563 mtop->m_pkthdr.pattr_af = AF_UNSPEC; 564 } 565 #endif /* ALTQ */ 566 567 #if defined (LLC) || defined (NETATALK) 568 static void 569 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh) 570 { 571 struct ifqueue *inq = NULL; 572 int isr = 0; 573 struct llc *l; 574 575 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) 576 goto drop; 577 578 l = (struct llc *)(eh+1); 579 switch (l->llc_dsap) { 580 #ifdef NETATALK 581 case LLC_SNAP_LSAP: 582 switch (l->llc_control) { 583 case LLC_UI: 584 if (l->llc_ssap != LLC_SNAP_LSAP) 585 goto drop; 586 587 if (memcmp(&(l->llc_snap_org_code)[0], 588 at_org_code, sizeof(at_org_code)) == 0 && 589 ntohs(l->llc_snap_ether_type) == 590 ETHERTYPE_ATALK) { 591 inq = &atintrq2; 592 m_adj(m, sizeof(struct ether_header) 593 + sizeof(struct llc)); 594 isr = NETISR_ATALK; 595 break; 596 } 597 598 if (memcmp(&(l->llc_snap_org_code)[0], 599 aarp_org_code, 600 sizeof(aarp_org_code)) == 0 && 601 ntohs(l->llc_snap_ether_type) == 602 ETHERTYPE_AARP) { 603 m_adj(m, sizeof(struct ether_header) 604 + sizeof(struct llc)); 605 aarpinput(ifp, m); /* XXX queue? */ 606 return; 607 } 608 609 default: 610 goto drop; 611 } 612 break; 613 #endif 614 default: 615 goto drop; 616 } 617 618 KASSERT(inq != NULL); 619 IFQ_ENQUEUE_ISR(inq, m, isr); 620 return; 621 622 drop: 623 m_freem(m); 624 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */ 625 return; 626 } 627 #endif /* defined (LLC) || defined (NETATALK) */ 628 629 /* 630 * Process a received Ethernet packet; 631 * the packet is in the mbuf chain m with 632 * the ether header. 633 */ 634 void 635 ether_input(struct ifnet *ifp, struct mbuf *m) 636 { 637 struct ethercom *ec = (struct ethercom *) ifp; 638 pktqueue_t *pktq = NULL; 639 struct ifqueue *inq = NULL; 640 uint16_t etype; 641 struct ether_header *eh; 642 size_t ehlen; 643 static int earlypkts; 644 int isr = 0; 645 646 KASSERT(!cpu_intr_p()); 647 KASSERT((m->m_flags & M_PKTHDR) != 0); 648 649 if ((ifp->if_flags & IFF_UP) == 0) 650 goto drop; 651 if (m->m_len < sizeof(*eh)) { 652 m = m_pullup(m, sizeof(*eh)); 653 if (m == NULL) 654 goto dropped; 655 } 656 657 #ifdef MBUFTRACE 658 m_claimm(m, &ec->ec_rx_mowner); 659 #endif 660 eh = mtod(m, struct ether_header *); 661 etype = ntohs(eh->ether_type); 662 ehlen = sizeof(*eh); 663 664 if (__predict_false(earlypkts < 100 || 665 entropy_epoch() == (unsigned)-1)) { 666 rnd_add_data(NULL, eh, ehlen, 0); 667 earlypkts++; 668 } 669 670 /* 671 * Determine if the packet is within its size limits. For MPLS the 672 * header length is variable, so we skip the check. 673 */ 674 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len > 675 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { 676 #ifdef DIAGNOSTIC 677 mutex_enter(&bigpktpps_lock); 678 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count, 679 bigpktppslim)) { 680 printf("%s: discarding oversize frame (len=%d)\n", 681 ifp->if_xname, m->m_pkthdr.len); 682 } 683 mutex_exit(&bigpktpps_lock); 684 #endif 685 goto drop; 686 } 687 688 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 689 /* 690 * If this is not a simplex interface, drop the packet 691 * if it came from us. 692 */ 693 if ((ifp->if_flags & IFF_SIMPLEX) == 0 && 694 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost, 695 ETHER_ADDR_LEN) == 0) { 696 goto drop; 697 } 698 699 if (memcmp(etherbroadcastaddr, 700 eh->ether_dhost, ETHER_ADDR_LEN) == 0) 701 m->m_flags |= M_BCAST; 702 else 703 m->m_flags |= M_MCAST; 704 if_statinc(ifp, if_imcasts); 705 } 706 707 /* If the CRC is still on the packet, trim it off. */ 708 if (m->m_flags & M_HASFCS) { 709 m_adj(m, -ETHER_CRC_LEN); 710 m->m_flags &= ~M_HASFCS; 711 } 712 713 if_statadd(ifp, if_ibytes, m->m_pkthdr.len); 714 715 #if NCARP > 0 716 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) { 717 /* 718 * Clear M_PROMISC, in case the packet comes from a 719 * vlan. 720 */ 721 m->m_flags &= ~M_PROMISC; 722 if (carp_input(m, (uint8_t *)&eh->ether_shost, 723 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0) 724 return; 725 } 726 #endif 727 728 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 && 729 (ifp->if_flags & IFF_PROMISC) != 0 && 730 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 731 ETHER_ADDR_LEN) != 0) { 732 m->m_flags |= M_PROMISC; 733 } 734 735 if ((m->m_flags & M_PROMISC) == 0) { 736 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) 737 return; 738 if (m == NULL) 739 return; 740 741 eh = mtod(m, struct ether_header *); 742 etype = ntohs(eh->ether_type); 743 } 744 745 #if NAGR > 0 746 if (ifp->if_agrprivate && 747 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) { 748 m->m_flags &= ~M_PROMISC; 749 agr_input(ifp, m); 750 return; 751 } 752 #endif 753 754 /* 755 * If VLANs are configured on the interface, check to 756 * see if the device performed the decapsulation and 757 * provided us with the tag. 758 */ 759 if (ec->ec_nvlans && vlan_has_tag(m)) { 760 #if NVLAN > 0 761 /* 762 * vlan_input() will either recursively call ether_input() 763 * or drop the packet. 764 */ 765 vlan_input(ifp, m); 766 return; 767 #else 768 goto drop; 769 #endif 770 } 771 772 /* 773 * Handle protocols that expect to have the Ethernet header 774 * (and possibly FCS) intact. 775 */ 776 switch (etype) { 777 case ETHERTYPE_VLAN: { 778 struct ether_vlan_header *evl = (void *)eh; 779 780 /* 781 * If there is a tag of 0, then the VLAN header was probably 782 * just being used to store the priority. Extract the ether 783 * type, and if IP or IPV6, let them deal with it. 784 */ 785 if (m->m_len >= sizeof(*evl) && 786 EVL_VLANOFTAG(evl->evl_tag) == 0) { 787 etype = ntohs(evl->evl_proto); 788 ehlen = sizeof(*evl); 789 if ((m->m_flags & M_PROMISC) == 0 && 790 (etype == ETHERTYPE_IP || 791 etype == ETHERTYPE_IPV6)) 792 break; 793 } 794 795 #if NVLAN > 0 796 /* 797 * vlan_input() will either recursively call ether_input() 798 * or drop the packet. 799 */ 800 if (ec->ec_nvlans != 0) { 801 vlan_input(ifp, m); 802 return; 803 } else 804 #endif 805 goto drop; 806 } 807 808 #if NPPPOE > 0 809 case ETHERTYPE_PPPOEDISC: 810 pppoedisc_input(ifp, m); 811 return; 812 813 case ETHERTYPE_PPPOE: 814 pppoe_input(ifp, m); 815 return; 816 #endif 817 818 case ETHERTYPE_SLOWPROTOCOLS: { 819 uint8_t subtype; 820 821 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) 822 goto drop; 823 824 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype); 825 switch (subtype) { 826 #if NAGR > 0 827 case SLOWPROTOCOLS_SUBTYPE_LACP: 828 if (ifp->if_agrprivate) { 829 ieee8023ad_lacp_input(ifp, m); 830 return; 831 } 832 break; 833 834 case SLOWPROTOCOLS_SUBTYPE_MARKER: 835 if (ifp->if_agrprivate) { 836 ieee8023ad_marker_input(ifp, m); 837 return; 838 } 839 break; 840 #endif 841 842 default: 843 if (subtype == 0 || subtype > 10) { 844 /* illegal value */ 845 goto drop; 846 } 847 /* unknown subtype */ 848 break; 849 } 850 } 851 /* FALLTHROUGH */ 852 default: 853 if (m->m_flags & M_PROMISC) 854 goto drop; 855 } 856 857 /* If the CRC is still on the packet, trim it off. */ 858 if (m->m_flags & M_HASFCS) { 859 m_adj(m, -ETHER_CRC_LEN); 860 m->m_flags &= ~M_HASFCS; 861 } 862 863 /* etype represents the size of the payload in this case */ 864 if (etype <= ETHERMTU + sizeof(struct ether_header)) { 865 KASSERT(ehlen == sizeof(*eh)); 866 #if defined (LLC) || defined (NETATALK) 867 ether_input_llc(ifp, m, eh); 868 return; 869 #else 870 goto drop; 871 #endif 872 } 873 874 /* Strip off the Ethernet header. */ 875 m_adj(m, ehlen); 876 877 switch (etype) { 878 #ifdef INET 879 case ETHERTYPE_IP: 880 #ifdef GATEWAY 881 if (ipflow_fastforward(m)) 882 return; 883 #endif 884 pktq = ip_pktq; 885 break; 886 887 case ETHERTYPE_ARP: 888 isr = NETISR_ARP; 889 inq = &arpintrq; 890 break; 891 892 case ETHERTYPE_REVARP: 893 revarpinput(m); /* XXX queue? */ 894 return; 895 #endif 896 897 #ifdef INET6 898 case ETHERTYPE_IPV6: 899 if (__predict_false(!in6_present)) 900 goto drop; 901 #ifdef GATEWAY 902 if (ip6flow_fastforward(&m)) 903 return; 904 #endif 905 pktq = ip6_pktq; 906 break; 907 #endif 908 909 #ifdef NETATALK 910 case ETHERTYPE_ATALK: 911 isr = NETISR_ATALK; 912 inq = &atintrq1; 913 break; 914 915 case ETHERTYPE_AARP: 916 aarpinput(ifp, m); /* XXX queue? */ 917 return; 918 #endif 919 920 #ifdef MPLS 921 case ETHERTYPE_MPLS: 922 isr = NETISR_MPLS; 923 inq = &mplsintrq; 924 break; 925 #endif 926 927 default: 928 goto drop; 929 } 930 931 if (__predict_true(pktq)) { 932 #ifdef NET_MPSAFE 933 const u_int h = curcpu()->ci_index; 934 #else 935 const uint32_t h = pktq_rps_hash(m); 936 #endif 937 if (__predict_false(!pktq_enqueue(pktq, m, h))) { 938 m_freem(m); 939 } 940 return; 941 } 942 943 if (__predict_false(!inq)) { 944 /* Should not happen. */ 945 goto drop; 946 } 947 948 IFQ_ENQUEUE_ISR(inq, m, isr); 949 return; 950 951 drop: 952 m_freem(m); 953 dropped: 954 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */ 955 } 956 957 /* 958 * Convert Ethernet address to printable (loggable) representation. 959 */ 960 char * 961 ether_sprintf(const u_char *ap) 962 { 963 static char etherbuf[3 * ETHER_ADDR_LEN]; 964 return ether_snprintf(etherbuf, sizeof(etherbuf), ap); 965 } 966 967 char * 968 ether_snprintf(char *buf, size_t len, const u_char *ap) 969 { 970 char *cp = buf; 971 size_t i; 972 973 for (i = 0; i < len / 3; i++) { 974 *cp++ = hexdigits[*ap >> 4]; 975 *cp++ = hexdigits[*ap++ & 0xf]; 976 *cp++ = ':'; 977 } 978 *--cp = '\0'; 979 return buf; 980 } 981 982 /* 983 * Perform common duties while attaching to interface list 984 */ 985 void 986 ether_ifattach(struct ifnet *ifp, const uint8_t *lla) 987 { 988 struct ethercom *ec = (struct ethercom *)ifp; 989 990 ifp->if_type = IFT_ETHER; 991 ifp->if_hdrlen = ETHER_HDR_LEN; 992 ifp->if_dlt = DLT_EN10MB; 993 ifp->if_mtu = ETHERMTU; 994 ifp->if_output = ether_output; 995 ifp->_if_input = ether_input; 996 if (ifp->if_baudrate == 0) 997 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 998 999 if (lla != NULL) 1000 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla)); 1001 1002 LIST_INIT(&ec->ec_multiaddrs); 1003 SIMPLEQ_INIT(&ec->ec_vids); 1004 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 1005 ec->ec_flags = 0; 1006 ifp->if_broadcastaddr = etherbroadcastaddr; 1007 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 1008 #ifdef MBUFTRACE 1009 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx"); 1010 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx"); 1011 MOWNER_ATTACH(&ec->ec_tx_mowner); 1012 MOWNER_ATTACH(&ec->ec_rx_mowner); 1013 ifp->if_mowner = &ec->ec_tx_mowner; 1014 #endif 1015 } 1016 1017 void 1018 ether_ifdetach(struct ifnet *ifp) 1019 { 1020 struct ethercom *ec = (void *) ifp; 1021 struct ether_multi *enm; 1022 1023 IFNET_ASSERT_UNLOCKED(ifp); 1024 /* 1025 * Prevent further calls to ioctl (for example turning off 1026 * promiscuous mode from the bridge code), which eventually can 1027 * call if_init() which can cause panics because the interface 1028 * is in the process of being detached. Return device not configured 1029 * instead. 1030 */ 1031 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *), 1032 enxio); 1033 1034 #if NBRIDGE > 0 1035 if (ifp->if_bridge) 1036 bridge_ifdetach(ifp); 1037 #endif 1038 bpf_detach(ifp); 1039 #if NVLAN > 0 1040 if (ec->ec_nvlans) 1041 vlan_ifdetach(ifp); 1042 #endif 1043 1044 ETHER_LOCK(ec); 1045 KASSERT(ec->ec_nvlans == 0); 1046 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) { 1047 LIST_REMOVE(enm, enm_list); 1048 kmem_free(enm, sizeof(*enm)); 1049 ec->ec_multicnt--; 1050 } 1051 ETHER_UNLOCK(ec); 1052 1053 mutex_obj_free(ec->ec_lock); 1054 ec->ec_lock = NULL; 1055 1056 ifp->if_mowner = NULL; 1057 MOWNER_DETACH(&ec->ec_rx_mowner); 1058 MOWNER_DETACH(&ec->ec_tx_mowner); 1059 } 1060 1061 #if 0 1062 /* 1063 * This is for reference. We have a table-driven version 1064 * of the little-endian crc32 generator, which is faster 1065 * than the double-loop. 1066 */ 1067 uint32_t 1068 ether_crc32_le(const uint8_t *buf, size_t len) 1069 { 1070 uint32_t c, crc, carry; 1071 size_t i, j; 1072 1073 crc = 0xffffffffU; /* initial value */ 1074 1075 for (i = 0; i < len; i++) { 1076 c = buf[i]; 1077 for (j = 0; j < 8; j++) { 1078 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1079 crc >>= 1; 1080 c >>= 1; 1081 if (carry) 1082 crc = (crc ^ ETHER_CRC_POLY_LE); 1083 } 1084 } 1085 1086 return (crc); 1087 } 1088 #else 1089 uint32_t 1090 ether_crc32_le(const uint8_t *buf, size_t len) 1091 { 1092 static const uint32_t crctab[] = { 1093 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1094 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1095 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1096 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1097 }; 1098 uint32_t crc; 1099 size_t i; 1100 1101 crc = 0xffffffffU; /* initial value */ 1102 1103 for (i = 0; i < len; i++) { 1104 crc ^= buf[i]; 1105 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1106 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1107 } 1108 1109 return (crc); 1110 } 1111 #endif 1112 1113 uint32_t 1114 ether_crc32_be(const uint8_t *buf, size_t len) 1115 { 1116 uint32_t c, crc, carry; 1117 size_t i, j; 1118 1119 crc = 0xffffffffU; /* initial value */ 1120 1121 for (i = 0; i < len; i++) { 1122 c = buf[i]; 1123 for (j = 0; j < 8; j++) { 1124 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1125 crc <<= 1; 1126 c >>= 1; 1127 if (carry) 1128 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1129 } 1130 } 1131 1132 return (crc); 1133 } 1134 1135 #ifdef INET 1136 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] = 1137 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; 1138 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] = 1139 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff }; 1140 #endif 1141 #ifdef INET6 1142 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] = 1143 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 }; 1144 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] = 1145 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff }; 1146 #endif 1147 1148 /* 1149 * ether_aton implementation, not using a static buffer. 1150 */ 1151 int 1152 ether_aton_r(u_char *dest, size_t len, const char *str) 1153 { 1154 const u_char *cp = (const void *)str; 1155 u_char *ep; 1156 1157 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10)) 1158 1159 if (len < ETHER_ADDR_LEN) 1160 return ENOSPC; 1161 1162 ep = dest + ETHER_ADDR_LEN; 1163 1164 while (*cp) { 1165 if (!isxdigit(*cp)) 1166 return EINVAL; 1167 1168 *dest = atox(*cp); 1169 cp++; 1170 if (isxdigit(*cp)) { 1171 *dest = (*dest << 4) | atox(*cp); 1172 cp++; 1173 } 1174 dest++; 1175 1176 if (dest == ep) 1177 return (*cp == '\0') ? 0 : ENAMETOOLONG; 1178 1179 switch (*cp) { 1180 case ':': 1181 case '-': 1182 case '.': 1183 cp++; 1184 break; 1185 } 1186 } 1187 return ENOBUFS; 1188 } 1189 1190 /* 1191 * Convert a sockaddr into an Ethernet address or range of Ethernet 1192 * addresses. 1193 */ 1194 int 1195 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN], 1196 uint8_t addrhi[ETHER_ADDR_LEN]) 1197 { 1198 #ifdef INET 1199 const struct sockaddr_in *sin; 1200 #endif 1201 #ifdef INET6 1202 const struct sockaddr_in6 *sin6; 1203 #endif 1204 1205 switch (sa->sa_family) { 1206 1207 case AF_UNSPEC: 1208 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN); 1209 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1210 break; 1211 1212 #ifdef INET 1213 case AF_INET: 1214 sin = satocsin(sa); 1215 if (sin->sin_addr.s_addr == INADDR_ANY) { 1216 /* 1217 * An IP address of INADDR_ANY means listen to 1218 * or stop listening to all of the Ethernet 1219 * multicast addresses used for IP. 1220 * (This is for the sake of IP multicast routers.) 1221 */ 1222 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN); 1223 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN); 1224 } else { 1225 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo); 1226 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1227 } 1228 break; 1229 #endif 1230 #ifdef INET6 1231 case AF_INET6: 1232 sin6 = satocsin6(sa); 1233 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1234 /* 1235 * An IP6 address of 0 means listen to or stop 1236 * listening to all of the Ethernet multicast 1237 * address used for IP6. 1238 * (This is used for multicast routers.) 1239 */ 1240 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN); 1241 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN); 1242 } else { 1243 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo); 1244 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1245 } 1246 break; 1247 #endif 1248 1249 default: 1250 return EAFNOSUPPORT; 1251 } 1252 return 0; 1253 } 1254 1255 /* 1256 * Add an Ethernet multicast address or range of addresses to the list for a 1257 * given interface. 1258 */ 1259 int 1260 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec) 1261 { 1262 struct ether_multi *enm, *_enm; 1263 u_char addrlo[ETHER_ADDR_LEN]; 1264 u_char addrhi[ETHER_ADDR_LEN]; 1265 int error = 0; 1266 1267 /* Allocate out of lock */ 1268 enm = kmem_alloc(sizeof(*enm), KM_SLEEP); 1269 1270 ETHER_LOCK(ec); 1271 error = ether_multiaddr(sa, addrlo, addrhi); 1272 if (error != 0) 1273 goto out; 1274 1275 /* 1276 * Verify that we have valid Ethernet multicast addresses. 1277 */ 1278 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) { 1279 error = EINVAL; 1280 goto out; 1281 } 1282 1283 /* 1284 * See if the address range is already in the list. 1285 */ 1286 _enm = ether_lookup_multi(addrlo, addrhi, ec); 1287 if (_enm != NULL) { 1288 /* 1289 * Found it; just increment the reference count. 1290 */ 1291 ++_enm->enm_refcount; 1292 error = 0; 1293 goto out; 1294 } 1295 1296 /* 1297 * Link a new multicast record into the interface's multicast list. 1298 */ 1299 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN); 1300 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN); 1301 enm->enm_refcount = 1; 1302 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list); 1303 ec->ec_multicnt++; 1304 1305 /* 1306 * Return ENETRESET to inform the driver that the list has changed 1307 * and its reception filter should be adjusted accordingly. 1308 */ 1309 error = ENETRESET; 1310 enm = NULL; 1311 1312 out: 1313 ETHER_UNLOCK(ec); 1314 if (enm != NULL) 1315 kmem_free(enm, sizeof(*enm)); 1316 return error; 1317 } 1318 1319 /* 1320 * Delete a multicast address record. 1321 */ 1322 int 1323 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec) 1324 { 1325 struct ether_multi *enm; 1326 u_char addrlo[ETHER_ADDR_LEN]; 1327 u_char addrhi[ETHER_ADDR_LEN]; 1328 int error; 1329 1330 ETHER_LOCK(ec); 1331 error = ether_multiaddr(sa, addrlo, addrhi); 1332 if (error != 0) 1333 goto error; 1334 1335 /* 1336 * Look up the address in our list. 1337 */ 1338 enm = ether_lookup_multi(addrlo, addrhi, ec); 1339 if (enm == NULL) { 1340 error = ENXIO; 1341 goto error; 1342 } 1343 if (--enm->enm_refcount != 0) { 1344 /* 1345 * Still some claims to this record. 1346 */ 1347 error = 0; 1348 goto error; 1349 } 1350 1351 /* 1352 * No remaining claims to this record; unlink and free it. 1353 */ 1354 LIST_REMOVE(enm, enm_list); 1355 ec->ec_multicnt--; 1356 ETHER_UNLOCK(ec); 1357 kmem_free(enm, sizeof(*enm)); 1358 1359 /* 1360 * Return ENETRESET to inform the driver that the list has changed 1361 * and its reception filter should be adjusted accordingly. 1362 */ 1363 return ENETRESET; 1364 1365 error: 1366 ETHER_UNLOCK(ec); 1367 return error; 1368 } 1369 1370 void 1371 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb) 1372 { 1373 ec->ec_ifflags_cb = cb; 1374 } 1375 1376 void 1377 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb) 1378 { 1379 1380 ec->ec_vlan_cb = cb; 1381 } 1382 1383 static int 1384 ether_ioctl_reinit(struct ethercom *ec) 1385 { 1386 struct ifnet *ifp = &ec->ec_if; 1387 int error; 1388 1389 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1390 case IFF_RUNNING: 1391 /* 1392 * If interface is marked down and it is running, 1393 * then stop and disable it. 1394 */ 1395 (*ifp->if_stop)(ifp, 1); 1396 break; 1397 case IFF_UP: 1398 /* 1399 * If interface is marked up and it is stopped, then 1400 * start it. 1401 */ 1402 return (*ifp->if_init)(ifp); 1403 case IFF_UP | IFF_RUNNING: 1404 error = 0; 1405 if (ec->ec_ifflags_cb != NULL) { 1406 error = (*ec->ec_ifflags_cb)(ec); 1407 if (error == ENETRESET) { 1408 /* 1409 * Reset the interface to pick up 1410 * changes in any other flags that 1411 * affect the hardware state. 1412 */ 1413 return (*ifp->if_init)(ifp); 1414 } 1415 } else 1416 error = (*ifp->if_init)(ifp); 1417 return error; 1418 case 0: 1419 break; 1420 } 1421 1422 return 0; 1423 } 1424 1425 /* 1426 * Common ioctls for Ethernet interfaces. Note, we must be 1427 * called at splnet(). 1428 */ 1429 int 1430 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1431 { 1432 struct ethercom *ec = (void *)ifp; 1433 struct eccapreq *eccr; 1434 struct ifreq *ifr = (struct ifreq *)data; 1435 struct if_laddrreq *iflr = data; 1436 const struct sockaddr_dl *sdl; 1437 static const uint8_t zero[ETHER_ADDR_LEN]; 1438 int error; 1439 1440 switch (cmd) { 1441 case SIOCINITIFADDR: 1442 { 1443 struct ifaddr *ifa = (struct ifaddr *)data; 1444 if (ifa->ifa_addr->sa_family != AF_LINK 1445 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 1446 (IFF_UP | IFF_RUNNING)) { 1447 ifp->if_flags |= IFF_UP; 1448 if ((error = (*ifp->if_init)(ifp)) != 0) 1449 return error; 1450 } 1451 #ifdef INET 1452 if (ifa->ifa_addr->sa_family == AF_INET) 1453 arp_ifinit(ifp, ifa); 1454 #endif 1455 return 0; 1456 } 1457 1458 case SIOCSIFMTU: 1459 { 1460 int maxmtu; 1461 1462 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU) 1463 maxmtu = ETHERMTU_JUMBO; 1464 else 1465 maxmtu = ETHERMTU; 1466 1467 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 1468 return EINVAL; 1469 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1470 return error; 1471 else if (ifp->if_flags & IFF_UP) { 1472 /* Make sure the device notices the MTU change. */ 1473 return (*ifp->if_init)(ifp); 1474 } else 1475 return 0; 1476 } 1477 1478 case SIOCSIFFLAGS: 1479 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1480 return error; 1481 return ether_ioctl_reinit(ec); 1482 case SIOCGIFFLAGS: 1483 error = ifioctl_common(ifp, cmd, data); 1484 if (error == 0) { 1485 /* Set IFF_ALLMULTI for backcompat */ 1486 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ? 1487 IFF_ALLMULTI : 0; 1488 } 1489 return error; 1490 case SIOCGETHERCAP: 1491 eccr = (struct eccapreq *)data; 1492 eccr->eccr_capabilities = ec->ec_capabilities; 1493 eccr->eccr_capenable = ec->ec_capenable; 1494 return 0; 1495 case SIOCSETHERCAP: 1496 eccr = (struct eccapreq *)data; 1497 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0) 1498 return EINVAL; 1499 if (eccr->eccr_capenable == ec->ec_capenable) 1500 return 0; 1501 #if 0 /* notyet */ 1502 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE) 1503 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE); 1504 #else 1505 ec->ec_capenable = eccr->eccr_capenable; 1506 #endif 1507 return ether_ioctl_reinit(ec); 1508 case SIOCADDMULTI: 1509 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec); 1510 case SIOCDELMULTI: 1511 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec); 1512 case SIOCSIFMEDIA: 1513 case SIOCGIFMEDIA: 1514 if (ec->ec_mii != NULL) 1515 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, 1516 cmd); 1517 else if (ec->ec_ifmedia != NULL) 1518 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd); 1519 else 1520 return ENOTTY; 1521 break; 1522 case SIOCALIFADDR: 1523 sdl = satocsdl(sstocsa(&iflr->addr)); 1524 if (sdl->sdl_family != AF_LINK) 1525 ; 1526 else if (ETHER_IS_MULTICAST(CLLADDR(sdl))) 1527 return EINVAL; 1528 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0) 1529 return EINVAL; 1530 /*FALLTHROUGH*/ 1531 default: 1532 return ifioctl_common(ifp, cmd, data); 1533 } 1534 return 0; 1535 } 1536 1537 /* 1538 * Enable/disable passing VLAN packets if the parent interface supports it. 1539 * Return: 1540 * 0: Ok 1541 * -1: Parent interface does not support vlans 1542 * >0: Error 1543 */ 1544 int 1545 ether_enable_vlan_mtu(struct ifnet *ifp) 1546 { 1547 int error; 1548 struct ethercom *ec = (void *)ifp; 1549 1550 /* Parent does not support VLAN's */ 1551 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) 1552 return -1; 1553 1554 /* 1555 * Parent supports the VLAN_MTU capability, 1556 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames; 1557 * enable it. 1558 */ 1559 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1560 1561 /* Interface is down, defer for later */ 1562 if ((ifp->if_flags & IFF_UP) == 0) 1563 return 0; 1564 1565 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1566 return 0; 1567 1568 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1569 return error; 1570 } 1571 1572 int 1573 ether_disable_vlan_mtu(struct ifnet *ifp) 1574 { 1575 int error; 1576 struct ethercom *ec = (void *)ifp; 1577 1578 /* We still have VLAN's, defer for later */ 1579 if (ec->ec_nvlans != 0) 1580 return 0; 1581 1582 /* Parent does not support VLAB's, nothing to do. */ 1583 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0) 1584 return -1; 1585 1586 /* 1587 * Disable Tx/Rx of VLAN-sized frames. 1588 */ 1589 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1590 1591 /* Interface is down, defer for later */ 1592 if ((ifp->if_flags & IFF_UP) == 0) 1593 return 0; 1594 1595 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1596 return 0; 1597 1598 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1599 return error; 1600 } 1601 1602 static int 1603 ether_multicast_sysctl(SYSCTLFN_ARGS) 1604 { 1605 struct ether_multi *enm; 1606 struct ifnet *ifp; 1607 struct ethercom *ec; 1608 int error = 0; 1609 size_t written; 1610 struct psref psref; 1611 int bound; 1612 unsigned int multicnt; 1613 struct ether_multi_sysctl *addrs; 1614 int i; 1615 1616 if (namelen != 1) 1617 return EINVAL; 1618 1619 bound = curlwp_bind(); 1620 ifp = if_get_byindex(name[0], &psref); 1621 if (ifp == NULL) { 1622 error = ENODEV; 1623 goto out; 1624 } 1625 if (ifp->if_type != IFT_ETHER) { 1626 if_put(ifp, &psref); 1627 *oldlenp = 0; 1628 goto out; 1629 } 1630 ec = (struct ethercom *)ifp; 1631 1632 if (oldp == NULL) { 1633 if_put(ifp, &psref); 1634 *oldlenp = ec->ec_multicnt * sizeof(*addrs); 1635 goto out; 1636 } 1637 1638 /* 1639 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which 1640 * is sleepable, while holding it. Copy data to a local buffer first 1641 * with the lock taken and then call sysctl_copyout without holding it. 1642 */ 1643 retry: 1644 multicnt = ec->ec_multicnt; 1645 1646 if (multicnt == 0) { 1647 if_put(ifp, &psref); 1648 *oldlenp = 0; 1649 goto out; 1650 } 1651 1652 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP); 1653 1654 ETHER_LOCK(ec); 1655 if (multicnt != ec->ec_multicnt) { 1656 /* The number of multicast addresses has changed */ 1657 ETHER_UNLOCK(ec); 1658 kmem_free(addrs, sizeof(*addrs) * multicnt); 1659 goto retry; 1660 } 1661 1662 i = 0; 1663 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) { 1664 struct ether_multi_sysctl *addr = &addrs[i]; 1665 addr->enm_refcount = enm->enm_refcount; 1666 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN); 1667 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN); 1668 i++; 1669 } 1670 ETHER_UNLOCK(ec); 1671 1672 error = 0; 1673 written = 0; 1674 for (i = 0; i < multicnt; i++) { 1675 struct ether_multi_sysctl *addr = &addrs[i]; 1676 1677 if (written + sizeof(*addr) > *oldlenp) 1678 break; 1679 error = sysctl_copyout(l, addr, oldp, sizeof(*addr)); 1680 if (error) 1681 break; 1682 written += sizeof(*addr); 1683 oldp = (char *)oldp + sizeof(*addr); 1684 } 1685 kmem_free(addrs, sizeof(*addrs) * multicnt); 1686 1687 if_put(ifp, &psref); 1688 1689 *oldlenp = written; 1690 out: 1691 curlwp_bindx(bound); 1692 return error; 1693 } 1694 1695 static void 1696 ether_sysctl_setup(struct sysctllog **clog) 1697 { 1698 const struct sysctlnode *rnode = NULL; 1699 1700 sysctl_createv(clog, 0, NULL, &rnode, 1701 CTLFLAG_PERMANENT, 1702 CTLTYPE_NODE, "ether", 1703 SYSCTL_DESCR("Ethernet-specific information"), 1704 NULL, 0, NULL, 0, 1705 CTL_NET, CTL_CREATE, CTL_EOL); 1706 1707 sysctl_createv(clog, 0, &rnode, NULL, 1708 CTLFLAG_PERMANENT, 1709 CTLTYPE_NODE, "multicast", 1710 SYSCTL_DESCR("multicast addresses"), 1711 ether_multicast_sysctl, 0, NULL, 0, 1712 CTL_CREATE, CTL_EOL); 1713 } 1714 1715 void 1716 etherinit(void) 1717 { 1718 1719 #ifdef DIAGNOSTIC 1720 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET); 1721 #endif 1722 ether_sysctl_setup(NULL); 1723 } 1724