1 /* $NetBSD: if_ethersubr.c,v 1.302 2021/10/25 17:05:43 ryo Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the University nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 * 60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96 61 */ 62 63 #include <sys/cdefs.h> 64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.302 2021/10/25 17:05:43 ryo Exp $"); 65 66 #ifdef _KERNEL_OPT 67 #include "opt_inet.h" 68 #include "opt_atalk.h" 69 #include "opt_mbuftrace.h" 70 #include "opt_mpls.h" 71 #include "opt_gateway.h" 72 #include "opt_pppoe.h" 73 #include "opt_net_mpsafe.h" 74 #endif 75 76 #include "vlan.h" 77 #include "pppoe.h" 78 #include "bridge.h" 79 #include "arp.h" 80 #include "agr.h" 81 82 #include <sys/sysctl.h> 83 #include <sys/mbuf.h> 84 #include <sys/mutex.h> 85 #include <sys/ioctl.h> 86 #include <sys/errno.h> 87 #include <sys/device.h> 88 #include <sys/entropy.h> 89 #include <sys/rndsource.h> 90 #include <sys/cpu.h> 91 #include <sys/kmem.h> 92 #include <sys/hook.h> 93 94 #include <net/if.h> 95 #include <net/netisr.h> 96 #include <net/route.h> 97 #include <net/if_llc.h> 98 #include <net/if_dl.h> 99 #include <net/if_types.h> 100 #include <net/pktqueue.h> 101 102 #include <net/if_media.h> 103 #include <dev/mii/mii.h> 104 #include <dev/mii/miivar.h> 105 106 #if NARP == 0 107 /* 108 * XXX there should really be a way to issue this warning from within config(8) 109 */ 110 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK. 111 #endif 112 113 #include <net/bpf.h> 114 115 #include <net/if_ether.h> 116 #include <net/if_vlanvar.h> 117 118 #if NPPPOE > 0 119 #include <net/if_pppoe.h> 120 #endif 121 122 #if NAGR > 0 123 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */ 124 #include <net/agr/ieee8023ad.h> 125 #include <net/agr/if_agrvar.h> 126 #endif 127 128 #include <net/lagg/if_laggvar.h> 129 130 #if NBRIDGE > 0 131 #include <net/if_bridgevar.h> 132 #endif 133 134 #include <netinet/in.h> 135 #ifdef INET 136 #include <netinet/in_var.h> 137 #endif 138 #include <netinet/if_inarp.h> 139 140 #ifdef INET6 141 #ifndef INET 142 #include <netinet/in.h> 143 #endif 144 #include <netinet6/in6_var.h> 145 #include <netinet6/nd6.h> 146 #endif 147 148 #include "carp.h" 149 #if NCARP > 0 150 #include <netinet/ip_carp.h> 151 #endif 152 153 #ifdef NETATALK 154 #include <netatalk/at.h> 155 #include <netatalk/at_var.h> 156 #include <netatalk/at_extern.h> 157 158 #define llc_snap_org_code llc_un.type_snap.org_code 159 #define llc_snap_ether_type llc_un.type_snap.ether_type 160 161 extern u_char at_org_code[3]; 162 extern u_char aarp_org_code[3]; 163 #endif /* NETATALK */ 164 165 #ifdef MPLS 166 #include <netmpls/mpls.h> 167 #include <netmpls/mpls_var.h> 168 #endif 169 170 CTASSERT(sizeof(struct ether_addr) == 6); 171 CTASSERT(sizeof(struct ether_header) == 14); 172 173 #ifdef DIAGNOSTIC 174 static struct timeval bigpktppslim_last; 175 static int bigpktppslim = 2; /* XXX */ 176 static int bigpktpps_count; 177 static kmutex_t bigpktpps_lock __cacheline_aligned; 178 #endif 179 180 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = 181 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 182 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = 183 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; 184 #define senderr(e) { error = (e); goto bad;} 185 186 static pktq_rps_hash_func_t ether_pktq_rps_hash_p; 187 188 /* if_lagg(4) support */ 189 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *); 190 191 static int ether_output(struct ifnet *, struct mbuf *, 192 const struct sockaddr *, const struct rtentry *); 193 194 /* 195 * Ethernet output routine. 196 * Encapsulate a packet of type family for the local net. 197 * Assumes that ifp is actually pointer to ethercom structure. 198 */ 199 static int 200 ether_output(struct ifnet * const ifp0, struct mbuf * const m0, 201 const struct sockaddr * const dst, const struct rtentry *rt) 202 { 203 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN]; 204 uint16_t etype = 0; 205 int error = 0, hdrcmplt = 0; 206 struct mbuf *m = m0; 207 struct mbuf *mcopy = NULL; 208 struct ether_header *eh; 209 struct ifnet *ifp = ifp0; 210 #ifdef INET 211 struct arphdr *ah; 212 #endif 213 #ifdef NETATALK 214 struct at_ifaddr *aa; 215 #endif 216 217 #ifdef MBUFTRACE 218 m_claimm(m, ifp->if_mowner); 219 #endif 220 221 #if NCARP > 0 222 if (ifp->if_type == IFT_CARP) { 223 struct ifaddr *ifa; 224 int s = pserialize_read_enter(); 225 226 /* loop back if this is going to the carp interface */ 227 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP && 228 (ifa = ifa_ifwithaddr(dst)) != NULL) { 229 if (ifa->ifa_ifp == ifp0) { 230 pserialize_read_exit(s); 231 return looutput(ifp0, m, dst, rt); 232 } 233 } 234 pserialize_read_exit(s); 235 236 ifp = ifp->if_carpdev; 237 /* ac = (struct arpcom *)ifp; */ 238 239 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) != 240 (IFF_UP | IFF_RUNNING)) 241 senderr(ENETDOWN); 242 } 243 #endif 244 245 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) 246 senderr(ENETDOWN); 247 248 switch (dst->sa_family) { 249 250 #ifdef INET 251 case AF_INET: 252 if (m->m_flags & M_BCAST) { 253 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 254 } else if (m->m_flags & M_MCAST) { 255 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst); 256 } else { 257 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst)); 258 if (error) 259 return (error == EWOULDBLOCK) ? 0 : error; 260 } 261 /* If broadcasting on a simplex interface, loopback a copy */ 262 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) 263 mcopy = m_copypacket(m, M_DONTWAIT); 264 etype = htons(ETHERTYPE_IP); 265 break; 266 267 case AF_ARP: 268 ah = mtod(m, struct arphdr *); 269 if (m->m_flags & M_BCAST) { 270 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 271 } else { 272 void *tha = ar_tha(ah); 273 274 if (tha == NULL) { 275 /* fake with ARPHRD_IEEE1394 */ 276 m_freem(m); 277 return 0; 278 } 279 memcpy(edst, tha, sizeof(edst)); 280 } 281 282 ah->ar_hrd = htons(ARPHRD_ETHER); 283 284 switch (ntohs(ah->ar_op)) { 285 case ARPOP_REVREQUEST: 286 case ARPOP_REVREPLY: 287 etype = htons(ETHERTYPE_REVARP); 288 break; 289 290 case ARPOP_REQUEST: 291 case ARPOP_REPLY: 292 default: 293 etype = htons(ETHERTYPE_ARP); 294 } 295 break; 296 #endif 297 298 #ifdef INET6 299 case AF_INET6: 300 if (m->m_flags & M_BCAST) { 301 memcpy(edst, etherbroadcastaddr, sizeof(edst)); 302 } else if (m->m_flags & M_MCAST) { 303 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 304 edst); 305 } else { 306 error = nd6_resolve(ifp0, rt, m, dst, edst, 307 sizeof(edst)); 308 if (error) 309 return (error == EWOULDBLOCK) ? 0 : error; 310 } 311 etype = htons(ETHERTYPE_IPV6); 312 break; 313 #endif 314 315 #ifdef NETATALK 316 case AF_APPLETALK: { 317 struct ifaddr *ifa; 318 int s; 319 320 KERNEL_LOCK(1, NULL); 321 322 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) { 323 KERNEL_UNLOCK_ONE(NULL); 324 return 0; 325 } 326 327 /* 328 * ifaddr is the first thing in at_ifaddr 329 */ 330 s = pserialize_read_enter(); 331 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp); 332 if (ifa == NULL) { 333 pserialize_read_exit(s); 334 KERNEL_UNLOCK_ONE(NULL); 335 senderr(EADDRNOTAVAIL); 336 } 337 aa = (struct at_ifaddr *)ifa; 338 339 /* 340 * In the phase 2 case, we need to prepend an mbuf for the 341 * llc header. 342 */ 343 if (aa->aa_flags & AFA_PHASE2) { 344 struct llc llc; 345 346 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT); 347 if (m == NULL) { 348 pserialize_read_exit(s); 349 KERNEL_UNLOCK_ONE(NULL); 350 senderr(ENOBUFS); 351 } 352 353 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; 354 llc.llc_control = LLC_UI; 355 memcpy(llc.llc_snap_org_code, at_org_code, 356 sizeof(llc.llc_snap_org_code)); 357 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK); 358 memcpy(mtod(m, void *), &llc, sizeof(struct llc)); 359 } else { 360 etype = htons(ETHERTYPE_ATALK); 361 } 362 pserialize_read_exit(s); 363 KERNEL_UNLOCK_ONE(NULL); 364 break; 365 } 366 #endif /* NETATALK */ 367 368 case pseudo_AF_HDRCMPLT: 369 hdrcmplt = 1; 370 memcpy(esrc, 371 ((const struct ether_header *)dst->sa_data)->ether_shost, 372 sizeof(esrc)); 373 /* FALLTHROUGH */ 374 375 case AF_UNSPEC: 376 memcpy(edst, 377 ((const struct ether_header *)dst->sa_data)->ether_dhost, 378 sizeof(edst)); 379 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */ 380 etype = ((const struct ether_header *)dst->sa_data)->ether_type; 381 break; 382 383 default: 384 printf("%s: can't handle af%d\n", ifp->if_xname, 385 dst->sa_family); 386 senderr(EAFNOSUPPORT); 387 } 388 389 #ifdef MPLS 390 { 391 struct m_tag *mtag; 392 mtag = m_tag_find(m, PACKET_TAG_MPLS); 393 if (mtag != NULL) { 394 /* Having the tag itself indicates it's MPLS */ 395 etype = htons(ETHERTYPE_MPLS); 396 m_tag_delete(m, mtag); 397 } 398 } 399 #endif 400 401 if (mcopy) 402 (void)looutput(ifp, mcopy, dst, rt); 403 404 KASSERT((m->m_flags & M_PKTHDR) != 0); 405 406 /* 407 * If no ether type is set, this must be a 802.2 formatted packet. 408 */ 409 if (etype == 0) 410 etype = htons(m->m_pkthdr.len); 411 412 /* 413 * Add local net header. If no space in first mbuf, allocate another. 414 */ 415 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT); 416 if (m == NULL) 417 senderr(ENOBUFS); 418 419 eh = mtod(m, struct ether_header *); 420 /* Note: etype is already in network byte order. */ 421 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); 422 memcpy(eh->ether_dhost, edst, sizeof(edst)); 423 if (hdrcmplt) { 424 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); 425 } else { 426 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl), 427 sizeof(eh->ether_shost)); 428 } 429 430 #if NCARP > 0 431 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) { 432 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl), 433 sizeof(eh->ether_shost)); 434 } 435 #endif 436 437 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 438 return error; 439 if (m == NULL) 440 return 0; 441 442 #if NBRIDGE > 0 443 /* 444 * Bridges require special output handling. 445 */ 446 if (ifp->if_bridge) 447 return bridge_output(ifp, m, NULL, NULL); 448 #endif 449 450 #if NCARP > 0 451 if (ifp != ifp0) 452 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN); 453 #endif 454 455 #ifdef ALTQ 456 KERNEL_LOCK(1, NULL); 457 /* 458 * If ALTQ is enabled on the parent interface, do 459 * classification; the queueing discipline might not 460 * require classification, but might require the 461 * address family/header pointer in the pktattr. 462 */ 463 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 464 altq_etherclassify(&ifp->if_snd, m); 465 KERNEL_UNLOCK_ONE(NULL); 466 #endif 467 return ifq_enqueue(ifp, m); 468 469 bad: 470 if_statinc(ifp, if_oerrors); 471 if (m) 472 m_freem(m); 473 return error; 474 } 475 476 #ifdef ALTQ 477 /* 478 * This routine is a slight hack to allow a packet to be classified 479 * if the Ethernet headers are present. It will go away when ALTQ's 480 * classification engine understands link headers. 481 * 482 * XXX: We may need to do m_pullups here. First to ensure struct ether_header 483 * is indeed contiguous, then to read the LLC and so on. 484 */ 485 void 486 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m) 487 { 488 struct ether_header *eh; 489 struct mbuf *mtop = m; 490 uint16_t ether_type; 491 int hlen, af, hdrsize; 492 void *hdr; 493 494 KASSERT((mtop->m_flags & M_PKTHDR) != 0); 495 496 hlen = ETHER_HDR_LEN; 497 eh = mtod(m, struct ether_header *); 498 499 ether_type = htons(eh->ether_type); 500 501 if (ether_type < ETHERMTU) { 502 /* LLC/SNAP */ 503 struct llc *llc = (struct llc *)(eh + 1); 504 hlen += 8; 505 506 if (m->m_len < hlen || 507 llc->llc_dsap != LLC_SNAP_LSAP || 508 llc->llc_ssap != LLC_SNAP_LSAP || 509 llc->llc_control != LLC_UI) { 510 /* Not SNAP. */ 511 goto bad; 512 } 513 514 ether_type = htons(llc->llc_un.type_snap.ether_type); 515 } 516 517 switch (ether_type) { 518 case ETHERTYPE_IP: 519 af = AF_INET; 520 hdrsize = 20; /* sizeof(struct ip) */ 521 break; 522 523 case ETHERTYPE_IPV6: 524 af = AF_INET6; 525 hdrsize = 40; /* sizeof(struct ip6_hdr) */ 526 break; 527 528 default: 529 af = AF_UNSPEC; 530 hdrsize = 0; 531 break; 532 } 533 534 while (m->m_len <= hlen) { 535 hlen -= m->m_len; 536 m = m->m_next; 537 if (m == NULL) 538 goto bad; 539 } 540 541 if (m->m_len < (hlen + hdrsize)) { 542 /* 543 * protocol header not in a single mbuf. 544 * We can't cope with this situation right 545 * now (but it shouldn't ever happen, really, anyhow). 546 */ 547 #ifdef DEBUG 548 printf("altq_etherclassify: headers span multiple mbufs: " 549 "%d < %d\n", m->m_len, (hlen + hdrsize)); 550 #endif 551 goto bad; 552 } 553 554 m->m_data += hlen; 555 m->m_len -= hlen; 556 557 hdr = mtod(m, void *); 558 559 if (ALTQ_NEEDS_CLASSIFY(ifq)) { 560 mtop->m_pkthdr.pattr_class = 561 (*ifq->altq_classify)(ifq->altq_clfier, m, af); 562 } 563 mtop->m_pkthdr.pattr_af = af; 564 mtop->m_pkthdr.pattr_hdr = hdr; 565 566 m->m_data -= hlen; 567 m->m_len += hlen; 568 569 return; 570 571 bad: 572 mtop->m_pkthdr.pattr_class = NULL; 573 mtop->m_pkthdr.pattr_hdr = NULL; 574 mtop->m_pkthdr.pattr_af = AF_UNSPEC; 575 } 576 #endif /* ALTQ */ 577 578 #if defined (LLC) || defined (NETATALK) 579 static void 580 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh) 581 { 582 struct ifqueue *inq = NULL; 583 int isr = 0; 584 struct llc *l; 585 586 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) 587 goto drop; 588 589 l = (struct llc *)(eh+1); 590 switch (l->llc_dsap) { 591 #ifdef NETATALK 592 case LLC_SNAP_LSAP: 593 switch (l->llc_control) { 594 case LLC_UI: 595 if (l->llc_ssap != LLC_SNAP_LSAP) 596 goto drop; 597 598 if (memcmp(&(l->llc_snap_org_code)[0], 599 at_org_code, sizeof(at_org_code)) == 0 && 600 ntohs(l->llc_snap_ether_type) == 601 ETHERTYPE_ATALK) { 602 inq = &atintrq2; 603 m_adj(m, sizeof(struct ether_header) 604 + sizeof(struct llc)); 605 isr = NETISR_ATALK; 606 break; 607 } 608 609 if (memcmp(&(l->llc_snap_org_code)[0], 610 aarp_org_code, 611 sizeof(aarp_org_code)) == 0 && 612 ntohs(l->llc_snap_ether_type) == 613 ETHERTYPE_AARP) { 614 m_adj(m, sizeof(struct ether_header) 615 + sizeof(struct llc)); 616 aarpinput(ifp, m); /* XXX queue? */ 617 return; 618 } 619 620 default: 621 goto drop; 622 } 623 break; 624 #endif 625 default: 626 goto drop; 627 } 628 629 KASSERT(inq != NULL); 630 IFQ_ENQUEUE_ISR(inq, m, isr); 631 return; 632 633 drop: 634 m_freem(m); 635 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */ 636 return; 637 } 638 #endif /* defined (LLC) || defined (NETATALK) */ 639 640 /* 641 * Process a received Ethernet packet; 642 * the packet is in the mbuf chain m with 643 * the ether header. 644 */ 645 void 646 ether_input(struct ifnet *ifp, struct mbuf *m) 647 { 648 struct ethercom *ec = (struct ethercom *) ifp; 649 pktqueue_t *pktq = NULL; 650 struct ifqueue *inq = NULL; 651 uint16_t etype; 652 struct ether_header *eh; 653 size_t ehlen; 654 static int earlypkts; 655 int isr = 0; 656 #if NAGR > 0 657 void *agrprivate; 658 #endif 659 660 KASSERT(!cpu_intr_p()); 661 KASSERT((m->m_flags & M_PKTHDR) != 0); 662 663 if ((ifp->if_flags & IFF_UP) == 0) 664 goto drop; 665 666 #ifdef MBUFTRACE 667 m_claimm(m, &ec->ec_rx_mowner); 668 #endif 669 670 if (__predict_false(m->m_len < sizeof(*eh))) { 671 if ((m = m_pullup(m, sizeof(*eh))) == NULL) 672 goto dropped; 673 } 674 675 eh = mtod(m, struct ether_header *); 676 etype = ntohs(eh->ether_type); 677 ehlen = sizeof(*eh); 678 679 if (__predict_false(earlypkts < 100 || 680 entropy_epoch() == (unsigned)-1)) { 681 rnd_add_data(NULL, eh, ehlen, 0); 682 earlypkts++; 683 } 684 685 /* 686 * Determine if the packet is within its size limits. For MPLS the 687 * header length is variable, so we skip the check. 688 */ 689 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len > 690 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) { 691 #ifdef DIAGNOSTIC 692 mutex_enter(&bigpktpps_lock); 693 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count, 694 bigpktppslim)) { 695 printf("%s: discarding oversize frame (len=%d)\n", 696 ifp->if_xname, m->m_pkthdr.len); 697 } 698 mutex_exit(&bigpktpps_lock); 699 #endif 700 goto drop; 701 } 702 703 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 704 /* 705 * If this is not a simplex interface, drop the packet 706 * if it came from us. 707 */ 708 if ((ifp->if_flags & IFF_SIMPLEX) == 0 && 709 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost, 710 ETHER_ADDR_LEN) == 0) { 711 goto drop; 712 } 713 714 if (memcmp(etherbroadcastaddr, 715 eh->ether_dhost, ETHER_ADDR_LEN) == 0) 716 m->m_flags |= M_BCAST; 717 else 718 m->m_flags |= M_MCAST; 719 if_statinc(ifp, if_imcasts); 720 } 721 722 /* If the CRC is still on the packet, trim it off. */ 723 if (m->m_flags & M_HASFCS) { 724 m_adj(m, -ETHER_CRC_LEN); 725 m->m_flags &= ~M_HASFCS; 726 } 727 728 if_statadd(ifp, if_ibytes, m->m_pkthdr.len); 729 730 #if NCARP > 0 731 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) { 732 /* 733 * Clear M_PROMISC, in case the packet comes from a 734 * vlan. 735 */ 736 m->m_flags &= ~M_PROMISC; 737 if (carp_input(m, (uint8_t *)&eh->ether_shost, 738 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0) 739 return; 740 } 741 #endif 742 743 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 && 744 (ifp->if_flags & IFF_PROMISC) != 0 && 745 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost, 746 ETHER_ADDR_LEN) != 0) { 747 m->m_flags |= M_PROMISC; 748 } 749 750 if ((m->m_flags & M_PROMISC) == 0) { 751 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) 752 return; 753 if (m == NULL) 754 return; 755 756 eh = mtod(m, struct ether_header *); 757 etype = ntohs(eh->ether_type); 758 } 759 760 #if NAGR > 0 761 if (ifp->if_type != IFT_IEEE8023ADLAG) { 762 agrprivate = ifp->if_lagg; 763 } else { 764 agrprivate = NULL; 765 } 766 if (agrprivate != NULL && 767 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) { 768 m->m_flags &= ~M_PROMISC; 769 agr_input(ifp, m); 770 return; 771 } 772 #endif 773 774 /* Handle input from a lagg(4) port */ 775 if (ifp->if_type == IFT_IEEE8023ADLAG) { 776 KASSERT(lagg_input_ethernet_p != NULL); 777 m = (*lagg_input_ethernet_p)(ifp, m); 778 if (m == NULL) 779 return; 780 } 781 782 /* 783 * If VLANs are configured on the interface, check to 784 * see if the device performed the decapsulation and 785 * provided us with the tag. 786 */ 787 if (ec->ec_nvlans && vlan_has_tag(m)) { 788 #if NVLAN > 0 789 /* 790 * vlan_input() will either recursively call ether_input() 791 * or drop the packet. 792 */ 793 vlan_input(ifp, m); 794 return; 795 #else 796 goto drop; 797 #endif 798 } 799 800 /* 801 * Handle protocols that expect to have the Ethernet header 802 * (and possibly FCS) intact. 803 */ 804 switch (etype) { 805 case ETHERTYPE_VLAN: { 806 struct ether_vlan_header *evl = (void *)eh; 807 808 /* 809 * If there is a tag of 0, then the VLAN header was probably 810 * just being used to store the priority. Extract the ether 811 * type, and if IP or IPV6, let them deal with it. 812 */ 813 if (m->m_len >= sizeof(*evl) && 814 EVL_VLANOFTAG(ntohs(evl->evl_tag)) == 0) { 815 etype = ntohs(evl->evl_proto); 816 ehlen = sizeof(*evl); 817 if ((m->m_flags & M_PROMISC) == 0 && 818 (etype == ETHERTYPE_IP || 819 etype == ETHERTYPE_IPV6)) 820 break; 821 } 822 823 #if NVLAN > 0 824 /* 825 * vlan_input() will either recursively call ether_input() 826 * or drop the packet. 827 */ 828 if (ec->ec_nvlans != 0) { 829 vlan_input(ifp, m); 830 return; 831 } else 832 #endif 833 goto drop; 834 } 835 836 #if NPPPOE > 0 837 case ETHERTYPE_PPPOEDISC: 838 pppoedisc_input(ifp, m); 839 return; 840 841 case ETHERTYPE_PPPOE: 842 pppoe_input(ifp, m); 843 return; 844 #endif 845 846 case ETHERTYPE_SLOWPROTOCOLS: { 847 uint8_t subtype; 848 849 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) 850 goto drop; 851 852 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype); 853 switch (subtype) { 854 #if NAGR > 0 855 case SLOWPROTOCOLS_SUBTYPE_LACP: 856 if (agrprivate != NULL) { 857 ieee8023ad_lacp_input(ifp, m); 858 return; 859 } 860 break; 861 862 case SLOWPROTOCOLS_SUBTYPE_MARKER: 863 if (agrprivate != NULL) { 864 ieee8023ad_marker_input(ifp, m); 865 return; 866 } 867 break; 868 #endif 869 870 default: 871 if (subtype == 0 || subtype > 10) { 872 /* illegal value */ 873 goto drop; 874 } 875 /* unknown subtype */ 876 break; 877 } 878 } 879 /* FALLTHROUGH */ 880 default: 881 if (m->m_flags & M_PROMISC) 882 goto drop; 883 } 884 885 /* If the CRC is still on the packet, trim it off. */ 886 if (m->m_flags & M_HASFCS) { 887 m_adj(m, -ETHER_CRC_LEN); 888 m->m_flags &= ~M_HASFCS; 889 } 890 891 /* etype represents the size of the payload in this case */ 892 if (etype <= ETHERMTU + sizeof(struct ether_header)) { 893 KASSERT(ehlen == sizeof(*eh)); 894 #if defined (LLC) || defined (NETATALK) 895 ether_input_llc(ifp, m, eh); 896 return; 897 #else 898 goto drop; 899 #endif 900 } 901 902 /* Strip off the Ethernet header. */ 903 m_adj(m, ehlen); 904 905 switch (etype) { 906 #ifdef INET 907 case ETHERTYPE_IP: 908 #ifdef GATEWAY 909 if (ipflow_fastforward(m)) 910 return; 911 #endif 912 pktq = ip_pktq; 913 break; 914 915 case ETHERTYPE_ARP: 916 isr = NETISR_ARP; 917 inq = &arpintrq; 918 break; 919 920 case ETHERTYPE_REVARP: 921 revarpinput(m); /* XXX queue? */ 922 return; 923 #endif 924 925 #ifdef INET6 926 case ETHERTYPE_IPV6: 927 if (__predict_false(!in6_present)) 928 goto drop; 929 #ifdef GATEWAY 930 if (ip6flow_fastforward(&m)) 931 return; 932 #endif 933 pktq = ip6_pktq; 934 break; 935 #endif 936 937 #ifdef NETATALK 938 case ETHERTYPE_ATALK: 939 isr = NETISR_ATALK; 940 inq = &atintrq1; 941 break; 942 943 case ETHERTYPE_AARP: 944 aarpinput(ifp, m); /* XXX queue? */ 945 return; 946 #endif 947 948 #ifdef MPLS 949 case ETHERTYPE_MPLS: 950 isr = NETISR_MPLS; 951 inq = &mplsintrq; 952 break; 953 #endif 954 955 default: 956 goto drop; 957 } 958 959 if (__predict_true(pktq)) { 960 const uint32_t h = pktq_rps_hash(ðer_pktq_rps_hash_p, m); 961 if (__predict_false(!pktq_enqueue(pktq, m, h))) { 962 m_freem(m); 963 } 964 return; 965 } 966 967 if (__predict_false(!inq)) { 968 /* Should not happen. */ 969 goto drop; 970 } 971 972 IFQ_ENQUEUE_ISR(inq, m, isr); 973 return; 974 975 drop: 976 m_freem(m); 977 dropped: 978 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */ 979 } 980 981 /* 982 * Convert Ethernet address to printable (loggable) representation. 983 */ 984 char * 985 ether_sprintf(const u_char *ap) 986 { 987 static char etherbuf[3 * ETHER_ADDR_LEN]; 988 return ether_snprintf(etherbuf, sizeof(etherbuf), ap); 989 } 990 991 char * 992 ether_snprintf(char *buf, size_t len, const u_char *ap) 993 { 994 char *cp = buf; 995 size_t i; 996 997 for (i = 0; i < len / 3; i++) { 998 *cp++ = hexdigits[*ap >> 4]; 999 *cp++ = hexdigits[*ap++ & 0xf]; 1000 *cp++ = ':'; 1001 } 1002 *--cp = '\0'; 1003 return buf; 1004 } 1005 1006 /* 1007 * Perform common duties while attaching to interface list 1008 */ 1009 void 1010 ether_ifattach(struct ifnet *ifp, const uint8_t *lla) 1011 { 1012 struct ethercom *ec = (struct ethercom *)ifp; 1013 char xnamebuf[HOOKNAMSIZ]; 1014 1015 ifp->if_type = IFT_ETHER; 1016 ifp->if_hdrlen = ETHER_HDR_LEN; 1017 ifp->if_dlt = DLT_EN10MB; 1018 ifp->if_mtu = ETHERMTU; 1019 ifp->if_output = ether_output; 1020 ifp->_if_input = ether_input; 1021 if (ifp->if_baudrate == 0) 1022 ifp->if_baudrate = IF_Mbps(10); /* just a default */ 1023 1024 if (lla != NULL) 1025 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla)); 1026 1027 LIST_INIT(&ec->ec_multiaddrs); 1028 SIMPLEQ_INIT(&ec->ec_vids); 1029 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 1030 ec->ec_flags = 0; 1031 ifp->if_broadcastaddr = etherbroadcastaddr; 1032 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 1033 snprintf(xnamebuf, sizeof(xnamebuf), 1034 "%s-ether_ifdetachhooks", ifp->if_xname); 1035 ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf); 1036 #ifdef MBUFTRACE 1037 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx"); 1038 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx"); 1039 MOWNER_ATTACH(&ec->ec_tx_mowner); 1040 MOWNER_ATTACH(&ec->ec_rx_mowner); 1041 ifp->if_mowner = &ec->ec_tx_mowner; 1042 #endif 1043 } 1044 1045 void 1046 ether_ifdetach(struct ifnet *ifp) 1047 { 1048 struct ethercom *ec = (void *) ifp; 1049 struct ether_multi *enm; 1050 1051 IFNET_ASSERT_UNLOCKED(ifp); 1052 /* 1053 * Prevent further calls to ioctl (for example turning off 1054 * promiscuous mode from the bridge code), which eventually can 1055 * call if_init() which can cause panics because the interface 1056 * is in the process of being detached. Return device not configured 1057 * instead. 1058 */ 1059 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *), 1060 enxio); 1061 1062 simplehook_dohooks(ec->ec_ifdetach_hooks); 1063 KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks)); 1064 simplehook_destroy(ec->ec_ifdetach_hooks); 1065 1066 bpf_detach(ifp); 1067 1068 ETHER_LOCK(ec); 1069 KASSERT(ec->ec_nvlans == 0); 1070 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) { 1071 LIST_REMOVE(enm, enm_list); 1072 kmem_free(enm, sizeof(*enm)); 1073 ec->ec_multicnt--; 1074 } 1075 ETHER_UNLOCK(ec); 1076 1077 mutex_obj_free(ec->ec_lock); 1078 ec->ec_lock = NULL; 1079 1080 ifp->if_mowner = NULL; 1081 MOWNER_DETACH(&ec->ec_rx_mowner); 1082 MOWNER_DETACH(&ec->ec_tx_mowner); 1083 } 1084 1085 void * 1086 ether_ifdetachhook_establish(struct ifnet *ifp, 1087 void (*fn)(void *), void *arg) 1088 { 1089 struct ethercom *ec; 1090 khook_t *hk; 1091 1092 if (ifp->if_type != IFT_ETHER) 1093 return NULL; 1094 1095 ec = (struct ethercom *)ifp; 1096 hk = simplehook_establish(ec->ec_ifdetach_hooks, 1097 fn, arg); 1098 1099 return (void *)hk; 1100 } 1101 1102 void 1103 ether_ifdetachhook_disestablish(struct ifnet *ifp, 1104 void *vhook, kmutex_t *lock) 1105 { 1106 struct ethercom *ec; 1107 1108 if (vhook == NULL) 1109 return; 1110 1111 ec = (struct ethercom *)ifp; 1112 simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock); 1113 } 1114 1115 #if 0 1116 /* 1117 * This is for reference. We have a table-driven version 1118 * of the little-endian crc32 generator, which is faster 1119 * than the double-loop. 1120 */ 1121 uint32_t 1122 ether_crc32_le(const uint8_t *buf, size_t len) 1123 { 1124 uint32_t c, crc, carry; 1125 size_t i, j; 1126 1127 crc = 0xffffffffU; /* initial value */ 1128 1129 for (i = 0; i < len; i++) { 1130 c = buf[i]; 1131 for (j = 0; j < 8; j++) { 1132 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01); 1133 crc >>= 1; 1134 c >>= 1; 1135 if (carry) 1136 crc = (crc ^ ETHER_CRC_POLY_LE); 1137 } 1138 } 1139 1140 return (crc); 1141 } 1142 #else 1143 uint32_t 1144 ether_crc32_le(const uint8_t *buf, size_t len) 1145 { 1146 static const uint32_t crctab[] = { 1147 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 1148 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 1149 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 1150 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c 1151 }; 1152 uint32_t crc; 1153 size_t i; 1154 1155 crc = 0xffffffffU; /* initial value */ 1156 1157 for (i = 0; i < len; i++) { 1158 crc ^= buf[i]; 1159 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1160 crc = (crc >> 4) ^ crctab[crc & 0xf]; 1161 } 1162 1163 return (crc); 1164 } 1165 #endif 1166 1167 uint32_t 1168 ether_crc32_be(const uint8_t *buf, size_t len) 1169 { 1170 uint32_t c, crc, carry; 1171 size_t i, j; 1172 1173 crc = 0xffffffffU; /* initial value */ 1174 1175 for (i = 0; i < len; i++) { 1176 c = buf[i]; 1177 for (j = 0; j < 8; j++) { 1178 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01); 1179 crc <<= 1; 1180 c >>= 1; 1181 if (carry) 1182 crc = (crc ^ ETHER_CRC_POLY_BE) | carry; 1183 } 1184 } 1185 1186 return (crc); 1187 } 1188 1189 #ifdef INET 1190 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] = 1191 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 }; 1192 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] = 1193 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff }; 1194 #endif 1195 #ifdef INET6 1196 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] = 1197 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 }; 1198 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] = 1199 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff }; 1200 #endif 1201 1202 /* 1203 * ether_aton implementation, not using a static buffer. 1204 */ 1205 int 1206 ether_aton_r(u_char *dest, size_t len, const char *str) 1207 { 1208 const u_char *cp = (const void *)str; 1209 u_char *ep; 1210 1211 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10)) 1212 1213 if (len < ETHER_ADDR_LEN) 1214 return ENOSPC; 1215 1216 ep = dest + ETHER_ADDR_LEN; 1217 1218 while (*cp) { 1219 if (!isxdigit(*cp)) 1220 return EINVAL; 1221 1222 *dest = atox(*cp); 1223 cp++; 1224 if (isxdigit(*cp)) { 1225 *dest = (*dest << 4) | atox(*cp); 1226 cp++; 1227 } 1228 dest++; 1229 1230 if (dest == ep) 1231 return (*cp == '\0') ? 0 : ENAMETOOLONG; 1232 1233 switch (*cp) { 1234 case ':': 1235 case '-': 1236 case '.': 1237 cp++; 1238 break; 1239 } 1240 } 1241 return ENOBUFS; 1242 } 1243 1244 /* 1245 * Convert a sockaddr into an Ethernet address or range of Ethernet 1246 * addresses. 1247 */ 1248 int 1249 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN], 1250 uint8_t addrhi[ETHER_ADDR_LEN]) 1251 { 1252 #ifdef INET 1253 const struct sockaddr_in *sin; 1254 #endif 1255 #ifdef INET6 1256 const struct sockaddr_in6 *sin6; 1257 #endif 1258 1259 switch (sa->sa_family) { 1260 1261 case AF_UNSPEC: 1262 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN); 1263 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1264 break; 1265 1266 #ifdef INET 1267 case AF_INET: 1268 sin = satocsin(sa); 1269 if (sin->sin_addr.s_addr == INADDR_ANY) { 1270 /* 1271 * An IP address of INADDR_ANY means listen to 1272 * or stop listening to all of the Ethernet 1273 * multicast addresses used for IP. 1274 * (This is for the sake of IP multicast routers.) 1275 */ 1276 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN); 1277 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN); 1278 } else { 1279 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo); 1280 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1281 } 1282 break; 1283 #endif 1284 #ifdef INET6 1285 case AF_INET6: 1286 sin6 = satocsin6(sa); 1287 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { 1288 /* 1289 * An IP6 address of 0 means listen to or stop 1290 * listening to all of the Ethernet multicast 1291 * address used for IP6. 1292 * (This is used for multicast routers.) 1293 */ 1294 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN); 1295 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN); 1296 } else { 1297 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo); 1298 memcpy(addrhi, addrlo, ETHER_ADDR_LEN); 1299 } 1300 break; 1301 #endif 1302 1303 default: 1304 return EAFNOSUPPORT; 1305 } 1306 return 0; 1307 } 1308 1309 /* 1310 * Add an Ethernet multicast address or range of addresses to the list for a 1311 * given interface. 1312 */ 1313 int 1314 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec) 1315 { 1316 struct ether_multi *enm, *_enm; 1317 u_char addrlo[ETHER_ADDR_LEN]; 1318 u_char addrhi[ETHER_ADDR_LEN]; 1319 int error = 0; 1320 1321 /* Allocate out of lock */ 1322 enm = kmem_alloc(sizeof(*enm), KM_SLEEP); 1323 1324 ETHER_LOCK(ec); 1325 error = ether_multiaddr(sa, addrlo, addrhi); 1326 if (error != 0) 1327 goto out; 1328 1329 /* 1330 * Verify that we have valid Ethernet multicast addresses. 1331 */ 1332 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) { 1333 error = EINVAL; 1334 goto out; 1335 } 1336 1337 /* 1338 * See if the address range is already in the list. 1339 */ 1340 _enm = ether_lookup_multi(addrlo, addrhi, ec); 1341 if (_enm != NULL) { 1342 /* 1343 * Found it; just increment the reference count. 1344 */ 1345 ++_enm->enm_refcount; 1346 error = 0; 1347 goto out; 1348 } 1349 1350 /* 1351 * Link a new multicast record into the interface's multicast list. 1352 */ 1353 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN); 1354 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN); 1355 enm->enm_refcount = 1; 1356 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list); 1357 ec->ec_multicnt++; 1358 1359 /* 1360 * Return ENETRESET to inform the driver that the list has changed 1361 * and its reception filter should be adjusted accordingly. 1362 */ 1363 error = ENETRESET; 1364 enm = NULL; 1365 1366 out: 1367 ETHER_UNLOCK(ec); 1368 if (enm != NULL) 1369 kmem_free(enm, sizeof(*enm)); 1370 return error; 1371 } 1372 1373 /* 1374 * Delete a multicast address record. 1375 */ 1376 int 1377 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec) 1378 { 1379 struct ether_multi *enm; 1380 u_char addrlo[ETHER_ADDR_LEN]; 1381 u_char addrhi[ETHER_ADDR_LEN]; 1382 int error; 1383 1384 ETHER_LOCK(ec); 1385 error = ether_multiaddr(sa, addrlo, addrhi); 1386 if (error != 0) 1387 goto error; 1388 1389 /* 1390 * Look up the address in our list. 1391 */ 1392 enm = ether_lookup_multi(addrlo, addrhi, ec); 1393 if (enm == NULL) { 1394 error = ENXIO; 1395 goto error; 1396 } 1397 if (--enm->enm_refcount != 0) { 1398 /* 1399 * Still some claims to this record. 1400 */ 1401 error = 0; 1402 goto error; 1403 } 1404 1405 /* 1406 * No remaining claims to this record; unlink and free it. 1407 */ 1408 LIST_REMOVE(enm, enm_list); 1409 ec->ec_multicnt--; 1410 ETHER_UNLOCK(ec); 1411 kmem_free(enm, sizeof(*enm)); 1412 1413 /* 1414 * Return ENETRESET to inform the driver that the list has changed 1415 * and its reception filter should be adjusted accordingly. 1416 */ 1417 return ENETRESET; 1418 1419 error: 1420 ETHER_UNLOCK(ec); 1421 return error; 1422 } 1423 1424 void 1425 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb) 1426 { 1427 ec->ec_ifflags_cb = cb; 1428 } 1429 1430 void 1431 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb) 1432 { 1433 1434 ec->ec_vlan_cb = cb; 1435 } 1436 1437 static int 1438 ether_ioctl_reinit(struct ethercom *ec) 1439 { 1440 struct ifnet *ifp = &ec->ec_if; 1441 int error; 1442 1443 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1444 case IFF_RUNNING: 1445 /* 1446 * If interface is marked down and it is running, 1447 * then stop and disable it. 1448 */ 1449 (*ifp->if_stop)(ifp, 1); 1450 break; 1451 case IFF_UP: 1452 /* 1453 * If interface is marked up and it is stopped, then 1454 * start it. 1455 */ 1456 return (*ifp->if_init)(ifp); 1457 case IFF_UP | IFF_RUNNING: 1458 error = 0; 1459 if (ec->ec_ifflags_cb != NULL) { 1460 error = (*ec->ec_ifflags_cb)(ec); 1461 if (error == ENETRESET) { 1462 /* 1463 * Reset the interface to pick up 1464 * changes in any other flags that 1465 * affect the hardware state. 1466 */ 1467 return (*ifp->if_init)(ifp); 1468 } 1469 } else 1470 error = (*ifp->if_init)(ifp); 1471 return error; 1472 case 0: 1473 break; 1474 } 1475 1476 return 0; 1477 } 1478 1479 /* 1480 * Common ioctls for Ethernet interfaces. Note, we must be 1481 * called at splnet(). 1482 */ 1483 int 1484 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1485 { 1486 struct ethercom *ec = (void *)ifp; 1487 struct eccapreq *eccr; 1488 struct ifreq *ifr = (struct ifreq *)data; 1489 struct if_laddrreq *iflr = data; 1490 const struct sockaddr_dl *sdl; 1491 static const uint8_t zero[ETHER_ADDR_LEN]; 1492 int error; 1493 1494 switch (cmd) { 1495 case SIOCINITIFADDR: 1496 { 1497 struct ifaddr *ifa = (struct ifaddr *)data; 1498 if (ifa->ifa_addr->sa_family != AF_LINK 1499 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 1500 (IFF_UP | IFF_RUNNING)) { 1501 ifp->if_flags |= IFF_UP; 1502 if ((error = (*ifp->if_init)(ifp)) != 0) 1503 return error; 1504 } 1505 #ifdef INET 1506 if (ifa->ifa_addr->sa_family == AF_INET) 1507 arp_ifinit(ifp, ifa); 1508 #endif 1509 return 0; 1510 } 1511 1512 case SIOCSIFMTU: 1513 { 1514 int maxmtu; 1515 1516 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU) 1517 maxmtu = ETHERMTU_JUMBO; 1518 else 1519 maxmtu = ETHERMTU; 1520 1521 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) 1522 return EINVAL; 1523 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1524 return error; 1525 else if (ifp->if_flags & IFF_UP) { 1526 /* Make sure the device notices the MTU change. */ 1527 return (*ifp->if_init)(ifp); 1528 } else 1529 return 0; 1530 } 1531 1532 case SIOCSIFFLAGS: 1533 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1534 return error; 1535 return ether_ioctl_reinit(ec); 1536 case SIOCGIFFLAGS: 1537 error = ifioctl_common(ifp, cmd, data); 1538 if (error == 0) { 1539 /* Set IFF_ALLMULTI for backcompat */ 1540 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ? 1541 IFF_ALLMULTI : 0; 1542 } 1543 return error; 1544 case SIOCGETHERCAP: 1545 eccr = (struct eccapreq *)data; 1546 eccr->eccr_capabilities = ec->ec_capabilities; 1547 eccr->eccr_capenable = ec->ec_capenable; 1548 return 0; 1549 case SIOCSETHERCAP: 1550 eccr = (struct eccapreq *)data; 1551 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0) 1552 return EINVAL; 1553 if (eccr->eccr_capenable == ec->ec_capenable) 1554 return 0; 1555 #if 0 /* notyet */ 1556 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE) 1557 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE); 1558 #else 1559 ec->ec_capenable = eccr->eccr_capenable; 1560 #endif 1561 return ether_ioctl_reinit(ec); 1562 case SIOCADDMULTI: 1563 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec); 1564 case SIOCDELMULTI: 1565 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec); 1566 case SIOCSIFMEDIA: 1567 case SIOCGIFMEDIA: 1568 if (ec->ec_mii != NULL) 1569 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, 1570 cmd); 1571 else if (ec->ec_ifmedia != NULL) 1572 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd); 1573 else 1574 return ENOTTY; 1575 break; 1576 case SIOCALIFADDR: 1577 sdl = satocsdl(sstocsa(&iflr->addr)); 1578 if (sdl->sdl_family != AF_LINK) 1579 ; 1580 else if (ETHER_IS_MULTICAST(CLLADDR(sdl))) 1581 return EINVAL; 1582 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0) 1583 return EINVAL; 1584 /*FALLTHROUGH*/ 1585 default: 1586 return ifioctl_common(ifp, cmd, data); 1587 } 1588 return 0; 1589 } 1590 1591 /* 1592 * Enable/disable passing VLAN packets if the parent interface supports it. 1593 * Return: 1594 * 0: Ok 1595 * -1: Parent interface does not support vlans 1596 * >0: Error 1597 */ 1598 int 1599 ether_enable_vlan_mtu(struct ifnet *ifp) 1600 { 1601 int error; 1602 struct ethercom *ec = (void *)ifp; 1603 1604 /* Parent does not support VLAN's */ 1605 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) 1606 return -1; 1607 1608 /* 1609 * Parent supports the VLAN_MTU capability, 1610 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames; 1611 * enable it. 1612 */ 1613 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1614 1615 /* Interface is down, defer for later */ 1616 if ((ifp->if_flags & IFF_UP) == 0) 1617 return 0; 1618 1619 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1620 return 0; 1621 1622 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1623 return error; 1624 } 1625 1626 int 1627 ether_disable_vlan_mtu(struct ifnet *ifp) 1628 { 1629 int error; 1630 struct ethercom *ec = (void *)ifp; 1631 1632 /* We still have VLAN's, defer for later */ 1633 if (ec->ec_nvlans != 0) 1634 return 0; 1635 1636 /* Parent does not support VLAB's, nothing to do. */ 1637 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0) 1638 return -1; 1639 1640 /* 1641 * Disable Tx/Rx of VLAN-sized frames. 1642 */ 1643 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; 1644 1645 /* Interface is down, defer for later */ 1646 if ((ifp->if_flags & IFF_UP) == 0) 1647 return 0; 1648 1649 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0) 1650 return 0; 1651 1652 ec->ec_capenable |= ETHERCAP_VLAN_MTU; 1653 return error; 1654 } 1655 1656 static int 1657 ether_multicast_sysctl(SYSCTLFN_ARGS) 1658 { 1659 struct ether_multi *enm; 1660 struct ifnet *ifp; 1661 struct ethercom *ec; 1662 int error = 0; 1663 size_t written; 1664 struct psref psref; 1665 int bound; 1666 unsigned int multicnt; 1667 struct ether_multi_sysctl *addrs; 1668 int i; 1669 1670 if (namelen != 1) 1671 return EINVAL; 1672 1673 bound = curlwp_bind(); 1674 ifp = if_get_byindex(name[0], &psref); 1675 if (ifp == NULL) { 1676 error = ENODEV; 1677 goto out; 1678 } 1679 if (ifp->if_type != IFT_ETHER) { 1680 if_put(ifp, &psref); 1681 *oldlenp = 0; 1682 goto out; 1683 } 1684 ec = (struct ethercom *)ifp; 1685 1686 if (oldp == NULL) { 1687 if_put(ifp, &psref); 1688 *oldlenp = ec->ec_multicnt * sizeof(*addrs); 1689 goto out; 1690 } 1691 1692 /* 1693 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which 1694 * is sleepable, while holding it. Copy data to a local buffer first 1695 * with the lock taken and then call sysctl_copyout without holding it. 1696 */ 1697 retry: 1698 multicnt = ec->ec_multicnt; 1699 1700 if (multicnt == 0) { 1701 if_put(ifp, &psref); 1702 *oldlenp = 0; 1703 goto out; 1704 } 1705 1706 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP); 1707 1708 ETHER_LOCK(ec); 1709 if (multicnt != ec->ec_multicnt) { 1710 /* The number of multicast addresses has changed */ 1711 ETHER_UNLOCK(ec); 1712 kmem_free(addrs, sizeof(*addrs) * multicnt); 1713 goto retry; 1714 } 1715 1716 i = 0; 1717 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) { 1718 struct ether_multi_sysctl *addr = &addrs[i]; 1719 addr->enm_refcount = enm->enm_refcount; 1720 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN); 1721 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN); 1722 i++; 1723 } 1724 ETHER_UNLOCK(ec); 1725 1726 error = 0; 1727 written = 0; 1728 for (i = 0; i < multicnt; i++) { 1729 struct ether_multi_sysctl *addr = &addrs[i]; 1730 1731 if (written + sizeof(*addr) > *oldlenp) 1732 break; 1733 error = sysctl_copyout(l, addr, oldp, sizeof(*addr)); 1734 if (error) 1735 break; 1736 written += sizeof(*addr); 1737 oldp = (char *)oldp + sizeof(*addr); 1738 } 1739 kmem_free(addrs, sizeof(*addrs) * multicnt); 1740 1741 if_put(ifp, &psref); 1742 1743 *oldlenp = written; 1744 out: 1745 curlwp_bindx(bound); 1746 return error; 1747 } 1748 1749 static void 1750 ether_sysctl_setup(struct sysctllog **clog) 1751 { 1752 const struct sysctlnode *rnode = NULL; 1753 1754 sysctl_createv(clog, 0, NULL, &rnode, 1755 CTLFLAG_PERMANENT, 1756 CTLTYPE_NODE, "ether", 1757 SYSCTL_DESCR("Ethernet-specific information"), 1758 NULL, 0, NULL, 0, 1759 CTL_NET, CTL_CREATE, CTL_EOL); 1760 1761 sysctl_createv(clog, 0, &rnode, NULL, 1762 CTLFLAG_PERMANENT, 1763 CTLTYPE_NODE, "multicast", 1764 SYSCTL_DESCR("multicast addresses"), 1765 ether_multicast_sysctl, 0, NULL, 0, 1766 CTL_CREATE, CTL_EOL); 1767 1768 sysctl_createv(clog, 0, &rnode, NULL, 1769 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1770 CTLTYPE_STRING, "rps_hash", 1771 SYSCTL_DESCR("Interface rps hash function control"), 1772 sysctl_pktq_rps_hash_handler, 0, (void *)ðer_pktq_rps_hash_p, 1773 PKTQ_RPS_HASH_NAME_LEN, 1774 CTL_CREATE, CTL_EOL); 1775 } 1776 1777 void 1778 etherinit(void) 1779 { 1780 1781 #ifdef DIAGNOSTIC 1782 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET); 1783 #endif 1784 ether_pktq_rps_hash_p = pktq_rps_hash_default; 1785 ether_sysctl_setup(NULL); 1786 } 1787