xref: /netbsd-src/sys/net/if.c (revision f89f6560d453f5e37386cc7938c072d2f528b9fa)
1 /*	$NetBSD: if.c,v 1.309 2015/04/07 23:30:36 roy Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by William Studenmund and Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the project nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  */
60 
61 /*
62  * Copyright (c) 1980, 1986, 1993
63  *	The Regents of the University of California.  All rights reserved.
64  *
65  * Redistribution and use in source and binary forms, with or without
66  * modification, are permitted provided that the following conditions
67  * are met:
68  * 1. Redistributions of source code must retain the above copyright
69  *    notice, this list of conditions and the following disclaimer.
70  * 2. Redistributions in binary form must reproduce the above copyright
71  *    notice, this list of conditions and the following disclaimer in the
72  *    documentation and/or other materials provided with the distribution.
73  * 3. Neither the name of the University nor the names of its contributors
74  *    may be used to endorse or promote products derived from this software
75  *    without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87  * SUCH DAMAGE.
88  *
89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
90  */
91 
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.309 2015/04/07 23:30:36 roy Exp $");
94 
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 
98 #include "opt_atalk.h"
99 #include "opt_natm.h"
100 #include "opt_wlan.h"
101 #include "opt_net_mpsafe.h"
102 #endif
103 
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 
121 #include <net/if.h>
122 #include <net/if_dl.h>
123 #include <net/if_ether.h>
124 #include <net/if_media.h>
125 #include <net80211/ieee80211.h>
126 #include <net80211/ieee80211_ioctl.h>
127 #include <net/if_types.h>
128 #include <net/radix.h>
129 #include <net/route.h>
130 #include <net/netisr.h>
131 #include <sys/module.h>
132 #ifdef NETATALK
133 #include <netatalk/at_extern.h>
134 #include <netatalk/at.h>
135 #endif
136 #include <net/pfil.h>
137 #include <netinet/in.h>
138 #include <netinet/in_var.h>
139 
140 #ifdef INET6
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144 
145 #include "ether.h"
146 #include "fddi.h"
147 #include "token.h"
148 
149 #include "carp.h"
150 #if NCARP > 0
151 #include <netinet/ip_carp.h>
152 #endif
153 
154 #include <compat/sys/sockio.h>
155 #include <compat/sys/socket.h>
156 
157 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
158 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
159 
160 /*
161  * Global list of interfaces.
162  */
163 struct ifnet_head		ifnet_list;
164 static ifnet_t **		ifindex2ifnet = NULL;
165 
166 static u_int			if_index = 1;
167 static size_t			if_indexlim = 0;
168 static uint64_t			index_gen;
169 static kmutex_t			index_gen_mtx;
170 static kmutex_t			if_clone_mtx;
171 
172 static struct ifaddr **		ifnet_addrs = NULL;
173 
174 struct ifnet *lo0ifp;
175 int	ifqmaxlen = IFQ_MAXLEN;
176 
177 static int	if_rt_walktree(struct rtentry *, void *);
178 
179 static struct if_clone *if_clone_lookup(const char *, int *);
180 static int	if_clone_list(struct if_clonereq *);
181 
182 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
183 static int if_cloners_count;
184 
185 /* Packet filtering hook for interfaces. */
186 pfil_head_t *	if_pfil;
187 
188 static kauth_listener_t if_listener;
189 
190 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
191 static int ifioctl_attach(struct ifnet *);
192 static void ifioctl_detach(struct ifnet *);
193 static void ifnet_lock_enter(struct ifnet_lock *);
194 static void ifnet_lock_exit(struct ifnet_lock *);
195 static void if_detach_queues(struct ifnet *, struct ifqueue *);
196 static void sysctl_sndq_setup(struct sysctllog **, const char *,
197     struct ifaltq *);
198 static void if_slowtimo(void *);
199 static void if_free_sadl(struct ifnet *);
200 static void if_attachdomain1(struct ifnet *);
201 static int ifconf(u_long, void *);
202 static int if_clone_create(const char *);
203 static int if_clone_destroy(const char *);
204 
205 #if defined(INET) || defined(INET6)
206 static void sysctl_net_pktq_setup(struct sysctllog **, int);
207 #endif
208 
209 static int
210 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
211     void *arg0, void *arg1, void *arg2, void *arg3)
212 {
213 	int result;
214 	enum kauth_network_req req;
215 
216 	result = KAUTH_RESULT_DEFER;
217 	req = (enum kauth_network_req)arg1;
218 
219 	if (action != KAUTH_NETWORK_INTERFACE)
220 		return result;
221 
222 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
223 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
224 		result = KAUTH_RESULT_ALLOW;
225 
226 	return result;
227 }
228 
229 /*
230  * Network interface utility routines.
231  *
232  * Routines with ifa_ifwith* names take sockaddr *'s as
233  * parameters.
234  */
235 void
236 ifinit(void)
237 {
238 #if defined(INET)
239 	sysctl_net_pktq_setup(NULL, PF_INET);
240 #endif
241 #ifdef INET6
242 	sysctl_net_pktq_setup(NULL, PF_INET6);
243 #endif
244 
245 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
246 	    if_listener_cb, NULL);
247 
248 	/* interfaces are available, inform socket code */
249 	ifioctl = doifioctl;
250 }
251 
252 /*
253  * XXX Initialization before configure().
254  * XXX hack to get pfil_add_hook working in autoconf.
255  */
256 void
257 ifinit1(void)
258 {
259 	mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
260 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
261 	TAILQ_INIT(&ifnet_list);
262 	if_indexlim = 8;
263 
264 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
265 	KASSERT(if_pfil != NULL);
266 
267 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
268 	etherinit();
269 #endif
270 }
271 
272 ifnet_t *
273 if_alloc(u_char type)
274 {
275 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
276 }
277 
278 void
279 if_free(ifnet_t *ifp)
280 {
281 	kmem_free(ifp, sizeof(ifnet_t));
282 }
283 
284 void
285 if_initname(struct ifnet *ifp, const char *name, int unit)
286 {
287 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
288 	    "%s%d", name, unit);
289 }
290 
291 /*
292  * Null routines used while an interface is going away.  These routines
293  * just return an error.
294  */
295 
296 int
297 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
298     const struct sockaddr *so, struct rtentry *rt)
299 {
300 
301 	return ENXIO;
302 }
303 
304 void
305 if_nullinput(struct ifnet *ifp, struct mbuf *m)
306 {
307 
308 	/* Nothing. */
309 }
310 
311 void
312 if_nullstart(struct ifnet *ifp)
313 {
314 
315 	/* Nothing. */
316 }
317 
318 int
319 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
320 {
321 
322 	/* Wake ifioctl_detach(), who may wait for all threads to
323 	 * quit the critical section.
324 	 */
325 	cv_signal(&ifp->if_ioctl_lock->il_emptied);
326 	return ENXIO;
327 }
328 
329 int
330 if_nullinit(struct ifnet *ifp)
331 {
332 
333 	return ENXIO;
334 }
335 
336 void
337 if_nullstop(struct ifnet *ifp, int disable)
338 {
339 
340 	/* Nothing. */
341 }
342 
343 void
344 if_nullslowtimo(struct ifnet *ifp)
345 {
346 
347 	/* Nothing. */
348 }
349 
350 void
351 if_nulldrain(struct ifnet *ifp)
352 {
353 
354 	/* Nothing. */
355 }
356 
357 void
358 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
359 {
360 	struct ifaddr *ifa;
361 	struct sockaddr_dl *sdl;
362 
363 	ifp->if_addrlen = addrlen;
364 	if_alloc_sadl(ifp);
365 	ifa = ifp->if_dl;
366 	sdl = satosdl(ifa->ifa_addr);
367 
368 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
369 	if (factory) {
370 		ifp->if_hwdl = ifp->if_dl;
371 		ifaref(ifp->if_hwdl);
372 	}
373 	/* TBD routing socket */
374 }
375 
376 struct ifaddr *
377 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
378 {
379 	unsigned socksize, ifasize;
380 	int addrlen, namelen;
381 	struct sockaddr_dl *mask, *sdl;
382 	struct ifaddr *ifa;
383 
384 	namelen = strlen(ifp->if_xname);
385 	addrlen = ifp->if_addrlen;
386 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
387 	ifasize = sizeof(*ifa) + 2 * socksize;
388 	ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
389 
390 	sdl = (struct sockaddr_dl *)(ifa + 1);
391 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
392 
393 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
394 	    ifp->if_xname, namelen, NULL, addrlen);
395 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
396 	memset(&mask->sdl_data[0], 0xff, namelen);
397 	ifa->ifa_rtrequest = link_rtrequest;
398 	ifa->ifa_addr = (struct sockaddr *)sdl;
399 	ifa->ifa_netmask = (struct sockaddr *)mask;
400 
401 	*sdlp = sdl;
402 
403 	return ifa;
404 }
405 
406 static void
407 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
408 {
409 	const struct sockaddr_dl *sdl;
410 	ifnet_addrs[ifp->if_index] = ifa;
411 	ifaref(ifa);
412 	ifp->if_dl = ifa;
413 	ifaref(ifa);
414 	sdl = satosdl(ifa->ifa_addr);
415 	ifp->if_sadl = sdl;
416 }
417 
418 /*
419  * Allocate the link level name for the specified interface.  This
420  * is an attachment helper.  It must be called after ifp->if_addrlen
421  * is initialized, which may not be the case when if_attach() is
422  * called.
423  */
424 void
425 if_alloc_sadl(struct ifnet *ifp)
426 {
427 	struct ifaddr *ifa;
428 	const struct sockaddr_dl *sdl;
429 
430 	/*
431 	 * If the interface already has a link name, release it
432 	 * now.  This is useful for interfaces that can change
433 	 * link types, and thus switch link names often.
434 	 */
435 	if (ifp->if_sadl != NULL)
436 		if_free_sadl(ifp);
437 
438 	ifa = if_dl_create(ifp, &sdl);
439 
440 	ifa_insert(ifp, ifa);
441 	if_sadl_setrefs(ifp, ifa);
442 }
443 
444 static void
445 if_deactivate_sadl(struct ifnet *ifp)
446 {
447 	struct ifaddr *ifa;
448 
449 	KASSERT(ifp->if_dl != NULL);
450 
451 	ifa = ifp->if_dl;
452 
453 	ifp->if_sadl = NULL;
454 
455 	ifnet_addrs[ifp->if_index] = NULL;
456 	ifafree(ifa);
457 	ifp->if_dl = NULL;
458 	ifafree(ifa);
459 }
460 
461 void
462 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
463     const struct sockaddr_dl *sdl)
464 {
465 	int s;
466 
467 	s = splnet();
468 
469 	if_deactivate_sadl(ifp);
470 
471 	if_sadl_setrefs(ifp, ifa);
472 	IFADDR_FOREACH(ifa, ifp)
473 		rtinit(ifa, RTM_LLINFO_UPD, 0);
474 	splx(s);
475 }
476 
477 /*
478  * Free the link level name for the specified interface.  This is
479  * a detach helper.  This is called from if_detach().
480  */
481 static void
482 if_free_sadl(struct ifnet *ifp)
483 {
484 	struct ifaddr *ifa;
485 	int s;
486 
487 	ifa = ifnet_addrs[ifp->if_index];
488 	if (ifa == NULL) {
489 		KASSERT(ifp->if_sadl == NULL);
490 		KASSERT(ifp->if_dl == NULL);
491 		return;
492 	}
493 
494 	KASSERT(ifp->if_sadl != NULL);
495 	KASSERT(ifp->if_dl != NULL);
496 
497 	s = splnet();
498 	rtinit(ifa, RTM_DELETE, 0);
499 	ifa_remove(ifp, ifa);
500 	if_deactivate_sadl(ifp);
501 	if (ifp->if_hwdl == ifa) {
502 		ifafree(ifa);
503 		ifp->if_hwdl = NULL;
504 	}
505 	splx(s);
506 }
507 
508 static void
509 if_getindex(ifnet_t *ifp)
510 {
511 	bool hitlimit = false;
512 
513 	mutex_enter(&index_gen_mtx);
514 	ifp->if_index_gen = index_gen++;
515 	mutex_exit(&index_gen_mtx);
516 
517 	ifp->if_index = if_index;
518 	if (ifindex2ifnet == NULL) {
519 		if_index++;
520 		goto skip;
521 	}
522 	while (if_byindex(ifp->if_index)) {
523 		/*
524 		 * If we hit USHRT_MAX, we skip back to 0 since
525 		 * there are a number of places where the value
526 		 * of if_index or if_index itself is compared
527 		 * to or stored in an unsigned short.  By
528 		 * jumping back, we won't botch those assignments
529 		 * or comparisons.
530 		 */
531 		if (++if_index == 0) {
532 			if_index = 1;
533 		} else if (if_index == USHRT_MAX) {
534 			/*
535 			 * However, if we have to jump back to
536 			 * zero *twice* without finding an empty
537 			 * slot in ifindex2ifnet[], then there
538 			 * there are too many (>65535) interfaces.
539 			 */
540 			if (hitlimit) {
541 				panic("too many interfaces");
542 			}
543 			hitlimit = true;
544 			if_index = 1;
545 		}
546 		ifp->if_index = if_index;
547 	}
548 skip:
549 	/*
550 	 * We have some arrays that should be indexed by if_index.
551 	 * since if_index will grow dynamically, they should grow too.
552 	 *	struct ifadd **ifnet_addrs
553 	 *	struct ifnet **ifindex2ifnet
554 	 */
555 	if (ifnet_addrs == NULL || ifindex2ifnet == NULL ||
556 	    ifp->if_index >= if_indexlim) {
557 		size_t m, n, oldlim;
558 		void *q;
559 
560 		oldlim = if_indexlim;
561 		while (ifp->if_index >= if_indexlim)
562 			if_indexlim <<= 1;
563 
564 		/* grow ifnet_addrs */
565 		m = oldlim * sizeof(struct ifaddr *);
566 		n = if_indexlim * sizeof(struct ifaddr *);
567 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
568 		if (ifnet_addrs != NULL) {
569 			memcpy(q, ifnet_addrs, m);
570 			free(ifnet_addrs, M_IFADDR);
571 		}
572 		ifnet_addrs = (struct ifaddr **)q;
573 
574 		/* grow ifindex2ifnet */
575 		m = oldlim * sizeof(struct ifnet *);
576 		n = if_indexlim * sizeof(struct ifnet *);
577 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
578 		if (ifindex2ifnet != NULL) {
579 			memcpy(q, ifindex2ifnet, m);
580 			free(ifindex2ifnet, M_IFADDR);
581 		}
582 		ifindex2ifnet = (struct ifnet **)q;
583 	}
584 	ifindex2ifnet[ifp->if_index] = ifp;
585 }
586 
587 /*
588  * Initialize an interface and assign an index for it.
589  *
590  * It must be called prior to a device specific attach routine
591  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
592  * and be followed by if_register:
593  *
594  *     if_initialize(ifp);
595  *     ether_ifattach(ifp, enaddr);
596  *     if_register(ifp);
597  */
598 void
599 if_initialize(ifnet_t *ifp)
600 {
601 	KASSERT(if_indexlim > 0);
602 	TAILQ_INIT(&ifp->if_addrlist);
603 
604 	/*
605 	 * Link level name is allocated later by a separate call to
606 	 * if_alloc_sadl().
607 	 */
608 
609 	if (ifp->if_snd.ifq_maxlen == 0)
610 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
611 
612 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
613 
614 	ifp->if_link_state = LINK_STATE_UNKNOWN;
615 
616 	ifp->if_capenable = 0;
617 	ifp->if_csum_flags_tx = 0;
618 	ifp->if_csum_flags_rx = 0;
619 
620 #ifdef ALTQ
621 	ifp->if_snd.altq_type = 0;
622 	ifp->if_snd.altq_disc = NULL;
623 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
624 	ifp->if_snd.altq_tbr  = NULL;
625 	ifp->if_snd.altq_ifp  = ifp;
626 #endif
627 
628 #ifdef NET_MPSAFE
629 	ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
630 #else
631 	ifp->if_snd.ifq_lock = NULL;
632 #endif
633 
634 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
635 	(void)pfil_run_hooks(if_pfil,
636 	    (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
637 
638 	if_getindex(ifp);
639 }
640 
641 /*
642  * Register an interface to the list of "active" interfaces.
643  */
644 void
645 if_register(ifnet_t *ifp)
646 {
647 	if (ifioctl_attach(ifp) != 0)
648 		panic("%s: ifioctl_attach() failed", __func__);
649 
650 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
651 
652 	if (!STAILQ_EMPTY(&domains))
653 		if_attachdomain1(ifp);
654 
655 	/* Announce the interface. */
656 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
657 
658 	if (ifp->if_slowtimo != NULL) {
659 		ifp->if_slowtimo_ch =
660 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
661 		callout_init(ifp->if_slowtimo_ch, 0);
662 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
663 		if_slowtimo(ifp);
664 	}
665 
666 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
667 }
668 
669 /*
670  * Deprecated. Use if_initialize and if_register instead.
671  * See the above comment of if_initialize.
672  */
673 void
674 if_attach(ifnet_t *ifp)
675 {
676 	if_initialize(ifp);
677 	if_register(ifp);
678 }
679 
680 void
681 if_attachdomain(void)
682 {
683 	struct ifnet *ifp;
684 	int s;
685 
686 	s = splnet();
687 	IFNET_FOREACH(ifp)
688 		if_attachdomain1(ifp);
689 	splx(s);
690 }
691 
692 static void
693 if_attachdomain1(struct ifnet *ifp)
694 {
695 	struct domain *dp;
696 	int s;
697 
698 	s = splnet();
699 
700 	/* address family dependent data region */
701 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
702 	DOMAIN_FOREACH(dp) {
703 		if (dp->dom_ifattach != NULL)
704 			ifp->if_afdata[dp->dom_family] =
705 			    (*dp->dom_ifattach)(ifp);
706 	}
707 
708 	splx(s);
709 }
710 
711 /*
712  * Deactivate an interface.  This points all of the procedure
713  * handles at error stubs.  May be called from interrupt context.
714  */
715 void
716 if_deactivate(struct ifnet *ifp)
717 {
718 	int s;
719 
720 	s = splnet();
721 
722 	ifp->if_output	 = if_nulloutput;
723 	ifp->if_input	 = if_nullinput;
724 	ifp->if_start	 = if_nullstart;
725 	ifp->if_ioctl	 = if_nullioctl;
726 	ifp->if_init	 = if_nullinit;
727 	ifp->if_stop	 = if_nullstop;
728 	ifp->if_slowtimo = if_nullslowtimo;
729 	ifp->if_drain	 = if_nulldrain;
730 
731 	/* No more packets may be enqueued. */
732 	ifp->if_snd.ifq_maxlen = 0;
733 
734 	splx(s);
735 }
736 
737 void
738 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
739 {
740 	struct ifaddr *ifa, *nifa;
741 
742 	IFADDR_FOREACH_SAFE(ifa, ifp, nifa) {
743 		if (ifa->ifa_addr->sa_family != family)
744 			continue;
745 		(*purgeaddr)(ifa);
746 	}
747 }
748 
749 /*
750  * Detach an interface from the list of "active" interfaces,
751  * freeing any resources as we go along.
752  *
753  * NOTE: This routine must be called with a valid thread context,
754  * as it may block.
755  */
756 void
757 if_detach(struct ifnet *ifp)
758 {
759 	struct socket so;
760 	struct ifaddr *ifa;
761 #ifdef IFAREF_DEBUG
762 	struct ifaddr *last_ifa = NULL;
763 #endif
764 	struct domain *dp;
765 	const struct protosw *pr;
766 	int s, i, family, purged;
767 	uint64_t xc;
768 
769 	/*
770 	 * XXX It's kind of lame that we have to have the
771 	 * XXX socket structure...
772 	 */
773 	memset(&so, 0, sizeof(so));
774 
775 	s = splnet();
776 
777 	if (ifp->if_slowtimo != NULL) {
778 		ifp->if_slowtimo = NULL;
779 		callout_halt(ifp->if_slowtimo_ch, NULL);
780 		callout_destroy(ifp->if_slowtimo_ch);
781 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
782 	}
783 
784 	/*
785 	 * Do an if_down() to give protocols a chance to do something.
786 	 */
787 	if_down(ifp);
788 
789 #ifdef ALTQ
790 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
791 		altq_disable(&ifp->if_snd);
792 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
793 		altq_detach(&ifp->if_snd);
794 #endif
795 
796 	if (ifp->if_snd.ifq_lock)
797 		mutex_obj_free(ifp->if_snd.ifq_lock);
798 
799 	sysctl_teardown(&ifp->if_sysctl_log);
800 
801 #if NCARP > 0
802 	/* Remove the interface from any carp group it is a part of.  */
803 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
804 		carp_ifdetach(ifp);
805 #endif
806 
807 	/*
808 	 * Rip all the addresses off the interface.  This should make
809 	 * all of the routes go away.
810 	 *
811 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
812 	 * from the list, including our "cursor", ifa.  For safety,
813 	 * and to honor the TAILQ abstraction, I just restart the
814 	 * loop after each removal.  Note that the loop will exit
815 	 * when all of the remaining ifaddrs belong to the AF_LINK
816 	 * family.  I am counting on the historical fact that at
817 	 * least one pr_usrreq in each address domain removes at
818 	 * least one ifaddr.
819 	 */
820 again:
821 	IFADDR_FOREACH(ifa, ifp) {
822 		family = ifa->ifa_addr->sa_family;
823 #ifdef IFAREF_DEBUG
824 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
825 		    ifa, family, ifa->ifa_refcnt);
826 		if (last_ifa != NULL && ifa == last_ifa)
827 			panic("if_detach: loop detected");
828 		last_ifa = ifa;
829 #endif
830 		if (family == AF_LINK)
831 			continue;
832 		dp = pffinddomain(family);
833 #ifdef DIAGNOSTIC
834 		if (dp == NULL)
835 			panic("if_detach: no domain for AF %d",
836 			    family);
837 #endif
838 		/*
839 		 * XXX These PURGEIF calls are redundant with the
840 		 * purge-all-families calls below, but are left in for
841 		 * now both to make a smaller change, and to avoid
842 		 * unplanned interactions with clearing of
843 		 * ifp->if_addrlist.
844 		 */
845 		purged = 0;
846 		for (pr = dp->dom_protosw;
847 		     pr < dp->dom_protoswNPROTOSW; pr++) {
848 			so.so_proto = pr;
849 			if (pr->pr_usrreqs) {
850 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
851 				purged = 1;
852 			}
853 		}
854 		if (purged == 0) {
855 			/*
856 			 * XXX What's really the best thing to do
857 			 * XXX here?  --thorpej@NetBSD.org
858 			 */
859 			printf("if_detach: WARNING: AF %d not purged\n",
860 			    family);
861 			ifa_remove(ifp, ifa);
862 		}
863 		goto again;
864 	}
865 
866 	if_free_sadl(ifp);
867 
868 	/* Walk the routing table looking for stragglers. */
869 	for (i = 0; i <= AF_MAX; i++) {
870 		while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
871 			continue;
872 	}
873 
874 	DOMAIN_FOREACH(dp) {
875 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
876 		{
877 			void *p = ifp->if_afdata[dp->dom_family];
878 			if (p) {
879 				ifp->if_afdata[dp->dom_family] = NULL;
880 				(*dp->dom_ifdetach)(ifp, p);
881 			}
882 		}
883 
884 		/*
885 		 * One would expect multicast memberships (INET and
886 		 * INET6) on UDP sockets to be purged by the PURGEIF
887 		 * calls above, but if all addresses were removed from
888 		 * the interface prior to destruction, the calls will
889 		 * not be made (e.g. ppp, for which pppd(8) generally
890 		 * removes addresses before destroying the interface).
891 		 * Because there is no invariant that multicast
892 		 * memberships only exist for interfaces with IPv4
893 		 * addresses, we must call PURGEIF regardless of
894 		 * addresses.  (Protocols which might store ifnet
895 		 * pointers are marked with PR_PURGEIF.)
896 		 */
897 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
898 			so.so_proto = pr;
899 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
900 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
901 		}
902 	}
903 
904 	(void)pfil_run_hooks(if_pfil,
905 	    (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
906 	(void)pfil_head_destroy(ifp->if_pfil);
907 
908 	/* Announce that the interface is gone. */
909 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
910 
911 	ifindex2ifnet[ifp->if_index] = NULL;
912 
913 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
914 
915 	ifioctl_detach(ifp);
916 
917 	/*
918 	 * remove packets that came from ifp, from software interrupt queues.
919 	 */
920 	DOMAIN_FOREACH(dp) {
921 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
922 			struct ifqueue *iq = dp->dom_ifqueues[i];
923 			if (iq == NULL)
924 				break;
925 			dp->dom_ifqueues[i] = NULL;
926 			if_detach_queues(ifp, iq);
927 		}
928 	}
929 
930 	/*
931 	 * IP queues have to be processed separately: net-queue barrier
932 	 * ensures that the packets are dequeued while a cross-call will
933 	 * ensure that the interrupts have completed. FIXME: not quite..
934 	 */
935 #ifdef INET
936 	pktq_barrier(ip_pktq);
937 #endif
938 #ifdef INET6
939 	if (in6_present)
940 		pktq_barrier(ip6_pktq);
941 #endif
942 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
943 	xc_wait(xc);
944 
945 	splx(s);
946 }
947 
948 static void
949 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
950 {
951 	struct mbuf *m, *prev, *next;
952 
953 	prev = NULL;
954 	for (m = q->ifq_head; m != NULL; m = next) {
955 		KASSERT((m->m_flags & M_PKTHDR) != 0);
956 
957 		next = m->m_nextpkt;
958 		if (m->m_pkthdr.rcvif != ifp) {
959 			prev = m;
960 			continue;
961 		}
962 
963 		if (prev != NULL)
964 			prev->m_nextpkt = m->m_nextpkt;
965 		else
966 			q->ifq_head = m->m_nextpkt;
967 		if (q->ifq_tail == m)
968 			q->ifq_tail = prev;
969 		q->ifq_len--;
970 
971 		m->m_nextpkt = NULL;
972 		m_freem(m);
973 		IF_DROP(q);
974 	}
975 }
976 
977 /*
978  * Callback for a radix tree walk to delete all references to an
979  * ifnet.
980  */
981 static int
982 if_rt_walktree(struct rtentry *rt, void *v)
983 {
984 	struct ifnet *ifp = (struct ifnet *)v;
985 	int error;
986 
987 	if (rt->rt_ifp != ifp)
988 		return 0;
989 
990 	/* Delete the entry. */
991 	++rt->rt_refcnt;
992 	error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
993 	    rt_mask(rt), rt->rt_flags, NULL);
994 	KASSERT((rt->rt_flags & RTF_UP) == 0);
995 	rt->rt_ifp = NULL;
996 	rtfree(rt);
997 	if (error != 0)
998 		printf("%s: warning: unable to delete rtentry @ %p, "
999 		    "error = %d\n", ifp->if_xname, rt, error);
1000 	return ERESTART;
1001 }
1002 
1003 /*
1004  * Create a clone network interface.
1005  */
1006 static int
1007 if_clone_create(const char *name)
1008 {
1009 	struct if_clone *ifc;
1010 	int unit;
1011 
1012 	ifc = if_clone_lookup(name, &unit);
1013 	if (ifc == NULL)
1014 		return EINVAL;
1015 
1016 	if (ifunit(name) != NULL)
1017 		return EEXIST;
1018 
1019 	return (*ifc->ifc_create)(ifc, unit);
1020 }
1021 
1022 /*
1023  * Destroy a clone network interface.
1024  */
1025 static int
1026 if_clone_destroy(const char *name)
1027 {
1028 	struct if_clone *ifc;
1029 	struct ifnet *ifp;
1030 
1031 	ifc = if_clone_lookup(name, NULL);
1032 	if (ifc == NULL)
1033 		return EINVAL;
1034 
1035 	ifp = ifunit(name);
1036 	if (ifp == NULL)
1037 		return ENXIO;
1038 
1039 	if (ifc->ifc_destroy == NULL)
1040 		return EOPNOTSUPP;
1041 
1042 	return (*ifc->ifc_destroy)(ifp);
1043 }
1044 
1045 /*
1046  * Look up a network interface cloner.
1047  */
1048 static struct if_clone *
1049 if_clone_lookup(const char *name, int *unitp)
1050 {
1051 	struct if_clone *ifc;
1052 	const char *cp;
1053 	char *dp, ifname[IFNAMSIZ + 3];
1054 	int unit;
1055 
1056 	strcpy(ifname, "if_");
1057 	/* separate interface name from unit */
1058 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1059 	    *cp && (*cp < '0' || *cp > '9');)
1060 		*dp++ = *cp++;
1061 
1062 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
1063 		return NULL;	/* No name or unit number */
1064 	*dp++ = '\0';
1065 
1066 again:
1067 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1068 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1069 			break;
1070 	}
1071 
1072 	if (ifc == NULL) {
1073 		if (*ifname == '\0' ||
1074 		    module_autoload(ifname, MODULE_CLASS_DRIVER))
1075 			return NULL;
1076 		*ifname = '\0';
1077 		goto again;
1078 	}
1079 
1080 	unit = 0;
1081 	while (cp - name < IFNAMSIZ && *cp) {
1082 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1083 			/* Bogus unit number. */
1084 			return NULL;
1085 		}
1086 		unit = (unit * 10) + (*cp++ - '0');
1087 	}
1088 
1089 	if (unitp != NULL)
1090 		*unitp = unit;
1091 	return ifc;
1092 }
1093 
1094 /*
1095  * Register a network interface cloner.
1096  */
1097 void
1098 if_clone_attach(struct if_clone *ifc)
1099 {
1100 
1101 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1102 	if_cloners_count++;
1103 }
1104 
1105 /*
1106  * Unregister a network interface cloner.
1107  */
1108 void
1109 if_clone_detach(struct if_clone *ifc)
1110 {
1111 
1112 	LIST_REMOVE(ifc, ifc_list);
1113 	if_cloners_count--;
1114 }
1115 
1116 /*
1117  * Provide list of interface cloners to userspace.
1118  */
1119 static int
1120 if_clone_list(struct if_clonereq *ifcr)
1121 {
1122 	char outbuf[IFNAMSIZ], *dst;
1123 	struct if_clone *ifc;
1124 	int count, error = 0;
1125 
1126 	ifcr->ifcr_total = if_cloners_count;
1127 	if ((dst = ifcr->ifcr_buffer) == NULL) {
1128 		/* Just asking how many there are. */
1129 		return 0;
1130 	}
1131 
1132 	if (ifcr->ifcr_count < 0)
1133 		return EINVAL;
1134 
1135 	count = (if_cloners_count < ifcr->ifcr_count) ?
1136 	    if_cloners_count : ifcr->ifcr_count;
1137 
1138 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1139 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1140 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1141 		if (outbuf[sizeof(outbuf) - 1] != '\0')
1142 			return ENAMETOOLONG;
1143 		error = copyout(outbuf, dst, sizeof(outbuf));
1144 		if (error != 0)
1145 			break;
1146 	}
1147 
1148 	return error;
1149 }
1150 
1151 void
1152 ifaref(struct ifaddr *ifa)
1153 {
1154 	ifa->ifa_refcnt++;
1155 }
1156 
1157 void
1158 ifafree(struct ifaddr *ifa)
1159 {
1160 	KASSERT(ifa != NULL);
1161 	KASSERT(ifa->ifa_refcnt > 0);
1162 
1163 	if (--ifa->ifa_refcnt == 0) {
1164 		free(ifa, M_IFADDR);
1165 	}
1166 }
1167 
1168 void
1169 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1170 {
1171 	ifa->ifa_ifp = ifp;
1172 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1173 	ifaref(ifa);
1174 }
1175 
1176 void
1177 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1178 {
1179 	KASSERT(ifa->ifa_ifp == ifp);
1180 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1181 	ifafree(ifa);
1182 }
1183 
1184 static inline int
1185 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1186 {
1187 	return sockaddr_cmp(sa1, sa2) == 0;
1188 }
1189 
1190 /*
1191  * Locate an interface based on a complete address.
1192  */
1193 /*ARGSUSED*/
1194 struct ifaddr *
1195 ifa_ifwithaddr(const struct sockaddr *addr)
1196 {
1197 	struct ifnet *ifp;
1198 	struct ifaddr *ifa;
1199 
1200 	IFNET_FOREACH(ifp) {
1201 		if (ifp->if_output == if_nulloutput)
1202 			continue;
1203 		IFADDR_FOREACH(ifa, ifp) {
1204 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1205 				continue;
1206 			if (equal(addr, ifa->ifa_addr))
1207 				return ifa;
1208 			if ((ifp->if_flags & IFF_BROADCAST) &&
1209 			    ifa->ifa_broadaddr &&
1210 			    /* IP6 doesn't have broadcast */
1211 			    ifa->ifa_broadaddr->sa_len != 0 &&
1212 			    equal(ifa->ifa_broadaddr, addr))
1213 				return ifa;
1214 		}
1215 	}
1216 	return NULL;
1217 }
1218 
1219 /*
1220  * Locate the point to point interface with a given destination address.
1221  */
1222 /*ARGSUSED*/
1223 struct ifaddr *
1224 ifa_ifwithdstaddr(const struct sockaddr *addr)
1225 {
1226 	struct ifnet *ifp;
1227 	struct ifaddr *ifa;
1228 
1229 	IFNET_FOREACH(ifp) {
1230 		if (ifp->if_output == if_nulloutput)
1231 			continue;
1232 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1233 			continue;
1234 		IFADDR_FOREACH(ifa, ifp) {
1235 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
1236 			    ifa->ifa_dstaddr == NULL)
1237 				continue;
1238 			if (equal(addr, ifa->ifa_dstaddr))
1239 				return ifa;
1240 		}
1241 	}
1242 	return NULL;
1243 }
1244 
1245 /*
1246  * Find an interface on a specific network.  If many, choice
1247  * is most specific found.
1248  */
1249 struct ifaddr *
1250 ifa_ifwithnet(const struct sockaddr *addr)
1251 {
1252 	struct ifnet *ifp;
1253 	struct ifaddr *ifa;
1254 	const struct sockaddr_dl *sdl;
1255 	struct ifaddr *ifa_maybe = 0;
1256 	u_int af = addr->sa_family;
1257 	const char *addr_data = addr->sa_data, *cplim;
1258 
1259 	if (af == AF_LINK) {
1260 		sdl = satocsdl(addr);
1261 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1262 		    ifindex2ifnet[sdl->sdl_index] &&
1263 		    ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
1264 			return ifnet_addrs[sdl->sdl_index];
1265 	}
1266 #ifdef NETATALK
1267 	if (af == AF_APPLETALK) {
1268 		const struct sockaddr_at *sat, *sat2;
1269 		sat = (const struct sockaddr_at *)addr;
1270 		IFNET_FOREACH(ifp) {
1271 			if (ifp->if_output == if_nulloutput)
1272 				continue;
1273 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1274 			if (ifa == NULL)
1275 				continue;
1276 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1277 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1278 				return ifa; /* exact match */
1279 			if (ifa_maybe == NULL) {
1280 				/* else keep the if with the right range */
1281 				ifa_maybe = ifa;
1282 			}
1283 		}
1284 		return ifa_maybe;
1285 	}
1286 #endif
1287 	IFNET_FOREACH(ifp) {
1288 		if (ifp->if_output == if_nulloutput)
1289 			continue;
1290 		IFADDR_FOREACH(ifa, ifp) {
1291 			const char *cp, *cp2, *cp3;
1292 
1293 			if (ifa->ifa_addr->sa_family != af ||
1294 			    ifa->ifa_netmask == NULL)
1295  next:				continue;
1296 			cp = addr_data;
1297 			cp2 = ifa->ifa_addr->sa_data;
1298 			cp3 = ifa->ifa_netmask->sa_data;
1299 			cplim = (const char *)ifa->ifa_netmask +
1300 			    ifa->ifa_netmask->sa_len;
1301 			while (cp3 < cplim) {
1302 				if ((*cp++ ^ *cp2++) & *cp3++) {
1303 					/* want to continue for() loop */
1304 					goto next;
1305 				}
1306 			}
1307 			if (ifa_maybe == NULL ||
1308 			    rn_refines((void *)ifa->ifa_netmask,
1309 			    (void *)ifa_maybe->ifa_netmask))
1310 				ifa_maybe = ifa;
1311 		}
1312 	}
1313 	return ifa_maybe;
1314 }
1315 
1316 /*
1317  * Find the interface of the addresss.
1318  */
1319 struct ifaddr *
1320 ifa_ifwithladdr(const struct sockaddr *addr)
1321 {
1322 	struct ifaddr *ia;
1323 
1324 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1325 	    (ia = ifa_ifwithnet(addr)))
1326 		return ia;
1327 	return NULL;
1328 }
1329 
1330 /*
1331  * Find an interface using a specific address family
1332  */
1333 struct ifaddr *
1334 ifa_ifwithaf(int af)
1335 {
1336 	struct ifnet *ifp;
1337 	struct ifaddr *ifa;
1338 
1339 	IFNET_FOREACH(ifp) {
1340 		if (ifp->if_output == if_nulloutput)
1341 			continue;
1342 		IFADDR_FOREACH(ifa, ifp) {
1343 			if (ifa->ifa_addr->sa_family == af)
1344 				return ifa;
1345 		}
1346 	}
1347 	return NULL;
1348 }
1349 
1350 /*
1351  * Find an interface address specific to an interface best matching
1352  * a given address.
1353  */
1354 struct ifaddr *
1355 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1356 {
1357 	struct ifaddr *ifa;
1358 	const char *cp, *cp2, *cp3;
1359 	const char *cplim;
1360 	struct ifaddr *ifa_maybe = 0;
1361 	u_int af = addr->sa_family;
1362 
1363 	if (ifp->if_output == if_nulloutput)
1364 		return NULL;
1365 
1366 	if (af >= AF_MAX)
1367 		return NULL;
1368 
1369 	IFADDR_FOREACH(ifa, ifp) {
1370 		if (ifa->ifa_addr->sa_family != af)
1371 			continue;
1372 		ifa_maybe = ifa;
1373 		if (ifa->ifa_netmask == NULL) {
1374 			if (equal(addr, ifa->ifa_addr) ||
1375 			    (ifa->ifa_dstaddr &&
1376 			     equal(addr, ifa->ifa_dstaddr)))
1377 				return ifa;
1378 			continue;
1379 		}
1380 		cp = addr->sa_data;
1381 		cp2 = ifa->ifa_addr->sa_data;
1382 		cp3 = ifa->ifa_netmask->sa_data;
1383 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1384 		for (; cp3 < cplim; cp3++) {
1385 			if ((*cp++ ^ *cp2++) & *cp3)
1386 				break;
1387 		}
1388 		if (cp3 == cplim)
1389 			return ifa;
1390 	}
1391 	return ifa_maybe;
1392 }
1393 
1394 /*
1395  * Default action when installing a route with a Link Level gateway.
1396  * Lookup an appropriate real ifa to point to.
1397  * This should be moved to /sys/net/link.c eventually.
1398  */
1399 void
1400 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1401 {
1402 	struct ifaddr *ifa;
1403 	const struct sockaddr *dst;
1404 	struct ifnet *ifp;
1405 
1406 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1407 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1408 		return;
1409 	if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1410 		rt_replace_ifa(rt, ifa);
1411 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1412 			ifa->ifa_rtrequest(cmd, rt, info);
1413 	}
1414 }
1415 
1416 /*
1417  * Handle a change in the interface link state.
1418  * XXX: We should listen to the routing socket in-kernel rather
1419  * than calling in6_if_link_* functions directly from here.
1420  */
1421 void
1422 if_link_state_change(struct ifnet *ifp, int link_state)
1423 {
1424 	int s;
1425 #if defined(DEBUG) || defined(INET6)
1426 	int old_link_state;
1427 #endif
1428 
1429 	s = splnet();
1430 	if (ifp->if_link_state == link_state) {
1431 		splx(s);
1432 		return;
1433 	}
1434 
1435 #if defined(DEBUG) || defined(INET6)
1436 	old_link_state = ifp->if_link_state;
1437 #endif
1438 	ifp->if_link_state = link_state;
1439 #ifdef DEBUG
1440 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1441 		link_state == LINK_STATE_UP ? "UP" :
1442 		link_state == LINK_STATE_DOWN ? "DOWN" :
1443 		"UNKNOWN",
1444 		 old_link_state == LINK_STATE_UP ? "UP" :
1445 		old_link_state == LINK_STATE_DOWN ? "DOWN" :
1446 		"UNKNOWN");
1447 #endif
1448 
1449 #ifdef INET6
1450 	/*
1451 	 * When going from UNKNOWN to UP, we need to mark existing
1452 	 * IPv6 addresses as tentative and restart DAD as we may have
1453 	 * erroneously not found a duplicate.
1454 	 *
1455 	 * This needs to happen before rt_ifmsg to avoid a race where
1456 	 * listeners would have an address and expect it to work right
1457 	 * away.
1458 	 */
1459 	if (in6_present && link_state == LINK_STATE_UP &&
1460 	    old_link_state == LINK_STATE_UNKNOWN)
1461 		in6_if_link_down(ifp);
1462 #endif
1463 
1464 	/* Notify that the link state has changed. */
1465 	rt_ifmsg(ifp);
1466 
1467 #if NCARP > 0
1468 	if (ifp->if_carp)
1469 		carp_carpdev_state(ifp);
1470 #endif
1471 
1472 #ifdef INET6
1473 	if (in6_present) {
1474 		if (link_state == LINK_STATE_DOWN)
1475 			in6_if_link_down(ifp);
1476 		else if (link_state == LINK_STATE_UP)
1477 			in6_if_link_up(ifp);
1478 	}
1479 #endif
1480 
1481 	splx(s);
1482 }
1483 
1484 /*
1485  * Mark an interface down and notify protocols of
1486  * the transition.
1487  * NOTE: must be called at splsoftnet or equivalent.
1488  */
1489 void
1490 if_down(struct ifnet *ifp)
1491 {
1492 	struct ifaddr *ifa;
1493 
1494 	ifp->if_flags &= ~IFF_UP;
1495 	nanotime(&ifp->if_lastchange);
1496 	IFADDR_FOREACH(ifa, ifp)
1497 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1498 	IFQ_PURGE(&ifp->if_snd);
1499 #if NCARP > 0
1500 	if (ifp->if_carp)
1501 		carp_carpdev_state(ifp);
1502 #endif
1503 	rt_ifmsg(ifp);
1504 #ifdef INET6
1505 	if (in6_present)
1506 		in6_if_down(ifp);
1507 #endif
1508 }
1509 
1510 /*
1511  * Mark an interface up and notify protocols of
1512  * the transition.
1513  * NOTE: must be called at splsoftnet or equivalent.
1514  */
1515 void
1516 if_up(struct ifnet *ifp)
1517 {
1518 #ifdef notyet
1519 	struct ifaddr *ifa;
1520 #endif
1521 
1522 	ifp->if_flags |= IFF_UP;
1523 	nanotime(&ifp->if_lastchange);
1524 #ifdef notyet
1525 	/* this has no effect on IP, and will kill all ISO connections XXX */
1526 	IFADDR_FOREACH(ifa, ifp)
1527 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
1528 #endif
1529 #if NCARP > 0
1530 	if (ifp->if_carp)
1531 		carp_carpdev_state(ifp);
1532 #endif
1533 	rt_ifmsg(ifp);
1534 #ifdef INET6
1535 	if (in6_present)
1536 		in6_if_up(ifp);
1537 #endif
1538 }
1539 
1540 /*
1541  * Handle interface slowtimo timer routine.  Called
1542  * from softclock, we decrement timer (if set) and
1543  * call the appropriate interface routine on expiration.
1544  */
1545 static void
1546 if_slowtimo(void *arg)
1547 {
1548 	void (*slowtimo)(struct ifnet *);
1549 	struct ifnet *ifp = arg;
1550 	int s;
1551 
1552 	slowtimo = ifp->if_slowtimo;
1553 	if (__predict_false(slowtimo == NULL))
1554 		return;
1555 
1556 	s = splnet();
1557 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
1558 		(*slowtimo)(ifp);
1559 
1560 	splx(s);
1561 
1562 	if (__predict_true(ifp->if_slowtimo != NULL))
1563 		callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
1564 }
1565 
1566 /*
1567  * Set/clear promiscuous mode on interface ifp based on the truth value
1568  * of pswitch.  The calls are reference counted so that only the first
1569  * "on" request actually has an effect, as does the final "off" request.
1570  * Results are undefined if the "off" and "on" requests are not matched.
1571  */
1572 int
1573 ifpromisc(struct ifnet *ifp, int pswitch)
1574 {
1575 	int pcount, ret;
1576 	short nflags;
1577 
1578 	pcount = ifp->if_pcount;
1579 	if (pswitch) {
1580 		/*
1581 		 * Allow the device to be "placed" into promiscuous
1582 		 * mode even if it is not configured up.  It will
1583 		 * consult IFF_PROMISC when it is brought up.
1584 		 */
1585 		if (ifp->if_pcount++ != 0)
1586 			return 0;
1587 		nflags = ifp->if_flags | IFF_PROMISC;
1588 	} else {
1589 		if (--ifp->if_pcount > 0)
1590 			return 0;
1591 		nflags = ifp->if_flags & ~IFF_PROMISC;
1592 	}
1593 	ret = if_flags_set(ifp, nflags);
1594 	/* Restore interface state if not successful. */
1595 	if (ret != 0) {
1596 		ifp->if_pcount = pcount;
1597 	}
1598 	return ret;
1599 }
1600 
1601 /*
1602  * Map interface name to
1603  * interface structure pointer.
1604  */
1605 struct ifnet *
1606 ifunit(const char *name)
1607 {
1608 	struct ifnet *ifp;
1609 	const char *cp = name;
1610 	u_int unit = 0;
1611 	u_int i;
1612 
1613 	/*
1614 	 * If the entire name is a number, treat it as an ifindex.
1615 	 */
1616 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
1617 		unit = unit * 10 + (*cp - '0');
1618 	}
1619 
1620 	/*
1621 	 * If the number took all of the name, then it's a valid ifindex.
1622 	 */
1623 	if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
1624 		if (unit >= if_indexlim)
1625 			return NULL;
1626 		ifp = ifindex2ifnet[unit];
1627 		if (ifp == NULL || ifp->if_output == if_nulloutput)
1628 			return NULL;
1629 		return ifp;
1630 	}
1631 
1632 	IFNET_FOREACH(ifp) {
1633 		if (ifp->if_output == if_nulloutput)
1634 			continue;
1635 	 	if (strcmp(ifp->if_xname, name) == 0)
1636 			return ifp;
1637 	}
1638 	return NULL;
1639 }
1640 
1641 ifnet_t *
1642 if_byindex(u_int idx)
1643 {
1644 	return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
1645 }
1646 
1647 /* common */
1648 int
1649 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
1650 {
1651 	int s;
1652 	struct ifreq *ifr;
1653 	struct ifcapreq *ifcr;
1654 	struct ifdatareq *ifdr;
1655 
1656 	switch (cmd) {
1657 	case SIOCSIFCAP:
1658 		ifcr = data;
1659 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
1660 			return EINVAL;
1661 
1662 		if (ifcr->ifcr_capenable == ifp->if_capenable)
1663 			return 0;
1664 
1665 		ifp->if_capenable = ifcr->ifcr_capenable;
1666 
1667 		/* Pre-compute the checksum flags mask. */
1668 		ifp->if_csum_flags_tx = 0;
1669 		ifp->if_csum_flags_rx = 0;
1670 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
1671 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
1672 		}
1673 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1674 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
1675 		}
1676 
1677 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
1678 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
1679 		}
1680 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
1681 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
1682 		}
1683 
1684 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
1685 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
1686 		}
1687 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
1688 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
1689 		}
1690 
1691 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
1692 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
1693 		}
1694 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
1695 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
1696 		}
1697 
1698 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
1699 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
1700 		}
1701 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
1702 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
1703 		}
1704 		if (ifp->if_flags & IFF_UP)
1705 			return ENETRESET;
1706 		return 0;
1707 	case SIOCSIFFLAGS:
1708 		ifr = data;
1709 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
1710 			s = splnet();
1711 			if_down(ifp);
1712 			splx(s);
1713 		}
1714 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
1715 			s = splnet();
1716 			if_up(ifp);
1717 			splx(s);
1718 		}
1719 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1720 			(ifr->ifr_flags &~ IFF_CANTCHANGE);
1721 		break;
1722 	case SIOCGIFFLAGS:
1723 		ifr = data;
1724 		ifr->ifr_flags = ifp->if_flags;
1725 		break;
1726 
1727 	case SIOCGIFMETRIC:
1728 		ifr = data;
1729 		ifr->ifr_metric = ifp->if_metric;
1730 		break;
1731 
1732 	case SIOCGIFMTU:
1733 		ifr = data;
1734 		ifr->ifr_mtu = ifp->if_mtu;
1735 		break;
1736 
1737 	case SIOCGIFDLT:
1738 		ifr = data;
1739 		ifr->ifr_dlt = ifp->if_dlt;
1740 		break;
1741 
1742 	case SIOCGIFCAP:
1743 		ifcr = data;
1744 		ifcr->ifcr_capabilities = ifp->if_capabilities;
1745 		ifcr->ifcr_capenable = ifp->if_capenable;
1746 		break;
1747 
1748 	case SIOCSIFMETRIC:
1749 		ifr = data;
1750 		ifp->if_metric = ifr->ifr_metric;
1751 		break;
1752 
1753 	case SIOCGIFDATA:
1754 		ifdr = data;
1755 		ifdr->ifdr_data = ifp->if_data;
1756 		break;
1757 
1758 	case SIOCGIFINDEX:
1759 		ifr = data;
1760 		ifr->ifr_index = ifp->if_index;
1761 		break;
1762 
1763 	case SIOCZIFDATA:
1764 		ifdr = data;
1765 		ifdr->ifdr_data = ifp->if_data;
1766 		/*
1767 		 * Assumes that the volatile counters that can be
1768 		 * zero'ed are at the end of if_data.
1769 		 */
1770 		memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
1771 		    offsetof(struct if_data, ifi_ipackets));
1772 		/*
1773 		 * The memset() clears to the bottm of if_data. In the area,
1774 		 * if_lastchange is included. Please be careful if new entry
1775 		 * will be added into if_data or rewite this.
1776 		 *
1777 		 * And also, update if_lastchnage.
1778 		 */
1779 		getnanotime(&ifp->if_lastchange);
1780 		break;
1781 	case SIOCSIFMTU:
1782 		ifr = data;
1783 		if (ifp->if_mtu == ifr->ifr_mtu)
1784 			break;
1785 		ifp->if_mtu = ifr->ifr_mtu;
1786 		/*
1787 		 * If the link MTU changed, do network layer specific procedure.
1788 		 */
1789 #ifdef INET6
1790 		if (in6_present)
1791 			nd6_setmtu(ifp);
1792 #endif
1793 		return ENETRESET;
1794 	default:
1795 		return ENOTTY;
1796 	}
1797 	return 0;
1798 }
1799 
1800 int
1801 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
1802 {
1803 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
1804 	struct ifaddr *ifa;
1805 	const struct sockaddr *any, *sa;
1806 	union {
1807 		struct sockaddr sa;
1808 		struct sockaddr_storage ss;
1809 	} u, v;
1810 
1811 	switch (cmd) {
1812 	case SIOCSIFADDRPREF:
1813 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
1814 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1815 		    NULL) != 0)
1816 			return EPERM;
1817 	case SIOCGIFADDRPREF:
1818 		break;
1819 	default:
1820 		return EOPNOTSUPP;
1821 	}
1822 
1823 	/* sanity checks */
1824 	if (data == NULL || ifp == NULL) {
1825 		panic("invalid argument to %s", __func__);
1826 		/*NOTREACHED*/
1827 	}
1828 
1829 	/* address must be specified on ADD and DELETE */
1830 	sa = sstocsa(&ifap->ifap_addr);
1831 	if (sa->sa_family != sofamily(so))
1832 		return EINVAL;
1833 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
1834 		return EINVAL;
1835 
1836 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
1837 
1838 	IFADDR_FOREACH(ifa, ifp) {
1839 		if (ifa->ifa_addr->sa_family != sa->sa_family)
1840 			continue;
1841 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
1842 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
1843 			break;
1844 	}
1845 	if (ifa == NULL)
1846 		return EADDRNOTAVAIL;
1847 
1848 	switch (cmd) {
1849 	case SIOCSIFADDRPREF:
1850 		ifa->ifa_preference = ifap->ifap_preference;
1851 		return 0;
1852 	case SIOCGIFADDRPREF:
1853 		/* fill in the if_laddrreq structure */
1854 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
1855 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
1856 		ifap->ifap_preference = ifa->ifa_preference;
1857 		return 0;
1858 	default:
1859 		return EOPNOTSUPP;
1860 	}
1861 }
1862 
1863 static void
1864 ifnet_lock_enter(struct ifnet_lock *il)
1865 {
1866 	uint64_t *nenter;
1867 
1868 	/* Before trying to acquire the mutex, increase the count of threads
1869 	 * who have entered or who wait to enter the critical section.
1870 	 * Avoid one costly locked memory transaction by keeping a count for
1871 	 * each CPU.
1872 	 */
1873 	nenter = percpu_getref(il->il_nenter);
1874 	(*nenter)++;
1875 	percpu_putref(il->il_nenter);
1876 	mutex_enter(&il->il_lock);
1877 }
1878 
1879 static void
1880 ifnet_lock_exit(struct ifnet_lock *il)
1881 {
1882 	/* Increase the count of threads who have exited the critical
1883 	 * section.  Increase while we still hold the lock.
1884 	 */
1885 	il->il_nexit++;
1886 	mutex_exit(&il->il_lock);
1887 }
1888 
1889 /*
1890  * Interface ioctls.
1891  */
1892 static int
1893 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
1894 {
1895 	struct ifnet *ifp;
1896 	struct ifreq *ifr;
1897 	int error = 0;
1898 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
1899 	u_long ocmd = cmd;
1900 #endif
1901 	short oif_flags;
1902 #ifdef COMPAT_OIFREQ
1903 	struct ifreq ifrb;
1904 	struct oifreq *oifr = NULL;
1905 #endif
1906 	int r;
1907 
1908 	switch (cmd) {
1909 #ifdef COMPAT_OIFREQ
1910 	case OSIOCGIFCONF:
1911 	case OOSIOCGIFCONF:
1912 		return compat_ifconf(cmd, data);
1913 #endif
1914 #ifdef COMPAT_OIFDATA
1915 	case OSIOCGIFDATA:
1916 	case OSIOCZIFDATA:
1917 		return compat_ifdatareq(l, cmd, data);
1918 #endif
1919 	case SIOCGIFCONF:
1920 		return ifconf(cmd, data);
1921 	case SIOCINITIFADDR:
1922 		return EPERM;
1923 	}
1924 
1925 #ifdef COMPAT_OIFREQ
1926 	cmd = compat_cvtcmd(cmd);
1927 	if (cmd != ocmd) {
1928 		oifr = data;
1929 		data = ifr = &ifrb;
1930 		ifreqo2n(oifr, ifr);
1931 	} else
1932 #endif
1933 		ifr = data;
1934 
1935 	ifp = ifunit(ifr->ifr_name);
1936 
1937 	switch (cmd) {
1938 	case SIOCIFCREATE:
1939 	case SIOCIFDESTROY:
1940 		if (l != NULL) {
1941 			error = kauth_authorize_network(l->l_cred,
1942 			    KAUTH_NETWORK_INTERFACE,
1943 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1944 			    (void *)cmd, NULL);
1945 			if (error != 0)
1946 				return error;
1947 		}
1948 		mutex_enter(&if_clone_mtx);
1949 		r = (cmd == SIOCIFCREATE) ?
1950 			if_clone_create(ifr->ifr_name) :
1951 			if_clone_destroy(ifr->ifr_name);
1952 		mutex_exit(&if_clone_mtx);
1953 		return r;
1954 
1955 	case SIOCIFGCLONERS:
1956 		return if_clone_list((struct if_clonereq *)data);
1957 	}
1958 
1959 	if (ifp == NULL)
1960 		return ENXIO;
1961 
1962 	switch (cmd) {
1963 	case SIOCALIFADDR:
1964 	case SIOCDLIFADDR:
1965 	case SIOCSIFADDRPREF:
1966 	case SIOCSIFFLAGS:
1967 	case SIOCSIFCAP:
1968 	case SIOCSIFMETRIC:
1969 	case SIOCZIFDATA:
1970 	case SIOCSIFMTU:
1971 	case SIOCSIFPHYADDR:
1972 	case SIOCDIFPHYADDR:
1973 #ifdef INET6
1974 	case SIOCSIFPHYADDR_IN6:
1975 #endif
1976 	case SIOCSLIFPHYADDR:
1977 	case SIOCADDMULTI:
1978 	case SIOCDELMULTI:
1979 	case SIOCSIFMEDIA:
1980 	case SIOCSDRVSPEC:
1981 	case SIOCG80211:
1982 	case SIOCS80211:
1983 	case SIOCS80211NWID:
1984 	case SIOCS80211NWKEY:
1985 	case SIOCS80211POWER:
1986 	case SIOCS80211BSSID:
1987 	case SIOCS80211CHANNEL:
1988 	case SIOCSLINKSTR:
1989 		if (l != NULL) {
1990 			error = kauth_authorize_network(l->l_cred,
1991 			    KAUTH_NETWORK_INTERFACE,
1992 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1993 			    (void *)cmd, NULL);
1994 			if (error != 0)
1995 				return error;
1996 		}
1997 	}
1998 
1999 	oif_flags = ifp->if_flags;
2000 
2001 	ifnet_lock_enter(ifp->if_ioctl_lock);
2002 	error = (*ifp->if_ioctl)(ifp, cmd, data);
2003 	if (error != ENOTTY)
2004 		;
2005 	else if (so->so_proto == NULL)
2006 		error = EOPNOTSUPP;
2007 	else {
2008 #ifdef COMPAT_OSOCK
2009 		error = compat_ifioctl(so, ocmd, cmd, data, l);
2010 #else
2011 		error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
2012 		    cmd, data, ifp);
2013 #endif
2014 	}
2015 
2016 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
2017 #ifdef INET6
2018 		if (in6_present && (ifp->if_flags & IFF_UP) != 0) {
2019 			int s = splnet();
2020 			in6_if_up(ifp);
2021 			splx(s);
2022 		}
2023 #endif
2024 	}
2025 #ifdef COMPAT_OIFREQ
2026 	if (cmd != ocmd)
2027 		ifreqn2o(oifr, ifr);
2028 #endif
2029 
2030 	ifnet_lock_exit(ifp->if_ioctl_lock);
2031 	return error;
2032 }
2033 
2034 /* This callback adds to the sum in `arg' the number of
2035  * threads on `ci' who have entered or who wait to enter the
2036  * critical section.
2037  */
2038 static void
2039 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
2040 {
2041 	uint64_t *sum = arg, *nenter = p;
2042 
2043 	*sum += *nenter;
2044 }
2045 
2046 /* Return the number of threads who have entered or who wait
2047  * to enter the critical section on all CPUs.
2048  */
2049 static uint64_t
2050 ifnet_lock_entrances(struct ifnet_lock *il)
2051 {
2052 	uint64_t sum = 0;
2053 
2054 	percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
2055 
2056 	return sum;
2057 }
2058 
2059 static int
2060 ifioctl_attach(struct ifnet *ifp)
2061 {
2062 	struct ifnet_lock *il;
2063 
2064 	/* If the driver has not supplied its own if_ioctl, then
2065 	 * supply the default.
2066 	 */
2067 	if (ifp->if_ioctl == NULL)
2068 		ifp->if_ioctl = ifioctl_common;
2069 
2070 	/* Create an ifnet_lock for synchronizing ifioctls. */
2071 	if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
2072 		return ENOMEM;
2073 
2074 	il->il_nenter = percpu_alloc(sizeof(uint64_t));
2075 	if (il->il_nenter == NULL) {
2076 		kmem_free(il, sizeof(*il));
2077 		return ENOMEM;
2078 	}
2079 
2080 	mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
2081 	cv_init(&il->il_emptied, ifp->if_xname);
2082 
2083 	ifp->if_ioctl_lock = il;
2084 
2085 	return 0;
2086 }
2087 
2088 /*
2089  * This must not be called until after `ifp' has been withdrawn from the
2090  * ifnet tables so that ifioctl() cannot get a handle on it by calling
2091  * ifunit().
2092  */
2093 static void
2094 ifioctl_detach(struct ifnet *ifp)
2095 {
2096 	struct ifnet_lock *il;
2097 
2098 	il = ifp->if_ioctl_lock;
2099 	mutex_enter(&il->il_lock);
2100 	/* Install if_nullioctl to make sure that any thread that
2101 	 * subsequently enters the critical section will quit it
2102 	 * immediately and signal the condition variable that we
2103 	 * wait on, below.
2104 	 */
2105 	ifp->if_ioctl = if_nullioctl;
2106 	/* Sleep while threads are still in the critical section or
2107 	 * wait to enter it.
2108 	 */
2109 	while (ifnet_lock_entrances(il) != il->il_nexit)
2110 		cv_wait(&il->il_emptied, &il->il_lock);
2111 	/* At this point, we are the only thread still in the critical
2112 	 * section, and no new thread can get a handle on the ifioctl
2113 	 * lock, so it is safe to free its memory.
2114 	 */
2115 	mutex_exit(&il->il_lock);
2116 	ifp->if_ioctl_lock = NULL;
2117 	percpu_free(il->il_nenter, sizeof(uint64_t));
2118 	il->il_nenter = NULL;
2119 	cv_destroy(&il->il_emptied);
2120 	mutex_destroy(&il->il_lock);
2121 	kmem_free(il, sizeof(*il));
2122 }
2123 
2124 /*
2125  * Return interface configuration
2126  * of system.  List may be used
2127  * in later ioctl's (above) to get
2128  * other information.
2129  *
2130  * Each record is a struct ifreq.  Before the addition of
2131  * sockaddr_storage, the API rule was that sockaddr flavors that did
2132  * not fit would extend beyond the struct ifreq, with the next struct
2133  * ifreq starting sa_len beyond the struct sockaddr.  Because the
2134  * union in struct ifreq includes struct sockaddr_storage, every kind
2135  * of sockaddr must fit.  Thus, there are no longer any overlength
2136  * records.
2137  *
2138  * Records are added to the user buffer if they fit, and ifc_len is
2139  * adjusted to the length that was written.  Thus, the user is only
2140  * assured of getting the complete list if ifc_len on return is at
2141  * least sizeof(struct ifreq) less than it was on entry.
2142  *
2143  * If the user buffer pointer is NULL, this routine copies no data and
2144  * returns the amount of space that would be needed.
2145  *
2146  * Invariants:
2147  * ifrp points to the next part of the user's buffer to be used.  If
2148  * ifrp != NULL, space holds the number of bytes remaining that we may
2149  * write at ifrp.  Otherwise, space holds the number of bytes that
2150  * would have been written had there been adequate space.
2151  */
2152 /*ARGSUSED*/
2153 static int
2154 ifconf(u_long cmd, void *data)
2155 {
2156 	struct ifconf *ifc = (struct ifconf *)data;
2157 	struct ifnet *ifp;
2158 	struct ifaddr *ifa;
2159 	struct ifreq ifr, *ifrp = NULL;
2160 	int space = 0, error = 0;
2161 	const int sz = (int)sizeof(struct ifreq);
2162 	const bool docopy = ifc->ifc_req != NULL;
2163 
2164 	if (docopy) {
2165 		space = ifc->ifc_len;
2166 		ifrp = ifc->ifc_req;
2167 	}
2168 
2169 	IFNET_FOREACH(ifp) {
2170 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
2171 		    sizeof(ifr.ifr_name));
2172 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
2173 			return ENAMETOOLONG;
2174 		if (IFADDR_EMPTY(ifp)) {
2175 			/* Interface with no addresses - send zero sockaddr. */
2176 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2177 			if (!docopy) {
2178 				space += sz;
2179 				continue;
2180 			}
2181 			if (space >= sz) {
2182 				error = copyout(&ifr, ifrp, sz);
2183 				if (error != 0)
2184 					return error;
2185 				ifrp++;
2186 				space -= sz;
2187 			}
2188 		}
2189 
2190 		IFADDR_FOREACH(ifa, ifp) {
2191 			struct sockaddr *sa = ifa->ifa_addr;
2192 			/* all sockaddrs must fit in sockaddr_storage */
2193 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2194 
2195 			if (!docopy) {
2196 				space += sz;
2197 				continue;
2198 			}
2199 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
2200 			if (space >= sz) {
2201 				error = copyout(&ifr, ifrp, sz);
2202 				if (error != 0)
2203 					return (error);
2204 				ifrp++; space -= sz;
2205 			}
2206 		}
2207 	}
2208 	if (docopy) {
2209 		KASSERT(0 <= space && space <= ifc->ifc_len);
2210 		ifc->ifc_len -= space;
2211 	} else {
2212 		KASSERT(space >= 0);
2213 		ifc->ifc_len = space;
2214 	}
2215 	return (0);
2216 }
2217 
2218 int
2219 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2220 {
2221 	uint8_t len;
2222 #ifdef COMPAT_OIFREQ
2223 	struct ifreq ifrb;
2224 	struct oifreq *oifr = NULL;
2225 	u_long ocmd = cmd;
2226 	cmd = compat_cvtcmd(cmd);
2227 	if (cmd != ocmd) {
2228 		oifr = (struct oifreq *)(void *)ifr;
2229 		ifr = &ifrb;
2230 		ifreqo2n(oifr, ifr);
2231 		len = sizeof(oifr->ifr_addr);
2232 	} else
2233 #endif
2234 		len = sizeof(ifr->ifr_ifru.ifru_space);
2235 
2236 	if (len < sa->sa_len)
2237 		return EFBIG;
2238 
2239 	memset(&ifr->ifr_addr, 0, len);
2240 	sockaddr_copy(&ifr->ifr_addr, len, sa);
2241 
2242 #ifdef COMPAT_OIFREQ
2243 	if (cmd != ocmd)
2244 		ifreqn2o(oifr, ifr);
2245 #endif
2246 	return 0;
2247 }
2248 
2249 /*
2250  * Queue message on interface, and start output if interface
2251  * not yet active.
2252  */
2253 int
2254 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
2255     ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2256 {
2257 	int len = m->m_pkthdr.len;
2258 	int mflags = m->m_flags;
2259 	int s = splnet();
2260 	int error;
2261 
2262 	IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2263 	if (error != 0)
2264 		goto out;
2265 	ifp->if_obytes += len;
2266 	if (mflags & M_MCAST)
2267 		ifp->if_omcasts++;
2268 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
2269 		(*ifp->if_start)(ifp);
2270 out:
2271 	splx(s);
2272 	return error;
2273 }
2274 
2275 /*
2276  * Queue message on interface, possibly using a second fast queue
2277  */
2278 int
2279 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
2280     ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2281 {
2282 	int error = 0;
2283 
2284 	if (ifq != NULL
2285 #ifdef ALTQ
2286 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2287 #endif
2288 	    ) {
2289 		if (IF_QFULL(ifq)) {
2290 			IF_DROP(&ifp->if_snd);
2291 			m_freem(m);
2292 			if (error == 0)
2293 				error = ENOBUFS;
2294 		} else
2295 			IF_ENQUEUE(ifq, m);
2296 	} else
2297 		IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2298 	if (error != 0) {
2299 		++ifp->if_oerrors;
2300 		return error;
2301 	}
2302 	return 0;
2303 }
2304 
2305 int
2306 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2307 {
2308 	int rc;
2309 
2310 	if (ifp->if_initaddr != NULL)
2311 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
2312 	else if (src ||
2313 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2314 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2315 
2316 	return rc;
2317 }
2318 
2319 int
2320 if_do_dad(struct ifnet *ifp)
2321 {
2322 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2323 		return 0;
2324 
2325 	switch (ifp->if_type) {
2326 	case IFT_FAITH:
2327 		/*
2328 		 * These interfaces do not have the IFF_LOOPBACK flag,
2329 		 * but loop packets back.  We do not have to do DAD on such
2330 		 * interfaces.  We should even omit it, because loop-backed
2331 		 * responses would confuse the DAD procedure.
2332 		 */
2333 		return 0;
2334 	default:
2335 		/*
2336 		 * Our DAD routine requires the interface up and running.
2337 		 * However, some interfaces can be up before the RUNNING
2338 		 * status.  Additionaly, users may try to assign addresses
2339 		 * before the interface becomes up (or running).
2340 		 * We simply skip DAD in such a case as a work around.
2341 		 * XXX: we should rather mark "tentative" on such addresses,
2342 		 * and do DAD after the interface becomes ready.
2343 		 */
2344 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2345 		    (IFF_UP|IFF_RUNNING))
2346 			return 0;
2347 
2348 		return 1;
2349 	}
2350 }
2351 
2352 int
2353 if_flags_set(ifnet_t *ifp, const short flags)
2354 {
2355 	int rc;
2356 
2357 	if (ifp->if_setflags != NULL)
2358 		rc = (*ifp->if_setflags)(ifp, flags);
2359 	else {
2360 		short cantflags, chgdflags;
2361 		struct ifreq ifr;
2362 
2363 		chgdflags = ifp->if_flags ^ flags;
2364 		cantflags = chgdflags & IFF_CANTCHANGE;
2365 
2366 		if (cantflags != 0)
2367 			ifp->if_flags ^= cantflags;
2368 
2369                 /* Traditionally, we do not call if_ioctl after
2370                  * setting/clearing only IFF_PROMISC if the interface
2371                  * isn't IFF_UP.  Uphold that tradition.
2372 		 */
2373 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2374 			return 0;
2375 
2376 		memset(&ifr, 0, sizeof(ifr));
2377 
2378 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2379 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2380 
2381 		if (rc != 0 && cantflags != 0)
2382 			ifp->if_flags ^= cantflags;
2383 	}
2384 
2385 	return rc;
2386 }
2387 
2388 int
2389 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2390 {
2391 	int rc;
2392 	struct ifreq ifr;
2393 
2394 	if (ifp->if_mcastop != NULL)
2395 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2396 	else {
2397 		ifreq_setaddr(cmd, &ifr, sa);
2398 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2399 	}
2400 
2401 	return rc;
2402 }
2403 
2404 static void
2405 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2406     struct ifaltq *ifq)
2407 {
2408 	const struct sysctlnode *cnode, *rnode;
2409 
2410 	if (sysctl_createv(clog, 0, NULL, &rnode,
2411 		       CTLFLAG_PERMANENT,
2412 		       CTLTYPE_NODE, "interfaces",
2413 		       SYSCTL_DESCR("Per-interface controls"),
2414 		       NULL, 0, NULL, 0,
2415 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2416 		goto bad;
2417 
2418 	if (sysctl_createv(clog, 0, &rnode, &rnode,
2419 		       CTLFLAG_PERMANENT,
2420 		       CTLTYPE_NODE, ifname,
2421 		       SYSCTL_DESCR("Interface controls"),
2422 		       NULL, 0, NULL, 0,
2423 		       CTL_CREATE, CTL_EOL) != 0)
2424 		goto bad;
2425 
2426 	if (sysctl_createv(clog, 0, &rnode, &rnode,
2427 		       CTLFLAG_PERMANENT,
2428 		       CTLTYPE_NODE, "sndq",
2429 		       SYSCTL_DESCR("Interface output queue controls"),
2430 		       NULL, 0, NULL, 0,
2431 		       CTL_CREATE, CTL_EOL) != 0)
2432 		goto bad;
2433 
2434 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2435 		       CTLFLAG_PERMANENT,
2436 		       CTLTYPE_INT, "len",
2437 		       SYSCTL_DESCR("Current output queue length"),
2438 		       NULL, 0, &ifq->ifq_len, 0,
2439 		       CTL_CREATE, CTL_EOL) != 0)
2440 		goto bad;
2441 
2442 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2443 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2444 		       CTLTYPE_INT, "maxlen",
2445 		       SYSCTL_DESCR("Maximum allowed output queue length"),
2446 		       NULL, 0, &ifq->ifq_maxlen, 0,
2447 		       CTL_CREATE, CTL_EOL) != 0)
2448 		goto bad;
2449 
2450 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2451 		       CTLFLAG_PERMANENT,
2452 		       CTLTYPE_INT, "drops",
2453 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
2454 		       NULL, 0, &ifq->ifq_drops, 0,
2455 		       CTL_CREATE, CTL_EOL) != 0)
2456 		goto bad;
2457 
2458 	return;
2459 bad:
2460 	printf("%s: could not attach sysctl nodes\n", ifname);
2461 	return;
2462 }
2463 
2464 #if defined(INET) || defined(INET6)
2465 
2466 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
2467 	static int							\
2468 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
2469 	{								\
2470 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
2471 	}
2472 
2473 #if defined(INET)
2474 static int
2475 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
2476 {
2477 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
2478 }
2479 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
2480 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
2481 #endif
2482 
2483 #if defined(INET6)
2484 static int
2485 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
2486 {
2487 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
2488 }
2489 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
2490 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
2491 #endif
2492 
2493 static void
2494 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
2495 {
2496 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
2497 	const char *pfname = NULL, *ipname = NULL;
2498 	int ipn = 0, qid = 0;
2499 
2500 	switch (pf) {
2501 #if defined(INET)
2502 	case PF_INET:
2503 		len_func = sysctl_net_ip_pktq_items;
2504 		maxlen_func = sysctl_net_ip_pktq_maxlen;
2505 		drops_func = sysctl_net_ip_pktq_drops;
2506 		pfname = "inet", ipn = IPPROTO_IP;
2507 		ipname = "ip", qid = IPCTL_IFQ;
2508 		break;
2509 #endif
2510 #if defined(INET6)
2511 	case PF_INET6:
2512 		len_func = sysctl_net_ip6_pktq_items;
2513 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
2514 		drops_func = sysctl_net_ip6_pktq_drops;
2515 		pfname = "inet6", ipn = IPPROTO_IPV6;
2516 		ipname = "ip6", qid = IPV6CTL_IFQ;
2517 		break;
2518 #endif
2519 	default:
2520 		KASSERT(false);
2521 	}
2522 
2523 	sysctl_createv(clog, 0, NULL, NULL,
2524 		       CTLFLAG_PERMANENT,
2525 		       CTLTYPE_NODE, pfname, NULL,
2526 		       NULL, 0, NULL, 0,
2527 		       CTL_NET, pf, CTL_EOL);
2528 	sysctl_createv(clog, 0, NULL, NULL,
2529 		       CTLFLAG_PERMANENT,
2530 		       CTLTYPE_NODE, ipname, NULL,
2531 		       NULL, 0, NULL, 0,
2532 		       CTL_NET, pf, ipn, CTL_EOL);
2533 	sysctl_createv(clog, 0, NULL, NULL,
2534 		       CTLFLAG_PERMANENT,
2535 		       CTLTYPE_NODE, "ifq",
2536 		       SYSCTL_DESCR("Protocol input queue controls"),
2537 		       NULL, 0, NULL, 0,
2538 		       CTL_NET, pf, ipn, qid, CTL_EOL);
2539 
2540 	sysctl_createv(clog, 0, NULL, NULL,
2541 		       CTLFLAG_PERMANENT,
2542 		       CTLTYPE_INT, "len",
2543 		       SYSCTL_DESCR("Current input queue length"),
2544 		       len_func, 0, NULL, 0,
2545 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
2546 	sysctl_createv(clog, 0, NULL, NULL,
2547 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2548 		       CTLTYPE_INT, "maxlen",
2549 		       SYSCTL_DESCR("Maximum allowed input queue length"),
2550 		       maxlen_func, 0, NULL, 0,
2551 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
2552 	sysctl_createv(clog, 0, NULL, NULL,
2553 		       CTLFLAG_PERMANENT,
2554 		       CTLTYPE_INT, "drops",
2555 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
2556 		       drops_func, 0, NULL, 0,
2557 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
2558 }
2559 #endif /* INET || INET6 */
2560 
2561 static int
2562 if_sdl_sysctl(SYSCTLFN_ARGS)
2563 {
2564 	struct ifnet *ifp;
2565 	const struct sockaddr_dl *sdl;
2566 
2567 	if (namelen != 1)
2568 		return EINVAL;
2569 
2570 	ifp = if_byindex(name[0]);
2571 	if (ifp == NULL)
2572 		return ENODEV;
2573 
2574 	sdl = ifp->if_sadl;
2575 	if (sdl == NULL) {
2576 		*oldlenp = 0;
2577 		return 0;
2578 	}
2579 
2580 	if (oldp == NULL) {
2581 		*oldlenp = sdl->sdl_alen;
2582 		return 0;
2583 	}
2584 
2585 	if (*oldlenp >= sdl->sdl_alen)
2586 		*oldlenp = sdl->sdl_alen;
2587 	return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
2588 }
2589 
2590 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
2591 {
2592 	const struct sysctlnode *rnode = NULL;
2593 
2594 	sysctl_createv(clog, 0, NULL, &rnode,
2595 		       CTLFLAG_PERMANENT,
2596 		       CTLTYPE_NODE, "sdl",
2597 		       SYSCTL_DESCR("Get active link-layer address"),
2598 		       if_sdl_sysctl, 0, NULL, 0,
2599 		       CTL_NET, CTL_CREATE, CTL_EOL);
2600 }
2601