1 /* $NetBSD: if.c,v 1.259 2011/12/28 02:14:57 dyoung Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.259 2011/12/28 02:14:57 dyoung Exp $"); 94 95 #include "opt_inet.h" 96 97 #include "opt_atalk.h" 98 #include "opt_natm.h" 99 #include "opt_pfil_hooks.h" 100 101 #include <sys/param.h> 102 #include <sys/mbuf.h> 103 #include <sys/systm.h> 104 #include <sys/callout.h> 105 #include <sys/proc.h> 106 #include <sys/socket.h> 107 #include <sys/socketvar.h> 108 #include <sys/domain.h> 109 #include <sys/protosw.h> 110 #include <sys/kernel.h> 111 #include <sys/ioctl.h> 112 #include <sys/sysctl.h> 113 #include <sys/syslog.h> 114 #include <sys/kauth.h> 115 #include <sys/kmem.h> 116 117 #include <net/if.h> 118 #include <net/if_dl.h> 119 #include <net/if_ether.h> 120 #include <net/if_media.h> 121 #include <net80211/ieee80211.h> 122 #include <net80211/ieee80211_ioctl.h> 123 #include <net/if_types.h> 124 #include <net/radix.h> 125 #include <net/route.h> 126 #include <net/netisr.h> 127 #ifdef NETATALK 128 #include <netatalk/at_extern.h> 129 #include <netatalk/at.h> 130 #endif 131 #include <net/pfil.h> 132 133 #ifdef INET6 134 #include <netinet/in.h> 135 #include <netinet6/in6_var.h> 136 #include <netinet6/nd6.h> 137 #endif 138 139 #include "carp.h" 140 #if NCARP > 0 141 #include <netinet/ip_carp.h> 142 #endif 143 144 #include <compat/sys/sockio.h> 145 #include <compat/sys/socket.h> 146 147 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 148 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 149 150 int ifqmaxlen = IFQ_MAXLEN; 151 callout_t if_slowtimo_ch; 152 153 int netisr; /* scheduling bits for network */ 154 155 static int if_rt_walktree(struct rtentry *, void *); 156 157 static struct if_clone *if_clone_lookup(const char *, int *); 158 static int if_clone_list(struct if_clonereq *); 159 160 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 161 static int if_cloners_count; 162 163 static uint64_t index_gen; 164 static kmutex_t index_gen_mtx; 165 166 #ifdef PFIL_HOOKS 167 struct pfil_head if_pfil; /* packet filtering hook for interfaces */ 168 #endif 169 170 static kauth_listener_t if_listener; 171 172 static int ifioctl_attach(struct ifnet *); 173 static void ifioctl_detach(struct ifnet *); 174 static void ifnet_lock_enter(struct ifnet_lock *); 175 static void ifnet_lock_exit(struct ifnet_lock *); 176 static void if_detach_queues(struct ifnet *, struct ifqueue *); 177 static void sysctl_sndq_setup(struct sysctllog **, const char *, 178 struct ifaltq *); 179 180 #if defined(INET) || defined(INET6) 181 static void sysctl_net_ifq_setup(struct sysctllog **, int, const char *, 182 int, const char *, int, struct ifqueue *); 183 #endif 184 185 static int 186 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 187 void *arg0, void *arg1, void *arg2, void *arg3) 188 { 189 int result; 190 enum kauth_network_req req; 191 192 result = KAUTH_RESULT_DEFER; 193 req = (enum kauth_network_req)arg1; 194 195 if (action != KAUTH_NETWORK_INTERFACE) 196 return result; 197 198 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 199 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 200 result = KAUTH_RESULT_ALLOW; 201 202 return result; 203 } 204 205 /* 206 * Network interface utility routines. 207 * 208 * Routines with ifa_ifwith* names take sockaddr *'s as 209 * parameters. 210 */ 211 void 212 ifinit(void) 213 { 214 #ifdef INET 215 {extern struct ifqueue ipintrq; 216 sysctl_net_ifq_setup(NULL, PF_INET, "inet", IPPROTO_IP, "ip", 217 IPCTL_IFQ, &ipintrq);} 218 #endif /* INET */ 219 #ifdef INET6 220 {extern struct ifqueue ip6intrq; 221 sysctl_net_ifq_setup(NULL, PF_INET6, "inet6", IPPROTO_IPV6, "ip6", 222 IPV6CTL_IFQ, &ip6intrq);} 223 #endif /* INET6 */ 224 225 callout_init(&if_slowtimo_ch, 0); 226 if_slowtimo(NULL); 227 228 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 229 if_listener_cb, NULL); 230 } 231 232 /* 233 * XXX Initialization before configure(). 234 * XXX hack to get pfil_add_hook working in autoconf. 235 */ 236 void 237 ifinit1(void) 238 { 239 240 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE); 241 242 #ifdef PFIL_HOOKS 243 if_pfil.ph_type = PFIL_TYPE_IFNET; 244 if_pfil.ph_ifnet = NULL; 245 if (pfil_head_register(&if_pfil) != 0) 246 printf("WARNING: unable to register pfil hook\n"); 247 #endif 248 } 249 250 struct ifnet * 251 if_alloc(u_char type) 252 { 253 return malloc(sizeof(struct ifnet), M_DEVBUF, M_WAITOK|M_ZERO); 254 } 255 256 void 257 if_free(struct ifnet *ifp) 258 { 259 free(ifp, M_DEVBUF); 260 } 261 262 void 263 if_initname(struct ifnet *ifp, const char *name, int unit) 264 { 265 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 266 "%s%d", name, unit); 267 } 268 269 /* 270 * Null routines used while an interface is going away. These routines 271 * just return an error. 272 */ 273 274 int 275 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 276 const struct sockaddr *so, struct rtentry *rt) 277 { 278 279 return ENXIO; 280 } 281 282 void 283 if_nullinput(struct ifnet *ifp, struct mbuf *m) 284 { 285 286 /* Nothing. */ 287 } 288 289 void 290 if_nullstart(struct ifnet *ifp) 291 { 292 293 /* Nothing. */ 294 } 295 296 int 297 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 298 { 299 300 /* Wake ifioctl_detach(), who may wait for all threads to 301 * quit the critical section. 302 */ 303 cv_signal(&ifp->if_ioctl_lock->il_emptied); 304 return ENXIO; 305 } 306 307 int 308 if_nullinit(struct ifnet *ifp) 309 { 310 311 return ENXIO; 312 } 313 314 void 315 if_nullstop(struct ifnet *ifp, int disable) 316 { 317 318 /* Nothing. */ 319 } 320 321 void 322 if_nullwatchdog(struct ifnet *ifp) 323 { 324 325 /* Nothing. */ 326 } 327 328 void 329 if_nulldrain(struct ifnet *ifp) 330 { 331 332 /* Nothing. */ 333 } 334 335 static u_int if_index = 1; 336 struct ifnet_head ifnet; 337 size_t if_indexlim = 0; 338 struct ifaddr **ifnet_addrs = NULL; 339 struct ifnet **ifindex2ifnet = NULL; 340 struct ifnet *lo0ifp; 341 342 void 343 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 344 { 345 struct ifaddr *ifa; 346 struct sockaddr_dl *sdl; 347 348 ifp->if_addrlen = addrlen; 349 if_alloc_sadl(ifp); 350 ifa = ifp->if_dl; 351 sdl = satosdl(ifa->ifa_addr); 352 353 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 354 if (factory) { 355 ifp->if_hwdl = ifp->if_dl; 356 IFAREF(ifp->if_hwdl); 357 } 358 /* TBD routing socket */ 359 } 360 361 struct ifaddr * 362 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 363 { 364 unsigned socksize, ifasize; 365 int addrlen, namelen; 366 struct sockaddr_dl *mask, *sdl; 367 struct ifaddr *ifa; 368 369 namelen = strlen(ifp->if_xname); 370 addrlen = ifp->if_addrlen; 371 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 372 ifasize = sizeof(*ifa) + 2 * socksize; 373 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO); 374 375 sdl = (struct sockaddr_dl *)(ifa + 1); 376 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 377 378 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 379 ifp->if_xname, namelen, NULL, addrlen); 380 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 381 memset(&mask->sdl_data[0], 0xff, namelen); 382 ifa->ifa_rtrequest = link_rtrequest; 383 ifa->ifa_addr = (struct sockaddr *)sdl; 384 ifa->ifa_netmask = (struct sockaddr *)mask; 385 386 *sdlp = sdl; 387 388 return ifa; 389 } 390 391 static void 392 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 393 { 394 const struct sockaddr_dl *sdl; 395 ifnet_addrs[ifp->if_index] = ifa; 396 IFAREF(ifa); 397 ifp->if_dl = ifa; 398 IFAREF(ifa); 399 sdl = satosdl(ifa->ifa_addr); 400 ifp->if_sadl = sdl; 401 } 402 403 /* 404 * Allocate the link level name for the specified interface. This 405 * is an attachment helper. It must be called after ifp->if_addrlen 406 * is initialized, which may not be the case when if_attach() is 407 * called. 408 */ 409 void 410 if_alloc_sadl(struct ifnet *ifp) 411 { 412 struct ifaddr *ifa; 413 const struct sockaddr_dl *sdl; 414 415 /* 416 * If the interface already has a link name, release it 417 * now. This is useful for interfaces that can change 418 * link types, and thus switch link names often. 419 */ 420 if (ifp->if_sadl != NULL) 421 if_free_sadl(ifp); 422 423 ifa = if_dl_create(ifp, &sdl); 424 425 ifa_insert(ifp, ifa); 426 if_sadl_setrefs(ifp, ifa); 427 } 428 429 static void 430 if_deactivate_sadl(struct ifnet *ifp) 431 { 432 struct ifaddr *ifa; 433 434 KASSERT(ifp->if_dl != NULL); 435 436 ifa = ifp->if_dl; 437 438 ifp->if_sadl = NULL; 439 440 ifnet_addrs[ifp->if_index] = NULL; 441 IFAFREE(ifa); 442 ifp->if_dl = NULL; 443 IFAFREE(ifa); 444 } 445 446 void 447 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa, 448 const struct sockaddr_dl *sdl) 449 { 450 int s; 451 452 s = splnet(); 453 454 if_deactivate_sadl(ifp); 455 456 if_sadl_setrefs(ifp, ifa); 457 IFADDR_FOREACH(ifa, ifp) 458 rtinit(ifa, RTM_LLINFO_UPD, 0); 459 splx(s); 460 } 461 462 /* 463 * Free the link level name for the specified interface. This is 464 * a detach helper. This is called from if_detach() or from 465 * link layer type specific detach functions. 466 */ 467 void 468 if_free_sadl(struct ifnet *ifp) 469 { 470 struct ifaddr *ifa; 471 int s; 472 473 ifa = ifnet_addrs[ifp->if_index]; 474 if (ifa == NULL) { 475 KASSERT(ifp->if_sadl == NULL); 476 KASSERT(ifp->if_dl == NULL); 477 return; 478 } 479 480 KASSERT(ifp->if_sadl != NULL); 481 KASSERT(ifp->if_dl != NULL); 482 483 s = splnet(); 484 rtinit(ifa, RTM_DELETE, 0); 485 ifa_remove(ifp, ifa); 486 if_deactivate_sadl(ifp); 487 if (ifp->if_hwdl == ifa) { 488 IFAFREE(ifa); 489 ifp->if_hwdl = NULL; 490 } 491 splx(s); 492 } 493 494 /* 495 * Attach an interface to the 496 * list of "active" interfaces. 497 */ 498 void 499 if_attach(struct ifnet *ifp) 500 { 501 int indexlim = 0; 502 503 if (if_indexlim == 0) { 504 TAILQ_INIT(&ifnet); 505 if_indexlim = 8; 506 } 507 TAILQ_INIT(&ifp->if_addrlist); 508 TAILQ_INSERT_TAIL(&ifnet, ifp, if_list); 509 510 if (ifioctl_attach(ifp) != 0) 511 panic("%s: ifioctl_attach() failed", __func__); 512 513 mutex_enter(&index_gen_mtx); 514 ifp->if_index_gen = index_gen++; 515 mutex_exit(&index_gen_mtx); 516 517 ifp->if_index = if_index; 518 if (ifindex2ifnet == NULL) 519 if_index++; 520 else 521 while (ifp->if_index < if_indexlim && 522 ifindex2ifnet[ifp->if_index] != NULL) { 523 ++if_index; 524 if (if_index == 0) 525 if_index = 1; 526 /* 527 * If we hit USHRT_MAX, we skip back to 0 since 528 * there are a number of places where the value 529 * of if_index or if_index itself is compared 530 * to or stored in an unsigned short. By 531 * jumping back, we won't botch those assignments 532 * or comparisons. 533 */ 534 else if (if_index == USHRT_MAX) { 535 /* 536 * However, if we have to jump back to 537 * zero *twice* without finding an empty 538 * slot in ifindex2ifnet[], then there 539 * there are too many (>65535) interfaces. 540 */ 541 if (indexlim++) 542 panic("too many interfaces"); 543 else 544 if_index = 1; 545 } 546 ifp->if_index = if_index; 547 } 548 549 /* 550 * We have some arrays that should be indexed by if_index. 551 * since if_index will grow dynamically, they should grow too. 552 * struct ifadd **ifnet_addrs 553 * struct ifnet **ifindex2ifnet 554 */ 555 if (ifnet_addrs == NULL || ifindex2ifnet == NULL || 556 ifp->if_index >= if_indexlim) { 557 size_t m, n, oldlim; 558 void *q; 559 560 oldlim = if_indexlim; 561 while (ifp->if_index >= if_indexlim) 562 if_indexlim <<= 1; 563 564 /* grow ifnet_addrs */ 565 m = oldlim * sizeof(struct ifaddr *); 566 n = if_indexlim * sizeof(struct ifaddr *); 567 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); 568 if (ifnet_addrs != NULL) { 569 memcpy(q, ifnet_addrs, m); 570 free(ifnet_addrs, M_IFADDR); 571 } 572 ifnet_addrs = (struct ifaddr **)q; 573 574 /* grow ifindex2ifnet */ 575 m = oldlim * sizeof(struct ifnet *); 576 n = if_indexlim * sizeof(struct ifnet *); 577 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); 578 if (ifindex2ifnet != NULL) { 579 memcpy(q, ifindex2ifnet, m); 580 free(ifindex2ifnet, M_IFADDR); 581 } 582 ifindex2ifnet = (struct ifnet **)q; 583 } 584 585 ifindex2ifnet[ifp->if_index] = ifp; 586 587 /* 588 * Link level name is allocated later by a separate call to 589 * if_alloc_sadl(). 590 */ 591 592 if (ifp->if_snd.ifq_maxlen == 0) 593 ifp->if_snd.ifq_maxlen = ifqmaxlen; 594 595 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 596 597 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 598 599 ifp->if_link_state = LINK_STATE_UNKNOWN; 600 601 ifp->if_capenable = 0; 602 ifp->if_csum_flags_tx = 0; 603 ifp->if_csum_flags_rx = 0; 604 605 #ifdef ALTQ 606 ifp->if_snd.altq_type = 0; 607 ifp->if_snd.altq_disc = NULL; 608 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 609 ifp->if_snd.altq_tbr = NULL; 610 ifp->if_snd.altq_ifp = ifp; 611 #endif 612 613 #ifdef PFIL_HOOKS 614 ifp->if_pfil.ph_type = PFIL_TYPE_IFNET; 615 ifp->if_pfil.ph_ifnet = ifp; 616 if (pfil_head_register(&ifp->if_pfil) != 0) 617 printf("%s: WARNING: unable to register pfil hook\n", 618 ifp->if_xname); 619 (void)pfil_run_hooks(&if_pfil, 620 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET); 621 #endif 622 623 if (!STAILQ_EMPTY(&domains)) 624 if_attachdomain1(ifp); 625 626 /* Announce the interface. */ 627 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 628 } 629 630 void 631 if_attachdomain(void) 632 { 633 struct ifnet *ifp; 634 int s; 635 636 s = splnet(); 637 IFNET_FOREACH(ifp) 638 if_attachdomain1(ifp); 639 splx(s); 640 } 641 642 void 643 if_attachdomain1(struct ifnet *ifp) 644 { 645 struct domain *dp; 646 int s; 647 648 s = splnet(); 649 650 /* address family dependent data region */ 651 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 652 DOMAIN_FOREACH(dp) { 653 if (dp->dom_ifattach != NULL) 654 ifp->if_afdata[dp->dom_family] = 655 (*dp->dom_ifattach)(ifp); 656 } 657 658 splx(s); 659 } 660 661 /* 662 * Deactivate an interface. This points all of the procedure 663 * handles at error stubs. May be called from interrupt context. 664 */ 665 void 666 if_deactivate(struct ifnet *ifp) 667 { 668 int s; 669 670 s = splnet(); 671 672 ifp->if_output = if_nulloutput; 673 ifp->if_input = if_nullinput; 674 ifp->if_start = if_nullstart; 675 ifp->if_ioctl = if_nullioctl; 676 ifp->if_init = if_nullinit; 677 ifp->if_stop = if_nullstop; 678 ifp->if_watchdog = if_nullwatchdog; 679 ifp->if_drain = if_nulldrain; 680 681 /* No more packets may be enqueued. */ 682 ifp->if_snd.ifq_maxlen = 0; 683 684 splx(s); 685 } 686 687 void 688 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 689 { 690 struct ifaddr *ifa, *nifa; 691 692 for (ifa = IFADDR_FIRST(ifp); ifa != NULL; ifa = nifa) { 693 nifa = IFADDR_NEXT(ifa); 694 if (ifa->ifa_addr->sa_family != family) 695 continue; 696 (*purgeaddr)(ifa); 697 } 698 } 699 700 /* 701 * Detach an interface from the list of "active" interfaces, 702 * freeing any resources as we go along. 703 * 704 * NOTE: This routine must be called with a valid thread context, 705 * as it may block. 706 */ 707 void 708 if_detach(struct ifnet *ifp) 709 { 710 struct socket so; 711 struct ifaddr *ifa; 712 #ifdef IFAREF_DEBUG 713 struct ifaddr *last_ifa = NULL; 714 #endif 715 struct domain *dp; 716 const struct protosw *pr; 717 int s, i, family, purged; 718 719 /* 720 * XXX It's kind of lame that we have to have the 721 * XXX socket structure... 722 */ 723 memset(&so, 0, sizeof(so)); 724 725 s = splnet(); 726 727 /* 728 * Do an if_down() to give protocols a chance to do something. 729 */ 730 if_down(ifp); 731 732 #ifdef ALTQ 733 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 734 altq_disable(&ifp->if_snd); 735 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 736 altq_detach(&ifp->if_snd); 737 #endif 738 739 sysctl_teardown(&ifp->if_sysctl_log); 740 741 #if NCARP > 0 742 /* Remove the interface from any carp group it is a part of. */ 743 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 744 carp_ifdetach(ifp); 745 #endif 746 747 /* 748 * Rip all the addresses off the interface. This should make 749 * all of the routes go away. 750 * 751 * pr_usrreq calls can remove an arbitrary number of ifaddrs 752 * from the list, including our "cursor", ifa. For safety, 753 * and to honor the TAILQ abstraction, I just restart the 754 * loop after each removal. Note that the loop will exit 755 * when all of the remaining ifaddrs belong to the AF_LINK 756 * family. I am counting on the historical fact that at 757 * least one pr_usrreq in each address domain removes at 758 * least one ifaddr. 759 */ 760 again: 761 IFADDR_FOREACH(ifa, ifp) { 762 family = ifa->ifa_addr->sa_family; 763 #ifdef IFAREF_DEBUG 764 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 765 ifa, family, ifa->ifa_refcnt); 766 if (last_ifa != NULL && ifa == last_ifa) 767 panic("if_detach: loop detected"); 768 last_ifa = ifa; 769 #endif 770 if (family == AF_LINK) 771 continue; 772 dp = pffinddomain(family); 773 #ifdef DIAGNOSTIC 774 if (dp == NULL) 775 panic("if_detach: no domain for AF %d", 776 family); 777 #endif 778 /* 779 * XXX These PURGEIF calls are redundant with the 780 * purge-all-families calls below, but are left in for 781 * now both to make a smaller change, and to avoid 782 * unplanned interactions with clearing of 783 * ifp->if_addrlist. 784 */ 785 purged = 0; 786 for (pr = dp->dom_protosw; 787 pr < dp->dom_protoswNPROTOSW; pr++) { 788 so.so_proto = pr; 789 if (pr->pr_usrreq != NULL) { 790 (void) (*pr->pr_usrreq)(&so, 791 PRU_PURGEIF, NULL, NULL, 792 (struct mbuf *) ifp, curlwp); 793 purged = 1; 794 } 795 } 796 if (purged == 0) { 797 /* 798 * XXX What's really the best thing to do 799 * XXX here? --thorpej@NetBSD.org 800 */ 801 printf("if_detach: WARNING: AF %d not purged\n", 802 family); 803 ifa_remove(ifp, ifa); 804 } 805 goto again; 806 } 807 808 if_free_sadl(ifp); 809 810 /* Walk the routing table looking for stragglers. */ 811 for (i = 0; i <= AF_MAX; i++) { 812 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART) 813 ; 814 } 815 816 DOMAIN_FOREACH(dp) { 817 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 818 (*dp->dom_ifdetach)(ifp, 819 ifp->if_afdata[dp->dom_family]); 820 821 /* 822 * One would expect multicast memberships (INET and 823 * INET6) on UDP sockets to be purged by the PURGEIF 824 * calls above, but if all addresses were removed from 825 * the interface prior to destruction, the calls will 826 * not be made (e.g. ppp, for which pppd(8) generally 827 * removes addresses before destroying the interface). 828 * Because there is no invariant that multicast 829 * memberships only exist for interfaces with IPv4 830 * addresses, we must call PURGEIF regardless of 831 * addresses. (Protocols which might store ifnet 832 * pointers are marked with PR_PURGEIF.) 833 */ 834 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 835 so.so_proto = pr; 836 if (pr->pr_usrreq != NULL && pr->pr_flags & PR_PURGEIF) 837 (void)(*pr->pr_usrreq)(&so, PRU_PURGEIF, NULL, 838 NULL, (struct mbuf *)ifp, curlwp); 839 } 840 } 841 842 #ifdef PFIL_HOOKS 843 (void)pfil_run_hooks(&if_pfil, 844 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET); 845 (void)pfil_head_unregister(&ifp->if_pfil); 846 #endif 847 848 /* Announce that the interface is gone. */ 849 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 850 851 ifindex2ifnet[ifp->if_index] = NULL; 852 853 TAILQ_REMOVE(&ifnet, ifp, if_list); 854 855 ifioctl_detach(ifp); 856 857 /* 858 * remove packets that came from ifp, from software interrupt queues. 859 */ 860 DOMAIN_FOREACH(dp) { 861 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { 862 if (dp->dom_ifqueues[i] == NULL) 863 break; 864 if_detach_queues(ifp, dp->dom_ifqueues[i]); 865 } 866 } 867 868 splx(s); 869 } 870 871 static void 872 if_detach_queues(struct ifnet *ifp, struct ifqueue *q) 873 { 874 struct mbuf *m, *prev, *next; 875 876 prev = NULL; 877 for (m = q->ifq_head; m != NULL; m = next) { 878 next = m->m_nextpkt; 879 #ifdef DIAGNOSTIC 880 if ((m->m_flags & M_PKTHDR) == 0) { 881 prev = m; 882 continue; 883 } 884 #endif 885 if (m->m_pkthdr.rcvif != ifp) { 886 prev = m; 887 continue; 888 } 889 890 if (prev != NULL) 891 prev->m_nextpkt = m->m_nextpkt; 892 else 893 q->ifq_head = m->m_nextpkt; 894 if (q->ifq_tail == m) 895 q->ifq_tail = prev; 896 q->ifq_len--; 897 898 m->m_nextpkt = NULL; 899 m_freem(m); 900 IF_DROP(q); 901 } 902 } 903 904 /* 905 * Callback for a radix tree walk to delete all references to an 906 * ifnet. 907 */ 908 static int 909 if_rt_walktree(struct rtentry *rt, void *v) 910 { 911 struct ifnet *ifp = (struct ifnet *)v; 912 int error; 913 914 if (rt->rt_ifp != ifp) 915 return 0; 916 917 /* Delete the entry. */ 918 ++rt->rt_refcnt; 919 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway, 920 rt_mask(rt), rt->rt_flags, NULL); 921 KASSERT((rt->rt_flags & RTF_UP) == 0); 922 rt->rt_ifp = NULL; 923 RTFREE(rt); 924 if (error != 0) 925 printf("%s: warning: unable to delete rtentry @ %p, " 926 "error = %d\n", ifp->if_xname, rt, error); 927 return ERESTART; 928 } 929 930 /* 931 * Create a clone network interface. 932 */ 933 int 934 if_clone_create(const char *name) 935 { 936 struct if_clone *ifc; 937 int unit; 938 939 ifc = if_clone_lookup(name, &unit); 940 if (ifc == NULL) 941 return EINVAL; 942 943 if (ifunit(name) != NULL) 944 return EEXIST; 945 946 return (*ifc->ifc_create)(ifc, unit); 947 } 948 949 /* 950 * Destroy a clone network interface. 951 */ 952 int 953 if_clone_destroy(const char *name) 954 { 955 struct if_clone *ifc; 956 struct ifnet *ifp; 957 958 ifc = if_clone_lookup(name, NULL); 959 if (ifc == NULL) 960 return EINVAL; 961 962 ifp = ifunit(name); 963 if (ifp == NULL) 964 return ENXIO; 965 966 if (ifc->ifc_destroy == NULL) 967 return EOPNOTSUPP; 968 969 return (*ifc->ifc_destroy)(ifp); 970 } 971 972 /* 973 * Look up a network interface cloner. 974 */ 975 static struct if_clone * 976 if_clone_lookup(const char *name, int *unitp) 977 { 978 struct if_clone *ifc; 979 const char *cp; 980 int unit; 981 982 /* separate interface name from unit */ 983 for (cp = name; 984 cp - name < IFNAMSIZ && *cp && (*cp < '0' || *cp > '9'); 985 cp++) 986 continue; 987 988 if (cp == name || cp - name == IFNAMSIZ || !*cp) 989 return NULL; /* No name or unit number */ 990 991 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 992 if (strlen(ifc->ifc_name) == cp - name && 993 strncmp(name, ifc->ifc_name, cp - name) == 0) 994 break; 995 } 996 997 if (ifc == NULL) 998 return NULL; 999 1000 unit = 0; 1001 while (cp - name < IFNAMSIZ && *cp) { 1002 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1003 /* Bogus unit number. */ 1004 return NULL; 1005 } 1006 unit = (unit * 10) + (*cp++ - '0'); 1007 } 1008 1009 if (unitp != NULL) 1010 *unitp = unit; 1011 return ifc; 1012 } 1013 1014 /* 1015 * Register a network interface cloner. 1016 */ 1017 void 1018 if_clone_attach(struct if_clone *ifc) 1019 { 1020 1021 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1022 if_cloners_count++; 1023 } 1024 1025 /* 1026 * Unregister a network interface cloner. 1027 */ 1028 void 1029 if_clone_detach(struct if_clone *ifc) 1030 { 1031 1032 LIST_REMOVE(ifc, ifc_list); 1033 if_cloners_count--; 1034 } 1035 1036 /* 1037 * Provide list of interface cloners to userspace. 1038 */ 1039 static int 1040 if_clone_list(struct if_clonereq *ifcr) 1041 { 1042 char outbuf[IFNAMSIZ], *dst; 1043 struct if_clone *ifc; 1044 int count, error = 0; 1045 1046 ifcr->ifcr_total = if_cloners_count; 1047 if ((dst = ifcr->ifcr_buffer) == NULL) { 1048 /* Just asking how many there are. */ 1049 return 0; 1050 } 1051 1052 if (ifcr->ifcr_count < 0) 1053 return EINVAL; 1054 1055 count = (if_cloners_count < ifcr->ifcr_count) ? 1056 if_cloners_count : ifcr->ifcr_count; 1057 1058 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1059 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1060 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1061 if (outbuf[sizeof(outbuf) - 1] != '\0') 1062 return ENAMETOOLONG; 1063 error = copyout(outbuf, dst, sizeof(outbuf)); 1064 if (error != 0) 1065 break; 1066 } 1067 1068 return error; 1069 } 1070 1071 void 1072 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1073 { 1074 ifa->ifa_ifp = ifp; 1075 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1076 IFAREF(ifa); 1077 } 1078 1079 void 1080 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1081 { 1082 KASSERT(ifa->ifa_ifp == ifp); 1083 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1084 IFAFREE(ifa); 1085 } 1086 1087 static inline int 1088 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1089 { 1090 return sockaddr_cmp(sa1, sa2) == 0; 1091 } 1092 1093 /* 1094 * Locate an interface based on a complete address. 1095 */ 1096 /*ARGSUSED*/ 1097 struct ifaddr * 1098 ifa_ifwithaddr(const struct sockaddr *addr) 1099 { 1100 struct ifnet *ifp; 1101 struct ifaddr *ifa; 1102 1103 IFNET_FOREACH(ifp) { 1104 if (ifp->if_output == if_nulloutput) 1105 continue; 1106 IFADDR_FOREACH(ifa, ifp) { 1107 if (ifa->ifa_addr->sa_family != addr->sa_family) 1108 continue; 1109 if (equal(addr, ifa->ifa_addr)) 1110 return ifa; 1111 if ((ifp->if_flags & IFF_BROADCAST) && 1112 ifa->ifa_broadaddr && 1113 /* IP6 doesn't have broadcast */ 1114 ifa->ifa_broadaddr->sa_len != 0 && 1115 equal(ifa->ifa_broadaddr, addr)) 1116 return ifa; 1117 } 1118 } 1119 return NULL; 1120 } 1121 1122 /* 1123 * Locate the point to point interface with a given destination address. 1124 */ 1125 /*ARGSUSED*/ 1126 struct ifaddr * 1127 ifa_ifwithdstaddr(const struct sockaddr *addr) 1128 { 1129 struct ifnet *ifp; 1130 struct ifaddr *ifa; 1131 1132 IFNET_FOREACH(ifp) { 1133 if (ifp->if_output == if_nulloutput) 1134 continue; 1135 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1136 continue; 1137 IFADDR_FOREACH(ifa, ifp) { 1138 if (ifa->ifa_addr->sa_family != addr->sa_family || 1139 ifa->ifa_dstaddr == NULL) 1140 continue; 1141 if (equal(addr, ifa->ifa_dstaddr)) 1142 return ifa; 1143 } 1144 } 1145 return NULL; 1146 } 1147 1148 /* 1149 * Find an interface on a specific network. If many, choice 1150 * is most specific found. 1151 */ 1152 struct ifaddr * 1153 ifa_ifwithnet(const struct sockaddr *addr) 1154 { 1155 struct ifnet *ifp; 1156 struct ifaddr *ifa; 1157 const struct sockaddr_dl *sdl; 1158 struct ifaddr *ifa_maybe = 0; 1159 u_int af = addr->sa_family; 1160 const char *addr_data = addr->sa_data, *cplim; 1161 1162 if (af == AF_LINK) { 1163 sdl = satocsdl(addr); 1164 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1165 ifindex2ifnet[sdl->sdl_index] && 1166 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) 1167 return ifnet_addrs[sdl->sdl_index]; 1168 } 1169 #ifdef NETATALK 1170 if (af == AF_APPLETALK) { 1171 const struct sockaddr_at *sat, *sat2; 1172 sat = (const struct sockaddr_at *)addr; 1173 IFNET_FOREACH(ifp) { 1174 if (ifp->if_output == if_nulloutput) 1175 continue; 1176 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 1177 if (ifa == NULL) 1178 continue; 1179 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 1180 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 1181 return ifa; /* exact match */ 1182 if (ifa_maybe == NULL) { 1183 /* else keep the if with the right range */ 1184 ifa_maybe = ifa; 1185 } 1186 } 1187 return ifa_maybe; 1188 } 1189 #endif 1190 IFNET_FOREACH(ifp) { 1191 if (ifp->if_output == if_nulloutput) 1192 continue; 1193 IFADDR_FOREACH(ifa, ifp) { 1194 const char *cp, *cp2, *cp3; 1195 1196 if (ifa->ifa_addr->sa_family != af || 1197 ifa->ifa_netmask == NULL) 1198 next: continue; 1199 cp = addr_data; 1200 cp2 = ifa->ifa_addr->sa_data; 1201 cp3 = ifa->ifa_netmask->sa_data; 1202 cplim = (const char *)ifa->ifa_netmask + 1203 ifa->ifa_netmask->sa_len; 1204 while (cp3 < cplim) { 1205 if ((*cp++ ^ *cp2++) & *cp3++) { 1206 /* want to continue for() loop */ 1207 goto next; 1208 } 1209 } 1210 if (ifa_maybe == NULL || 1211 rn_refines((void *)ifa->ifa_netmask, 1212 (void *)ifa_maybe->ifa_netmask)) 1213 ifa_maybe = ifa; 1214 } 1215 } 1216 return ifa_maybe; 1217 } 1218 1219 /* 1220 * Find the interface of the addresss. 1221 */ 1222 struct ifaddr * 1223 ifa_ifwithladdr(const struct sockaddr *addr) 1224 { 1225 struct ifaddr *ia; 1226 1227 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 1228 (ia = ifa_ifwithnet(addr))) 1229 return ia; 1230 return NULL; 1231 } 1232 1233 /* 1234 * Find an interface using a specific address family 1235 */ 1236 struct ifaddr * 1237 ifa_ifwithaf(int af) 1238 { 1239 struct ifnet *ifp; 1240 struct ifaddr *ifa; 1241 1242 IFNET_FOREACH(ifp) { 1243 if (ifp->if_output == if_nulloutput) 1244 continue; 1245 IFADDR_FOREACH(ifa, ifp) { 1246 if (ifa->ifa_addr->sa_family == af) 1247 return ifa; 1248 } 1249 } 1250 return NULL; 1251 } 1252 1253 /* 1254 * Find an interface address specific to an interface best matching 1255 * a given address. 1256 */ 1257 struct ifaddr * 1258 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 1259 { 1260 struct ifaddr *ifa; 1261 const char *cp, *cp2, *cp3; 1262 const char *cplim; 1263 struct ifaddr *ifa_maybe = 0; 1264 u_int af = addr->sa_family; 1265 1266 if (ifp->if_output == if_nulloutput) 1267 return NULL; 1268 1269 if (af >= AF_MAX) 1270 return NULL; 1271 1272 IFADDR_FOREACH(ifa, ifp) { 1273 if (ifa->ifa_addr->sa_family != af) 1274 continue; 1275 ifa_maybe = ifa; 1276 if (ifa->ifa_netmask == NULL) { 1277 if (equal(addr, ifa->ifa_addr) || 1278 (ifa->ifa_dstaddr && 1279 equal(addr, ifa->ifa_dstaddr))) 1280 return ifa; 1281 continue; 1282 } 1283 cp = addr->sa_data; 1284 cp2 = ifa->ifa_addr->sa_data; 1285 cp3 = ifa->ifa_netmask->sa_data; 1286 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1287 for (; cp3 < cplim; cp3++) { 1288 if ((*cp++ ^ *cp2++) & *cp3) 1289 break; 1290 } 1291 if (cp3 == cplim) 1292 return ifa; 1293 } 1294 return ifa_maybe; 1295 } 1296 1297 /* 1298 * Default action when installing a route with a Link Level gateway. 1299 * Lookup an appropriate real ifa to point to. 1300 * This should be moved to /sys/net/link.c eventually. 1301 */ 1302 void 1303 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 1304 { 1305 struct ifaddr *ifa; 1306 const struct sockaddr *dst; 1307 struct ifnet *ifp; 1308 1309 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 1310 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL) 1311 return; 1312 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) { 1313 rt_replace_ifa(rt, ifa); 1314 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1315 ifa->ifa_rtrequest(cmd, rt, info); 1316 } 1317 } 1318 1319 /* 1320 * Handle a change in the interface link state. 1321 */ 1322 void 1323 if_link_state_change(struct ifnet *ifp, int link_state) 1324 { 1325 if (ifp->if_link_state == link_state) 1326 return; 1327 ifp->if_link_state = link_state; 1328 /* Notify that the link state has changed. */ 1329 rt_ifmsg(ifp); 1330 #if NCARP > 0 1331 if (ifp->if_carp) 1332 carp_carpdev_state(ifp); 1333 #endif 1334 } 1335 1336 /* 1337 * Mark an interface down and notify protocols of 1338 * the transition. 1339 * NOTE: must be called at splsoftnet or equivalent. 1340 */ 1341 void 1342 if_down(struct ifnet *ifp) 1343 { 1344 struct ifaddr *ifa; 1345 1346 ifp->if_flags &= ~IFF_UP; 1347 nanotime(&ifp->if_lastchange); 1348 IFADDR_FOREACH(ifa, ifp) 1349 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 1350 IFQ_PURGE(&ifp->if_snd); 1351 #if NCARP > 0 1352 if (ifp->if_carp) 1353 carp_carpdev_state(ifp); 1354 #endif 1355 rt_ifmsg(ifp); 1356 } 1357 1358 /* 1359 * Mark an interface up and notify protocols of 1360 * the transition. 1361 * NOTE: must be called at splsoftnet or equivalent. 1362 */ 1363 void 1364 if_up(struct ifnet *ifp) 1365 { 1366 #ifdef notyet 1367 struct ifaddr *ifa; 1368 #endif 1369 1370 ifp->if_flags |= IFF_UP; 1371 nanotime(&ifp->if_lastchange); 1372 #ifdef notyet 1373 /* this has no effect on IP, and will kill all ISO connections XXX */ 1374 IFADDR_FOREACH(ifa, ifp) 1375 pfctlinput(PRC_IFUP, ifa->ifa_addr); 1376 #endif 1377 #if NCARP > 0 1378 if (ifp->if_carp) 1379 carp_carpdev_state(ifp); 1380 #endif 1381 rt_ifmsg(ifp); 1382 #ifdef INET6 1383 in6_if_up(ifp); 1384 #endif 1385 } 1386 1387 /* 1388 * Handle interface watchdog timer routines. Called 1389 * from softclock, we decrement timers (if set) and 1390 * call the appropriate interface routine on expiration. 1391 */ 1392 void 1393 if_slowtimo(void *arg) 1394 { 1395 struct ifnet *ifp; 1396 int s = splnet(); 1397 1398 IFNET_FOREACH(ifp) { 1399 if (ifp->if_timer == 0 || --ifp->if_timer) 1400 continue; 1401 if (ifp->if_watchdog != NULL) 1402 (*ifp->if_watchdog)(ifp); 1403 } 1404 splx(s); 1405 callout_reset(&if_slowtimo_ch, hz / IFNET_SLOWHZ, if_slowtimo, NULL); 1406 } 1407 1408 /* 1409 * Set/clear promiscuous mode on interface ifp based on the truth value 1410 * of pswitch. The calls are reference counted so that only the first 1411 * "on" request actually has an effect, as does the final "off" request. 1412 * Results are undefined if the "off" and "on" requests are not matched. 1413 */ 1414 int 1415 ifpromisc(struct ifnet *ifp, int pswitch) 1416 { 1417 int pcount, ret; 1418 short nflags; 1419 1420 pcount = ifp->if_pcount; 1421 if (pswitch) { 1422 /* 1423 * Allow the device to be "placed" into promiscuous 1424 * mode even if it is not configured up. It will 1425 * consult IFF_PROMISC when it is brought up. 1426 */ 1427 if (ifp->if_pcount++ != 0) 1428 return 0; 1429 nflags = ifp->if_flags | IFF_PROMISC; 1430 } else { 1431 if (--ifp->if_pcount > 0) 1432 return 0; 1433 nflags = ifp->if_flags & ~IFF_PROMISC; 1434 } 1435 ret = if_flags_set(ifp, nflags); 1436 /* Restore interface state if not successful. */ 1437 if (ret != 0) { 1438 ifp->if_pcount = pcount; 1439 } 1440 return ret; 1441 } 1442 1443 /* 1444 * Map interface name to 1445 * interface structure pointer. 1446 */ 1447 struct ifnet * 1448 ifunit(const char *name) 1449 { 1450 struct ifnet *ifp; 1451 const char *cp = name; 1452 u_int unit = 0; 1453 u_int i; 1454 1455 /* 1456 * If the entire name is a number, treat it as an ifindex. 1457 */ 1458 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 1459 unit = unit * 10 + (*cp - '0'); 1460 } 1461 1462 /* 1463 * If the number took all of the name, then it's a valid ifindex. 1464 */ 1465 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) { 1466 if (unit >= if_indexlim) 1467 return NULL; 1468 ifp = ifindex2ifnet[unit]; 1469 if (ifp == NULL || ifp->if_output == if_nulloutput) 1470 return NULL; 1471 return ifp; 1472 } 1473 1474 IFNET_FOREACH(ifp) { 1475 if (ifp->if_output == if_nulloutput) 1476 continue; 1477 if (strcmp(ifp->if_xname, name) == 0) 1478 return ifp; 1479 } 1480 return NULL; 1481 } 1482 1483 ifnet_t * 1484 if_byindex(u_int idx) 1485 { 1486 1487 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL; 1488 } 1489 1490 /* common */ 1491 int 1492 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 1493 { 1494 int s; 1495 struct ifreq *ifr; 1496 struct ifcapreq *ifcr; 1497 struct ifdatareq *ifdr; 1498 1499 switch (cmd) { 1500 case SIOCSIFCAP: 1501 ifcr = data; 1502 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 1503 return EINVAL; 1504 1505 if (ifcr->ifcr_capenable == ifp->if_capenable) 1506 return 0; 1507 1508 ifp->if_capenable = ifcr->ifcr_capenable; 1509 1510 /* Pre-compute the checksum flags mask. */ 1511 ifp->if_csum_flags_tx = 0; 1512 ifp->if_csum_flags_rx = 0; 1513 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) { 1514 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 1515 } 1516 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { 1517 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 1518 } 1519 1520 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) { 1521 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 1522 } 1523 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) { 1524 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 1525 } 1526 1527 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) { 1528 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 1529 } 1530 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) { 1531 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 1532 } 1533 1534 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) { 1535 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 1536 } 1537 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) { 1538 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 1539 } 1540 1541 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) { 1542 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 1543 } 1544 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) { 1545 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 1546 } 1547 if (ifp->if_flags & IFF_UP) 1548 return ENETRESET; 1549 return 0; 1550 case SIOCSIFFLAGS: 1551 ifr = data; 1552 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 1553 s = splnet(); 1554 if_down(ifp); 1555 splx(s); 1556 } 1557 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 1558 s = splnet(); 1559 if_up(ifp); 1560 splx(s); 1561 } 1562 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 1563 (ifr->ifr_flags &~ IFF_CANTCHANGE); 1564 break; 1565 case SIOCGIFFLAGS: 1566 ifr = data; 1567 ifr->ifr_flags = ifp->if_flags; 1568 break; 1569 1570 case SIOCGIFMETRIC: 1571 ifr = data; 1572 ifr->ifr_metric = ifp->if_metric; 1573 break; 1574 1575 case SIOCGIFMTU: 1576 ifr = data; 1577 ifr->ifr_mtu = ifp->if_mtu; 1578 break; 1579 1580 case SIOCGIFDLT: 1581 ifr = data; 1582 ifr->ifr_dlt = ifp->if_dlt; 1583 break; 1584 1585 case SIOCGIFCAP: 1586 ifcr = data; 1587 ifcr->ifcr_capabilities = ifp->if_capabilities; 1588 ifcr->ifcr_capenable = ifp->if_capenable; 1589 break; 1590 1591 case SIOCSIFMETRIC: 1592 ifr = data; 1593 ifp->if_metric = ifr->ifr_metric; 1594 break; 1595 1596 case SIOCGIFDATA: 1597 ifdr = data; 1598 ifdr->ifdr_data = ifp->if_data; 1599 break; 1600 1601 case SIOCZIFDATA: 1602 ifdr = data; 1603 ifdr->ifdr_data = ifp->if_data; 1604 /* 1605 * Assumes that the volatile counters that can be 1606 * zero'ed are at the end of if_data. 1607 */ 1608 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) - 1609 offsetof(struct if_data, ifi_ipackets)); 1610 break; 1611 case SIOCSIFMTU: 1612 ifr = data; 1613 if (ifp->if_mtu == ifr->ifr_mtu) 1614 break; 1615 ifp->if_mtu = ifr->ifr_mtu; 1616 /* 1617 * If the link MTU changed, do network layer specific procedure. 1618 */ 1619 #ifdef INET6 1620 nd6_setmtu(ifp); 1621 #endif 1622 return ENETRESET; 1623 default: 1624 return ENOTTY; 1625 } 1626 return 0; 1627 } 1628 1629 int 1630 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp, 1631 lwp_t *l) 1632 { 1633 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 1634 struct ifaddr *ifa; 1635 const struct sockaddr *any, *sa; 1636 union { 1637 struct sockaddr sa; 1638 struct sockaddr_storage ss; 1639 } u, v; 1640 1641 switch (cmd) { 1642 case SIOCSIFADDRPREF: 1643 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE, 1644 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 1645 NULL) != 0) 1646 return EPERM; 1647 case SIOCGIFADDRPREF: 1648 break; 1649 default: 1650 return EOPNOTSUPP; 1651 } 1652 1653 /* sanity checks */ 1654 if (data == NULL || ifp == NULL) { 1655 panic("invalid argument to %s", __func__); 1656 /*NOTREACHED*/ 1657 } 1658 1659 /* address must be specified on ADD and DELETE */ 1660 sa = sstocsa(&ifap->ifap_addr); 1661 if (sa->sa_family != sofamily(so)) 1662 return EINVAL; 1663 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 1664 return EINVAL; 1665 1666 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 1667 1668 IFADDR_FOREACH(ifa, ifp) { 1669 if (ifa->ifa_addr->sa_family != sa->sa_family) 1670 continue; 1671 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 1672 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 1673 break; 1674 } 1675 if (ifa == NULL) 1676 return EADDRNOTAVAIL; 1677 1678 switch (cmd) { 1679 case SIOCSIFADDRPREF: 1680 ifa->ifa_preference = ifap->ifap_preference; 1681 return 0; 1682 case SIOCGIFADDRPREF: 1683 /* fill in the if_laddrreq structure */ 1684 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 1685 sizeof(ifap->ifap_addr), ifa->ifa_addr); 1686 ifap->ifap_preference = ifa->ifa_preference; 1687 return 0; 1688 default: 1689 return EOPNOTSUPP; 1690 } 1691 } 1692 1693 static void 1694 ifnet_lock_enter(struct ifnet_lock *il) 1695 { 1696 uint64_t *nenter; 1697 1698 /* Before trying to acquire the mutex, increase the count of threads 1699 * who have entered or who wait to enter the critical section. 1700 * Avoid one costly locked memory transaction by keeping a count for 1701 * each CPU. 1702 */ 1703 nenter = percpu_getref(il->il_nenter); 1704 (*nenter)++; 1705 percpu_putref(il->il_nenter); 1706 mutex_enter(&il->il_lock); 1707 } 1708 1709 static void 1710 ifnet_lock_exit(struct ifnet_lock *il) 1711 { 1712 /* Increase the count of threads who have exited the critical 1713 * section. Increase while we still hold the lock. 1714 */ 1715 il->il_nexit++; 1716 mutex_exit(&il->il_lock); 1717 } 1718 1719 /* 1720 * Interface ioctls. 1721 */ 1722 int 1723 ifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 1724 { 1725 struct ifnet *ifp; 1726 struct ifreq *ifr; 1727 int error = 0; 1728 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ) 1729 u_long ocmd = cmd; 1730 #endif 1731 short oif_flags; 1732 #ifdef COMPAT_OIFREQ 1733 struct ifreq ifrb; 1734 struct oifreq *oifr = NULL; 1735 #endif 1736 1737 switch (cmd) { 1738 #ifdef COMPAT_OIFREQ 1739 case OSIOCGIFCONF: 1740 case OOSIOCGIFCONF: 1741 return compat_ifconf(cmd, data); 1742 #endif 1743 #ifdef COMPAT_OIFDATA 1744 case OSIOCGIFDATA: 1745 case OSIOCZIFDATA: 1746 return compat_ifdatareq(l, cmd, data); 1747 #endif 1748 case SIOCGIFCONF: 1749 return ifconf(cmd, data); 1750 case SIOCINITIFADDR: 1751 return EPERM; 1752 } 1753 1754 #ifdef COMPAT_OIFREQ 1755 cmd = compat_cvtcmd(cmd); 1756 if (cmd != ocmd) { 1757 oifr = data; 1758 data = ifr = &ifrb; 1759 ifreqo2n(oifr, ifr); 1760 } else 1761 #endif 1762 ifr = data; 1763 1764 ifp = ifunit(ifr->ifr_name); 1765 1766 switch (cmd) { 1767 case SIOCIFCREATE: 1768 case SIOCIFDESTROY: 1769 if (l != NULL) { 1770 error = kauth_authorize_network(l->l_cred, 1771 KAUTH_NETWORK_INTERFACE, 1772 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 1773 (void *)cmd, NULL); 1774 if (error != 0) 1775 return error; 1776 } 1777 return (cmd == SIOCIFCREATE) ? 1778 if_clone_create(ifr->ifr_name) : 1779 if_clone_destroy(ifr->ifr_name); 1780 1781 case SIOCIFGCLONERS: 1782 return if_clone_list((struct if_clonereq *)data); 1783 } 1784 1785 if (ifp == NULL) 1786 return ENXIO; 1787 1788 switch (cmd) { 1789 case SIOCALIFADDR: 1790 case SIOCDLIFADDR: 1791 case SIOCSIFADDRPREF: 1792 case SIOCSIFFLAGS: 1793 case SIOCSIFCAP: 1794 case SIOCSIFMETRIC: 1795 case SIOCZIFDATA: 1796 case SIOCSIFMTU: 1797 case SIOCSIFPHYADDR: 1798 case SIOCDIFPHYADDR: 1799 #ifdef INET6 1800 case SIOCSIFPHYADDR_IN6: 1801 #endif 1802 case SIOCSLIFPHYADDR: 1803 case SIOCADDMULTI: 1804 case SIOCDELMULTI: 1805 case SIOCSIFMEDIA: 1806 case SIOCSDRVSPEC: 1807 case SIOCG80211: 1808 case SIOCS80211: 1809 case SIOCS80211NWID: 1810 case SIOCS80211NWKEY: 1811 case SIOCS80211POWER: 1812 case SIOCS80211BSSID: 1813 case SIOCS80211CHANNEL: 1814 case SIOCSLINKSTR: 1815 if (l != NULL) { 1816 error = kauth_authorize_network(l->l_cred, 1817 KAUTH_NETWORK_INTERFACE, 1818 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 1819 (void *)cmd, NULL); 1820 if (error != 0) 1821 return error; 1822 } 1823 } 1824 1825 oif_flags = ifp->if_flags; 1826 1827 ifnet_lock_enter(ifp->if_ioctl_lock); 1828 error = (*ifp->if_ioctl)(ifp, cmd, data); 1829 if (error != ENOTTY) 1830 ; 1831 else if (so->so_proto == NULL) 1832 error = EOPNOTSUPP; 1833 else { 1834 #ifdef COMPAT_OSOCK 1835 error = compat_ifioctl(so, ocmd, cmd, data, l); 1836 #else 1837 error = (*so->so_proto->pr_usrreq)(so, PRU_CONTROL, 1838 (struct mbuf *)cmd, (struct mbuf *)data, 1839 (struct mbuf *)ifp, l); 1840 #endif 1841 } 1842 1843 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 1844 #ifdef INET6 1845 if ((ifp->if_flags & IFF_UP) != 0) { 1846 int s = splnet(); 1847 in6_if_up(ifp); 1848 splx(s); 1849 } 1850 #endif 1851 } 1852 #ifdef COMPAT_OIFREQ 1853 if (cmd != ocmd) 1854 ifreqn2o(oifr, ifr); 1855 #endif 1856 1857 ifnet_lock_exit(ifp->if_ioctl_lock); 1858 return error; 1859 } 1860 1861 /* This callback adds to the sum in `arg' the number of 1862 * threads on `ci' who have entered or who wait to enter the 1863 * critical section. 1864 */ 1865 static void 1866 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci) 1867 { 1868 uint64_t *sum = arg, *nenter = p; 1869 1870 *sum += *nenter; 1871 } 1872 1873 /* Return the number of threads who have entered or who wait 1874 * to enter the critical section on all CPUs. 1875 */ 1876 static uint64_t 1877 ifnet_lock_entrances(struct ifnet_lock *il) 1878 { 1879 uint64_t sum = 0; 1880 1881 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum); 1882 1883 return sum; 1884 } 1885 1886 static int 1887 ifioctl_attach(struct ifnet *ifp) 1888 { 1889 struct ifnet_lock *il; 1890 1891 /* If the driver has not supplied its own if_ioctl, then 1892 * supply the default. 1893 */ 1894 if (ifp->if_ioctl == NULL) 1895 ifp->if_ioctl = ifioctl_common; 1896 1897 /* Create an ifnet_lock for synchronizing ifioctls. */ 1898 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL) 1899 return ENOMEM; 1900 1901 il->il_nenter = percpu_alloc(sizeof(uint64_t)); 1902 if (il->il_nenter == NULL) { 1903 kmem_free(il, sizeof(*il)); 1904 return ENOMEM; 1905 } 1906 1907 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE); 1908 cv_init(&il->il_emptied, ifp->if_xname); 1909 1910 ifp->if_ioctl_lock = il; 1911 1912 return 0; 1913 } 1914 1915 /* 1916 * This must not be called until after `ifp' has been withdrawn from the 1917 * ifnet tables so that ifioctl() cannot get a handle on it by calling 1918 * ifunit(). 1919 */ 1920 static void 1921 ifioctl_detach(struct ifnet *ifp) 1922 { 1923 struct ifnet_lock *il; 1924 1925 il = ifp->if_ioctl_lock; 1926 mutex_enter(&il->il_lock); 1927 /* Install if_nullioctl to make sure that any thread that 1928 * subsequently enters the critical section will quit it 1929 * immediately and signal the condition variable that we 1930 * wait on, below. 1931 */ 1932 ifp->if_ioctl = if_nullioctl; 1933 /* Sleep while threads are still in the critical section or 1934 * wait to enter it. 1935 */ 1936 while (ifnet_lock_entrances(il) != il->il_nexit) 1937 cv_wait(&il->il_emptied, &il->il_lock); 1938 /* At this point, we are the only thread still in the critical 1939 * section, and no new thread can get a handle on the ifioctl 1940 * lock, so it is safe to free its memory. 1941 */ 1942 mutex_exit(&il->il_lock); 1943 ifp->if_ioctl_lock = NULL; 1944 percpu_free(il->il_nenter, sizeof(uint64_t)); 1945 il->il_nenter = NULL; 1946 cv_destroy(&il->il_emptied); 1947 mutex_destroy(&il->il_lock); 1948 kmem_free(il, sizeof(*il)); 1949 } 1950 1951 /* 1952 * Return interface configuration 1953 * of system. List may be used 1954 * in later ioctl's (above) to get 1955 * other information. 1956 * 1957 * Each record is a struct ifreq. Before the addition of 1958 * sockaddr_storage, the API rule was that sockaddr flavors that did 1959 * not fit would extend beyond the struct ifreq, with the next struct 1960 * ifreq starting sa_len beyond the struct sockaddr. Because the 1961 * union in struct ifreq includes struct sockaddr_storage, every kind 1962 * of sockaddr must fit. Thus, there are no longer any overlength 1963 * records. 1964 * 1965 * Records are added to the user buffer if they fit, and ifc_len is 1966 * adjusted to the length that was written. Thus, the user is only 1967 * assured of getting the complete list if ifc_len on return is at 1968 * least sizeof(struct ifreq) less than it was on entry. 1969 * 1970 * If the user buffer pointer is NULL, this routine copies no data and 1971 * returns the amount of space that would be needed. 1972 * 1973 * Invariants: 1974 * ifrp points to the next part of the user's buffer to be used. If 1975 * ifrp != NULL, space holds the number of bytes remaining that we may 1976 * write at ifrp. Otherwise, space holds the number of bytes that 1977 * would have been written had there been adequate space. 1978 */ 1979 /*ARGSUSED*/ 1980 int 1981 ifconf(u_long cmd, void *data) 1982 { 1983 struct ifconf *ifc = (struct ifconf *)data; 1984 struct ifnet *ifp; 1985 struct ifaddr *ifa; 1986 struct ifreq ifr, *ifrp; 1987 int space, error = 0; 1988 const int sz = (int)sizeof(struct ifreq); 1989 1990 if ((ifrp = ifc->ifc_req) == NULL) 1991 space = 0; 1992 else 1993 space = ifc->ifc_len; 1994 IFNET_FOREACH(ifp) { 1995 (void)strncpy(ifr.ifr_name, ifp->if_xname, 1996 sizeof(ifr.ifr_name)); 1997 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') 1998 return ENAMETOOLONG; 1999 if (IFADDR_EMPTY(ifp)) { 2000 /* Interface with no addresses - send zero sockaddr. */ 2001 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 2002 if (ifrp == NULL) { 2003 space += sz; 2004 continue; 2005 } 2006 if (space >= sz) { 2007 error = copyout(&ifr, ifrp, sz); 2008 if (error != 0) 2009 return error; 2010 ifrp++; 2011 space -= sz; 2012 } 2013 } 2014 2015 IFADDR_FOREACH(ifa, ifp) { 2016 struct sockaddr *sa = ifa->ifa_addr; 2017 /* all sockaddrs must fit in sockaddr_storage */ 2018 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 2019 2020 if (ifrp == NULL) { 2021 space += sz; 2022 continue; 2023 } 2024 memcpy(&ifr.ifr_space, sa, sa->sa_len); 2025 if (space >= sz) { 2026 error = copyout(&ifr, ifrp, sz); 2027 if (error != 0) 2028 return (error); 2029 ifrp++; space -= sz; 2030 } 2031 } 2032 } 2033 if (ifrp != NULL) { 2034 KASSERT(0 <= space && space <= ifc->ifc_len); 2035 ifc->ifc_len -= space; 2036 } else { 2037 KASSERT(space >= 0); 2038 ifc->ifc_len = space; 2039 } 2040 return (0); 2041 } 2042 2043 int 2044 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 2045 { 2046 uint8_t len; 2047 #ifdef COMPAT_OIFREQ 2048 struct ifreq ifrb; 2049 struct oifreq *oifr = NULL; 2050 u_long ocmd = cmd; 2051 cmd = compat_cvtcmd(cmd); 2052 if (cmd != ocmd) { 2053 oifr = (struct oifreq *)(void *)ifr; 2054 ifr = &ifrb; 2055 ifreqo2n(oifr, ifr); 2056 len = sizeof(oifr->ifr_addr); 2057 } else 2058 #endif 2059 len = sizeof(ifr->ifr_ifru.ifru_space); 2060 2061 if (len < sa->sa_len) 2062 return EFBIG; 2063 2064 memset(&ifr->ifr_addr, 0, len); 2065 sockaddr_copy(&ifr->ifr_addr, len, sa); 2066 2067 #ifdef COMPAT_OIFREQ 2068 if (cmd != ocmd) 2069 ifreqn2o(oifr, ifr); 2070 #endif 2071 return 0; 2072 } 2073 2074 /* 2075 * Queue message on interface, and start output if interface 2076 * not yet active. 2077 */ 2078 int 2079 ifq_enqueue(struct ifnet *ifp, struct mbuf *m 2080 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr)) 2081 { 2082 int len = m->m_pkthdr.len; 2083 int mflags = m->m_flags; 2084 int s = splnet(); 2085 int error; 2086 2087 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error); 2088 if (error != 0) 2089 goto out; 2090 ifp->if_obytes += len; 2091 if (mflags & M_MCAST) 2092 ifp->if_omcasts++; 2093 if ((ifp->if_flags & IFF_OACTIVE) == 0) 2094 (*ifp->if_start)(ifp); 2095 out: 2096 splx(s); 2097 return error; 2098 } 2099 2100 /* 2101 * Queue message on interface, possibly using a second fast queue 2102 */ 2103 int 2104 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m 2105 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr)) 2106 { 2107 int error = 0; 2108 2109 if (ifq != NULL 2110 #ifdef ALTQ 2111 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 2112 #endif 2113 ) { 2114 if (IF_QFULL(ifq)) { 2115 IF_DROP(&ifp->if_snd); 2116 m_freem(m); 2117 if (error == 0) 2118 error = ENOBUFS; 2119 } else 2120 IF_ENQUEUE(ifq, m); 2121 } else 2122 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error); 2123 if (error != 0) { 2124 ++ifp->if_oerrors; 2125 return error; 2126 } 2127 return 0; 2128 } 2129 2130 int 2131 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 2132 { 2133 int rc; 2134 2135 if (ifp->if_initaddr != NULL) 2136 rc = (*ifp->if_initaddr)(ifp, ifa, src); 2137 else if (src || 2138 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 2139 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); 2140 2141 return rc; 2142 } 2143 2144 int 2145 if_flags_set(ifnet_t *ifp, const short flags) 2146 { 2147 int rc; 2148 2149 if (ifp->if_setflags != NULL) 2150 rc = (*ifp->if_setflags)(ifp, flags); 2151 else { 2152 short cantflags, chgdflags; 2153 struct ifreq ifr; 2154 2155 chgdflags = ifp->if_flags ^ flags; 2156 cantflags = chgdflags & IFF_CANTCHANGE; 2157 2158 if (cantflags != 0) 2159 ifp->if_flags ^= cantflags; 2160 2161 /* Traditionally, we do not call if_ioctl after 2162 * setting/clearing only IFF_PROMISC if the interface 2163 * isn't IFF_UP. Uphold that tradition. 2164 */ 2165 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 2166 return 0; 2167 2168 memset(&ifr, 0, sizeof(ifr)); 2169 2170 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 2171 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); 2172 2173 if (rc != 0 && cantflags != 0) 2174 ifp->if_flags ^= cantflags; 2175 } 2176 2177 return rc; 2178 } 2179 2180 int 2181 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 2182 { 2183 int rc; 2184 struct ifreq ifr; 2185 2186 if (ifp->if_mcastop != NULL) 2187 rc = (*ifp->if_mcastop)(ifp, cmd, sa); 2188 else { 2189 ifreq_setaddr(cmd, &ifr, sa); 2190 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); 2191 } 2192 2193 return rc; 2194 } 2195 2196 static void 2197 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 2198 struct ifaltq *ifq) 2199 { 2200 const struct sysctlnode *cnode, *rnode; 2201 2202 if (sysctl_createv(clog, 0, NULL, &rnode, 2203 CTLFLAG_PERMANENT, 2204 CTLTYPE_NODE, "net", NULL, 2205 NULL, 0, NULL, 0, 2206 CTL_NET, CTL_EOL) != 0) 2207 goto bad; 2208 2209 if (sysctl_createv(clog, 0, &rnode, &rnode, 2210 CTLFLAG_PERMANENT, 2211 CTLTYPE_NODE, "interfaces", 2212 SYSCTL_DESCR("Per-interface controls"), 2213 NULL, 0, NULL, 0, 2214 CTL_CREATE, CTL_EOL) != 0) 2215 goto bad; 2216 2217 if (sysctl_createv(clog, 0, &rnode, &rnode, 2218 CTLFLAG_PERMANENT, 2219 CTLTYPE_NODE, ifname, 2220 SYSCTL_DESCR("Interface controls"), 2221 NULL, 0, NULL, 0, 2222 CTL_CREATE, CTL_EOL) != 0) 2223 goto bad; 2224 2225 if (sysctl_createv(clog, 0, &rnode, &rnode, 2226 CTLFLAG_PERMANENT, 2227 CTLTYPE_NODE, "sndq", 2228 SYSCTL_DESCR("Interface output queue controls"), 2229 NULL, 0, NULL, 0, 2230 CTL_CREATE, CTL_EOL) != 0) 2231 goto bad; 2232 2233 if (sysctl_createv(clog, 0, &rnode, &cnode, 2234 CTLFLAG_PERMANENT, 2235 CTLTYPE_INT, "len", 2236 SYSCTL_DESCR("Current output queue length"), 2237 NULL, 0, &ifq->ifq_len, 0, 2238 CTL_CREATE, CTL_EOL) != 0) 2239 goto bad; 2240 2241 if (sysctl_createv(clog, 0, &rnode, &cnode, 2242 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2243 CTLTYPE_INT, "maxlen", 2244 SYSCTL_DESCR("Maximum allowed output queue length"), 2245 NULL, 0, &ifq->ifq_maxlen, 0, 2246 CTL_CREATE, CTL_EOL) != 0) 2247 goto bad; 2248 2249 if (sysctl_createv(clog, 0, &rnode, &cnode, 2250 CTLFLAG_PERMANENT, 2251 CTLTYPE_INT, "drops", 2252 SYSCTL_DESCR("Packets dropped due to full output queue"), 2253 NULL, 0, &ifq->ifq_drops, 0, 2254 CTL_CREATE, CTL_EOL) != 0) 2255 goto bad; 2256 2257 return; 2258 bad: 2259 printf("%s: could not attach sysctl nodes\n", ifname); 2260 return; 2261 } 2262 2263 #if defined(INET) || defined(INET6) 2264 static void 2265 sysctl_net_ifq_setup(struct sysctllog **clog, 2266 int pf, const char *pfname, 2267 int ipn, const char *ipname, 2268 int qid, struct ifqueue *ifq) 2269 { 2270 2271 sysctl_createv(clog, 0, NULL, NULL, 2272 CTLFLAG_PERMANENT, 2273 CTLTYPE_NODE, "net", NULL, 2274 NULL, 0, NULL, 0, 2275 CTL_NET, CTL_EOL); 2276 sysctl_createv(clog, 0, NULL, NULL, 2277 CTLFLAG_PERMANENT, 2278 CTLTYPE_NODE, pfname, NULL, 2279 NULL, 0, NULL, 0, 2280 CTL_NET, pf, CTL_EOL); 2281 sysctl_createv(clog, 0, NULL, NULL, 2282 CTLFLAG_PERMANENT, 2283 CTLTYPE_NODE, ipname, NULL, 2284 NULL, 0, NULL, 0, 2285 CTL_NET, pf, ipn, CTL_EOL); 2286 sysctl_createv(clog, 0, NULL, NULL, 2287 CTLFLAG_PERMANENT, 2288 CTLTYPE_NODE, "ifq", 2289 SYSCTL_DESCR("Protocol input queue controls"), 2290 NULL, 0, NULL, 0, 2291 CTL_NET, pf, ipn, qid, CTL_EOL); 2292 2293 sysctl_createv(clog, 0, NULL, NULL, 2294 CTLFLAG_PERMANENT, 2295 CTLTYPE_INT, "len", 2296 SYSCTL_DESCR("Current input queue length"), 2297 NULL, 0, &ifq->ifq_len, 0, 2298 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); 2299 sysctl_createv(clog, 0, NULL, NULL, 2300 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2301 CTLTYPE_INT, "maxlen", 2302 SYSCTL_DESCR("Maximum allowed input queue length"), 2303 NULL, 0, &ifq->ifq_maxlen, 0, 2304 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); 2305 #ifdef notyet 2306 sysctl_createv(clog, 0, NULL, NULL, 2307 CTLFLAG_PERMANENT, 2308 CTLTYPE_INT, "peak", 2309 SYSCTL_DESCR("Highest input queue length"), 2310 NULL, 0, &ifq->ifq_peak, 0, 2311 CTL_NET, pf, ipn, qid, IFQCTL_PEAK, CTL_EOL); 2312 #endif 2313 sysctl_createv(clog, 0, NULL, NULL, 2314 CTLFLAG_PERMANENT, 2315 CTLTYPE_INT, "drops", 2316 SYSCTL_DESCR("Packets dropped due to full input queue"), 2317 NULL, 0, &ifq->ifq_drops, 0, 2318 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); 2319 } 2320 #endif /* INET || INET6 */ 2321