1 /* $NetBSD: if.c,v 1.357 2016/08/01 03:15:30 ozaki-r Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.357 2016/08/01 03:15:30 ozaki-r Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 99 #include "opt_atalk.h" 100 #include "opt_natm.h" 101 #include "opt_wlan.h" 102 #include "opt_net_mpsafe.h" 103 #endif 104 105 #include <sys/param.h> 106 #include <sys/mbuf.h> 107 #include <sys/systm.h> 108 #include <sys/callout.h> 109 #include <sys/proc.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/domain.h> 113 #include <sys/protosw.h> 114 #include <sys/kernel.h> 115 #include <sys/ioctl.h> 116 #include <sys/sysctl.h> 117 #include <sys/syslog.h> 118 #include <sys/kauth.h> 119 #include <sys/kmem.h> 120 #include <sys/xcall.h> 121 #include <sys/cpu.h> 122 #include <sys/intr.h> 123 124 #include <net/if.h> 125 #include <net/if_dl.h> 126 #include <net/if_ether.h> 127 #include <net/if_media.h> 128 #include <net80211/ieee80211.h> 129 #include <net80211/ieee80211_ioctl.h> 130 #include <net/if_types.h> 131 #include <net/route.h> 132 #include <net/netisr.h> 133 #include <sys/module.h> 134 #ifdef NETATALK 135 #include <netatalk/at_extern.h> 136 #include <netatalk/at.h> 137 #endif 138 #include <net/pfil.h> 139 #include <netinet/in.h> 140 #include <netinet/in_var.h> 141 #ifndef IPSEC 142 #include <netinet/ip_encap.h> 143 #endif 144 145 #ifdef INET6 146 #include <netinet6/in6_var.h> 147 #include <netinet6/nd6.h> 148 #endif 149 150 #include "ether.h" 151 #include "fddi.h" 152 #include "token.h" 153 154 #include "carp.h" 155 #if NCARP > 0 156 #include <netinet/ip_carp.h> 157 #endif 158 159 #include <compat/sys/sockio.h> 160 #include <compat/sys/socket.h> 161 162 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 163 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 164 165 /* 166 * Global list of interfaces. 167 */ 168 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 169 struct ifnet_head ifnet_list; 170 171 struct pslist_head ifnet_pslist; 172 static ifnet_t ** ifindex2ifnet = NULL; 173 static u_int if_index = 1; 174 static size_t if_indexlim = 0; 175 static uint64_t index_gen; 176 /* Mutex to protect the above objects. */ 177 kmutex_t ifnet_mtx __cacheline_aligned; 178 struct psref_class *ifnet_psref_class __read_mostly; 179 static pserialize_t ifnet_psz; 180 181 static kmutex_t if_clone_mtx; 182 183 struct ifnet *lo0ifp; 184 int ifqmaxlen = IFQ_MAXLEN; 185 186 struct psref_class *ifa_psref_class __read_mostly; 187 188 static int if_rt_walktree(struct rtentry *, void *); 189 190 static struct if_clone *if_clone_lookup(const char *, int *); 191 192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 193 static int if_cloners_count; 194 195 /* Packet filtering hook for interfaces. */ 196 pfil_head_t * if_pfil; 197 198 static kauth_listener_t if_listener; 199 200 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 201 static void if_detach_queues(struct ifnet *, struct ifqueue *); 202 static void sysctl_sndq_setup(struct sysctllog **, const char *, 203 struct ifaltq *); 204 static void if_slowtimo(void *); 205 static void if_free_sadl(struct ifnet *); 206 static void if_attachdomain1(struct ifnet *); 207 static int ifconf(u_long, void *); 208 static int if_transmit(struct ifnet *, struct mbuf *); 209 static int if_clone_create(const char *); 210 static int if_clone_destroy(const char *); 211 static void if_link_state_change_si(void *); 212 213 struct if_percpuq { 214 struct ifnet *ipq_ifp; 215 void *ipq_si; 216 struct percpu *ipq_ifqs; /* struct ifqueue */ 217 }; 218 219 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 220 221 static void if_percpuq_drops(void *, void *, struct cpu_info *); 222 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 223 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 224 struct if_percpuq *); 225 226 #if defined(INET) || defined(INET6) 227 static void sysctl_net_pktq_setup(struct sysctllog **, int); 228 #endif 229 230 static int 231 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 232 void *arg0, void *arg1, void *arg2, void *arg3) 233 { 234 int result; 235 enum kauth_network_req req; 236 237 result = KAUTH_RESULT_DEFER; 238 req = (enum kauth_network_req)arg1; 239 240 if (action != KAUTH_NETWORK_INTERFACE) 241 return result; 242 243 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 244 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 245 result = KAUTH_RESULT_ALLOW; 246 247 return result; 248 } 249 250 /* 251 * Network interface utility routines. 252 * 253 * Routines with ifa_ifwith* names take sockaddr *'s as 254 * parameters. 255 */ 256 void 257 ifinit(void) 258 { 259 #if defined(INET) 260 sysctl_net_pktq_setup(NULL, PF_INET); 261 #endif 262 #ifdef INET6 263 if (in6_present) 264 sysctl_net_pktq_setup(NULL, PF_INET6); 265 #endif 266 267 #if (defined(INET) || defined(INET6)) && !defined(IPSEC) 268 encapinit(); 269 #endif 270 271 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 272 if_listener_cb, NULL); 273 274 /* interfaces are available, inform socket code */ 275 ifioctl = doifioctl; 276 } 277 278 /* 279 * XXX Initialization before configure(). 280 * XXX hack to get pfil_add_hook working in autoconf. 281 */ 282 void 283 ifinit1(void) 284 { 285 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 286 287 TAILQ_INIT(&ifnet_list); 288 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 289 ifnet_psz = pserialize_create(); 290 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 291 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 292 PSLIST_INIT(&ifnet_pslist); 293 294 if_indexlim = 8; 295 296 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 297 KASSERT(if_pfil != NULL); 298 299 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN) 300 etherinit(); 301 #endif 302 } 303 304 ifnet_t * 305 if_alloc(u_char type) 306 { 307 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 308 } 309 310 void 311 if_free(ifnet_t *ifp) 312 { 313 kmem_free(ifp, sizeof(ifnet_t)); 314 } 315 316 void 317 if_initname(struct ifnet *ifp, const char *name, int unit) 318 { 319 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 320 "%s%d", name, unit); 321 } 322 323 /* 324 * Null routines used while an interface is going away. These routines 325 * just return an error. 326 */ 327 328 int 329 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 330 const struct sockaddr *so, const struct rtentry *rt) 331 { 332 333 return ENXIO; 334 } 335 336 void 337 if_nullinput(struct ifnet *ifp, struct mbuf *m) 338 { 339 340 /* Nothing. */ 341 } 342 343 void 344 if_nullstart(struct ifnet *ifp) 345 { 346 347 /* Nothing. */ 348 } 349 350 int 351 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 352 { 353 354 return ENXIO; 355 } 356 357 int 358 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 359 { 360 361 return ENXIO; 362 } 363 364 int 365 if_nullinit(struct ifnet *ifp) 366 { 367 368 return ENXIO; 369 } 370 371 void 372 if_nullstop(struct ifnet *ifp, int disable) 373 { 374 375 /* Nothing. */ 376 } 377 378 void 379 if_nullslowtimo(struct ifnet *ifp) 380 { 381 382 /* Nothing. */ 383 } 384 385 void 386 if_nulldrain(struct ifnet *ifp) 387 { 388 389 /* Nothing. */ 390 } 391 392 void 393 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 394 { 395 struct ifaddr *ifa; 396 struct sockaddr_dl *sdl; 397 398 ifp->if_addrlen = addrlen; 399 if_alloc_sadl(ifp); 400 ifa = ifp->if_dl; 401 sdl = satosdl(ifa->ifa_addr); 402 403 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 404 if (factory) { 405 ifp->if_hwdl = ifp->if_dl; 406 ifaref(ifp->if_hwdl); 407 } 408 /* TBD routing socket */ 409 } 410 411 struct ifaddr * 412 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 413 { 414 unsigned socksize, ifasize; 415 int addrlen, namelen; 416 struct sockaddr_dl *mask, *sdl; 417 struct ifaddr *ifa; 418 419 namelen = strlen(ifp->if_xname); 420 addrlen = ifp->if_addrlen; 421 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 422 ifasize = sizeof(*ifa) + 2 * socksize; 423 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO); 424 425 sdl = (struct sockaddr_dl *)(ifa + 1); 426 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 427 428 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 429 ifp->if_xname, namelen, NULL, addrlen); 430 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 431 memset(&mask->sdl_data[0], 0xff, namelen); 432 ifa->ifa_rtrequest = link_rtrequest; 433 ifa->ifa_addr = (struct sockaddr *)sdl; 434 ifa->ifa_netmask = (struct sockaddr *)mask; 435 ifa_psref_init(ifa); 436 437 *sdlp = sdl; 438 439 return ifa; 440 } 441 442 static void 443 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 444 { 445 const struct sockaddr_dl *sdl; 446 447 ifp->if_dl = ifa; 448 ifaref(ifa); 449 sdl = satosdl(ifa->ifa_addr); 450 ifp->if_sadl = sdl; 451 } 452 453 /* 454 * Allocate the link level name for the specified interface. This 455 * is an attachment helper. It must be called after ifp->if_addrlen 456 * is initialized, which may not be the case when if_attach() is 457 * called. 458 */ 459 void 460 if_alloc_sadl(struct ifnet *ifp) 461 { 462 struct ifaddr *ifa; 463 const struct sockaddr_dl *sdl; 464 465 /* 466 * If the interface already has a link name, release it 467 * now. This is useful for interfaces that can change 468 * link types, and thus switch link names often. 469 */ 470 if (ifp->if_sadl != NULL) 471 if_free_sadl(ifp); 472 473 ifa = if_dl_create(ifp, &sdl); 474 475 ifa_insert(ifp, ifa); 476 if_sadl_setrefs(ifp, ifa); 477 } 478 479 static void 480 if_deactivate_sadl(struct ifnet *ifp) 481 { 482 struct ifaddr *ifa; 483 484 KASSERT(ifp->if_dl != NULL); 485 486 ifa = ifp->if_dl; 487 488 ifp->if_sadl = NULL; 489 490 ifp->if_dl = NULL; 491 ifafree(ifa); 492 } 493 494 void 495 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 496 const struct sockaddr_dl *sdl) 497 { 498 int s, ss; 499 struct ifaddr *ifa; 500 int bound = curlwp_bind(); 501 502 s = splnet(); 503 504 if_deactivate_sadl(ifp); 505 506 if_sadl_setrefs(ifp, ifa0); 507 508 ss = pserialize_read_enter(); 509 IFADDR_READER_FOREACH(ifa, ifp) { 510 struct psref psref; 511 ifa_acquire(ifa, &psref); 512 pserialize_read_exit(ss); 513 514 rtinit(ifa, RTM_LLINFO_UPD, 0); 515 516 ss = pserialize_read_enter(); 517 ifa_release(ifa, &psref); 518 } 519 pserialize_read_exit(ss); 520 521 splx(s); 522 curlwp_bindx(bound); 523 } 524 525 /* 526 * Free the link level name for the specified interface. This is 527 * a detach helper. This is called from if_detach(). 528 */ 529 static void 530 if_free_sadl(struct ifnet *ifp) 531 { 532 struct ifaddr *ifa; 533 int s; 534 535 ifa = ifp->if_dl; 536 if (ifa == NULL) { 537 KASSERT(ifp->if_sadl == NULL); 538 return; 539 } 540 541 KASSERT(ifp->if_sadl != NULL); 542 543 s = splnet(); 544 rtinit(ifa, RTM_DELETE, 0); 545 ifa_remove(ifp, ifa); 546 if_deactivate_sadl(ifp); 547 if (ifp->if_hwdl == ifa) { 548 ifafree(ifa); 549 ifp->if_hwdl = NULL; 550 } 551 splx(s); 552 } 553 554 static void 555 if_getindex(ifnet_t *ifp) 556 { 557 bool hitlimit = false; 558 559 ifp->if_index_gen = index_gen++; 560 561 ifp->if_index = if_index; 562 if (ifindex2ifnet == NULL) { 563 if_index++; 564 goto skip; 565 } 566 while (if_byindex(ifp->if_index)) { 567 /* 568 * If we hit USHRT_MAX, we skip back to 0 since 569 * there are a number of places where the value 570 * of if_index or if_index itself is compared 571 * to or stored in an unsigned short. By 572 * jumping back, we won't botch those assignments 573 * or comparisons. 574 */ 575 if (++if_index == 0) { 576 if_index = 1; 577 } else if (if_index == USHRT_MAX) { 578 /* 579 * However, if we have to jump back to 580 * zero *twice* without finding an empty 581 * slot in ifindex2ifnet[], then there 582 * there are too many (>65535) interfaces. 583 */ 584 if (hitlimit) { 585 panic("too many interfaces"); 586 } 587 hitlimit = true; 588 if_index = 1; 589 } 590 ifp->if_index = if_index; 591 } 592 skip: 593 /* 594 * ifindex2ifnet is indexed by if_index. Since if_index will 595 * grow dynamically, it should grow too. 596 */ 597 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 598 size_t m, n, oldlim; 599 void *q; 600 601 oldlim = if_indexlim; 602 while (ifp->if_index >= if_indexlim) 603 if_indexlim <<= 1; 604 605 /* grow ifindex2ifnet */ 606 m = oldlim * sizeof(struct ifnet *); 607 n = if_indexlim * sizeof(struct ifnet *); 608 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); 609 if (ifindex2ifnet != NULL) { 610 memcpy(q, ifindex2ifnet, m); 611 free(ifindex2ifnet, M_IFADDR); 612 } 613 ifindex2ifnet = (struct ifnet **)q; 614 } 615 ifindex2ifnet[ifp->if_index] = ifp; 616 } 617 618 /* 619 * Initialize an interface and assign an index for it. 620 * 621 * It must be called prior to a device specific attach routine 622 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 623 * and be followed by if_register: 624 * 625 * if_initialize(ifp); 626 * ether_ifattach(ifp, enaddr); 627 * if_register(ifp); 628 */ 629 void 630 if_initialize(ifnet_t *ifp) 631 { 632 KASSERT(if_indexlim > 0); 633 TAILQ_INIT(&ifp->if_addrlist); 634 635 /* 636 * Link level name is allocated later by a separate call to 637 * if_alloc_sadl(). 638 */ 639 640 if (ifp->if_snd.ifq_maxlen == 0) 641 ifp->if_snd.ifq_maxlen = ifqmaxlen; 642 643 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 644 645 ifp->if_link_state = LINK_STATE_UNKNOWN; 646 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 647 648 ifp->if_capenable = 0; 649 ifp->if_csum_flags_tx = 0; 650 ifp->if_csum_flags_rx = 0; 651 652 #ifdef ALTQ 653 ifp->if_snd.altq_type = 0; 654 ifp->if_snd.altq_disc = NULL; 655 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 656 ifp->if_snd.altq_tbr = NULL; 657 ifp->if_snd.altq_ifp = ifp; 658 #endif 659 660 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 661 662 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 663 (void)pfil_run_hooks(if_pfil, 664 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET); 665 666 IF_AFDATA_LOCK_INIT(ifp); 667 668 if (if_is_link_state_changeable(ifp)) { 669 ifp->if_link_si = softint_establish(SOFTINT_NET, 670 if_link_state_change_si, ifp); 671 if (ifp->if_link_si == NULL) 672 panic("%s: softint_establish() failed", __func__); 673 } 674 675 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 676 PSLIST_INIT(&ifp->if_addr_pslist); 677 psref_target_init(&ifp->if_psref, ifnet_psref_class); 678 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 679 680 IFNET_LOCK(); 681 if_getindex(ifp); 682 IFNET_UNLOCK(); 683 } 684 685 /* 686 * Register an interface to the list of "active" interfaces. 687 */ 688 void 689 if_register(ifnet_t *ifp) 690 { 691 /* 692 * If the driver has not supplied its own if_ioctl, then 693 * supply the default. 694 */ 695 if (ifp->if_ioctl == NULL) 696 ifp->if_ioctl = ifioctl_common; 697 698 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 699 700 if (!STAILQ_EMPTY(&domains)) 701 if_attachdomain1(ifp); 702 703 /* Announce the interface. */ 704 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 705 706 if (ifp->if_slowtimo != NULL) { 707 ifp->if_slowtimo_ch = 708 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP); 709 callout_init(ifp->if_slowtimo_ch, 0); 710 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp); 711 if_slowtimo(ifp); 712 } 713 714 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 715 ifp->if_transmit = if_transmit; 716 717 IFNET_LOCK(); 718 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 719 IFNET_WRITER_INSERT_TAIL(ifp); 720 IFNET_UNLOCK(); 721 } 722 723 /* 724 * The if_percpuq framework 725 * 726 * It allows network device drivers to execute the network stack 727 * in softint (so called softint-based if_input). It utilizes 728 * softint and percpu ifqueue. It doesn't distribute any packets 729 * between CPUs, unlike pktqueue(9). 730 * 731 * Currently we support two options for device drivers to apply the framework: 732 * - Use it implicitly with less changes 733 * - If you use if_attach in driver's _attach function and if_input in 734 * driver's Rx interrupt handler, a packet is queued and a softint handles 735 * the packet implicitly 736 * - Use it explicitly in each driver (recommended) 737 * - You can use if_percpuq_* directly in your driver 738 * - In this case, you need to allocate struct if_percpuq in driver's softc 739 * - See wm(4) as a reference implementation 740 */ 741 742 static void 743 if_percpuq_softint(void *arg) 744 { 745 struct if_percpuq *ipq = arg; 746 struct ifnet *ifp = ipq->ipq_ifp; 747 struct mbuf *m; 748 749 while ((m = if_percpuq_dequeue(ipq)) != NULL) 750 ifp->_if_input(ifp, m); 751 } 752 753 static void 754 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 755 { 756 struct ifqueue *const ifq = p; 757 758 memset(ifq, 0, sizeof(*ifq)); 759 ifq->ifq_maxlen = IFQ_MAXLEN; 760 } 761 762 struct if_percpuq * 763 if_percpuq_create(struct ifnet *ifp) 764 { 765 struct if_percpuq *ipq; 766 767 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 768 if (ipq == NULL) 769 panic("kmem_zalloc failed"); 770 771 ipq->ipq_ifp = ifp; 772 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, 773 if_percpuq_softint, ipq); 774 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 775 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 776 777 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 778 779 return ipq; 780 } 781 782 static struct mbuf * 783 if_percpuq_dequeue(struct if_percpuq *ipq) 784 { 785 struct mbuf *m; 786 struct ifqueue *ifq; 787 int s; 788 789 s = splnet(); 790 ifq = percpu_getref(ipq->ipq_ifqs); 791 IF_DEQUEUE(ifq, m); 792 percpu_putref(ipq->ipq_ifqs); 793 splx(s); 794 795 return m; 796 } 797 798 static void 799 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 800 { 801 struct ifqueue *const ifq = p; 802 803 IF_PURGE(ifq); 804 } 805 806 void 807 if_percpuq_destroy(struct if_percpuq *ipq) 808 { 809 810 /* if_detach may already destroy it */ 811 if (ipq == NULL) 812 return; 813 814 softint_disestablish(ipq->ipq_si); 815 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 816 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 817 } 818 819 void 820 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 821 { 822 struct ifqueue *ifq; 823 int s; 824 825 KASSERT(ipq != NULL); 826 827 s = splnet(); 828 ifq = percpu_getref(ipq->ipq_ifqs); 829 if (IF_QFULL(ifq)) { 830 IF_DROP(ifq); 831 percpu_putref(ipq->ipq_ifqs); 832 m_freem(m); 833 goto out; 834 } 835 IF_ENQUEUE(ifq, m); 836 percpu_putref(ipq->ipq_ifqs); 837 838 softint_schedule(ipq->ipq_si); 839 out: 840 splx(s); 841 } 842 843 static void 844 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 845 { 846 struct ifqueue *const ifq = p; 847 int *sum = arg; 848 849 *sum += ifq->ifq_drops; 850 } 851 852 static int 853 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 854 { 855 struct sysctlnode node; 856 struct if_percpuq *ipq; 857 int sum = 0; 858 int error; 859 860 node = *rnode; 861 ipq = node.sysctl_data; 862 863 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 864 865 node.sysctl_data = ∑ 866 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 867 if (error != 0 || newp == NULL) 868 return error; 869 870 return 0; 871 } 872 873 static void 874 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 875 struct if_percpuq *ipq) 876 { 877 const struct sysctlnode *cnode, *rnode; 878 879 if (sysctl_createv(clog, 0, NULL, &rnode, 880 CTLFLAG_PERMANENT, 881 CTLTYPE_NODE, "interfaces", 882 SYSCTL_DESCR("Per-interface controls"), 883 NULL, 0, NULL, 0, 884 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 885 goto bad; 886 887 if (sysctl_createv(clog, 0, &rnode, &rnode, 888 CTLFLAG_PERMANENT, 889 CTLTYPE_NODE, ifname, 890 SYSCTL_DESCR("Interface controls"), 891 NULL, 0, NULL, 0, 892 CTL_CREATE, CTL_EOL) != 0) 893 goto bad; 894 895 if (sysctl_createv(clog, 0, &rnode, &rnode, 896 CTLFLAG_PERMANENT, 897 CTLTYPE_NODE, "rcvq", 898 SYSCTL_DESCR("Interface input queue controls"), 899 NULL, 0, NULL, 0, 900 CTL_CREATE, CTL_EOL) != 0) 901 goto bad; 902 903 #ifdef NOTYET 904 /* XXX Should show each per-CPU queue length? */ 905 if (sysctl_createv(clog, 0, &rnode, &rnode, 906 CTLFLAG_PERMANENT, 907 CTLTYPE_INT, "len", 908 SYSCTL_DESCR("Current input queue length"), 909 sysctl_percpuq_len, 0, NULL, 0, 910 CTL_CREATE, CTL_EOL) != 0) 911 goto bad; 912 913 if (sysctl_createv(clog, 0, &rnode, &cnode, 914 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 915 CTLTYPE_INT, "maxlen", 916 SYSCTL_DESCR("Maximum allowed input queue length"), 917 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 918 CTL_CREATE, CTL_EOL) != 0) 919 goto bad; 920 #endif 921 922 if (sysctl_createv(clog, 0, &rnode, &cnode, 923 CTLFLAG_PERMANENT, 924 CTLTYPE_INT, "drops", 925 SYSCTL_DESCR("Total packets dropped due to full input queue"), 926 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 927 CTL_CREATE, CTL_EOL) != 0) 928 goto bad; 929 930 return; 931 bad: 932 printf("%s: could not attach sysctl nodes\n", ifname); 933 return; 934 } 935 936 937 /* 938 * The common interface input routine that is called by device drivers, 939 * which should be used only when the driver's rx handler already runs 940 * in softint. 941 */ 942 void 943 if_input(struct ifnet *ifp, struct mbuf *m) 944 { 945 946 KASSERT(ifp->if_percpuq == NULL); 947 KASSERT(!cpu_intr_p()); 948 949 ifp->_if_input(ifp, m); 950 } 951 952 /* 953 * DEPRECATED. Use if_initialize and if_register instead. 954 * See the above comment of if_initialize. 955 * 956 * Note that it implicitly enables if_percpuq to make drivers easy to 957 * migrate softint-based if_input without much changes. If you don't 958 * want to enable it, use if_initialize instead. 959 */ 960 void 961 if_attach(ifnet_t *ifp) 962 { 963 964 if_initialize(ifp); 965 ifp->if_percpuq = if_percpuq_create(ifp); 966 if_register(ifp); 967 } 968 969 void 970 if_attachdomain(void) 971 { 972 struct ifnet *ifp; 973 int s; 974 int bound = curlwp_bind(); 975 976 s = pserialize_read_enter(); 977 IFNET_READER_FOREACH(ifp) { 978 struct psref psref; 979 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 980 pserialize_read_exit(s); 981 if_attachdomain1(ifp); 982 s = pserialize_read_enter(); 983 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 984 } 985 pserialize_read_exit(s); 986 curlwp_bindx(bound); 987 } 988 989 static void 990 if_attachdomain1(struct ifnet *ifp) 991 { 992 struct domain *dp; 993 int s; 994 995 s = splnet(); 996 997 /* address family dependent data region */ 998 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 999 DOMAIN_FOREACH(dp) { 1000 if (dp->dom_ifattach != NULL) 1001 ifp->if_afdata[dp->dom_family] = 1002 (*dp->dom_ifattach)(ifp); 1003 } 1004 1005 splx(s); 1006 } 1007 1008 /* 1009 * Deactivate an interface. This points all of the procedure 1010 * handles at error stubs. May be called from interrupt context. 1011 */ 1012 void 1013 if_deactivate(struct ifnet *ifp) 1014 { 1015 int s; 1016 1017 s = splnet(); 1018 1019 ifp->if_output = if_nulloutput; 1020 ifp->_if_input = if_nullinput; 1021 ifp->if_start = if_nullstart; 1022 ifp->if_transmit = if_nulltransmit; 1023 ifp->if_ioctl = if_nullioctl; 1024 ifp->if_init = if_nullinit; 1025 ifp->if_stop = if_nullstop; 1026 ifp->if_slowtimo = if_nullslowtimo; 1027 ifp->if_drain = if_nulldrain; 1028 1029 /* No more packets may be enqueued. */ 1030 ifp->if_snd.ifq_maxlen = 0; 1031 1032 splx(s); 1033 } 1034 1035 bool 1036 if_is_deactivated(struct ifnet *ifp) 1037 { 1038 1039 return ifp->if_output == if_nulloutput; 1040 } 1041 1042 void 1043 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 1044 { 1045 struct ifaddr *ifa, *nifa; 1046 int s; 1047 1048 s = pserialize_read_enter(); 1049 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1050 nifa = IFADDR_READER_NEXT(ifa); 1051 if (ifa->ifa_addr->sa_family != family) 1052 continue; 1053 pserialize_read_exit(s); 1054 1055 (*purgeaddr)(ifa); 1056 1057 s = pserialize_read_enter(); 1058 } 1059 pserialize_read_exit(s); 1060 } 1061 1062 #ifdef IFAREF_DEBUG 1063 static struct ifaddr **ifa_list; 1064 static int ifa_list_size; 1065 1066 /* Depends on only one if_attach runs at once */ 1067 static void 1068 if_build_ifa_list(struct ifnet *ifp) 1069 { 1070 struct ifaddr *ifa; 1071 int i; 1072 1073 KASSERT(ifa_list == NULL); 1074 KASSERT(ifa_list_size == 0); 1075 1076 IFADDR_READER_FOREACH(ifa, ifp) 1077 ifa_list_size++; 1078 1079 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1080 if (ifa_list == NULL) 1081 return; 1082 1083 i = 0; 1084 IFADDR_READER_FOREACH(ifa, ifp) { 1085 ifa_list[i++] = ifa; 1086 ifaref(ifa); 1087 } 1088 } 1089 1090 static void 1091 if_check_and_free_ifa_list(struct ifnet *ifp) 1092 { 1093 int i; 1094 struct ifaddr *ifa; 1095 1096 if (ifa_list == NULL) 1097 return; 1098 1099 for (i = 0; i < ifa_list_size; i++) { 1100 char buf[64]; 1101 1102 ifa = ifa_list[i]; 1103 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1104 if (ifa->ifa_refcnt > 1) { 1105 log(LOG_WARNING, 1106 "ifa(%s) still referenced (refcnt=%d)\n", 1107 buf, ifa->ifa_refcnt - 1); 1108 } else 1109 log(LOG_DEBUG, 1110 "ifa(%s) not referenced (refcnt=%d)\n", 1111 buf, ifa->ifa_refcnt - 1); 1112 ifafree(ifa); 1113 } 1114 1115 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1116 ifa_list = NULL; 1117 ifa_list_size = 0; 1118 } 1119 #endif 1120 1121 /* 1122 * Detach an interface from the list of "active" interfaces, 1123 * freeing any resources as we go along. 1124 * 1125 * NOTE: This routine must be called with a valid thread context, 1126 * as it may block. 1127 */ 1128 void 1129 if_detach(struct ifnet *ifp) 1130 { 1131 struct socket so; 1132 struct ifaddr *ifa; 1133 #ifdef IFAREF_DEBUG 1134 struct ifaddr *last_ifa = NULL; 1135 #endif 1136 struct domain *dp; 1137 const struct protosw *pr; 1138 int s, i, family, purged; 1139 uint64_t xc; 1140 1141 #ifdef IFAREF_DEBUG 1142 if_build_ifa_list(ifp); 1143 #endif 1144 /* 1145 * XXX It's kind of lame that we have to have the 1146 * XXX socket structure... 1147 */ 1148 memset(&so, 0, sizeof(so)); 1149 1150 s = splnet(); 1151 1152 sysctl_teardown(&ifp->if_sysctl_log); 1153 mutex_enter(ifp->if_ioctl_lock); 1154 if_deactivate(ifp); 1155 mutex_exit(ifp->if_ioctl_lock); 1156 1157 IFNET_LOCK(); 1158 ifindex2ifnet[ifp->if_index] = NULL; 1159 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1160 IFNET_WRITER_REMOVE(ifp); 1161 pserialize_perform(ifnet_psz); 1162 IFNET_UNLOCK(); 1163 1164 /* Wait for all readers to drain before freeing. */ 1165 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1166 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1167 1168 mutex_obj_free(ifp->if_ioctl_lock); 1169 ifp->if_ioctl_lock = NULL; 1170 1171 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) { 1172 ifp->if_slowtimo = NULL; 1173 callout_halt(ifp->if_slowtimo_ch, NULL); 1174 callout_destroy(ifp->if_slowtimo_ch); 1175 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch)); 1176 } 1177 1178 /* 1179 * Do an if_down() to give protocols a chance to do something. 1180 */ 1181 if_down(ifp); 1182 1183 #ifdef ALTQ 1184 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1185 altq_disable(&ifp->if_snd); 1186 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1187 altq_detach(&ifp->if_snd); 1188 #endif 1189 1190 mutex_obj_free(ifp->if_snd.ifq_lock); 1191 1192 #if NCARP > 0 1193 /* Remove the interface from any carp group it is a part of. */ 1194 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1195 carp_ifdetach(ifp); 1196 #endif 1197 1198 /* 1199 * Rip all the addresses off the interface. This should make 1200 * all of the routes go away. 1201 * 1202 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1203 * from the list, including our "cursor", ifa. For safety, 1204 * and to honor the TAILQ abstraction, I just restart the 1205 * loop after each removal. Note that the loop will exit 1206 * when all of the remaining ifaddrs belong to the AF_LINK 1207 * family. I am counting on the historical fact that at 1208 * least one pr_usrreq in each address domain removes at 1209 * least one ifaddr. 1210 */ 1211 again: 1212 /* 1213 * At this point, no other one tries to remove ifa in the list, 1214 * so we don't need to take a lock or psref. 1215 */ 1216 IFADDR_READER_FOREACH(ifa, ifp) { 1217 family = ifa->ifa_addr->sa_family; 1218 #ifdef IFAREF_DEBUG 1219 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1220 ifa, family, ifa->ifa_refcnt); 1221 if (last_ifa != NULL && ifa == last_ifa) 1222 panic("if_detach: loop detected"); 1223 last_ifa = ifa; 1224 #endif 1225 if (family == AF_LINK) 1226 continue; 1227 dp = pffinddomain(family); 1228 #ifdef DIAGNOSTIC 1229 if (dp == NULL) 1230 panic("if_detach: no domain for AF %d", 1231 family); 1232 #endif 1233 /* 1234 * XXX These PURGEIF calls are redundant with the 1235 * purge-all-families calls below, but are left in for 1236 * now both to make a smaller change, and to avoid 1237 * unplanned interactions with clearing of 1238 * ifp->if_addrlist. 1239 */ 1240 purged = 0; 1241 for (pr = dp->dom_protosw; 1242 pr < dp->dom_protoswNPROTOSW; pr++) { 1243 so.so_proto = pr; 1244 if (pr->pr_usrreqs) { 1245 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1246 purged = 1; 1247 } 1248 } 1249 if (purged == 0) { 1250 /* 1251 * XXX What's really the best thing to do 1252 * XXX here? --thorpej@NetBSD.org 1253 */ 1254 printf("if_detach: WARNING: AF %d not purged\n", 1255 family); 1256 ifa_remove(ifp, ifa); 1257 } 1258 goto again; 1259 } 1260 1261 if_free_sadl(ifp); 1262 1263 /* Walk the routing table looking for stragglers. */ 1264 for (i = 0; i <= AF_MAX; i++) { 1265 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART) 1266 continue; 1267 } 1268 1269 DOMAIN_FOREACH(dp) { 1270 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1271 { 1272 void *p = ifp->if_afdata[dp->dom_family]; 1273 if (p) { 1274 ifp->if_afdata[dp->dom_family] = NULL; 1275 (*dp->dom_ifdetach)(ifp, p); 1276 } 1277 } 1278 1279 /* 1280 * One would expect multicast memberships (INET and 1281 * INET6) on UDP sockets to be purged by the PURGEIF 1282 * calls above, but if all addresses were removed from 1283 * the interface prior to destruction, the calls will 1284 * not be made (e.g. ppp, for which pppd(8) generally 1285 * removes addresses before destroying the interface). 1286 * Because there is no invariant that multicast 1287 * memberships only exist for interfaces with IPv4 1288 * addresses, we must call PURGEIF regardless of 1289 * addresses. (Protocols which might store ifnet 1290 * pointers are marked with PR_PURGEIF.) 1291 */ 1292 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 1293 so.so_proto = pr; 1294 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1295 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1296 } 1297 } 1298 1299 (void)pfil_run_hooks(if_pfil, 1300 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET); 1301 (void)pfil_head_destroy(ifp->if_pfil); 1302 1303 /* Announce that the interface is gone. */ 1304 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1305 1306 IF_AFDATA_LOCK_DESTROY(ifp); 1307 1308 if (if_is_link_state_changeable(ifp)) { 1309 softint_disestablish(ifp->if_link_si); 1310 ifp->if_link_si = NULL; 1311 } 1312 1313 /* 1314 * remove packets that came from ifp, from software interrupt queues. 1315 */ 1316 DOMAIN_FOREACH(dp) { 1317 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { 1318 struct ifqueue *iq = dp->dom_ifqueues[i]; 1319 if (iq == NULL) 1320 break; 1321 dp->dom_ifqueues[i] = NULL; 1322 if_detach_queues(ifp, iq); 1323 } 1324 } 1325 1326 /* 1327 * IP queues have to be processed separately: net-queue barrier 1328 * ensures that the packets are dequeued while a cross-call will 1329 * ensure that the interrupts have completed. FIXME: not quite.. 1330 */ 1331 #ifdef INET 1332 pktq_barrier(ip_pktq); 1333 #endif 1334 #ifdef INET6 1335 if (in6_present) 1336 pktq_barrier(ip6_pktq); 1337 #endif 1338 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 1339 xc_wait(xc); 1340 1341 if (ifp->if_percpuq != NULL) { 1342 if_percpuq_destroy(ifp->if_percpuq); 1343 ifp->if_percpuq = NULL; 1344 } 1345 1346 splx(s); 1347 1348 #ifdef IFAREF_DEBUG 1349 if_check_and_free_ifa_list(ifp); 1350 #endif 1351 } 1352 1353 static void 1354 if_detach_queues(struct ifnet *ifp, struct ifqueue *q) 1355 { 1356 struct mbuf *m, *prev, *next; 1357 1358 prev = NULL; 1359 for (m = q->ifq_head; m != NULL; m = next) { 1360 KASSERT((m->m_flags & M_PKTHDR) != 0); 1361 1362 next = m->m_nextpkt; 1363 if (m->m_pkthdr.rcvif_index != ifp->if_index) { 1364 prev = m; 1365 continue; 1366 } 1367 1368 if (prev != NULL) 1369 prev->m_nextpkt = m->m_nextpkt; 1370 else 1371 q->ifq_head = m->m_nextpkt; 1372 if (q->ifq_tail == m) 1373 q->ifq_tail = prev; 1374 q->ifq_len--; 1375 1376 m->m_nextpkt = NULL; 1377 m_freem(m); 1378 IF_DROP(q); 1379 } 1380 } 1381 1382 /* 1383 * Callback for a radix tree walk to delete all references to an 1384 * ifnet. 1385 */ 1386 static int 1387 if_rt_walktree(struct rtentry *rt, void *v) 1388 { 1389 struct ifnet *ifp = (struct ifnet *)v; 1390 int error; 1391 struct rtentry *retrt; 1392 1393 if (rt->rt_ifp != ifp) 1394 return 0; 1395 1396 /* Delete the entry. */ 1397 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway, 1398 rt_mask(rt), rt->rt_flags, &retrt); 1399 if (error == 0) { 1400 KASSERT(retrt == rt); 1401 KASSERT((retrt->rt_flags & RTF_UP) == 0); 1402 retrt->rt_ifp = NULL; 1403 rtfree(retrt); 1404 } else { 1405 printf("%s: warning: unable to delete rtentry @ %p, " 1406 "error = %d\n", ifp->if_xname, rt, error); 1407 } 1408 return ERESTART; 1409 } 1410 1411 /* 1412 * Create a clone network interface. 1413 */ 1414 static int 1415 if_clone_create(const char *name) 1416 { 1417 struct if_clone *ifc; 1418 int unit; 1419 struct ifnet *ifp; 1420 struct psref psref; 1421 1422 ifc = if_clone_lookup(name, &unit); 1423 if (ifc == NULL) 1424 return EINVAL; 1425 1426 ifp = if_get(name, &psref); 1427 if (ifp != NULL) { 1428 if_put(ifp, &psref); 1429 return EEXIST; 1430 } 1431 1432 return (*ifc->ifc_create)(ifc, unit); 1433 } 1434 1435 /* 1436 * Destroy a clone network interface. 1437 */ 1438 static int 1439 if_clone_destroy(const char *name) 1440 { 1441 struct if_clone *ifc; 1442 struct ifnet *ifp; 1443 struct psref psref; 1444 1445 ifc = if_clone_lookup(name, NULL); 1446 if (ifc == NULL) 1447 return EINVAL; 1448 1449 if (ifc->ifc_destroy == NULL) 1450 return EOPNOTSUPP; 1451 1452 ifp = if_get(name, &psref); 1453 if (ifp == NULL) 1454 return ENXIO; 1455 1456 /* We have to disable ioctls here */ 1457 mutex_enter(ifp->if_ioctl_lock); 1458 ifp->if_ioctl = if_nullioctl; 1459 mutex_exit(ifp->if_ioctl_lock); 1460 1461 /* 1462 * We cannot call ifc_destroy with holding ifp. 1463 * Releasing ifp here is safe thanks to if_clone_mtx. 1464 */ 1465 if_put(ifp, &psref); 1466 1467 return (*ifc->ifc_destroy)(ifp); 1468 } 1469 1470 /* 1471 * Look up a network interface cloner. 1472 */ 1473 static struct if_clone * 1474 if_clone_lookup(const char *name, int *unitp) 1475 { 1476 struct if_clone *ifc; 1477 const char *cp; 1478 char *dp, ifname[IFNAMSIZ + 3]; 1479 int unit; 1480 1481 strcpy(ifname, "if_"); 1482 /* separate interface name from unit */ 1483 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1484 *cp && (*cp < '0' || *cp > '9');) 1485 *dp++ = *cp++; 1486 1487 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1488 return NULL; /* No name or unit number */ 1489 *dp++ = '\0'; 1490 1491 again: 1492 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1493 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1494 break; 1495 } 1496 1497 if (ifc == NULL) { 1498 if (*ifname == '\0' || 1499 module_autoload(ifname, MODULE_CLASS_DRIVER)) 1500 return NULL; 1501 *ifname = '\0'; 1502 goto again; 1503 } 1504 1505 unit = 0; 1506 while (cp - name < IFNAMSIZ && *cp) { 1507 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1508 /* Bogus unit number. */ 1509 return NULL; 1510 } 1511 unit = (unit * 10) + (*cp++ - '0'); 1512 } 1513 1514 if (unitp != NULL) 1515 *unitp = unit; 1516 return ifc; 1517 } 1518 1519 /* 1520 * Register a network interface cloner. 1521 */ 1522 void 1523 if_clone_attach(struct if_clone *ifc) 1524 { 1525 1526 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1527 if_cloners_count++; 1528 } 1529 1530 /* 1531 * Unregister a network interface cloner. 1532 */ 1533 void 1534 if_clone_detach(struct if_clone *ifc) 1535 { 1536 1537 LIST_REMOVE(ifc, ifc_list); 1538 if_cloners_count--; 1539 } 1540 1541 /* 1542 * Provide list of interface cloners to userspace. 1543 */ 1544 int 1545 if_clone_list(int buf_count, char *buffer, int *total) 1546 { 1547 char outbuf[IFNAMSIZ], *dst; 1548 struct if_clone *ifc; 1549 int count, error = 0; 1550 1551 *total = if_cloners_count; 1552 if ((dst = buffer) == NULL) { 1553 /* Just asking how many there are. */ 1554 return 0; 1555 } 1556 1557 if (buf_count < 0) 1558 return EINVAL; 1559 1560 count = (if_cloners_count < buf_count) ? 1561 if_cloners_count : buf_count; 1562 1563 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1564 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1565 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1566 if (outbuf[sizeof(outbuf) - 1] != '\0') 1567 return ENAMETOOLONG; 1568 error = copyout(outbuf, dst, sizeof(outbuf)); 1569 if (error != 0) 1570 break; 1571 } 1572 1573 return error; 1574 } 1575 1576 void 1577 ifa_psref_init(struct ifaddr *ifa) 1578 { 1579 1580 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1581 } 1582 1583 void 1584 ifaref(struct ifaddr *ifa) 1585 { 1586 ifa->ifa_refcnt++; 1587 } 1588 1589 void 1590 ifafree(struct ifaddr *ifa) 1591 { 1592 KASSERT(ifa != NULL); 1593 KASSERT(ifa->ifa_refcnt > 0); 1594 1595 if (--ifa->ifa_refcnt == 0) { 1596 free(ifa, M_IFADDR); 1597 } 1598 } 1599 1600 void 1601 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1602 { 1603 1604 ifa->ifa_ifp = ifp; 1605 1606 IFNET_LOCK(); 1607 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1608 IFADDR_ENTRY_INIT(ifa); 1609 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1610 IFNET_UNLOCK(); 1611 1612 ifaref(ifa); 1613 } 1614 1615 void 1616 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1617 { 1618 1619 KASSERT(ifa->ifa_ifp == ifp); 1620 1621 IFNET_LOCK(); 1622 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1623 IFADDR_WRITER_REMOVE(ifa); 1624 IFADDR_ENTRY_DESTROY(ifa); 1625 #if notyet 1626 pserialize_perform(ifnet_psz); 1627 #endif 1628 IFNET_UNLOCK(); 1629 1630 #if notyet 1631 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1632 #endif 1633 ifafree(ifa); 1634 } 1635 1636 void 1637 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1638 { 1639 1640 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1641 } 1642 1643 void 1644 ifa_release(struct ifaddr *ifa, struct psref *psref) 1645 { 1646 1647 if (ifa == NULL) 1648 return; 1649 1650 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1651 } 1652 1653 bool 1654 ifa_held(struct ifaddr *ifa) 1655 { 1656 1657 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1658 } 1659 1660 static inline int 1661 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1662 { 1663 return sockaddr_cmp(sa1, sa2) == 0; 1664 } 1665 1666 /* 1667 * Locate an interface based on a complete address. 1668 */ 1669 /*ARGSUSED*/ 1670 struct ifaddr * 1671 ifa_ifwithaddr(const struct sockaddr *addr) 1672 { 1673 struct ifnet *ifp; 1674 struct ifaddr *ifa; 1675 1676 IFNET_READER_FOREACH(ifp) { 1677 if (if_is_deactivated(ifp)) 1678 continue; 1679 IFADDR_READER_FOREACH(ifa, ifp) { 1680 if (ifa->ifa_addr->sa_family != addr->sa_family) 1681 continue; 1682 if (equal(addr, ifa->ifa_addr)) 1683 return ifa; 1684 if ((ifp->if_flags & IFF_BROADCAST) && 1685 ifa->ifa_broadaddr && 1686 /* IP6 doesn't have broadcast */ 1687 ifa->ifa_broadaddr->sa_len != 0 && 1688 equal(ifa->ifa_broadaddr, addr)) 1689 return ifa; 1690 } 1691 } 1692 return NULL; 1693 } 1694 1695 struct ifaddr * 1696 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1697 { 1698 struct ifaddr *ifa; 1699 int s = pserialize_read_enter(); 1700 1701 ifa = ifa_ifwithaddr(addr); 1702 if (ifa != NULL) 1703 ifa_acquire(ifa, psref); 1704 pserialize_read_exit(s); 1705 1706 return ifa; 1707 } 1708 1709 /* 1710 * Locate the point to point interface with a given destination address. 1711 */ 1712 /*ARGSUSED*/ 1713 struct ifaddr * 1714 ifa_ifwithdstaddr(const struct sockaddr *addr) 1715 { 1716 struct ifnet *ifp; 1717 struct ifaddr *ifa; 1718 1719 IFNET_READER_FOREACH(ifp) { 1720 if (if_is_deactivated(ifp)) 1721 continue; 1722 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1723 continue; 1724 IFADDR_READER_FOREACH(ifa, ifp) { 1725 if (ifa->ifa_addr->sa_family != addr->sa_family || 1726 ifa->ifa_dstaddr == NULL) 1727 continue; 1728 if (equal(addr, ifa->ifa_dstaddr)) 1729 return ifa; 1730 } 1731 } 1732 1733 return NULL; 1734 } 1735 1736 struct ifaddr * 1737 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 1738 { 1739 struct ifaddr *ifa; 1740 int s; 1741 1742 s = pserialize_read_enter(); 1743 ifa = ifa_ifwithdstaddr(addr); 1744 if (ifa != NULL) 1745 ifa_acquire(ifa, psref); 1746 pserialize_read_exit(s); 1747 1748 return ifa; 1749 } 1750 1751 /* 1752 * Find an interface on a specific network. If many, choice 1753 * is most specific found. 1754 */ 1755 struct ifaddr * 1756 ifa_ifwithnet(const struct sockaddr *addr) 1757 { 1758 struct ifnet *ifp; 1759 struct ifaddr *ifa, *ifa_maybe = NULL; 1760 const struct sockaddr_dl *sdl; 1761 u_int af = addr->sa_family; 1762 const char *addr_data = addr->sa_data, *cplim; 1763 1764 if (af == AF_LINK) { 1765 sdl = satocsdl(addr); 1766 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1767 ifindex2ifnet[sdl->sdl_index] && 1768 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 1769 return ifindex2ifnet[sdl->sdl_index]->if_dl; 1770 } 1771 } 1772 #ifdef NETATALK 1773 if (af == AF_APPLETALK) { 1774 const struct sockaddr_at *sat, *sat2; 1775 sat = (const struct sockaddr_at *)addr; 1776 IFNET_READER_FOREACH(ifp) { 1777 if (if_is_deactivated(ifp)) 1778 continue; 1779 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 1780 if (ifa == NULL) 1781 continue; 1782 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 1783 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 1784 return ifa; /* exact match */ 1785 if (ifa_maybe == NULL) { 1786 /* else keep the if with the right range */ 1787 ifa_maybe = ifa; 1788 } 1789 } 1790 return ifa_maybe; 1791 } 1792 #endif 1793 IFNET_READER_FOREACH(ifp) { 1794 if (if_is_deactivated(ifp)) 1795 continue; 1796 IFADDR_READER_FOREACH(ifa, ifp) { 1797 const char *cp, *cp2, *cp3; 1798 1799 if (ifa->ifa_addr->sa_family != af || 1800 ifa->ifa_netmask == NULL) 1801 next: continue; 1802 cp = addr_data; 1803 cp2 = ifa->ifa_addr->sa_data; 1804 cp3 = ifa->ifa_netmask->sa_data; 1805 cplim = (const char *)ifa->ifa_netmask + 1806 ifa->ifa_netmask->sa_len; 1807 while (cp3 < cplim) { 1808 if ((*cp++ ^ *cp2++) & *cp3++) { 1809 /* want to continue for() loop */ 1810 goto next; 1811 } 1812 } 1813 if (ifa_maybe == NULL || 1814 rt_refines(ifa->ifa_netmask, 1815 ifa_maybe->ifa_netmask)) 1816 ifa_maybe = ifa; 1817 } 1818 } 1819 return ifa_maybe; 1820 } 1821 1822 struct ifaddr * 1823 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 1824 { 1825 struct ifaddr *ifa; 1826 int s; 1827 1828 s = pserialize_read_enter(); 1829 ifa = ifa_ifwithnet(addr); 1830 if (ifa != NULL) 1831 ifa_acquire(ifa, psref); 1832 pserialize_read_exit(s); 1833 1834 return ifa; 1835 } 1836 1837 /* 1838 * Find the interface of the addresss. 1839 */ 1840 struct ifaddr * 1841 ifa_ifwithladdr(const struct sockaddr *addr) 1842 { 1843 struct ifaddr *ia; 1844 1845 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 1846 (ia = ifa_ifwithnet(addr))) 1847 return ia; 1848 return NULL; 1849 } 1850 1851 struct ifaddr * 1852 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 1853 { 1854 struct ifaddr *ifa; 1855 int s; 1856 1857 s = pserialize_read_enter(); 1858 ifa = ifa_ifwithladdr(addr); 1859 if (ifa != NULL) 1860 ifa_acquire(ifa, psref); 1861 pserialize_read_exit(s); 1862 1863 return ifa; 1864 } 1865 1866 /* 1867 * Find an interface using a specific address family 1868 */ 1869 struct ifaddr * 1870 ifa_ifwithaf(int af) 1871 { 1872 struct ifnet *ifp; 1873 struct ifaddr *ifa = NULL; 1874 int s; 1875 1876 s = pserialize_read_enter(); 1877 IFNET_READER_FOREACH(ifp) { 1878 if (if_is_deactivated(ifp)) 1879 continue; 1880 IFADDR_READER_FOREACH(ifa, ifp) { 1881 if (ifa->ifa_addr->sa_family == af) 1882 goto out; 1883 } 1884 } 1885 out: 1886 pserialize_read_exit(s); 1887 return ifa; 1888 } 1889 1890 /* 1891 * Find an interface address specific to an interface best matching 1892 * a given address. 1893 */ 1894 struct ifaddr * 1895 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 1896 { 1897 struct ifaddr *ifa; 1898 const char *cp, *cp2, *cp3; 1899 const char *cplim; 1900 struct ifaddr *ifa_maybe = 0; 1901 u_int af = addr->sa_family; 1902 1903 if (if_is_deactivated(ifp)) 1904 return NULL; 1905 1906 if (af >= AF_MAX) 1907 return NULL; 1908 1909 IFADDR_READER_FOREACH(ifa, ifp) { 1910 if (ifa->ifa_addr->sa_family != af) 1911 continue; 1912 ifa_maybe = ifa; 1913 if (ifa->ifa_netmask == NULL) { 1914 if (equal(addr, ifa->ifa_addr) || 1915 (ifa->ifa_dstaddr && 1916 equal(addr, ifa->ifa_dstaddr))) 1917 return ifa; 1918 continue; 1919 } 1920 cp = addr->sa_data; 1921 cp2 = ifa->ifa_addr->sa_data; 1922 cp3 = ifa->ifa_netmask->sa_data; 1923 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1924 for (; cp3 < cplim; cp3++) { 1925 if ((*cp++ ^ *cp2++) & *cp3) 1926 break; 1927 } 1928 if (cp3 == cplim) 1929 return ifa; 1930 } 1931 return ifa_maybe; 1932 } 1933 1934 struct ifaddr * 1935 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 1936 struct psref *psref) 1937 { 1938 struct ifaddr *ifa; 1939 int s; 1940 1941 s = pserialize_read_enter(); 1942 ifa = ifaof_ifpforaddr(addr, ifp); 1943 if (ifa != NULL) 1944 ifa_acquire(ifa, psref); 1945 pserialize_read_exit(s); 1946 1947 return ifa; 1948 } 1949 1950 /* 1951 * Default action when installing a route with a Link Level gateway. 1952 * Lookup an appropriate real ifa to point to. 1953 * This should be moved to /sys/net/link.c eventually. 1954 */ 1955 void 1956 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 1957 { 1958 struct ifaddr *ifa; 1959 const struct sockaddr *dst; 1960 struct ifnet *ifp; 1961 struct psref psref; 1962 1963 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 1964 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL) 1965 return; 1966 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 1967 rt_replace_ifa(rt, ifa); 1968 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1969 ifa->ifa_rtrequest(cmd, rt, info); 1970 ifa_release(ifa, &psref); 1971 } 1972 } 1973 1974 /* 1975 * bitmask macros to manage a densely packed link_state change queue. 1976 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 1977 * LINK_STATE_UP(2) we need 2 bits for each state change. 1978 * As a state change to store is 0, treat all bits set as an unset item. 1979 */ 1980 #define LQ_ITEM_BITS 2 1981 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 1982 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 1983 #define LINK_STATE_UNSET LQ_ITEM_MASK 1984 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 1985 #define LQ_STORE(q, i, v) \ 1986 do { \ 1987 (q) &= ~LQ_MASK((i)); \ 1988 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 1989 } while (0 /* CONSTCOND */) 1990 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 1991 #define LQ_POP(q, v) \ 1992 do { \ 1993 (v) = LQ_ITEM((q), 0); \ 1994 (q) >>= LQ_ITEM_BITS; \ 1995 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 1996 } while (0 /* CONSTCOND */) 1997 #define LQ_PUSH(q, v) \ 1998 do { \ 1999 (q) >>= LQ_ITEM_BITS; \ 2000 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2001 } while (0 /* CONSTCOND */) 2002 #define LQ_FIND_UNSET(q, i) \ 2003 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2004 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2005 break; \ 2006 } 2007 /* 2008 * Handle a change in the interface link state and 2009 * queue notifications. 2010 */ 2011 void 2012 if_link_state_change(struct ifnet *ifp, int link_state) 2013 { 2014 int s, idx; 2015 2016 KASSERTMSG(if_is_link_state_changeable(ifp), 2017 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x", 2018 ifp->if_xname, ifp->if_extflags); 2019 2020 /* Ensure change is to a valid state */ 2021 switch (link_state) { 2022 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2023 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2024 case LINK_STATE_UP: 2025 break; 2026 default: 2027 #ifdef DEBUG 2028 printf("%s: invalid link state %d\n", 2029 ifp->if_xname, link_state); 2030 #endif 2031 return; 2032 } 2033 2034 s = splnet(); 2035 2036 /* Find the last unset event in the queue. */ 2037 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2038 2039 /* 2040 * Ensure link_state doesn't match the last event in the queue. 2041 * ifp->if_link_state is not checked and set here because 2042 * that would present an inconsistent picture to the system. 2043 */ 2044 if (idx != 0 && 2045 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state) 2046 goto out; 2047 2048 /* Handle queue overflow. */ 2049 if (idx == LQ_MAX(ifp->if_link_queue)) { 2050 uint8_t lost; 2051 2052 /* 2053 * The DOWN state must be protected from being pushed off 2054 * the queue to ensure that userland will always be 2055 * in a sane state. 2056 * Because DOWN is protected, there is no need to protect 2057 * UNKNOWN. 2058 * It should be invalid to change from any other state to 2059 * UNKNOWN anyway ... 2060 */ 2061 lost = LQ_ITEM(ifp->if_link_queue, 0); 2062 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2063 if (lost == LINK_STATE_DOWN) { 2064 lost = LQ_ITEM(ifp->if_link_queue, 0); 2065 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2066 } 2067 printf("%s: lost link state change %s\n", 2068 ifp->if_xname, 2069 lost == LINK_STATE_UP ? "UP" : 2070 lost == LINK_STATE_DOWN ? "DOWN" : 2071 "UNKNOWN"); 2072 } else 2073 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2074 2075 softint_schedule(ifp->if_link_si); 2076 2077 out: 2078 splx(s); 2079 } 2080 2081 /* 2082 * Handle interface link state change notifications. 2083 * Must be called at splnet(). 2084 */ 2085 static void 2086 if_link_state_change0(struct ifnet *ifp, int link_state) 2087 { 2088 struct domain *dp; 2089 2090 /* Ensure the change is still valid. */ 2091 if (ifp->if_link_state == link_state) 2092 return; 2093 2094 #ifdef DEBUG 2095 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2096 link_state == LINK_STATE_UP ? "UP" : 2097 link_state == LINK_STATE_DOWN ? "DOWN" : 2098 "UNKNOWN", 2099 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2100 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2101 "UNKNOWN"); 2102 #endif 2103 2104 /* 2105 * When going from UNKNOWN to UP, we need to mark existing 2106 * addresses as tentative and restart DAD as we may have 2107 * erroneously not found a duplicate. 2108 * 2109 * This needs to happen before rt_ifmsg to avoid a race where 2110 * listeners would have an address and expect it to work right 2111 * away. 2112 */ 2113 if (link_state == LINK_STATE_UP && 2114 ifp->if_link_state == LINK_STATE_UNKNOWN) 2115 { 2116 DOMAIN_FOREACH(dp) { 2117 if (dp->dom_if_link_state_change != NULL) 2118 dp->dom_if_link_state_change(ifp, 2119 LINK_STATE_DOWN); 2120 } 2121 } 2122 2123 ifp->if_link_state = link_state; 2124 2125 /* Notify that the link state has changed. */ 2126 rt_ifmsg(ifp); 2127 2128 #if NCARP > 0 2129 if (ifp->if_carp) 2130 carp_carpdev_state(ifp); 2131 #endif 2132 2133 DOMAIN_FOREACH(dp) { 2134 if (dp->dom_if_link_state_change != NULL) 2135 dp->dom_if_link_state_change(ifp, link_state); 2136 } 2137 } 2138 2139 /* 2140 * Process the interface link state change queue. 2141 */ 2142 static void 2143 if_link_state_change_si(void *arg) 2144 { 2145 struct ifnet *ifp = arg; 2146 int s; 2147 uint8_t state; 2148 2149 s = splnet(); 2150 2151 /* Pop a link state change from the queue and process it. */ 2152 LQ_POP(ifp->if_link_queue, state); 2153 if_link_state_change0(ifp, state); 2154 2155 /* If there is a link state change to come, schedule it. */ 2156 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) 2157 softint_schedule(ifp->if_link_si); 2158 2159 splx(s); 2160 } 2161 2162 /* 2163 * Default action when installing a local route on a point-to-point 2164 * interface. 2165 */ 2166 void 2167 p2p_rtrequest(int req, struct rtentry *rt, 2168 __unused const struct rt_addrinfo *info) 2169 { 2170 struct ifnet *ifp = rt->rt_ifp; 2171 struct ifaddr *ifa, *lo0ifa; 2172 int s = pserialize_read_enter(); 2173 2174 switch (req) { 2175 case RTM_ADD: 2176 if ((rt->rt_flags & RTF_LOCAL) == 0) 2177 break; 2178 2179 rt->rt_ifp = lo0ifp; 2180 2181 IFADDR_READER_FOREACH(ifa, ifp) { 2182 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2183 break; 2184 } 2185 if (ifa == NULL) 2186 break; 2187 2188 /* 2189 * Ensure lo0 has an address of the same family. 2190 */ 2191 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2192 if (lo0ifa->ifa_addr->sa_family == 2193 ifa->ifa_addr->sa_family) 2194 break; 2195 } 2196 if (lo0ifa == NULL) 2197 break; 2198 2199 /* 2200 * Make sure to set rt->rt_ifa to the interface 2201 * address we are using, otherwise we will have trouble 2202 * with source address selection. 2203 */ 2204 if (ifa != rt->rt_ifa) 2205 rt_replace_ifa(rt, ifa); 2206 break; 2207 case RTM_DELETE: 2208 default: 2209 break; 2210 } 2211 pserialize_read_exit(s); 2212 } 2213 2214 /* 2215 * Mark an interface down and notify protocols of 2216 * the transition. 2217 * NOTE: must be called at splsoftnet or equivalent. 2218 */ 2219 void 2220 if_down(struct ifnet *ifp) 2221 { 2222 struct ifaddr *ifa; 2223 struct domain *dp; 2224 int s, bound; 2225 struct psref psref; 2226 2227 ifp->if_flags &= ~IFF_UP; 2228 nanotime(&ifp->if_lastchange); 2229 2230 bound = curlwp_bind(); 2231 s = pserialize_read_enter(); 2232 IFADDR_READER_FOREACH(ifa, ifp) { 2233 ifa_acquire(ifa, &psref); 2234 pserialize_read_exit(s); 2235 2236 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2237 2238 s = pserialize_read_enter(); 2239 ifa_release(ifa, &psref); 2240 } 2241 pserialize_read_exit(s); 2242 curlwp_bindx(bound); 2243 2244 IFQ_PURGE(&ifp->if_snd); 2245 #if NCARP > 0 2246 if (ifp->if_carp) 2247 carp_carpdev_state(ifp); 2248 #endif 2249 rt_ifmsg(ifp); 2250 DOMAIN_FOREACH(dp) { 2251 if (dp->dom_if_down) 2252 dp->dom_if_down(ifp); 2253 } 2254 } 2255 2256 /* 2257 * Mark an interface up and notify protocols of 2258 * the transition. 2259 * NOTE: must be called at splsoftnet or equivalent. 2260 */ 2261 void 2262 if_up(struct ifnet *ifp) 2263 { 2264 #ifdef notyet 2265 struct ifaddr *ifa; 2266 #endif 2267 struct domain *dp; 2268 2269 ifp->if_flags |= IFF_UP; 2270 nanotime(&ifp->if_lastchange); 2271 #ifdef notyet 2272 /* this has no effect on IP, and will kill all ISO connections XXX */ 2273 IFADDR_READER_FOREACH(ifa, ifp) 2274 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2275 #endif 2276 #if NCARP > 0 2277 if (ifp->if_carp) 2278 carp_carpdev_state(ifp); 2279 #endif 2280 rt_ifmsg(ifp); 2281 DOMAIN_FOREACH(dp) { 2282 if (dp->dom_if_up) 2283 dp->dom_if_up(ifp); 2284 } 2285 } 2286 2287 /* 2288 * Handle interface slowtimo timer routine. Called 2289 * from softclock, we decrement timer (if set) and 2290 * call the appropriate interface routine on expiration. 2291 */ 2292 static void 2293 if_slowtimo(void *arg) 2294 { 2295 void (*slowtimo)(struct ifnet *); 2296 struct ifnet *ifp = arg; 2297 int s; 2298 2299 slowtimo = ifp->if_slowtimo; 2300 if (__predict_false(slowtimo == NULL)) 2301 return; 2302 2303 s = splnet(); 2304 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2305 (*slowtimo)(ifp); 2306 2307 splx(s); 2308 2309 if (__predict_true(ifp->if_slowtimo != NULL)) 2310 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ); 2311 } 2312 2313 /* 2314 * Set/clear promiscuous mode on interface ifp based on the truth value 2315 * of pswitch. The calls are reference counted so that only the first 2316 * "on" request actually has an effect, as does the final "off" request. 2317 * Results are undefined if the "off" and "on" requests are not matched. 2318 */ 2319 int 2320 ifpromisc(struct ifnet *ifp, int pswitch) 2321 { 2322 int pcount, ret; 2323 short nflags; 2324 2325 pcount = ifp->if_pcount; 2326 if (pswitch) { 2327 /* 2328 * Allow the device to be "placed" into promiscuous 2329 * mode even if it is not configured up. It will 2330 * consult IFF_PROMISC when it is brought up. 2331 */ 2332 if (ifp->if_pcount++ != 0) 2333 return 0; 2334 nflags = ifp->if_flags | IFF_PROMISC; 2335 } else { 2336 if (--ifp->if_pcount > 0) 2337 return 0; 2338 nflags = ifp->if_flags & ~IFF_PROMISC; 2339 } 2340 ret = if_flags_set(ifp, nflags); 2341 /* Restore interface state if not successful. */ 2342 if (ret != 0) { 2343 ifp->if_pcount = pcount; 2344 } 2345 return ret; 2346 } 2347 2348 /* 2349 * Map interface name to 2350 * interface structure pointer. 2351 */ 2352 struct ifnet * 2353 ifunit(const char *name) 2354 { 2355 struct ifnet *ifp; 2356 const char *cp = name; 2357 u_int unit = 0; 2358 u_int i; 2359 int s; 2360 2361 /* 2362 * If the entire name is a number, treat it as an ifindex. 2363 */ 2364 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2365 unit = unit * 10 + (*cp - '0'); 2366 } 2367 2368 /* 2369 * If the number took all of the name, then it's a valid ifindex. 2370 */ 2371 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) { 2372 if (unit >= if_indexlim) 2373 return NULL; 2374 ifp = ifindex2ifnet[unit]; 2375 if (ifp == NULL || if_is_deactivated(ifp)) 2376 return NULL; 2377 return ifp; 2378 } 2379 2380 ifp = NULL; 2381 s = pserialize_read_enter(); 2382 IFNET_READER_FOREACH(ifp) { 2383 if (if_is_deactivated(ifp)) 2384 continue; 2385 if (strcmp(ifp->if_xname, name) == 0) 2386 goto out; 2387 } 2388 out: 2389 pserialize_read_exit(s); 2390 return ifp; 2391 } 2392 2393 /* 2394 * Get a reference of an ifnet object by an interface name. 2395 * The returned reference is protected by psref(9). The caller 2396 * must release a returned reference by if_put after use. 2397 */ 2398 struct ifnet * 2399 if_get(const char *name, struct psref *psref) 2400 { 2401 struct ifnet *ifp; 2402 const char *cp = name; 2403 u_int unit = 0; 2404 u_int i; 2405 int s; 2406 2407 /* 2408 * If the entire name is a number, treat it as an ifindex. 2409 */ 2410 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2411 unit = unit * 10 + (*cp - '0'); 2412 } 2413 2414 /* 2415 * If the number took all of the name, then it's a valid ifindex. 2416 */ 2417 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) { 2418 if (unit >= if_indexlim) 2419 return NULL; 2420 ifp = ifindex2ifnet[unit]; 2421 if (ifp == NULL || if_is_deactivated(ifp)) 2422 return NULL; 2423 return ifp; 2424 } 2425 2426 ifp = NULL; 2427 s = pserialize_read_enter(); 2428 IFNET_READER_FOREACH(ifp) { 2429 if (if_is_deactivated(ifp)) 2430 continue; 2431 if (strcmp(ifp->if_xname, name) == 0) { 2432 psref_acquire(psref, &ifp->if_psref, 2433 ifnet_psref_class); 2434 goto out; 2435 } 2436 } 2437 out: 2438 pserialize_read_exit(s); 2439 return ifp; 2440 } 2441 2442 /* 2443 * Release a reference of an ifnet object given by if_get or 2444 * if_get_byindex. 2445 */ 2446 void 2447 if_put(const struct ifnet *ifp, struct psref *psref) 2448 { 2449 2450 if (ifp == NULL) 2451 return; 2452 2453 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2454 } 2455 2456 ifnet_t * 2457 if_byindex(u_int idx) 2458 { 2459 ifnet_t *ifp; 2460 2461 ifp = (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL; 2462 if (ifp != NULL && if_is_deactivated(ifp)) 2463 ifp = NULL; 2464 return ifp; 2465 } 2466 2467 /* 2468 * Get a reference of an ifnet object by an interface index. 2469 * The returned reference is protected by psref(9). The caller 2470 * must release a returned reference by if_put after use. 2471 */ 2472 ifnet_t * 2473 if_get_byindex(u_int idx, struct psref *psref) 2474 { 2475 ifnet_t *ifp; 2476 int s; 2477 2478 s = pserialize_read_enter(); 2479 ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2480 if (ifp != NULL && if_is_deactivated(ifp)) 2481 ifp = NULL; 2482 if (__predict_true(ifp != NULL)) 2483 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2484 pserialize_read_exit(s); 2485 2486 return ifp; 2487 } 2488 2489 /* 2490 * XXX it's safe only if the passed ifp is guaranteed to not be freed, 2491 * for example the ifp is already held or some other object is held which 2492 * guarantes the ifp to not be freed indirectly. 2493 */ 2494 void 2495 if_acquire_NOMPSAFE(struct ifnet *ifp, struct psref *psref) 2496 { 2497 2498 KASSERT(ifp->if_index != 0); 2499 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2500 } 2501 2502 bool 2503 if_held(struct ifnet *ifp) 2504 { 2505 2506 return psref_held(&ifp->if_psref, ifnet_psref_class); 2507 } 2508 2509 2510 /* common */ 2511 int 2512 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 2513 { 2514 int s; 2515 struct ifreq *ifr; 2516 struct ifcapreq *ifcr; 2517 struct ifdatareq *ifdr; 2518 2519 switch (cmd) { 2520 case SIOCSIFCAP: 2521 ifcr = data; 2522 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 2523 return EINVAL; 2524 2525 if (ifcr->ifcr_capenable == ifp->if_capenable) 2526 return 0; 2527 2528 ifp->if_capenable = ifcr->ifcr_capenable; 2529 2530 /* Pre-compute the checksum flags mask. */ 2531 ifp->if_csum_flags_tx = 0; 2532 ifp->if_csum_flags_rx = 0; 2533 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) { 2534 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 2535 } 2536 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { 2537 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 2538 } 2539 2540 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) { 2541 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 2542 } 2543 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) { 2544 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 2545 } 2546 2547 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) { 2548 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 2549 } 2550 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) { 2551 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 2552 } 2553 2554 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) { 2555 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 2556 } 2557 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) { 2558 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 2559 } 2560 2561 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) { 2562 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 2563 } 2564 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) { 2565 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 2566 } 2567 if (ifp->if_flags & IFF_UP) 2568 return ENETRESET; 2569 return 0; 2570 case SIOCSIFFLAGS: 2571 ifr = data; 2572 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 2573 s = splnet(); 2574 if_down(ifp); 2575 splx(s); 2576 } 2577 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 2578 s = splnet(); 2579 if_up(ifp); 2580 splx(s); 2581 } 2582 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2583 (ifr->ifr_flags &~ IFF_CANTCHANGE); 2584 break; 2585 case SIOCGIFFLAGS: 2586 ifr = data; 2587 ifr->ifr_flags = ifp->if_flags; 2588 break; 2589 2590 case SIOCGIFMETRIC: 2591 ifr = data; 2592 ifr->ifr_metric = ifp->if_metric; 2593 break; 2594 2595 case SIOCGIFMTU: 2596 ifr = data; 2597 ifr->ifr_mtu = ifp->if_mtu; 2598 break; 2599 2600 case SIOCGIFDLT: 2601 ifr = data; 2602 ifr->ifr_dlt = ifp->if_dlt; 2603 break; 2604 2605 case SIOCGIFCAP: 2606 ifcr = data; 2607 ifcr->ifcr_capabilities = ifp->if_capabilities; 2608 ifcr->ifcr_capenable = ifp->if_capenable; 2609 break; 2610 2611 case SIOCSIFMETRIC: 2612 ifr = data; 2613 ifp->if_metric = ifr->ifr_metric; 2614 break; 2615 2616 case SIOCGIFDATA: 2617 ifdr = data; 2618 ifdr->ifdr_data = ifp->if_data; 2619 break; 2620 2621 case SIOCGIFINDEX: 2622 ifr = data; 2623 ifr->ifr_index = ifp->if_index; 2624 break; 2625 2626 case SIOCZIFDATA: 2627 ifdr = data; 2628 ifdr->ifdr_data = ifp->if_data; 2629 /* 2630 * Assumes that the volatile counters that can be 2631 * zero'ed are at the end of if_data. 2632 */ 2633 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) - 2634 offsetof(struct if_data, ifi_ipackets)); 2635 /* 2636 * The memset() clears to the bottm of if_data. In the area, 2637 * if_lastchange is included. Please be careful if new entry 2638 * will be added into if_data or rewite this. 2639 * 2640 * And also, update if_lastchnage. 2641 */ 2642 getnanotime(&ifp->if_lastchange); 2643 break; 2644 case SIOCSIFMTU: 2645 ifr = data; 2646 if (ifp->if_mtu == ifr->ifr_mtu) 2647 break; 2648 ifp->if_mtu = ifr->ifr_mtu; 2649 /* 2650 * If the link MTU changed, do network layer specific procedure. 2651 */ 2652 #ifdef INET6 2653 if (in6_present) 2654 nd6_setmtu(ifp); 2655 #endif 2656 return ENETRESET; 2657 default: 2658 return ENOTTY; 2659 } 2660 return 0; 2661 } 2662 2663 int 2664 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 2665 { 2666 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 2667 struct ifaddr *ifa; 2668 const struct sockaddr *any, *sa; 2669 union { 2670 struct sockaddr sa; 2671 struct sockaddr_storage ss; 2672 } u, v; 2673 int s, error = 0; 2674 2675 switch (cmd) { 2676 case SIOCSIFADDRPREF: 2677 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, 2678 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 2679 NULL) != 0) 2680 return EPERM; 2681 case SIOCGIFADDRPREF: 2682 break; 2683 default: 2684 return EOPNOTSUPP; 2685 } 2686 2687 /* sanity checks */ 2688 if (data == NULL || ifp == NULL) { 2689 panic("invalid argument to %s", __func__); 2690 /*NOTREACHED*/ 2691 } 2692 2693 /* address must be specified on ADD and DELETE */ 2694 sa = sstocsa(&ifap->ifap_addr); 2695 if (sa->sa_family != sofamily(so)) 2696 return EINVAL; 2697 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 2698 return EINVAL; 2699 2700 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 2701 2702 s = pserialize_read_enter(); 2703 IFADDR_READER_FOREACH(ifa, ifp) { 2704 if (ifa->ifa_addr->sa_family != sa->sa_family) 2705 continue; 2706 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 2707 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 2708 break; 2709 } 2710 if (ifa == NULL) { 2711 error = EADDRNOTAVAIL; 2712 goto out; 2713 } 2714 2715 switch (cmd) { 2716 case SIOCSIFADDRPREF: 2717 ifa->ifa_preference = ifap->ifap_preference; 2718 goto out; 2719 case SIOCGIFADDRPREF: 2720 /* fill in the if_laddrreq structure */ 2721 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 2722 sizeof(ifap->ifap_addr), ifa->ifa_addr); 2723 ifap->ifap_preference = ifa->ifa_preference; 2724 goto out; 2725 default: 2726 error = EOPNOTSUPP; 2727 } 2728 out: 2729 pserialize_read_exit(s); 2730 return error; 2731 } 2732 2733 /* 2734 * Interface ioctls. 2735 */ 2736 static int 2737 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 2738 { 2739 struct ifnet *ifp; 2740 struct ifreq *ifr; 2741 int error = 0; 2742 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ) 2743 u_long ocmd = cmd; 2744 #endif 2745 short oif_flags; 2746 #ifdef COMPAT_OIFREQ 2747 struct ifreq ifrb; 2748 struct oifreq *oifr = NULL; 2749 #endif 2750 int r; 2751 struct psref psref; 2752 int bound; 2753 2754 switch (cmd) { 2755 #ifdef COMPAT_OIFREQ 2756 case OSIOCGIFCONF: 2757 case OOSIOCGIFCONF: 2758 return compat_ifconf(cmd, data); 2759 #endif 2760 #ifdef COMPAT_OIFDATA 2761 case OSIOCGIFDATA: 2762 case OSIOCZIFDATA: 2763 return compat_ifdatareq(l, cmd, data); 2764 #endif 2765 case SIOCGIFCONF: 2766 return ifconf(cmd, data); 2767 case SIOCINITIFADDR: 2768 return EPERM; 2769 } 2770 2771 #ifdef COMPAT_OIFREQ 2772 cmd = compat_cvtcmd(cmd); 2773 if (cmd != ocmd) { 2774 oifr = data; 2775 data = ifr = &ifrb; 2776 ifreqo2n(oifr, ifr); 2777 } else 2778 #endif 2779 ifr = data; 2780 2781 switch (cmd) { 2782 case SIOCIFCREATE: 2783 case SIOCIFDESTROY: 2784 bound = curlwp_bind(); 2785 if (l != NULL) { 2786 ifp = if_get(ifr->ifr_name, &psref); 2787 error = kauth_authorize_network(l->l_cred, 2788 KAUTH_NETWORK_INTERFACE, 2789 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 2790 (void *)cmd, NULL); 2791 if (ifp != NULL) 2792 if_put(ifp, &psref); 2793 if (error != 0) { 2794 curlwp_bindx(bound); 2795 return error; 2796 } 2797 } 2798 mutex_enter(&if_clone_mtx); 2799 r = (cmd == SIOCIFCREATE) ? 2800 if_clone_create(ifr->ifr_name) : 2801 if_clone_destroy(ifr->ifr_name); 2802 mutex_exit(&if_clone_mtx); 2803 curlwp_bindx(bound); 2804 return r; 2805 2806 case SIOCIFGCLONERS: 2807 { 2808 struct if_clonereq *req = (struct if_clonereq *)data; 2809 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 2810 &req->ifcr_total); 2811 } 2812 } 2813 2814 bound = curlwp_bind(); 2815 ifp = if_get(ifr->ifr_name, &psref); 2816 if (ifp == NULL) { 2817 curlwp_bindx(bound); 2818 return ENXIO; 2819 } 2820 2821 switch (cmd) { 2822 case SIOCALIFADDR: 2823 case SIOCDLIFADDR: 2824 case SIOCSIFADDRPREF: 2825 case SIOCSIFFLAGS: 2826 case SIOCSIFCAP: 2827 case SIOCSIFMETRIC: 2828 case SIOCZIFDATA: 2829 case SIOCSIFMTU: 2830 case SIOCSIFPHYADDR: 2831 case SIOCDIFPHYADDR: 2832 #ifdef INET6 2833 case SIOCSIFPHYADDR_IN6: 2834 #endif 2835 case SIOCSLIFPHYADDR: 2836 case SIOCADDMULTI: 2837 case SIOCDELMULTI: 2838 case SIOCSIFMEDIA: 2839 case SIOCSDRVSPEC: 2840 case SIOCG80211: 2841 case SIOCS80211: 2842 case SIOCS80211NWID: 2843 case SIOCS80211NWKEY: 2844 case SIOCS80211POWER: 2845 case SIOCS80211BSSID: 2846 case SIOCS80211CHANNEL: 2847 case SIOCSLINKSTR: 2848 if (l != NULL) { 2849 error = kauth_authorize_network(l->l_cred, 2850 KAUTH_NETWORK_INTERFACE, 2851 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 2852 (void *)cmd, NULL); 2853 if (error != 0) 2854 goto out; 2855 } 2856 } 2857 2858 oif_flags = ifp->if_flags; 2859 2860 mutex_enter(ifp->if_ioctl_lock); 2861 2862 error = (*ifp->if_ioctl)(ifp, cmd, data); 2863 if (error != ENOTTY) 2864 ; 2865 else if (so->so_proto == NULL) 2866 error = EOPNOTSUPP; 2867 else { 2868 #ifdef COMPAT_OSOCK 2869 error = compat_ifioctl(so, ocmd, cmd, data, l); 2870 #else 2871 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 2872 cmd, data, ifp); 2873 #endif 2874 } 2875 2876 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 2877 if ((ifp->if_flags & IFF_UP) != 0) { 2878 int s = splnet(); 2879 if_up(ifp); 2880 splx(s); 2881 } 2882 } 2883 #ifdef COMPAT_OIFREQ 2884 if (cmd != ocmd) 2885 ifreqn2o(oifr, ifr); 2886 #endif 2887 2888 mutex_exit(ifp->if_ioctl_lock); 2889 out: 2890 if_put(ifp, &psref); 2891 curlwp_bindx(bound); 2892 return error; 2893 } 2894 2895 /* 2896 * Return interface configuration 2897 * of system. List may be used 2898 * in later ioctl's (above) to get 2899 * other information. 2900 * 2901 * Each record is a struct ifreq. Before the addition of 2902 * sockaddr_storage, the API rule was that sockaddr flavors that did 2903 * not fit would extend beyond the struct ifreq, with the next struct 2904 * ifreq starting sa_len beyond the struct sockaddr. Because the 2905 * union in struct ifreq includes struct sockaddr_storage, every kind 2906 * of sockaddr must fit. Thus, there are no longer any overlength 2907 * records. 2908 * 2909 * Records are added to the user buffer if they fit, and ifc_len is 2910 * adjusted to the length that was written. Thus, the user is only 2911 * assured of getting the complete list if ifc_len on return is at 2912 * least sizeof(struct ifreq) less than it was on entry. 2913 * 2914 * If the user buffer pointer is NULL, this routine copies no data and 2915 * returns the amount of space that would be needed. 2916 * 2917 * Invariants: 2918 * ifrp points to the next part of the user's buffer to be used. If 2919 * ifrp != NULL, space holds the number of bytes remaining that we may 2920 * write at ifrp. Otherwise, space holds the number of bytes that 2921 * would have been written had there been adequate space. 2922 */ 2923 /*ARGSUSED*/ 2924 static int 2925 ifconf(u_long cmd, void *data) 2926 { 2927 struct ifconf *ifc = (struct ifconf *)data; 2928 struct ifnet *ifp; 2929 struct ifaddr *ifa; 2930 struct ifreq ifr, *ifrp = NULL; 2931 int space = 0, error = 0; 2932 const int sz = (int)sizeof(struct ifreq); 2933 const bool docopy = ifc->ifc_req != NULL; 2934 int s; 2935 int bound; 2936 struct psref psref; 2937 2938 if (docopy) { 2939 space = ifc->ifc_len; 2940 ifrp = ifc->ifc_req; 2941 } 2942 2943 bound = curlwp_bind(); 2944 s = pserialize_read_enter(); 2945 IFNET_READER_FOREACH(ifp) { 2946 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 2947 pserialize_read_exit(s); 2948 2949 (void)strncpy(ifr.ifr_name, ifp->if_xname, 2950 sizeof(ifr.ifr_name)); 2951 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 2952 error = ENAMETOOLONG; 2953 goto release_exit; 2954 } 2955 if (IFADDR_READER_EMPTY(ifp)) { 2956 /* Interface with no addresses - send zero sockaddr. */ 2957 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 2958 if (!docopy) { 2959 space += sz; 2960 continue; 2961 } 2962 if (space >= sz) { 2963 error = copyout(&ifr, ifrp, sz); 2964 if (error != 0) 2965 goto release_exit; 2966 ifrp++; 2967 space -= sz; 2968 } 2969 } 2970 2971 IFADDR_READER_FOREACH(ifa, ifp) { 2972 struct sockaddr *sa = ifa->ifa_addr; 2973 /* all sockaddrs must fit in sockaddr_storage */ 2974 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 2975 2976 if (!docopy) { 2977 space += sz; 2978 continue; 2979 } 2980 memcpy(&ifr.ifr_space, sa, sa->sa_len); 2981 if (space >= sz) { 2982 error = copyout(&ifr, ifrp, sz); 2983 if (error != 0) 2984 goto release_exit; 2985 ifrp++; space -= sz; 2986 } 2987 } 2988 2989 s = pserialize_read_enter(); 2990 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 2991 } 2992 pserialize_read_exit(s); 2993 curlwp_bindx(bound); 2994 2995 if (docopy) { 2996 KASSERT(0 <= space && space <= ifc->ifc_len); 2997 ifc->ifc_len -= space; 2998 } else { 2999 KASSERT(space >= 0); 3000 ifc->ifc_len = space; 3001 } 3002 return (0); 3003 3004 release_exit: 3005 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3006 curlwp_bindx(bound); 3007 return error; 3008 } 3009 3010 int 3011 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3012 { 3013 uint8_t len; 3014 #ifdef COMPAT_OIFREQ 3015 struct ifreq ifrb; 3016 struct oifreq *oifr = NULL; 3017 u_long ocmd = cmd; 3018 cmd = compat_cvtcmd(cmd); 3019 if (cmd != ocmd) { 3020 oifr = (struct oifreq *)(void *)ifr; 3021 ifr = &ifrb; 3022 ifreqo2n(oifr, ifr); 3023 len = sizeof(oifr->ifr_addr); 3024 } else 3025 #endif 3026 len = sizeof(ifr->ifr_ifru.ifru_space); 3027 3028 if (len < sa->sa_len) 3029 return EFBIG; 3030 3031 memset(&ifr->ifr_addr, 0, len); 3032 sockaddr_copy(&ifr->ifr_addr, len, sa); 3033 3034 #ifdef COMPAT_OIFREQ 3035 if (cmd != ocmd) 3036 ifreqn2o(oifr, ifr); 3037 #endif 3038 return 0; 3039 } 3040 3041 /* 3042 * wrapper function for the drivers which doesn't have if_transmit(). 3043 */ 3044 static int 3045 if_transmit(struct ifnet *ifp, struct mbuf *m) 3046 { 3047 int s, error; 3048 3049 s = splnet(); 3050 3051 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3052 if (error != 0) { 3053 /* mbuf is already freed */ 3054 goto out; 3055 } 3056 3057 ifp->if_obytes += m->m_pkthdr.len;; 3058 if (m->m_flags & M_MCAST) 3059 ifp->if_omcasts++; 3060 3061 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3062 if_start_lock(ifp); 3063 out: 3064 splx(s); 3065 3066 return error; 3067 } 3068 3069 int 3070 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3071 { 3072 int error; 3073 3074 #ifdef ALTQ 3075 KERNEL_LOCK(1, NULL); 3076 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3077 error = if_transmit(ifp, m); 3078 KERNEL_UNLOCK_ONE(NULL); 3079 } else { 3080 KERNEL_UNLOCK_ONE(NULL); 3081 error = (*ifp->if_transmit)(ifp, m); 3082 } 3083 #else /* !ALTQ */ 3084 error = (*ifp->if_transmit)(ifp, m); 3085 #endif /* !ALTQ */ 3086 3087 return error; 3088 } 3089 3090 /* 3091 * Queue message on interface, and start output if interface 3092 * not yet active. 3093 */ 3094 int 3095 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3096 { 3097 3098 return if_transmit_lock(ifp, m); 3099 } 3100 3101 /* 3102 * Queue message on interface, possibly using a second fast queue 3103 */ 3104 int 3105 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3106 { 3107 int error = 0; 3108 3109 if (ifq != NULL 3110 #ifdef ALTQ 3111 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3112 #endif 3113 ) { 3114 if (IF_QFULL(ifq)) { 3115 IF_DROP(&ifp->if_snd); 3116 m_freem(m); 3117 if (error == 0) 3118 error = ENOBUFS; 3119 } else 3120 IF_ENQUEUE(ifq, m); 3121 } else 3122 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3123 if (error != 0) { 3124 ++ifp->if_oerrors; 3125 return error; 3126 } 3127 return 0; 3128 } 3129 3130 int 3131 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3132 { 3133 int rc; 3134 3135 if (ifp->if_initaddr != NULL) 3136 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3137 else if (src || 3138 /* FIXME: may not hold if_ioctl_lock */ 3139 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3140 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); 3141 3142 return rc; 3143 } 3144 3145 int 3146 if_do_dad(struct ifnet *ifp) 3147 { 3148 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3149 return 0; 3150 3151 switch (ifp->if_type) { 3152 case IFT_FAITH: 3153 /* 3154 * These interfaces do not have the IFF_LOOPBACK flag, 3155 * but loop packets back. We do not have to do DAD on such 3156 * interfaces. We should even omit it, because loop-backed 3157 * responses would confuse the DAD procedure. 3158 */ 3159 return 0; 3160 default: 3161 /* 3162 * Our DAD routine requires the interface up and running. 3163 * However, some interfaces can be up before the RUNNING 3164 * status. Additionaly, users may try to assign addresses 3165 * before the interface becomes up (or running). 3166 * We simply skip DAD in such a case as a work around. 3167 * XXX: we should rather mark "tentative" on such addresses, 3168 * and do DAD after the interface becomes ready. 3169 */ 3170 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 3171 (IFF_UP|IFF_RUNNING)) 3172 return 0; 3173 3174 return 1; 3175 } 3176 } 3177 3178 int 3179 if_flags_set(ifnet_t *ifp, const short flags) 3180 { 3181 int rc; 3182 3183 if (ifp->if_setflags != NULL) 3184 rc = (*ifp->if_setflags)(ifp, flags); 3185 else { 3186 short cantflags, chgdflags; 3187 struct ifreq ifr; 3188 3189 chgdflags = ifp->if_flags ^ flags; 3190 cantflags = chgdflags & IFF_CANTCHANGE; 3191 3192 if (cantflags != 0) 3193 ifp->if_flags ^= cantflags; 3194 3195 /* Traditionally, we do not call if_ioctl after 3196 * setting/clearing only IFF_PROMISC if the interface 3197 * isn't IFF_UP. Uphold that tradition. 3198 */ 3199 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3200 return 0; 3201 3202 memset(&ifr, 0, sizeof(ifr)); 3203 3204 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3205 /* FIXME: may not hold if_ioctl_lock */ 3206 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); 3207 3208 if (rc != 0 && cantflags != 0) 3209 ifp->if_flags ^= cantflags; 3210 } 3211 3212 return rc; 3213 } 3214 3215 int 3216 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3217 { 3218 int rc; 3219 struct ifreq ifr; 3220 3221 if (ifp->if_mcastop != NULL) 3222 rc = (*ifp->if_mcastop)(ifp, cmd, sa); 3223 else { 3224 ifreq_setaddr(cmd, &ifr, sa); 3225 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); 3226 } 3227 3228 return rc; 3229 } 3230 3231 static void 3232 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3233 struct ifaltq *ifq) 3234 { 3235 const struct sysctlnode *cnode, *rnode; 3236 3237 if (sysctl_createv(clog, 0, NULL, &rnode, 3238 CTLFLAG_PERMANENT, 3239 CTLTYPE_NODE, "interfaces", 3240 SYSCTL_DESCR("Per-interface controls"), 3241 NULL, 0, NULL, 0, 3242 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 3243 goto bad; 3244 3245 if (sysctl_createv(clog, 0, &rnode, &rnode, 3246 CTLFLAG_PERMANENT, 3247 CTLTYPE_NODE, ifname, 3248 SYSCTL_DESCR("Interface controls"), 3249 NULL, 0, NULL, 0, 3250 CTL_CREATE, CTL_EOL) != 0) 3251 goto bad; 3252 3253 if (sysctl_createv(clog, 0, &rnode, &rnode, 3254 CTLFLAG_PERMANENT, 3255 CTLTYPE_NODE, "sndq", 3256 SYSCTL_DESCR("Interface output queue controls"), 3257 NULL, 0, NULL, 0, 3258 CTL_CREATE, CTL_EOL) != 0) 3259 goto bad; 3260 3261 if (sysctl_createv(clog, 0, &rnode, &cnode, 3262 CTLFLAG_PERMANENT, 3263 CTLTYPE_INT, "len", 3264 SYSCTL_DESCR("Current output queue length"), 3265 NULL, 0, &ifq->ifq_len, 0, 3266 CTL_CREATE, CTL_EOL) != 0) 3267 goto bad; 3268 3269 if (sysctl_createv(clog, 0, &rnode, &cnode, 3270 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3271 CTLTYPE_INT, "maxlen", 3272 SYSCTL_DESCR("Maximum allowed output queue length"), 3273 NULL, 0, &ifq->ifq_maxlen, 0, 3274 CTL_CREATE, CTL_EOL) != 0) 3275 goto bad; 3276 3277 if (sysctl_createv(clog, 0, &rnode, &cnode, 3278 CTLFLAG_PERMANENT, 3279 CTLTYPE_INT, "drops", 3280 SYSCTL_DESCR("Packets dropped due to full output queue"), 3281 NULL, 0, &ifq->ifq_drops, 0, 3282 CTL_CREATE, CTL_EOL) != 0) 3283 goto bad; 3284 3285 return; 3286 bad: 3287 printf("%s: could not attach sysctl nodes\n", ifname); 3288 return; 3289 } 3290 3291 #if defined(INET) || defined(INET6) 3292 3293 #define SYSCTL_NET_PKTQ(q, cn, c) \ 3294 static int \ 3295 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \ 3296 { \ 3297 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \ 3298 } 3299 3300 #if defined(INET) 3301 static int 3302 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS) 3303 { 3304 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq); 3305 } 3306 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS) 3307 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS) 3308 #endif 3309 3310 #if defined(INET6) 3311 static int 3312 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS) 3313 { 3314 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq); 3315 } 3316 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS) 3317 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS) 3318 #endif 3319 3320 static void 3321 sysctl_net_pktq_setup(struct sysctllog **clog, int pf) 3322 { 3323 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL; 3324 const char *pfname = NULL, *ipname = NULL; 3325 int ipn = 0, qid = 0; 3326 3327 switch (pf) { 3328 #if defined(INET) 3329 case PF_INET: 3330 len_func = sysctl_net_ip_pktq_items; 3331 maxlen_func = sysctl_net_ip_pktq_maxlen; 3332 drops_func = sysctl_net_ip_pktq_drops; 3333 pfname = "inet", ipn = IPPROTO_IP; 3334 ipname = "ip", qid = IPCTL_IFQ; 3335 break; 3336 #endif 3337 #if defined(INET6) 3338 case PF_INET6: 3339 len_func = sysctl_net_ip6_pktq_items; 3340 maxlen_func = sysctl_net_ip6_pktq_maxlen; 3341 drops_func = sysctl_net_ip6_pktq_drops; 3342 pfname = "inet6", ipn = IPPROTO_IPV6; 3343 ipname = "ip6", qid = IPV6CTL_IFQ; 3344 break; 3345 #endif 3346 default: 3347 KASSERT(false); 3348 } 3349 3350 sysctl_createv(clog, 0, NULL, NULL, 3351 CTLFLAG_PERMANENT, 3352 CTLTYPE_NODE, pfname, NULL, 3353 NULL, 0, NULL, 0, 3354 CTL_NET, pf, CTL_EOL); 3355 sysctl_createv(clog, 0, NULL, NULL, 3356 CTLFLAG_PERMANENT, 3357 CTLTYPE_NODE, ipname, NULL, 3358 NULL, 0, NULL, 0, 3359 CTL_NET, pf, ipn, CTL_EOL); 3360 sysctl_createv(clog, 0, NULL, NULL, 3361 CTLFLAG_PERMANENT, 3362 CTLTYPE_NODE, "ifq", 3363 SYSCTL_DESCR("Protocol input queue controls"), 3364 NULL, 0, NULL, 0, 3365 CTL_NET, pf, ipn, qid, CTL_EOL); 3366 3367 sysctl_createv(clog, 0, NULL, NULL, 3368 CTLFLAG_PERMANENT, 3369 CTLTYPE_INT, "len", 3370 SYSCTL_DESCR("Current input queue length"), 3371 len_func, 0, NULL, 0, 3372 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); 3373 sysctl_createv(clog, 0, NULL, NULL, 3374 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3375 CTLTYPE_INT, "maxlen", 3376 SYSCTL_DESCR("Maximum allowed input queue length"), 3377 maxlen_func, 0, NULL, 0, 3378 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); 3379 sysctl_createv(clog, 0, NULL, NULL, 3380 CTLFLAG_PERMANENT, 3381 CTLTYPE_INT, "drops", 3382 SYSCTL_DESCR("Packets dropped due to full input queue"), 3383 drops_func, 0, NULL, 0, 3384 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); 3385 } 3386 #endif /* INET || INET6 */ 3387 3388 static int 3389 if_sdl_sysctl(SYSCTLFN_ARGS) 3390 { 3391 struct ifnet *ifp; 3392 const struct sockaddr_dl *sdl; 3393 struct psref psref; 3394 int error = 0; 3395 int bound; 3396 3397 if (namelen != 1) 3398 return EINVAL; 3399 3400 bound = curlwp_bind(); 3401 ifp = if_get_byindex(name[0], &psref); 3402 if (ifp == NULL) { 3403 error = ENODEV; 3404 goto out0; 3405 } 3406 3407 sdl = ifp->if_sadl; 3408 if (sdl == NULL) { 3409 *oldlenp = 0; 3410 goto out1; 3411 } 3412 3413 if (oldp == NULL) { 3414 *oldlenp = sdl->sdl_alen; 3415 goto out1; 3416 } 3417 3418 if (*oldlenp >= sdl->sdl_alen) 3419 *oldlenp = sdl->sdl_alen; 3420 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp); 3421 out1: 3422 if_put(ifp, &psref); 3423 out0: 3424 curlwp_bindx(bound); 3425 return error; 3426 } 3427 3428 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup") 3429 { 3430 const struct sysctlnode *rnode = NULL; 3431 3432 sysctl_createv(clog, 0, NULL, &rnode, 3433 CTLFLAG_PERMANENT, 3434 CTLTYPE_NODE, "sdl", 3435 SYSCTL_DESCR("Get active link-layer address"), 3436 if_sdl_sysctl, 0, NULL, 0, 3437 CTL_NET, CTL_CREATE, CTL_EOL); 3438 } 3439