1 /* $NetBSD: if.c,v 1.530 2024/06/29 12:11:12 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.530 2024/06/29 12:11:12 riastradh Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 #include "opt_atalk.h" 99 #include "opt_wlan.h" 100 #include "opt_net_mpsafe.h" 101 #include "opt_mrouting.h" 102 #endif 103 104 #include <sys/param.h> 105 #include <sys/mbuf.h> 106 #include <sys/systm.h> 107 #include <sys/callout.h> 108 #include <sys/proc.h> 109 #include <sys/socket.h> 110 #include <sys/socketvar.h> 111 #include <sys/domain.h> 112 #include <sys/protosw.h> 113 #include <sys/kernel.h> 114 #include <sys/ioctl.h> 115 #include <sys/sysctl.h> 116 #include <sys/syslog.h> 117 #include <sys/kauth.h> 118 #include <sys/kmem.h> 119 #include <sys/xcall.h> 120 #include <sys/cpu.h> 121 #include <sys/intr.h> 122 #include <sys/module_hook.h> 123 #include <sys/compat_stub.h> 124 #include <sys/msan.h> 125 #include <sys/hook.h> 126 127 #include <net/if.h> 128 #include <net/if_dl.h> 129 #include <net/if_ether.h> 130 #include <net/if_media.h> 131 #include <net80211/ieee80211.h> 132 #include <net80211/ieee80211_ioctl.h> 133 #include <net/if_types.h> 134 #include <net/route.h> 135 #include <sys/module.h> 136 #ifdef NETATALK 137 #include <netatalk/at_extern.h> 138 #include <netatalk/at.h> 139 #endif 140 #include <net/pfil.h> 141 #include <netinet/in.h> 142 #include <netinet/in_var.h> 143 #include <netinet/ip_encap.h> 144 #include <net/bpf.h> 145 146 #ifdef INET6 147 #include <netinet6/in6_var.h> 148 #include <netinet6/nd6.h> 149 #endif 150 151 #include "ether.h" 152 153 #include "bridge.h" 154 #if NBRIDGE > 0 155 #include <net/if_bridgevar.h> 156 #endif 157 158 #include "carp.h" 159 #if NCARP > 0 160 #include <netinet/ip_carp.h> 161 #endif 162 163 #include <compat/sys/sockio.h> 164 165 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 166 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 167 168 /* 169 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex 170 * for each ifnet. It doesn't matter because: 171 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on 172 * ifq_lock don't happen 173 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock 174 * because if_snd, if_link_state_change and if_link_state_change_process 175 * are all called with KERNEL_LOCK 176 */ 177 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \ 178 mutex_enter((ifp)->if_snd.ifq_lock) 179 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \ 180 mutex_exit((ifp)->if_snd.ifq_lock) 181 182 /* 183 * Global list of interfaces. 184 */ 185 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 186 struct ifnet_head ifnet_list; 187 188 struct pslist_head ifnet_pslist; 189 static ifnet_t ** ifindex2ifnet = NULL; 190 static u_int if_index = 1; 191 static size_t if_indexlim = 0; 192 static uint64_t index_gen; 193 /* Mutex to protect the above objects. */ 194 kmutex_t ifnet_mtx __cacheline_aligned; 195 static struct psref_class *ifnet_psref_class __read_mostly; 196 static pserialize_t ifnet_psz; 197 static struct workqueue *ifnet_link_state_wq __read_mostly; 198 199 static struct workqueue *if_slowtimo_wq __read_mostly; 200 201 static kmutex_t if_clone_mtx; 202 203 struct ifnet *lo0ifp; 204 int ifqmaxlen = IFQ_MAXLEN; 205 206 struct psref_class *ifa_psref_class __read_mostly; 207 208 static int if_delroute_matcher(struct rtentry *, void *); 209 210 static bool if_is_unit(const char *); 211 static struct if_clone *if_clone_lookup(const char *, int *); 212 213 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 214 static int if_cloners_count; 215 216 /* Packet filtering hook for interfaces. */ 217 pfil_head_t * if_pfil __read_mostly; 218 219 static kauth_listener_t if_listener; 220 221 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 222 static void sysctl_sndq_setup(struct sysctllog **, const char *, 223 struct ifaltq *); 224 static void if_slowtimo_intr(void *); 225 static void if_slowtimo_work(struct work *, void *); 226 static int sysctl_if_watchdog(SYSCTLFN_PROTO); 227 static void sysctl_watchdog_setup(struct ifnet *); 228 static void if_attachdomain1(struct ifnet *); 229 static int ifconf(u_long, void *); 230 static int if_transmit(struct ifnet *, struct mbuf *); 231 static int if_clone_create(const char *); 232 static int if_clone_destroy(const char *); 233 static void if_link_state_change_work(struct work *, void *); 234 static void if_up_locked(struct ifnet *); 235 static void _if_down(struct ifnet *); 236 static void if_down_deactivated(struct ifnet *); 237 238 struct if_percpuq { 239 struct ifnet *ipq_ifp; 240 void *ipq_si; 241 struct percpu *ipq_ifqs; /* struct ifqueue */ 242 }; 243 244 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 245 246 static void if_percpuq_drops(void *, void *, struct cpu_info *); 247 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 248 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 249 struct if_percpuq *); 250 251 struct if_deferred_start { 252 struct ifnet *ids_ifp; 253 void (*ids_if_start)(struct ifnet *); 254 void *ids_si; 255 }; 256 257 static void if_deferred_start_softint(void *); 258 static void if_deferred_start_common(struct ifnet *); 259 static void if_deferred_start_destroy(struct ifnet *); 260 261 struct if_slowtimo_data { 262 kmutex_t isd_lock; 263 struct callout isd_ch; 264 struct work isd_work; 265 struct ifnet *isd_ifp; 266 bool isd_queued; 267 bool isd_dying; 268 bool isd_trigger; 269 }; 270 271 /* 272 * Hook for if_vlan - needed by if_agr 273 */ 274 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook; 275 276 static void if_sysctl_setup(struct sysctllog **); 277 278 static int 279 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 280 void *arg0, void *arg1, void *arg2, void *arg3) 281 { 282 int result; 283 enum kauth_network_req req; 284 285 result = KAUTH_RESULT_DEFER; 286 req = (enum kauth_network_req)(uintptr_t)arg1; 287 288 if (action != KAUTH_NETWORK_INTERFACE) 289 return result; 290 291 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 292 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 293 result = KAUTH_RESULT_ALLOW; 294 295 return result; 296 } 297 298 /* 299 * Network interface utility routines. 300 * 301 * Routines with ifa_ifwith* names take sockaddr *'s as 302 * parameters. 303 */ 304 void 305 ifinit(void) 306 { 307 308 #if (defined(INET) || defined(INET6)) 309 encapinit(); 310 #endif 311 312 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 313 if_listener_cb, NULL); 314 315 /* interfaces are available, inform socket code */ 316 ifioctl = doifioctl; 317 } 318 319 /* 320 * XXX Initialization before configure(). 321 * XXX hack to get pfil_add_hook working in autoconf. 322 */ 323 void 324 ifinit1(void) 325 { 326 int error __diagused; 327 328 #ifdef NET_MPSAFE 329 printf("NET_MPSAFE enabled\n"); 330 #endif 331 332 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 333 334 TAILQ_INIT(&ifnet_list); 335 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 336 ifnet_psz = pserialize_create(); 337 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 338 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 339 error = workqueue_create(&ifnet_link_state_wq, "iflnkst", 340 if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET, 341 WQ_MPSAFE); 342 KASSERT(error == 0); 343 PSLIST_INIT(&ifnet_pslist); 344 345 error = workqueue_create(&if_slowtimo_wq, "ifwdog", 346 if_slowtimo_work, NULL, PRI_SOFTNET, IPL_SOFTCLOCK, WQ_MPSAFE); 347 KASSERTMSG(error == 0, "error=%d", error); 348 349 if_indexlim = 8; 350 351 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 352 KASSERT(if_pfil != NULL); 353 354 #if NETHER > 0 || defined(NETATALK) || defined(WLAN) 355 etherinit(); 356 #endif 357 } 358 359 /* XXX must be after domaininit() */ 360 void 361 ifinit_post(void) 362 { 363 364 if_sysctl_setup(NULL); 365 } 366 367 ifnet_t * 368 if_alloc(u_char type) 369 { 370 371 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 372 } 373 374 void 375 if_free(ifnet_t *ifp) 376 { 377 378 kmem_free(ifp, sizeof(ifnet_t)); 379 } 380 381 void 382 if_initname(struct ifnet *ifp, const char *name, int unit) 383 { 384 385 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 386 "%s%d", name, unit); 387 } 388 389 /* 390 * Null routines used while an interface is going away. These routines 391 * just return an error. 392 */ 393 394 int 395 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 396 const struct sockaddr *so, const struct rtentry *rt) 397 { 398 399 return ENXIO; 400 } 401 402 void 403 if_nullinput(struct ifnet *ifp, struct mbuf *m) 404 { 405 406 /* Nothing. */ 407 } 408 409 void 410 if_nullstart(struct ifnet *ifp) 411 { 412 413 /* Nothing. */ 414 } 415 416 int 417 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 418 { 419 420 m_freem(m); 421 return ENXIO; 422 } 423 424 int 425 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 426 { 427 428 return ENXIO; 429 } 430 431 int 432 if_nullinit(struct ifnet *ifp) 433 { 434 435 return ENXIO; 436 } 437 438 void 439 if_nullstop(struct ifnet *ifp, int disable) 440 { 441 442 /* Nothing. */ 443 } 444 445 void 446 if_nullslowtimo(struct ifnet *ifp) 447 { 448 449 /* Nothing. */ 450 } 451 452 void 453 if_nulldrain(struct ifnet *ifp) 454 { 455 456 /* Nothing. */ 457 } 458 459 void 460 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 461 { 462 struct ifaddr *ifa; 463 struct sockaddr_dl *sdl; 464 465 ifp->if_addrlen = addrlen; 466 if_alloc_sadl(ifp); 467 ifa = ifp->if_dl; 468 sdl = satosdl(ifa->ifa_addr); 469 470 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 471 if (factory) { 472 KASSERT(ifp->if_hwdl == NULL); 473 ifp->if_hwdl = ifp->if_dl; 474 ifaref(ifp->if_hwdl); 475 } 476 /* TBD routing socket */ 477 } 478 479 struct ifaddr * 480 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 481 { 482 unsigned socksize, ifasize; 483 int addrlen, namelen; 484 struct sockaddr_dl *mask, *sdl; 485 struct ifaddr *ifa; 486 487 namelen = strlen(ifp->if_xname); 488 addrlen = ifp->if_addrlen; 489 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), 490 sizeof(long)); 491 ifasize = sizeof(*ifa) + 2 * socksize; 492 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO); 493 494 sdl = (struct sockaddr_dl *)(ifa + 1); 495 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 496 497 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 498 ifp->if_xname, namelen, NULL, addrlen); 499 mask->sdl_family = AF_LINK; 500 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 501 memset(&mask->sdl_data[0], 0xff, namelen); 502 ifa->ifa_rtrequest = link_rtrequest; 503 ifa->ifa_addr = (struct sockaddr *)sdl; 504 ifa->ifa_netmask = (struct sockaddr *)mask; 505 ifa_psref_init(ifa); 506 507 *sdlp = sdl; 508 509 return ifa; 510 } 511 512 static void 513 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 514 { 515 const struct sockaddr_dl *sdl; 516 517 ifp->if_dl = ifa; 518 ifaref(ifa); 519 sdl = satosdl(ifa->ifa_addr); 520 ifp->if_sadl = sdl; 521 } 522 523 /* 524 * Allocate the link level name for the specified interface. This 525 * is an attachment helper. It must be called after ifp->if_addrlen 526 * is initialized, which may not be the case when if_attach() is 527 * called. 528 */ 529 void 530 if_alloc_sadl(struct ifnet *ifp) 531 { 532 struct ifaddr *ifa; 533 const struct sockaddr_dl *sdl; 534 535 /* 536 * If the interface already has a link name, release it 537 * now. This is useful for interfaces that can change 538 * link types, and thus switch link names often. 539 */ 540 if (ifp->if_sadl != NULL) 541 if_free_sadl(ifp, 0); 542 543 ifa = if_dl_create(ifp, &sdl); 544 545 ifa_insert(ifp, ifa); 546 if_sadl_setrefs(ifp, ifa); 547 } 548 549 static void 550 if_deactivate_sadl(struct ifnet *ifp) 551 { 552 struct ifaddr *ifa; 553 554 KASSERT(ifp->if_dl != NULL); 555 556 ifa = ifp->if_dl; 557 558 ifp->if_sadl = NULL; 559 560 ifp->if_dl = NULL; 561 ifafree(ifa); 562 } 563 564 static void 565 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa) 566 { 567 struct ifaddr *old; 568 569 KASSERT(ifp->if_dl != NULL); 570 571 old = ifp->if_dl; 572 573 ifaref(ifa); 574 /* XXX Update if_dl and if_sadl atomically */ 575 ifp->if_dl = ifa; 576 ifp->if_sadl = satosdl(ifa->ifa_addr); 577 578 ifafree(old); 579 } 580 581 void 582 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 583 const struct sockaddr_dl *sdl) 584 { 585 struct ifaddr *ifa; 586 const int bound = curlwp_bind(); 587 588 KASSERT(ifa_held(ifa0)); 589 590 const int s = splsoftnet(); 591 592 if_replace_sadl(ifp, ifa0); 593 594 int ss = pserialize_read_enter(); 595 IFADDR_READER_FOREACH(ifa, ifp) { 596 struct psref psref; 597 ifa_acquire(ifa, &psref); 598 pserialize_read_exit(ss); 599 600 rtinit(ifa, RTM_LLINFO_UPD, 0); 601 602 ss = pserialize_read_enter(); 603 ifa_release(ifa, &psref); 604 } 605 pserialize_read_exit(ss); 606 607 splx(s); 608 curlwp_bindx(bound); 609 } 610 611 /* 612 * Free the link level name for the specified interface. This is 613 * a detach helper. This is called from if_detach(). 614 */ 615 void 616 if_free_sadl(struct ifnet *ifp, int factory) 617 { 618 struct ifaddr *ifa; 619 620 if (factory && ifp->if_hwdl != NULL) { 621 ifa = ifp->if_hwdl; 622 ifp->if_hwdl = NULL; 623 ifafree(ifa); 624 } 625 626 ifa = ifp->if_dl; 627 if (ifa == NULL) { 628 KASSERT(ifp->if_sadl == NULL); 629 return; 630 } 631 632 KASSERT(ifp->if_sadl != NULL); 633 634 const int s = splsoftnet(); 635 KASSERT(ifa->ifa_addr->sa_family == AF_LINK); 636 ifa_remove(ifp, ifa); 637 if_deactivate_sadl(ifp); 638 splx(s); 639 } 640 641 static void 642 if_getindex(ifnet_t *ifp) 643 { 644 bool hitlimit = false; 645 char xnamebuf[HOOKNAMSIZ]; 646 647 ifp->if_index_gen = index_gen++; 648 snprintf(xnamebuf, sizeof(xnamebuf), "%s-lshk", ifp->if_xname); 649 ifp->if_linkstate_hooks = simplehook_create(IPL_NET, 650 xnamebuf); 651 652 ifp->if_index = if_index; 653 if (ifindex2ifnet == NULL) { 654 if_index++; 655 goto skip; 656 } 657 while (if_byindex(ifp->if_index)) { 658 /* 659 * If we hit USHRT_MAX, we skip back to 0 since 660 * there are a number of places where the value 661 * of if_index or if_index itself is compared 662 * to or stored in an unsigned short. By 663 * jumping back, we won't botch those assignments 664 * or comparisons. 665 */ 666 if (++if_index == 0) { 667 if_index = 1; 668 } else if (if_index == USHRT_MAX) { 669 /* 670 * However, if we have to jump back to 671 * zero *twice* without finding an empty 672 * slot in ifindex2ifnet[], then there 673 * there are too many (>65535) interfaces. 674 */ 675 if (hitlimit) 676 panic("too many interfaces"); 677 hitlimit = true; 678 if_index = 1; 679 } 680 ifp->if_index = if_index; 681 } 682 skip: 683 /* 684 * ifindex2ifnet is indexed by if_index. Since if_index will 685 * grow dynamically, it should grow too. 686 */ 687 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 688 size_t m, n, oldlim; 689 void *q; 690 691 oldlim = if_indexlim; 692 while (ifp->if_index >= if_indexlim) 693 if_indexlim <<= 1; 694 695 /* grow ifindex2ifnet */ 696 m = oldlim * sizeof(struct ifnet *); 697 n = if_indexlim * sizeof(struct ifnet *); 698 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO); 699 if (ifindex2ifnet != NULL) { 700 memcpy(q, ifindex2ifnet, m); 701 free(ifindex2ifnet, M_IFADDR); 702 } 703 ifindex2ifnet = (struct ifnet **)q; 704 } 705 ifindex2ifnet[ifp->if_index] = ifp; 706 } 707 708 /* 709 * Initialize an interface and assign an index for it. 710 * 711 * It must be called prior to a device specific attach routine 712 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 713 * and be followed by if_register: 714 * 715 * if_initialize(ifp); 716 * ether_ifattach(ifp, enaddr); 717 * if_register(ifp); 718 */ 719 void 720 if_initialize(ifnet_t *ifp) 721 { 722 723 KASSERT(if_indexlim > 0); 724 TAILQ_INIT(&ifp->if_addrlist); 725 726 /* 727 * Link level name is allocated later by a separate call to 728 * if_alloc_sadl(). 729 */ 730 731 if (ifp->if_snd.ifq_maxlen == 0) 732 ifp->if_snd.ifq_maxlen = ifqmaxlen; 733 734 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 735 736 ifp->if_link_state = LINK_STATE_UNKNOWN; 737 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 738 ifp->if_link_scheduled = false; 739 740 ifp->if_capenable = 0; 741 ifp->if_csum_flags_tx = 0; 742 ifp->if_csum_flags_rx = 0; 743 744 #ifdef ALTQ 745 ifp->if_snd.altq_type = 0; 746 ifp->if_snd.altq_disc = NULL; 747 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 748 ifp->if_snd.altq_tbr = NULL; 749 ifp->if_snd.altq_ifp = ifp; 750 #endif 751 752 IFQ_LOCK_INIT(&ifp->if_snd); 753 754 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 755 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); 756 757 IF_AFDATA_LOCK_INIT(ifp); 758 759 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 760 PSLIST_INIT(&ifp->if_addr_pslist); 761 psref_target_init(&ifp->if_psref, ifnet_psref_class); 762 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 763 LIST_INIT(&ifp->if_multiaddrs); 764 if_stats_init(ifp); 765 766 IFNET_GLOBAL_LOCK(); 767 if_getindex(ifp); 768 IFNET_GLOBAL_UNLOCK(); 769 } 770 771 /* 772 * Register an interface to the list of "active" interfaces. 773 */ 774 void 775 if_register(ifnet_t *ifp) 776 { 777 /* 778 * If the driver has not supplied its own if_ioctl or if_stop, 779 * then supply the default. 780 */ 781 if (ifp->if_ioctl == NULL) 782 ifp->if_ioctl = ifioctl_common; 783 if (ifp->if_stop == NULL) 784 ifp->if_stop = if_nullstop; 785 786 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 787 788 if (!STAILQ_EMPTY(&domains)) 789 if_attachdomain1(ifp); 790 791 /* Announce the interface. */ 792 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 793 794 if (ifp->if_slowtimo != NULL) { 795 struct if_slowtimo_data *isd; 796 797 isd = kmem_zalloc(sizeof(*isd), KM_SLEEP); 798 mutex_init(&isd->isd_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK); 799 callout_init(&isd->isd_ch, CALLOUT_MPSAFE); 800 callout_setfunc(&isd->isd_ch, if_slowtimo_intr, ifp); 801 isd->isd_ifp = ifp; 802 803 ifp->if_slowtimo_data = isd; 804 805 if_slowtimo_intr(ifp); 806 807 sysctl_watchdog_setup(ifp); 808 } 809 810 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 811 ifp->if_transmit = if_transmit; 812 813 IFNET_GLOBAL_LOCK(); 814 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 815 IFNET_WRITER_INSERT_TAIL(ifp); 816 IFNET_GLOBAL_UNLOCK(); 817 } 818 819 /* 820 * The if_percpuq framework 821 * 822 * It allows network device drivers to execute the network stack 823 * in softint (so called softint-based if_input). It utilizes 824 * softint and percpu ifqueue. It doesn't distribute any packets 825 * between CPUs, unlike pktqueue(9). 826 * 827 * Currently we support two options for device drivers to apply the framework: 828 * - Use it implicitly with less changes 829 * - If you use if_attach in driver's _attach function and if_input in 830 * driver's Rx interrupt handler, a packet is queued and a softint handles 831 * the packet implicitly 832 * - Use it explicitly in each driver (recommended) 833 * - You can use if_percpuq_* directly in your driver 834 * - In this case, you need to allocate struct if_percpuq in driver's softc 835 * - See wm(4) as a reference implementation 836 */ 837 838 static void 839 if_percpuq_softint(void *arg) 840 { 841 struct if_percpuq *ipq = arg; 842 struct ifnet *ifp = ipq->ipq_ifp; 843 struct mbuf *m; 844 845 while ((m = if_percpuq_dequeue(ipq)) != NULL) { 846 if_statinc(ifp, if_ipackets); 847 bpf_mtap(ifp, m, BPF_D_IN); 848 849 ifp->_if_input(ifp, m); 850 } 851 } 852 853 static void 854 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 855 { 856 struct ifqueue *const ifq = p; 857 858 memset(ifq, 0, sizeof(*ifq)); 859 ifq->ifq_maxlen = IFQ_MAXLEN; 860 } 861 862 struct if_percpuq * 863 if_percpuq_create(struct ifnet *ifp) 864 { 865 struct if_percpuq *ipq; 866 u_int flags = SOFTINT_NET; 867 868 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 869 870 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 871 ipq->ipq_ifp = ifp; 872 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq); 873 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 874 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 875 876 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 877 878 return ipq; 879 } 880 881 static struct mbuf * 882 if_percpuq_dequeue(struct if_percpuq *ipq) 883 { 884 struct mbuf *m; 885 struct ifqueue *ifq; 886 887 const int s = splnet(); 888 ifq = percpu_getref(ipq->ipq_ifqs); 889 IF_DEQUEUE(ifq, m); 890 percpu_putref(ipq->ipq_ifqs); 891 splx(s); 892 893 return m; 894 } 895 896 static void 897 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 898 { 899 struct ifqueue *const ifq = p; 900 901 IF_PURGE(ifq); 902 } 903 904 void 905 if_percpuq_destroy(struct if_percpuq *ipq) 906 { 907 908 /* if_detach may already destroy it */ 909 if (ipq == NULL) 910 return; 911 912 softint_disestablish(ipq->ipq_si); 913 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 914 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 915 kmem_free(ipq, sizeof(*ipq)); 916 } 917 918 void 919 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 920 { 921 struct ifqueue *ifq; 922 923 KASSERT(ipq != NULL); 924 925 const int s = splnet(); 926 ifq = percpu_getref(ipq->ipq_ifqs); 927 if (IF_QFULL(ifq)) { 928 IF_DROP(ifq); 929 percpu_putref(ipq->ipq_ifqs); 930 m_freem(m); 931 goto out; 932 } 933 IF_ENQUEUE(ifq, m); 934 percpu_putref(ipq->ipq_ifqs); 935 936 softint_schedule(ipq->ipq_si); 937 out: 938 splx(s); 939 } 940 941 static void 942 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 943 { 944 struct ifqueue *const ifq = p; 945 uint64_t *sum = arg; 946 947 *sum += ifq->ifq_drops; 948 } 949 950 static int 951 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 952 { 953 struct sysctlnode node; 954 struct if_percpuq *ipq; 955 uint64_t sum = 0; 956 int error; 957 958 node = *rnode; 959 ipq = node.sysctl_data; 960 961 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 962 963 node.sysctl_data = ∑ 964 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 965 if (error != 0 || newp == NULL) 966 return error; 967 968 return 0; 969 } 970 971 static void 972 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 973 struct if_percpuq *ipq) 974 { 975 const struct sysctlnode *cnode, *rnode; 976 977 if (sysctl_createv(clog, 0, NULL, &rnode, 978 CTLFLAG_PERMANENT, 979 CTLTYPE_NODE, "interfaces", 980 SYSCTL_DESCR("Per-interface controls"), 981 NULL, 0, NULL, 0, 982 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 983 goto bad; 984 985 if (sysctl_createv(clog, 0, &rnode, &rnode, 986 CTLFLAG_PERMANENT, 987 CTLTYPE_NODE, ifname, 988 SYSCTL_DESCR("Interface controls"), 989 NULL, 0, NULL, 0, 990 CTL_CREATE, CTL_EOL) != 0) 991 goto bad; 992 993 if (sysctl_createv(clog, 0, &rnode, &rnode, 994 CTLFLAG_PERMANENT, 995 CTLTYPE_NODE, "rcvq", 996 SYSCTL_DESCR("Interface input queue controls"), 997 NULL, 0, NULL, 0, 998 CTL_CREATE, CTL_EOL) != 0) 999 goto bad; 1000 1001 #ifdef NOTYET 1002 /* XXX Should show each per-CPU queue length? */ 1003 if (sysctl_createv(clog, 0, &rnode, &rnode, 1004 CTLFLAG_PERMANENT, 1005 CTLTYPE_INT, "len", 1006 SYSCTL_DESCR("Current input queue length"), 1007 sysctl_percpuq_len, 0, NULL, 0, 1008 CTL_CREATE, CTL_EOL) != 0) 1009 goto bad; 1010 1011 if (sysctl_createv(clog, 0, &rnode, &cnode, 1012 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1013 CTLTYPE_INT, "maxlen", 1014 SYSCTL_DESCR("Maximum allowed input queue length"), 1015 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 1016 CTL_CREATE, CTL_EOL) != 0) 1017 goto bad; 1018 #endif 1019 1020 if (sysctl_createv(clog, 0, &rnode, &cnode, 1021 CTLFLAG_PERMANENT, 1022 CTLTYPE_QUAD, "drops", 1023 SYSCTL_DESCR("Total packets dropped due to full input queue"), 1024 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 1025 CTL_CREATE, CTL_EOL) != 0) 1026 goto bad; 1027 1028 return; 1029 bad: 1030 printf("%s: could not attach sysctl nodes\n", ifname); 1031 return; 1032 } 1033 1034 /* 1035 * The deferred if_start framework 1036 * 1037 * The common APIs to defer if_start to softint when if_start is requested 1038 * from a device driver running in hardware interrupt context. 1039 */ 1040 /* 1041 * Call ifp->if_start (or equivalent) in a dedicated softint for 1042 * deferred if_start. 1043 */ 1044 static void 1045 if_deferred_start_softint(void *arg) 1046 { 1047 struct if_deferred_start *ids = arg; 1048 struct ifnet *ifp = ids->ids_ifp; 1049 1050 ids->ids_if_start(ifp); 1051 } 1052 1053 /* 1054 * The default callback function for deferred if_start. 1055 */ 1056 static void 1057 if_deferred_start_common(struct ifnet *ifp) 1058 { 1059 const int s = splnet(); 1060 if_start_lock(ifp); 1061 splx(s); 1062 } 1063 1064 static inline bool 1065 if_snd_is_used(struct ifnet *ifp) 1066 { 1067 1068 return ALTQ_IS_ENABLED(&ifp->if_snd) || 1069 ifp->if_transmit == if_transmit || 1070 ifp->if_transmit == NULL || 1071 ifp->if_transmit == if_nulltransmit; 1072 } 1073 1074 /* 1075 * Schedule deferred if_start. 1076 */ 1077 void 1078 if_schedule_deferred_start(struct ifnet *ifp) 1079 { 1080 1081 KASSERT(ifp->if_deferred_start != NULL); 1082 1083 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1084 return; 1085 1086 softint_schedule(ifp->if_deferred_start->ids_si); 1087 } 1088 1089 /* 1090 * Create an instance of deferred if_start. A driver should call the function 1091 * only if the driver needs deferred if_start. Drivers can setup their own 1092 * deferred if_start function via 2nd argument. 1093 */ 1094 void 1095 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1096 { 1097 struct if_deferred_start *ids; 1098 u_int flags = SOFTINT_NET; 1099 1100 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 1101 1102 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1103 ids->ids_ifp = ifp; 1104 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids); 1105 if (func != NULL) 1106 ids->ids_if_start = func; 1107 else 1108 ids->ids_if_start = if_deferred_start_common; 1109 1110 ifp->if_deferred_start = ids; 1111 } 1112 1113 static void 1114 if_deferred_start_destroy(struct ifnet *ifp) 1115 { 1116 1117 if (ifp->if_deferred_start == NULL) 1118 return; 1119 1120 softint_disestablish(ifp->if_deferred_start->ids_si); 1121 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1122 ifp->if_deferred_start = NULL; 1123 } 1124 1125 /* 1126 * The common interface input routine that is called by device drivers, 1127 * which should be used only when the driver's rx handler already runs 1128 * in softint. 1129 */ 1130 void 1131 if_input(struct ifnet *ifp, struct mbuf *m) 1132 { 1133 1134 KASSERT(ifp->if_percpuq == NULL); 1135 KASSERT(!cpu_intr_p()); 1136 1137 if_statinc(ifp, if_ipackets); 1138 bpf_mtap(ifp, m, BPF_D_IN); 1139 1140 ifp->_if_input(ifp, m); 1141 } 1142 1143 /* 1144 * DEPRECATED. Use if_initialize and if_register instead. 1145 * See the above comment of if_initialize. 1146 * 1147 * Note that it implicitly enables if_percpuq to make drivers easy to 1148 * migrate softint-based if_input without much changes. If you don't 1149 * want to enable it, use if_initialize instead. 1150 */ 1151 void 1152 if_attach(ifnet_t *ifp) 1153 { 1154 1155 if_initialize(ifp); 1156 ifp->if_percpuq = if_percpuq_create(ifp); 1157 if_register(ifp); 1158 } 1159 1160 void 1161 if_attachdomain(void) 1162 { 1163 struct ifnet *ifp; 1164 const int bound = curlwp_bind(); 1165 1166 int s = pserialize_read_enter(); 1167 IFNET_READER_FOREACH(ifp) { 1168 struct psref psref; 1169 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1170 pserialize_read_exit(s); 1171 if_attachdomain1(ifp); 1172 s = pserialize_read_enter(); 1173 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1174 } 1175 pserialize_read_exit(s); 1176 curlwp_bindx(bound); 1177 } 1178 1179 static void 1180 if_attachdomain1(struct ifnet *ifp) 1181 { 1182 struct domain *dp; 1183 const int s = splsoftnet(); 1184 1185 /* address family dependent data region */ 1186 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1187 DOMAIN_FOREACH(dp) { 1188 if (dp->dom_ifattach != NULL) 1189 ifp->if_afdata[dp->dom_family] = 1190 (*dp->dom_ifattach)(ifp); 1191 } 1192 1193 splx(s); 1194 } 1195 1196 /* 1197 * Deactivate an interface. This points all of the procedure 1198 * handles at error stubs. May be called from interrupt context. 1199 */ 1200 void 1201 if_deactivate(struct ifnet *ifp) 1202 { 1203 const int s = splsoftnet(); 1204 1205 ifp->if_output = if_nulloutput; 1206 ifp->_if_input = if_nullinput; 1207 ifp->if_start = if_nullstart; 1208 ifp->if_transmit = if_nulltransmit; 1209 ifp->if_ioctl = if_nullioctl; 1210 ifp->if_init = if_nullinit; 1211 ifp->if_stop = if_nullstop; 1212 if (ifp->if_slowtimo) 1213 ifp->if_slowtimo = if_nullslowtimo; 1214 ifp->if_drain = if_nulldrain; 1215 1216 /* No more packets may be enqueued. */ 1217 ifp->if_snd.ifq_maxlen = 0; 1218 1219 splx(s); 1220 } 1221 1222 bool 1223 if_is_deactivated(const struct ifnet *ifp) 1224 { 1225 1226 return ifp->if_output == if_nulloutput; 1227 } 1228 1229 void 1230 if_purgeaddrs(struct ifnet *ifp, int family, 1231 void (*purgeaddr)(struct ifaddr *)) 1232 { 1233 struct ifaddr *ifa, *nifa; 1234 int s; 1235 1236 s = pserialize_read_enter(); 1237 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1238 nifa = IFADDR_READER_NEXT(ifa); 1239 if (ifa->ifa_addr->sa_family != family) 1240 continue; 1241 pserialize_read_exit(s); 1242 1243 (*purgeaddr)(ifa); 1244 1245 s = pserialize_read_enter(); 1246 } 1247 pserialize_read_exit(s); 1248 } 1249 1250 #ifdef IFAREF_DEBUG 1251 static struct ifaddr **ifa_list; 1252 static int ifa_list_size; 1253 1254 /* Depends on only one if_attach runs at once */ 1255 static void 1256 if_build_ifa_list(struct ifnet *ifp) 1257 { 1258 struct ifaddr *ifa; 1259 int i; 1260 1261 KASSERT(ifa_list == NULL); 1262 KASSERT(ifa_list_size == 0); 1263 1264 IFADDR_READER_FOREACH(ifa, ifp) 1265 ifa_list_size++; 1266 1267 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1268 i = 0; 1269 IFADDR_READER_FOREACH(ifa, ifp) { 1270 ifa_list[i++] = ifa; 1271 ifaref(ifa); 1272 } 1273 } 1274 1275 static void 1276 if_check_and_free_ifa_list(struct ifnet *ifp) 1277 { 1278 int i; 1279 struct ifaddr *ifa; 1280 1281 if (ifa_list == NULL) 1282 return; 1283 1284 for (i = 0; i < ifa_list_size; i++) { 1285 char buf[64]; 1286 1287 ifa = ifa_list[i]; 1288 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1289 if (ifa->ifa_refcnt > 1) { 1290 log(LOG_WARNING, 1291 "ifa(%s) still referenced (refcnt=%d)\n", 1292 buf, ifa->ifa_refcnt - 1); 1293 } else 1294 log(LOG_DEBUG, 1295 "ifa(%s) not referenced (refcnt=%d)\n", 1296 buf, ifa->ifa_refcnt - 1); 1297 ifafree(ifa); 1298 } 1299 1300 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1301 ifa_list = NULL; 1302 ifa_list_size = 0; 1303 } 1304 #endif 1305 1306 /* 1307 * Detach an interface from the list of "active" interfaces, 1308 * freeing any resources as we go along. 1309 * 1310 * NOTE: This routine must be called with a valid thread context, 1311 * as it may block. 1312 */ 1313 void 1314 if_detach(struct ifnet *ifp) 1315 { 1316 struct socket so; 1317 struct ifaddr *ifa; 1318 #ifdef IFAREF_DEBUG 1319 struct ifaddr *last_ifa = NULL; 1320 #endif 1321 struct domain *dp; 1322 const struct protosw *pr; 1323 int i, family, purged; 1324 1325 #ifdef IFAREF_DEBUG 1326 if_build_ifa_list(ifp); 1327 #endif 1328 /* 1329 * XXX It's kind of lame that we have to have the 1330 * XXX socket structure... 1331 */ 1332 memset(&so, 0, sizeof(so)); 1333 1334 const int s = splnet(); 1335 1336 sysctl_teardown(&ifp->if_sysctl_log); 1337 1338 IFNET_LOCK(ifp); 1339 1340 /* 1341 * Unset all queued link states and pretend a 1342 * link state change is scheduled. 1343 * This stops any more link state changes occurring for this 1344 * interface while it's being detached so it's safe 1345 * to drain the workqueue. 1346 */ 1347 IF_LINK_STATE_CHANGE_LOCK(ifp); 1348 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 1349 ifp->if_link_scheduled = true; 1350 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 1351 workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work); 1352 1353 if_deactivate(ifp); 1354 IFNET_UNLOCK(ifp); 1355 1356 /* 1357 * Unlink from the list and wait for all readers to leave 1358 * from pserialize read sections. Note that we can't do 1359 * psref_target_destroy here. See below. 1360 */ 1361 IFNET_GLOBAL_LOCK(); 1362 ifindex2ifnet[ifp->if_index] = NULL; 1363 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1364 IFNET_WRITER_REMOVE(ifp); 1365 pserialize_perform(ifnet_psz); 1366 IFNET_GLOBAL_UNLOCK(); 1367 1368 if (ifp->if_slowtimo != NULL) { 1369 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 1370 1371 mutex_enter(&isd->isd_lock); 1372 isd->isd_dying = true; 1373 mutex_exit(&isd->isd_lock); 1374 callout_halt(&isd->isd_ch, NULL); 1375 workqueue_wait(if_slowtimo_wq, &isd->isd_work); 1376 callout_destroy(&isd->isd_ch); 1377 mutex_destroy(&isd->isd_lock); 1378 kmem_free(isd, sizeof(*isd)); 1379 1380 ifp->if_slowtimo_data = NULL; /* paraonia */ 1381 ifp->if_slowtimo = NULL; /* paranoia */ 1382 } 1383 if_deferred_start_destroy(ifp); 1384 1385 /* 1386 * Do an if_down() to give protocols a chance to do something. 1387 */ 1388 if_down_deactivated(ifp); 1389 1390 #ifdef ALTQ 1391 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1392 altq_disable(&ifp->if_snd); 1393 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1394 altq_detach(&ifp->if_snd); 1395 #endif 1396 1397 #if NCARP > 0 1398 /* Remove the interface from any carp group it is a part of. */ 1399 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1400 carp_ifdetach(ifp); 1401 #endif 1402 1403 /* 1404 * Ensure that all packets on protocol input pktqueues have been 1405 * processed, or, at least, removed from the queues. 1406 * 1407 * A cross-call will ensure that the interrupts have completed. 1408 * FIXME: not quite.. 1409 */ 1410 pktq_ifdetach(); 1411 xc_barrier(0); 1412 1413 /* 1414 * Rip all the addresses off the interface. This should make 1415 * all of the routes go away. 1416 * 1417 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1418 * from the list, including our "cursor", ifa. For safety, 1419 * and to honor the TAILQ abstraction, I just restart the 1420 * loop after each removal. Note that the loop will exit 1421 * when all of the remaining ifaddrs belong to the AF_LINK 1422 * family. I am counting on the historical fact that at 1423 * least one pr_usrreq in each address domain removes at 1424 * least one ifaddr. 1425 */ 1426 again: 1427 /* 1428 * At this point, no other one tries to remove ifa in the list, 1429 * so we don't need to take a lock or psref. Avoid using 1430 * IFADDR_READER_FOREACH to pass over an inspection of contract 1431 * violations of pserialize. 1432 */ 1433 IFADDR_WRITER_FOREACH(ifa, ifp) { 1434 family = ifa->ifa_addr->sa_family; 1435 #ifdef IFAREF_DEBUG 1436 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1437 ifa, family, ifa->ifa_refcnt); 1438 if (last_ifa != NULL && ifa == last_ifa) 1439 panic("if_detach: loop detected"); 1440 last_ifa = ifa; 1441 #endif 1442 if (family == AF_LINK) 1443 continue; 1444 dp = pffinddomain(family); 1445 KASSERTMSG(dp != NULL, "no domain for AF %d", family); 1446 /* 1447 * XXX These PURGEIF calls are redundant with the 1448 * purge-all-families calls below, but are left in for 1449 * now both to make a smaller change, and to avoid 1450 * unplanned interactions with clearing of 1451 * ifp->if_addrlist. 1452 */ 1453 purged = 0; 1454 for (pr = dp->dom_protosw; 1455 pr < dp->dom_protoswNPROTOSW; pr++) { 1456 so.so_proto = pr; 1457 if (pr->pr_usrreqs) { 1458 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1459 purged = 1; 1460 } 1461 } 1462 if (purged == 0) { 1463 /* 1464 * XXX What's really the best thing to do 1465 * XXX here? --thorpej@NetBSD.org 1466 */ 1467 printf("if_detach: WARNING: AF %d not purged\n", 1468 family); 1469 ifa_remove(ifp, ifa); 1470 } 1471 goto again; 1472 } 1473 1474 if_free_sadl(ifp, 1); 1475 1476 restart: 1477 IFADDR_WRITER_FOREACH(ifa, ifp) { 1478 family = ifa->ifa_addr->sa_family; 1479 KASSERT(family == AF_LINK); 1480 ifa_remove(ifp, ifa); 1481 goto restart; 1482 } 1483 1484 /* Delete stray routes from the routing table. */ 1485 for (i = 0; i <= AF_MAX; i++) 1486 rt_delete_matched_entries(i, if_delroute_matcher, ifp, false); 1487 1488 DOMAIN_FOREACH(dp) { 1489 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1490 { 1491 void *p = ifp->if_afdata[dp->dom_family]; 1492 if (p) { 1493 ifp->if_afdata[dp->dom_family] = NULL; 1494 (*dp->dom_ifdetach)(ifp, p); 1495 } 1496 } 1497 1498 /* 1499 * One would expect multicast memberships (INET and 1500 * INET6) on UDP sockets to be purged by the PURGEIF 1501 * calls above, but if all addresses were removed from 1502 * the interface prior to destruction, the calls will 1503 * not be made (e.g. ppp, for which pppd(8) generally 1504 * removes addresses before destroying the interface). 1505 * Because there is no invariant that multicast 1506 * memberships only exist for interfaces with IPv4 1507 * addresses, we must call PURGEIF regardless of 1508 * addresses. (Protocols which might store ifnet 1509 * pointers are marked with PR_PURGEIF.) 1510 */ 1511 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) 1512 { 1513 so.so_proto = pr; 1514 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1515 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1516 } 1517 } 1518 1519 /* 1520 * Must be done after the above pr_purgeif because if_psref may be 1521 * still used in pr_purgeif. 1522 */ 1523 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1524 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1525 1526 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 1527 (void)pfil_head_destroy(ifp->if_pfil); 1528 1529 /* Announce that the interface is gone. */ 1530 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1531 1532 IF_AFDATA_LOCK_DESTROY(ifp); 1533 1534 if (ifp->if_percpuq != NULL) { 1535 if_percpuq_destroy(ifp->if_percpuq); 1536 ifp->if_percpuq = NULL; 1537 } 1538 1539 mutex_obj_free(ifp->if_ioctl_lock); 1540 ifp->if_ioctl_lock = NULL; 1541 mutex_obj_free(ifp->if_snd.ifq_lock); 1542 if_stats_fini(ifp); 1543 KASSERT(!simplehook_has_hooks(ifp->if_linkstate_hooks)); 1544 simplehook_destroy(ifp->if_linkstate_hooks); 1545 1546 splx(s); 1547 1548 #ifdef IFAREF_DEBUG 1549 if_check_and_free_ifa_list(ifp); 1550 #endif 1551 } 1552 1553 /* 1554 * Callback for a radix tree walk to delete all references to an 1555 * ifnet. 1556 */ 1557 static int 1558 if_delroute_matcher(struct rtentry *rt, void *v) 1559 { 1560 struct ifnet *ifp = (struct ifnet *)v; 1561 1562 if (rt->rt_ifp == ifp) 1563 return 1; 1564 else 1565 return 0; 1566 } 1567 1568 /* 1569 * Create a clone network interface. 1570 */ 1571 static int 1572 if_clone_create(const char *name) 1573 { 1574 struct if_clone *ifc; 1575 struct ifnet *ifp; 1576 struct psref psref; 1577 int unit; 1578 1579 KASSERT(mutex_owned(&if_clone_mtx)); 1580 1581 ifc = if_clone_lookup(name, &unit); 1582 if (ifc == NULL) 1583 return EINVAL; 1584 1585 ifp = if_get(name, &psref); 1586 if (ifp != NULL) { 1587 if_put(ifp, &psref); 1588 return EEXIST; 1589 } 1590 1591 return (*ifc->ifc_create)(ifc, unit); 1592 } 1593 1594 /* 1595 * Destroy a clone network interface. 1596 */ 1597 static int 1598 if_clone_destroy(const char *name) 1599 { 1600 struct if_clone *ifc; 1601 struct ifnet *ifp; 1602 struct psref psref; 1603 int error; 1604 int (*if_ioctlfn)(struct ifnet *, u_long, void *); 1605 1606 KASSERT(mutex_owned(&if_clone_mtx)); 1607 1608 ifc = if_clone_lookup(name, NULL); 1609 if (ifc == NULL) 1610 return EINVAL; 1611 1612 if (ifc->ifc_destroy == NULL) 1613 return EOPNOTSUPP; 1614 1615 ifp = if_get(name, &psref); 1616 if (ifp == NULL) 1617 return ENXIO; 1618 1619 /* We have to disable ioctls here */ 1620 IFNET_LOCK(ifp); 1621 if_ioctlfn = ifp->if_ioctl; 1622 ifp->if_ioctl = if_nullioctl; 1623 IFNET_UNLOCK(ifp); 1624 1625 /* 1626 * We cannot call ifc_destroy with holding ifp. 1627 * Releasing ifp here is safe thanks to if_clone_mtx. 1628 */ 1629 if_put(ifp, &psref); 1630 1631 error = (*ifc->ifc_destroy)(ifp); 1632 1633 if (error != 0) { 1634 /* We have to restore if_ioctl on error */ 1635 IFNET_LOCK(ifp); 1636 ifp->if_ioctl = if_ioctlfn; 1637 IFNET_UNLOCK(ifp); 1638 } 1639 1640 return error; 1641 } 1642 1643 static bool 1644 if_is_unit(const char *name) 1645 { 1646 1647 while (*name != '\0') { 1648 if (*name < '0' || *name > '9') 1649 return false; 1650 name++; 1651 } 1652 1653 return true; 1654 } 1655 1656 /* 1657 * Look up a network interface cloner. 1658 */ 1659 static struct if_clone * 1660 if_clone_lookup(const char *name, int *unitp) 1661 { 1662 struct if_clone *ifc; 1663 const char *cp; 1664 char *dp, ifname[IFNAMSIZ + 3]; 1665 int unit; 1666 1667 KASSERT(mutex_owned(&if_clone_mtx)); 1668 1669 strcpy(ifname, "if_"); 1670 /* separate interface name from unit */ 1671 /* TODO: search unit number from backward */ 1672 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1673 *cp && !if_is_unit(cp);) 1674 *dp++ = *cp++; 1675 1676 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1677 return NULL; /* No name or unit number */ 1678 *dp++ = '\0'; 1679 1680 again: 1681 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1682 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1683 break; 1684 } 1685 1686 if (ifc == NULL) { 1687 int error; 1688 if (*ifname == '\0') 1689 return NULL; 1690 mutex_exit(&if_clone_mtx); 1691 error = module_autoload(ifname, MODULE_CLASS_DRIVER); 1692 mutex_enter(&if_clone_mtx); 1693 if (error) 1694 return NULL; 1695 *ifname = '\0'; 1696 goto again; 1697 } 1698 1699 unit = 0; 1700 while (cp - name < IFNAMSIZ && *cp) { 1701 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1702 /* Bogus unit number. */ 1703 return NULL; 1704 } 1705 unit = (unit * 10) + (*cp++ - '0'); 1706 } 1707 1708 if (unitp != NULL) 1709 *unitp = unit; 1710 return ifc; 1711 } 1712 1713 /* 1714 * Register a network interface cloner. 1715 */ 1716 void 1717 if_clone_attach(struct if_clone *ifc) 1718 { 1719 1720 mutex_enter(&if_clone_mtx); 1721 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1722 if_cloners_count++; 1723 mutex_exit(&if_clone_mtx); 1724 } 1725 1726 /* 1727 * Unregister a network interface cloner. 1728 */ 1729 void 1730 if_clone_detach(struct if_clone *ifc) 1731 { 1732 1733 mutex_enter(&if_clone_mtx); 1734 LIST_REMOVE(ifc, ifc_list); 1735 if_cloners_count--; 1736 mutex_exit(&if_clone_mtx); 1737 } 1738 1739 /* 1740 * Provide list of interface cloners to userspace. 1741 */ 1742 int 1743 if_clone_list(int buf_count, char *buffer, int *total) 1744 { 1745 char outbuf[IFNAMSIZ], *dst; 1746 struct if_clone *ifc; 1747 int count, error = 0; 1748 1749 mutex_enter(&if_clone_mtx); 1750 *total = if_cloners_count; 1751 if ((dst = buffer) == NULL) { 1752 /* Just asking how many there are. */ 1753 goto out; 1754 } 1755 1756 if (buf_count < 0) { 1757 error = EINVAL; 1758 goto out; 1759 } 1760 1761 count = (if_cloners_count < buf_count) ? if_cloners_count : buf_count; 1762 1763 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1764 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1765 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1766 if (outbuf[sizeof(outbuf) - 1] != '\0') { 1767 error = ENAMETOOLONG; 1768 goto out; 1769 } 1770 error = copyout(outbuf, dst, sizeof(outbuf)); 1771 if (error != 0) 1772 break; 1773 } 1774 1775 out: 1776 mutex_exit(&if_clone_mtx); 1777 return error; 1778 } 1779 1780 void 1781 ifa_psref_init(struct ifaddr *ifa) 1782 { 1783 1784 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1785 } 1786 1787 void 1788 ifaref(struct ifaddr *ifa) 1789 { 1790 1791 atomic_inc_uint(&ifa->ifa_refcnt); 1792 } 1793 1794 void 1795 ifafree(struct ifaddr *ifa) 1796 { 1797 KASSERT(ifa != NULL); 1798 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt); 1799 1800 membar_release(); 1801 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) != 0) 1802 return; 1803 membar_acquire(); 1804 free(ifa, M_IFADDR); 1805 } 1806 1807 bool 1808 ifa_is_destroying(struct ifaddr *ifa) 1809 { 1810 1811 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1812 } 1813 1814 void 1815 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1816 { 1817 1818 ifa->ifa_ifp = ifp; 1819 1820 /* 1821 * Check MP-safety for IFEF_MPSAFE drivers. 1822 * Check !IFF_RUNNING for initialization routines that normally don't 1823 * take IFNET_LOCK but it's safe because there is no competitor. 1824 * XXX there are false positive cases because IFF_RUNNING can be off on 1825 * if_stop. 1826 */ 1827 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) || 1828 IFNET_LOCKED(ifp)); 1829 1830 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1831 IFADDR_ENTRY_INIT(ifa); 1832 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1833 1834 ifaref(ifa); 1835 } 1836 1837 void 1838 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1839 { 1840 1841 KASSERT(ifa->ifa_ifp == ifp); 1842 /* 1843 * Check MP-safety for IFEF_MPSAFE drivers. 1844 * if_is_deactivated indicates ifa_remove is called from if_detach 1845 * where it is safe even if IFNET_LOCK isn't held. 1846 */ 1847 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || 1848 IFNET_LOCKED(ifp)); 1849 1850 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1851 IFADDR_WRITER_REMOVE(ifa); 1852 #ifdef NET_MPSAFE 1853 IFNET_GLOBAL_LOCK(); 1854 pserialize_perform(ifnet_psz); 1855 IFNET_GLOBAL_UNLOCK(); 1856 #endif 1857 1858 #ifdef NET_MPSAFE 1859 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1860 #endif 1861 IFADDR_ENTRY_DESTROY(ifa); 1862 ifafree(ifa); 1863 } 1864 1865 void 1866 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1867 { 1868 1869 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 1870 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1871 } 1872 1873 void 1874 ifa_release(struct ifaddr *ifa, struct psref *psref) 1875 { 1876 1877 if (ifa == NULL) 1878 return; 1879 1880 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1881 } 1882 1883 bool 1884 ifa_held(struct ifaddr *ifa) 1885 { 1886 1887 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1888 } 1889 1890 static inline int 1891 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1892 { 1893 1894 return sockaddr_cmp(sa1, sa2) == 0; 1895 } 1896 1897 /* 1898 * Locate an interface based on a complete address. 1899 */ 1900 /*ARGSUSED*/ 1901 struct ifaddr * 1902 ifa_ifwithaddr(const struct sockaddr *addr) 1903 { 1904 struct ifnet *ifp; 1905 struct ifaddr *ifa; 1906 1907 IFNET_READER_FOREACH(ifp) { 1908 if (if_is_deactivated(ifp)) 1909 continue; 1910 IFADDR_READER_FOREACH(ifa, ifp) { 1911 if (ifa->ifa_addr->sa_family != addr->sa_family) 1912 continue; 1913 if (equal(addr, ifa->ifa_addr)) 1914 return ifa; 1915 if ((ifp->if_flags & IFF_BROADCAST) && 1916 ifa->ifa_broadaddr && 1917 /* IP6 doesn't have broadcast */ 1918 ifa->ifa_broadaddr->sa_len != 0 && 1919 equal(ifa->ifa_broadaddr, addr)) 1920 return ifa; 1921 } 1922 } 1923 return NULL; 1924 } 1925 1926 struct ifaddr * 1927 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1928 { 1929 struct ifaddr *ifa; 1930 int s = pserialize_read_enter(); 1931 1932 ifa = ifa_ifwithaddr(addr); 1933 if (ifa != NULL) 1934 ifa_acquire(ifa, psref); 1935 pserialize_read_exit(s); 1936 1937 return ifa; 1938 } 1939 1940 /* 1941 * Locate the point to point interface with a given destination address. 1942 */ 1943 /*ARGSUSED*/ 1944 struct ifaddr * 1945 ifa_ifwithdstaddr(const struct sockaddr *addr) 1946 { 1947 struct ifnet *ifp; 1948 struct ifaddr *ifa; 1949 1950 IFNET_READER_FOREACH(ifp) { 1951 if (if_is_deactivated(ifp)) 1952 continue; 1953 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1954 continue; 1955 IFADDR_READER_FOREACH(ifa, ifp) { 1956 if (ifa->ifa_addr->sa_family != addr->sa_family || 1957 ifa->ifa_dstaddr == NULL) 1958 continue; 1959 if (equal(addr, ifa->ifa_dstaddr)) 1960 return ifa; 1961 } 1962 } 1963 1964 return NULL; 1965 } 1966 1967 struct ifaddr * 1968 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 1969 { 1970 struct ifaddr *ifa; 1971 int s; 1972 1973 s = pserialize_read_enter(); 1974 ifa = ifa_ifwithdstaddr(addr); 1975 if (ifa != NULL) 1976 ifa_acquire(ifa, psref); 1977 pserialize_read_exit(s); 1978 1979 return ifa; 1980 } 1981 1982 /* 1983 * Find an interface on a specific network. If many, choice 1984 * is most specific found. 1985 */ 1986 struct ifaddr * 1987 ifa_ifwithnet(const struct sockaddr *addr) 1988 { 1989 struct ifnet *ifp; 1990 struct ifaddr *ifa, *ifa_maybe = NULL; 1991 const struct sockaddr_dl *sdl; 1992 u_int af = addr->sa_family; 1993 const char *addr_data = addr->sa_data, *cplim; 1994 1995 if (af == AF_LINK) { 1996 sdl = satocsdl(addr); 1997 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1998 ifindex2ifnet[sdl->sdl_index] && 1999 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 2000 return ifindex2ifnet[sdl->sdl_index]->if_dl; 2001 } 2002 } 2003 #ifdef NETATALK 2004 if (af == AF_APPLETALK) { 2005 const struct sockaddr_at *sat, *sat2; 2006 sat = (const struct sockaddr_at *)addr; 2007 IFNET_READER_FOREACH(ifp) { 2008 if (if_is_deactivated(ifp)) 2009 continue; 2010 ifa = at_ifawithnet((const struct sockaddr_at *)addr, 2011 ifp); 2012 if (ifa == NULL) 2013 continue; 2014 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 2015 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 2016 return ifa; /* exact match */ 2017 if (ifa_maybe == NULL) { 2018 /* else keep the if with the right range */ 2019 ifa_maybe = ifa; 2020 } 2021 } 2022 return ifa_maybe; 2023 } 2024 #endif 2025 IFNET_READER_FOREACH(ifp) { 2026 if (if_is_deactivated(ifp)) 2027 continue; 2028 IFADDR_READER_FOREACH(ifa, ifp) { 2029 const char *cp, *cp2, *cp3; 2030 2031 if (ifa->ifa_addr->sa_family != af || 2032 ifa->ifa_netmask == NULL) 2033 next: continue; 2034 cp = addr_data; 2035 cp2 = ifa->ifa_addr->sa_data; 2036 cp3 = ifa->ifa_netmask->sa_data; 2037 cplim = (const char *)ifa->ifa_netmask + 2038 ifa->ifa_netmask->sa_len; 2039 while (cp3 < cplim) { 2040 if ((*cp++ ^ *cp2++) & *cp3++) { 2041 /* want to continue for() loop */ 2042 goto next; 2043 } 2044 } 2045 if (ifa_maybe == NULL || 2046 rt_refines(ifa->ifa_netmask, 2047 ifa_maybe->ifa_netmask)) 2048 ifa_maybe = ifa; 2049 } 2050 } 2051 return ifa_maybe; 2052 } 2053 2054 struct ifaddr * 2055 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 2056 { 2057 struct ifaddr *ifa; 2058 int s; 2059 2060 s = pserialize_read_enter(); 2061 ifa = ifa_ifwithnet(addr); 2062 if (ifa != NULL) 2063 ifa_acquire(ifa, psref); 2064 pserialize_read_exit(s); 2065 2066 return ifa; 2067 } 2068 2069 /* 2070 * Find the interface of the address. 2071 */ 2072 struct ifaddr * 2073 ifa_ifwithladdr(const struct sockaddr *addr) 2074 { 2075 struct ifaddr *ia; 2076 2077 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 2078 (ia = ifa_ifwithnet(addr))) 2079 return ia; 2080 return NULL; 2081 } 2082 2083 struct ifaddr * 2084 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 2085 { 2086 struct ifaddr *ifa; 2087 int s; 2088 2089 s = pserialize_read_enter(); 2090 ifa = ifa_ifwithladdr(addr); 2091 if (ifa != NULL) 2092 ifa_acquire(ifa, psref); 2093 pserialize_read_exit(s); 2094 2095 return ifa; 2096 } 2097 2098 /* 2099 * Find an interface using a specific address family 2100 */ 2101 struct ifaddr * 2102 ifa_ifwithaf(int af) 2103 { 2104 struct ifnet *ifp; 2105 struct ifaddr *ifa = NULL; 2106 int s; 2107 2108 s = pserialize_read_enter(); 2109 IFNET_READER_FOREACH(ifp) { 2110 if (if_is_deactivated(ifp)) 2111 continue; 2112 IFADDR_READER_FOREACH(ifa, ifp) { 2113 if (ifa->ifa_addr->sa_family == af) 2114 goto out; 2115 } 2116 } 2117 out: 2118 pserialize_read_exit(s); 2119 return ifa; 2120 } 2121 2122 /* 2123 * Find an interface address specific to an interface best matching 2124 * a given address. 2125 */ 2126 struct ifaddr * 2127 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2128 { 2129 struct ifaddr *ifa; 2130 const char *cp, *cp2, *cp3; 2131 const char *cplim; 2132 struct ifaddr *ifa_maybe = 0; 2133 u_int af = addr->sa_family; 2134 2135 if (if_is_deactivated(ifp)) 2136 return NULL; 2137 2138 if (af >= AF_MAX) 2139 return NULL; 2140 2141 IFADDR_READER_FOREACH(ifa, ifp) { 2142 if (ifa->ifa_addr->sa_family != af) 2143 continue; 2144 ifa_maybe = ifa; 2145 if (ifa->ifa_netmask == NULL) { 2146 if (equal(addr, ifa->ifa_addr) || 2147 (ifa->ifa_dstaddr && 2148 equal(addr, ifa->ifa_dstaddr))) 2149 return ifa; 2150 continue; 2151 } 2152 cp = addr->sa_data; 2153 cp2 = ifa->ifa_addr->sa_data; 2154 cp3 = ifa->ifa_netmask->sa_data; 2155 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2156 for (; cp3 < cplim; cp3++) { 2157 if ((*cp++ ^ *cp2++) & *cp3) 2158 break; 2159 } 2160 if (cp3 == cplim) 2161 return ifa; 2162 } 2163 return ifa_maybe; 2164 } 2165 2166 struct ifaddr * 2167 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2168 struct psref *psref) 2169 { 2170 struct ifaddr *ifa; 2171 int s; 2172 2173 s = pserialize_read_enter(); 2174 ifa = ifaof_ifpforaddr(addr, ifp); 2175 if (ifa != NULL) 2176 ifa_acquire(ifa, psref); 2177 pserialize_read_exit(s); 2178 2179 return ifa; 2180 } 2181 2182 /* 2183 * Default action when installing a route with a Link Level gateway. 2184 * Lookup an appropriate real ifa to point to. 2185 * This should be moved to /sys/net/link.c eventually. 2186 */ 2187 void 2188 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2189 { 2190 struct ifaddr *ifa; 2191 const struct sockaddr *dst; 2192 struct ifnet *ifp; 2193 struct psref psref; 2194 2195 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2196 return; 2197 ifp = rt->rt_ifa->ifa_ifp; 2198 dst = rt_getkey(rt); 2199 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2200 rt_replace_ifa(rt, ifa); 2201 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2202 ifa->ifa_rtrequest(cmd, rt, info); 2203 ifa_release(ifa, &psref); 2204 } 2205 } 2206 2207 /* 2208 * bitmask macros to manage a densely packed link_state change queue. 2209 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2210 * LINK_STATE_UP(2) we need 2 bits for each state change. 2211 * As a state change to store is 0, treat all bits set as an unset item. 2212 */ 2213 #define LQ_ITEM_BITS 2 2214 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2215 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2216 #define LINK_STATE_UNSET LQ_ITEM_MASK 2217 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2218 #define LQ_STORE(q, i, v) \ 2219 do { \ 2220 (q) &= ~LQ_MASK((i)); \ 2221 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2222 } while (0 /* CONSTCOND */) 2223 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2224 #define LQ_POP(q, v) \ 2225 do { \ 2226 (v) = LQ_ITEM((q), 0); \ 2227 (q) >>= LQ_ITEM_BITS; \ 2228 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2229 } while (0 /* CONSTCOND */) 2230 #define LQ_PUSH(q, v) \ 2231 do { \ 2232 (q) >>= LQ_ITEM_BITS; \ 2233 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2234 } while (0 /* CONSTCOND */) 2235 #define LQ_FIND_UNSET(q, i) \ 2236 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2237 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2238 break; \ 2239 } 2240 2241 /* 2242 * Handle a change in the interface link state and 2243 * queue notifications. 2244 */ 2245 void 2246 if_link_state_change(struct ifnet *ifp, int link_state) 2247 { 2248 int idx; 2249 2250 /* Ensure change is to a valid state */ 2251 switch (link_state) { 2252 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2253 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2254 case LINK_STATE_UP: 2255 break; 2256 default: 2257 #ifdef DEBUG 2258 printf("%s: invalid link state %d\n", 2259 ifp->if_xname, link_state); 2260 #endif 2261 return; 2262 } 2263 2264 IF_LINK_STATE_CHANGE_LOCK(ifp); 2265 2266 /* Find the last unset event in the queue. */ 2267 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2268 2269 if (idx == 0) { 2270 /* 2271 * There is no queue of link state changes. 2272 * As we have the lock we can safely compare against the 2273 * current link state and return if the same. 2274 * Otherwise, if scheduled is true then the interface is being 2275 * detached and the queue is being drained so we need 2276 * to avoid queuing more work. 2277 */ 2278 if (ifp->if_link_state == link_state || 2279 ifp->if_link_scheduled) 2280 goto out; 2281 } else { 2282 /* Ensure link_state doesn't match the last queued state. */ 2283 if (LQ_ITEM(ifp->if_link_queue, idx - 1) 2284 == (uint8_t)link_state) 2285 goto out; 2286 } 2287 2288 /* Handle queue overflow. */ 2289 if (idx == LQ_MAX(ifp->if_link_queue)) { 2290 uint8_t lost; 2291 2292 /* 2293 * The DOWN state must be protected from being pushed off 2294 * the queue to ensure that userland will always be 2295 * in a sane state. 2296 * Because DOWN is protected, there is no need to protect 2297 * UNKNOWN. 2298 * It should be invalid to change from any other state to 2299 * UNKNOWN anyway ... 2300 */ 2301 lost = LQ_ITEM(ifp->if_link_queue, 0); 2302 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2303 if (lost == LINK_STATE_DOWN) { 2304 lost = LQ_ITEM(ifp->if_link_queue, 0); 2305 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2306 } 2307 printf("%s: lost link state change %s\n", 2308 ifp->if_xname, 2309 lost == LINK_STATE_UP ? "UP" : 2310 lost == LINK_STATE_DOWN ? "DOWN" : 2311 "UNKNOWN"); 2312 } else 2313 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2314 2315 if (ifp->if_link_scheduled) 2316 goto out; 2317 2318 ifp->if_link_scheduled = true; 2319 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL); 2320 2321 out: 2322 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2323 } 2324 2325 /* 2326 * Handle interface link state change notifications. 2327 */ 2328 static void 2329 if_link_state_change_process(struct ifnet *ifp, int link_state) 2330 { 2331 struct domain *dp; 2332 const int s = splnet(); 2333 bool notify; 2334 2335 KASSERT(!cpu_intr_p()); 2336 2337 IF_LINK_STATE_CHANGE_LOCK(ifp); 2338 2339 /* Ensure the change is still valid. */ 2340 if (ifp->if_link_state == link_state) { 2341 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2342 splx(s); 2343 return; 2344 } 2345 2346 #ifdef DEBUG 2347 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2348 link_state == LINK_STATE_UP ? "UP" : 2349 link_state == LINK_STATE_DOWN ? "DOWN" : 2350 "UNKNOWN", 2351 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2352 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2353 "UNKNOWN"); 2354 #endif 2355 2356 /* 2357 * When going from UNKNOWN to UP, we need to mark existing 2358 * addresses as tentative and restart DAD as we may have 2359 * erroneously not found a duplicate. 2360 * 2361 * This needs to happen before rt_ifmsg to avoid a race where 2362 * listeners would have an address and expect it to work right 2363 * away. 2364 */ 2365 notify = (link_state == LINK_STATE_UP && 2366 ifp->if_link_state == LINK_STATE_UNKNOWN); 2367 ifp->if_link_state = link_state; 2368 /* The following routines may sleep so release the spin mutex */ 2369 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2370 2371 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2372 if (notify) { 2373 DOMAIN_FOREACH(dp) { 2374 if (dp->dom_if_link_state_change != NULL) 2375 dp->dom_if_link_state_change(ifp, 2376 LINK_STATE_DOWN); 2377 } 2378 } 2379 2380 /* Notify that the link state has changed. */ 2381 rt_ifmsg(ifp); 2382 2383 simplehook_dohooks(ifp->if_linkstate_hooks); 2384 2385 DOMAIN_FOREACH(dp) { 2386 if (dp->dom_if_link_state_change != NULL) 2387 dp->dom_if_link_state_change(ifp, link_state); 2388 } 2389 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2390 splx(s); 2391 } 2392 2393 /* 2394 * Process the interface link state change queue. 2395 */ 2396 static void 2397 if_link_state_change_work(struct work *work, void *arg) 2398 { 2399 struct ifnet *ifp = container_of(work, struct ifnet, if_link_work); 2400 uint8_t state; 2401 2402 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2403 const int s = splnet(); 2404 2405 /* 2406 * Pop a link state change from the queue and process it. 2407 * If there is nothing to process then if_detach() has been called. 2408 * We keep if_link_scheduled = true so the queue can safely drain 2409 * without more work being queued. 2410 */ 2411 IF_LINK_STATE_CHANGE_LOCK(ifp); 2412 LQ_POP(ifp->if_link_queue, state); 2413 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2414 if (state == LINK_STATE_UNSET) 2415 goto out; 2416 2417 if_link_state_change_process(ifp, state); 2418 2419 /* If there is a link state change to come, schedule it. */ 2420 IF_LINK_STATE_CHANGE_LOCK(ifp); 2421 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) { 2422 ifp->if_link_scheduled = true; 2423 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, 2424 NULL); 2425 } else 2426 ifp->if_link_scheduled = false; 2427 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2428 2429 out: 2430 splx(s); 2431 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2432 } 2433 2434 void * 2435 if_linkstate_change_establish(struct ifnet *ifp, void (*fn)(void *), void *arg) 2436 { 2437 khook_t *hk; 2438 2439 hk = simplehook_establish(ifp->if_linkstate_hooks, fn, arg); 2440 2441 return (void *)hk; 2442 } 2443 2444 void 2445 if_linkstate_change_disestablish(struct ifnet *ifp, void *vhook, 2446 kmutex_t *lock) 2447 { 2448 2449 simplehook_disestablish(ifp->if_linkstate_hooks, vhook, lock); 2450 } 2451 2452 /* 2453 * Used to mark addresses on an interface as DETATCHED or TENTATIVE 2454 * and thus start Duplicate Address Detection without changing the 2455 * real link state. 2456 */ 2457 void 2458 if_domain_link_state_change(struct ifnet *ifp, int link_state) 2459 { 2460 struct domain *dp; 2461 2462 const int s = splnet(); 2463 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2464 2465 DOMAIN_FOREACH(dp) { 2466 if (dp->dom_if_link_state_change != NULL) 2467 dp->dom_if_link_state_change(ifp, link_state); 2468 } 2469 2470 splx(s); 2471 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2472 } 2473 2474 /* 2475 * Default action when installing a local route on a point-to-point 2476 * interface. 2477 */ 2478 void 2479 p2p_rtrequest(int req, struct rtentry *rt, 2480 __unused const struct rt_addrinfo *info) 2481 { 2482 struct ifnet *ifp = rt->rt_ifp; 2483 struct ifaddr *ifa, *lo0ifa; 2484 int s = pserialize_read_enter(); 2485 2486 switch (req) { 2487 case RTM_ADD: 2488 if ((rt->rt_flags & RTF_LOCAL) == 0) 2489 break; 2490 2491 rt->rt_ifp = lo0ifp; 2492 2493 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2494 break; 2495 2496 IFADDR_READER_FOREACH(ifa, ifp) { 2497 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2498 break; 2499 } 2500 if (ifa == NULL) 2501 break; 2502 2503 /* 2504 * Ensure lo0 has an address of the same family. 2505 */ 2506 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2507 if (lo0ifa->ifa_addr->sa_family == 2508 ifa->ifa_addr->sa_family) 2509 break; 2510 } 2511 if (lo0ifa == NULL) 2512 break; 2513 2514 /* 2515 * Make sure to set rt->rt_ifa to the interface 2516 * address we are using, otherwise we will have trouble 2517 * with source address selection. 2518 */ 2519 if (ifa != rt->rt_ifa) 2520 rt_replace_ifa(rt, ifa); 2521 break; 2522 case RTM_DELETE: 2523 default: 2524 break; 2525 } 2526 pserialize_read_exit(s); 2527 } 2528 2529 static void 2530 _if_down(struct ifnet *ifp) 2531 { 2532 struct ifaddr *ifa; 2533 struct domain *dp; 2534 struct psref psref; 2535 2536 ifp->if_flags &= ~IFF_UP; 2537 nanotime(&ifp->if_lastchange); 2538 2539 const int bound = curlwp_bind(); 2540 int s = pserialize_read_enter(); 2541 IFADDR_READER_FOREACH(ifa, ifp) { 2542 ifa_acquire(ifa, &psref); 2543 pserialize_read_exit(s); 2544 2545 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2546 2547 s = pserialize_read_enter(); 2548 ifa_release(ifa, &psref); 2549 } 2550 pserialize_read_exit(s); 2551 curlwp_bindx(bound); 2552 2553 IFQ_PURGE(&ifp->if_snd); 2554 #if NCARP > 0 2555 if (ifp->if_carp) 2556 carp_carpdev_state(ifp); 2557 #endif 2558 rt_ifmsg(ifp); 2559 DOMAIN_FOREACH(dp) { 2560 if (dp->dom_if_down) 2561 dp->dom_if_down(ifp); 2562 } 2563 } 2564 2565 static void 2566 if_down_deactivated(struct ifnet *ifp) 2567 { 2568 2569 KASSERT(if_is_deactivated(ifp)); 2570 _if_down(ifp); 2571 } 2572 2573 void 2574 if_down_locked(struct ifnet *ifp) 2575 { 2576 2577 KASSERT(IFNET_LOCKED(ifp)); 2578 _if_down(ifp); 2579 } 2580 2581 /* 2582 * Mark an interface down and notify protocols of 2583 * the transition. 2584 * NOTE: must be called at splsoftnet or equivalent. 2585 */ 2586 void 2587 if_down(struct ifnet *ifp) 2588 { 2589 2590 IFNET_LOCK(ifp); 2591 if_down_locked(ifp); 2592 IFNET_UNLOCK(ifp); 2593 } 2594 2595 /* 2596 * Must be called with holding if_ioctl_lock. 2597 */ 2598 static void 2599 if_up_locked(struct ifnet *ifp) 2600 { 2601 #ifdef notyet 2602 struct ifaddr *ifa; 2603 #endif 2604 struct domain *dp; 2605 2606 KASSERT(IFNET_LOCKED(ifp)); 2607 2608 KASSERT(!if_is_deactivated(ifp)); 2609 ifp->if_flags |= IFF_UP; 2610 nanotime(&ifp->if_lastchange); 2611 #ifdef notyet 2612 /* this has no effect on IP, and will kill all ISO connections XXX */ 2613 IFADDR_READER_FOREACH(ifa, ifp) 2614 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2615 #endif 2616 #if NCARP > 0 2617 if (ifp->if_carp) 2618 carp_carpdev_state(ifp); 2619 #endif 2620 rt_ifmsg(ifp); 2621 DOMAIN_FOREACH(dp) { 2622 if (dp->dom_if_up) 2623 dp->dom_if_up(ifp); 2624 } 2625 } 2626 2627 /* 2628 * Handle interface slowtimo timer routine. Called 2629 * from softclock, we decrement timer (if set) and 2630 * call the appropriate interface routine on expiration. 2631 */ 2632 static bool 2633 if_slowtimo_countdown(struct ifnet *ifp) 2634 { 2635 bool fire = false; 2636 const int s = splnet(); 2637 2638 KERNEL_LOCK(1, NULL); 2639 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2640 fire = true; 2641 KERNEL_UNLOCK_ONE(NULL); 2642 splx(s); 2643 2644 return fire; 2645 } 2646 2647 static void 2648 if_slowtimo_intr(void *arg) 2649 { 2650 struct ifnet *ifp = arg; 2651 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 2652 2653 mutex_enter(&isd->isd_lock); 2654 if (!isd->isd_dying) { 2655 if (isd->isd_trigger || if_slowtimo_countdown(ifp)) { 2656 if (!isd->isd_queued) { 2657 isd->isd_queued = true; 2658 workqueue_enqueue(if_slowtimo_wq, 2659 &isd->isd_work, NULL); 2660 } 2661 } else 2662 callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ); 2663 } 2664 mutex_exit(&isd->isd_lock); 2665 } 2666 2667 static void 2668 if_slowtimo_work(struct work *work, void *arg) 2669 { 2670 struct if_slowtimo_data *isd = 2671 container_of(work, struct if_slowtimo_data, isd_work); 2672 struct ifnet *ifp = isd->isd_ifp; 2673 const int s = splnet(); 2674 2675 KERNEL_LOCK(1, NULL); 2676 (*ifp->if_slowtimo)(ifp); 2677 KERNEL_UNLOCK_ONE(NULL); 2678 splx(s); 2679 2680 mutex_enter(&isd->isd_lock); 2681 if (isd->isd_trigger) { 2682 isd->isd_trigger = false; 2683 printf("%s: watchdog triggered\n", ifp->if_xname); 2684 } 2685 isd->isd_queued = false; 2686 if (!isd->isd_dying) 2687 callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ); 2688 mutex_exit(&isd->isd_lock); 2689 } 2690 2691 static int 2692 sysctl_if_watchdog(SYSCTLFN_ARGS) 2693 { 2694 struct sysctlnode node = *rnode; 2695 struct ifnet *ifp = node.sysctl_data; 2696 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 2697 int arg = 0; 2698 int error; 2699 2700 node.sysctl_data = &arg; 2701 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2702 if (error || newp == NULL) 2703 return error; 2704 if (arg) { 2705 mutex_enter(&isd->isd_lock); 2706 KASSERT(!isd->isd_dying); 2707 isd->isd_trigger = true; 2708 callout_schedule(&isd->isd_ch, 0); 2709 mutex_exit(&isd->isd_lock); 2710 } 2711 2712 return 0; 2713 } 2714 2715 static void 2716 sysctl_watchdog_setup(struct ifnet *ifp) 2717 { 2718 struct sysctllog **clog = &ifp->if_sysctl_log; 2719 const struct sysctlnode *rnode; 2720 2721 if (sysctl_createv(clog, 0, NULL, &rnode, 2722 CTLFLAG_PERMANENT, CTLTYPE_NODE, "interfaces", 2723 SYSCTL_DESCR("Per-interface controls"), 2724 NULL, 0, NULL, 0, 2725 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 2726 goto bad; 2727 if (sysctl_createv(clog, 0, &rnode, &rnode, 2728 CTLFLAG_PERMANENT, CTLTYPE_NODE, ifp->if_xname, 2729 SYSCTL_DESCR("Interface controls"), 2730 NULL, 0, NULL, 0, 2731 CTL_CREATE, CTL_EOL) != 0) 2732 goto bad; 2733 if (sysctl_createv(clog, 0, &rnode, &rnode, 2734 CTLFLAG_PERMANENT, CTLTYPE_NODE, "watchdog", 2735 SYSCTL_DESCR("Interface watchdog controls"), 2736 NULL, 0, NULL, 0, 2737 CTL_CREATE, CTL_EOL) != 0) 2738 goto bad; 2739 if (sysctl_createv(clog, 0, &rnode, NULL, 2740 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "trigger", 2741 SYSCTL_DESCR("Trigger watchdog timeout"), 2742 sysctl_if_watchdog, 0, (int *)ifp, 0, 2743 CTL_CREATE, CTL_EOL) != 0) 2744 goto bad; 2745 2746 return; 2747 2748 bad: 2749 printf("%s: could not attach sysctl watchdog nodes\n", ifp->if_xname); 2750 } 2751 2752 /* 2753 * Mark an interface up and notify protocols of 2754 * the transition. 2755 * NOTE: must be called at splsoftnet or equivalent. 2756 */ 2757 void 2758 if_up(struct ifnet *ifp) 2759 { 2760 2761 IFNET_LOCK(ifp); 2762 if_up_locked(ifp); 2763 IFNET_UNLOCK(ifp); 2764 } 2765 2766 /* 2767 * Set/clear promiscuous mode on interface ifp based on the truth value 2768 * of pswitch. The calls are reference counted so that only the first 2769 * "on" request actually has an effect, as does the final "off" request. 2770 * Results are undefined if the "off" and "on" requests are not matched. 2771 */ 2772 int 2773 ifpromisc_locked(struct ifnet *ifp, int pswitch) 2774 { 2775 int pcount, ret = 0; 2776 u_short nflags; 2777 2778 KASSERT(IFNET_LOCKED(ifp)); 2779 2780 pcount = ifp->if_pcount; 2781 if (pswitch) { 2782 /* 2783 * Allow the device to be "placed" into promiscuous 2784 * mode even if it is not configured up. It will 2785 * consult IFF_PROMISC when it is brought up. 2786 */ 2787 if (ifp->if_pcount++ != 0) 2788 goto out; 2789 nflags = ifp->if_flags | IFF_PROMISC; 2790 } else { 2791 if (--ifp->if_pcount > 0) 2792 goto out; 2793 nflags = ifp->if_flags & ~IFF_PROMISC; 2794 } 2795 ret = if_flags_set(ifp, nflags); 2796 /* Restore interface state if not successful. */ 2797 if (ret != 0) 2798 ifp->if_pcount = pcount; 2799 2800 out: 2801 return ret; 2802 } 2803 2804 int 2805 ifpromisc(struct ifnet *ifp, int pswitch) 2806 { 2807 int e; 2808 2809 IFNET_LOCK(ifp); 2810 e = ifpromisc_locked(ifp, pswitch); 2811 IFNET_UNLOCK(ifp); 2812 2813 return e; 2814 } 2815 2816 /* 2817 * if_ioctl(ifp, cmd, data) 2818 * 2819 * Apply an ioctl command to the interface. Returns 0 on success, 2820 * nonzero errno(3) number on failure. 2821 * 2822 * For SIOCADDMULTI/SIOCDELMULTI, caller need not hold locks -- it 2823 * is the driver's responsibility to take any internal locks. 2824 * (Kernel logic should generally invoke these only through 2825 * if_mcast_op.) 2826 * 2827 * For all other ioctls, caller must hold ifp->if_ioctl_lock, 2828 * a.k.a. IFNET_LOCK. May sleep. 2829 */ 2830 int 2831 if_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2832 { 2833 2834 switch (cmd) { 2835 case SIOCADDMULTI: 2836 case SIOCDELMULTI: 2837 break; 2838 default: 2839 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2840 } 2841 2842 return (*ifp->if_ioctl)(ifp, cmd, data); 2843 } 2844 2845 /* 2846 * if_init(ifp) 2847 * 2848 * Prepare the hardware underlying ifp to process packets 2849 * according to its current configuration. Returns 0 on success, 2850 * nonzero errno(3) number on failure. 2851 * 2852 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 2853 * IFNET_LOCK. 2854 */ 2855 int 2856 if_init(struct ifnet *ifp) 2857 { 2858 2859 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2860 2861 return (*ifp->if_init)(ifp); 2862 } 2863 2864 /* 2865 * if_stop(ifp, disable) 2866 * 2867 * Stop the hardware underlying ifp from processing packets. 2868 * 2869 * If disable is true, ... XXX(?) 2870 * 2871 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 2872 * IFNET_LOCK. 2873 */ 2874 void 2875 if_stop(struct ifnet *ifp, int disable) 2876 { 2877 2878 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2879 2880 (*ifp->if_stop)(ifp, disable); 2881 } 2882 2883 /* 2884 * Map interface name to 2885 * interface structure pointer. 2886 */ 2887 struct ifnet * 2888 ifunit(const char *name) 2889 { 2890 struct ifnet *ifp; 2891 const char *cp = name; 2892 u_int unit = 0; 2893 u_int i; 2894 2895 /* 2896 * If the entire name is a number, treat it as an ifindex. 2897 */ 2898 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) 2899 unit = unit * 10 + (*cp - '0'); 2900 2901 /* 2902 * If the number took all of the name, then it's a valid ifindex. 2903 */ 2904 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2905 return if_byindex(unit); 2906 2907 ifp = NULL; 2908 const int s = pserialize_read_enter(); 2909 IFNET_READER_FOREACH(ifp) { 2910 if (if_is_deactivated(ifp)) 2911 continue; 2912 if (strcmp(ifp->if_xname, name) == 0) 2913 goto out; 2914 } 2915 out: 2916 pserialize_read_exit(s); 2917 return ifp; 2918 } 2919 2920 /* 2921 * Get a reference of an ifnet object by an interface name. 2922 * The returned reference is protected by psref(9). The caller 2923 * must release a returned reference by if_put after use. 2924 */ 2925 struct ifnet * 2926 if_get(const char *name, struct psref *psref) 2927 { 2928 struct ifnet *ifp; 2929 const char *cp = name; 2930 u_int unit = 0; 2931 u_int i; 2932 2933 /* 2934 * If the entire name is a number, treat it as an ifindex. 2935 */ 2936 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) 2937 unit = unit * 10 + (*cp - '0'); 2938 2939 /* 2940 * If the number took all of the name, then it's a valid ifindex. 2941 */ 2942 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2943 return if_get_byindex(unit, psref); 2944 2945 ifp = NULL; 2946 const int s = pserialize_read_enter(); 2947 IFNET_READER_FOREACH(ifp) { 2948 if (if_is_deactivated(ifp)) 2949 continue; 2950 if (strcmp(ifp->if_xname, name) == 0) { 2951 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 2952 psref_acquire(psref, &ifp->if_psref, 2953 ifnet_psref_class); 2954 goto out; 2955 } 2956 } 2957 out: 2958 pserialize_read_exit(s); 2959 return ifp; 2960 } 2961 2962 /* 2963 * Release a reference of an ifnet object given by if_get, if_get_byindex 2964 * or if_get_bylla. 2965 */ 2966 void 2967 if_put(const struct ifnet *ifp, struct psref *psref) 2968 { 2969 2970 if (ifp == NULL) 2971 return; 2972 2973 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2974 } 2975 2976 /* 2977 * Return ifp having idx. Return NULL if not found. Normally if_byindex 2978 * should be used. 2979 */ 2980 ifnet_t * 2981 _if_byindex(u_int idx) 2982 { 2983 2984 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2985 } 2986 2987 /* 2988 * Return ifp having idx. Return NULL if not found or the found ifp is 2989 * already deactivated. 2990 */ 2991 ifnet_t * 2992 if_byindex(u_int idx) 2993 { 2994 ifnet_t *ifp; 2995 2996 ifp = _if_byindex(idx); 2997 if (ifp != NULL && if_is_deactivated(ifp)) 2998 ifp = NULL; 2999 return ifp; 3000 } 3001 3002 /* 3003 * Get a reference of an ifnet object by an interface index. 3004 * The returned reference is protected by psref(9). The caller 3005 * must release a returned reference by if_put after use. 3006 */ 3007 ifnet_t * 3008 if_get_byindex(u_int idx, struct psref *psref) 3009 { 3010 ifnet_t *ifp; 3011 3012 const int s = pserialize_read_enter(); 3013 ifp = if_byindex(idx); 3014 if (__predict_true(ifp != NULL)) { 3015 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 3016 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 3017 } 3018 pserialize_read_exit(s); 3019 3020 return ifp; 3021 } 3022 3023 ifnet_t * 3024 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref) 3025 { 3026 ifnet_t *ifp; 3027 3028 const int s = pserialize_read_enter(); 3029 IFNET_READER_FOREACH(ifp) { 3030 if (if_is_deactivated(ifp)) 3031 continue; 3032 if (ifp->if_addrlen != lla_len) 3033 continue; 3034 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) { 3035 psref_acquire(psref, &ifp->if_psref, 3036 ifnet_psref_class); 3037 break; 3038 } 3039 } 3040 pserialize_read_exit(s); 3041 3042 return ifp; 3043 } 3044 3045 /* 3046 * Note that it's safe only if the passed ifp is guaranteed to not be freed, 3047 * for example using pserialize or the ifp is already held or some other 3048 * object is held which guarantes the ifp to not be freed indirectly. 3049 */ 3050 void 3051 if_acquire(struct ifnet *ifp, struct psref *psref) 3052 { 3053 3054 KASSERT(ifp->if_index != 0); 3055 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 3056 } 3057 3058 bool 3059 if_held(struct ifnet *ifp) 3060 { 3061 3062 return psref_held(&ifp->if_psref, ifnet_psref_class); 3063 } 3064 3065 /* 3066 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over 3067 * IPv4. Check the tunnel nesting count. 3068 * Return > 0, if tunnel nesting count is more than limit. 3069 * Return 0, if tunnel nesting count is equal or less than limit. 3070 */ 3071 int 3072 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit) 3073 { 3074 struct m_tag *mtag; 3075 int *count; 3076 3077 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO); 3078 if (mtag != NULL) { 3079 count = (int *)(mtag + 1); 3080 if (++(*count) > limit) { 3081 log(LOG_NOTICE, 3082 "%s: recursively called too many times(%d)\n", 3083 ifp->if_xname, *count); 3084 return EIO; 3085 } 3086 } else { 3087 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count), 3088 M_NOWAIT); 3089 if (mtag != NULL) { 3090 m_tag_prepend(m, mtag); 3091 count = (int *)(mtag + 1); 3092 *count = 0; 3093 } else { 3094 log(LOG_DEBUG, "%s: m_tag_get() failed, " 3095 "recursion calls are not prevented.\n", 3096 ifp->if_xname); 3097 } 3098 } 3099 3100 return 0; 3101 } 3102 3103 static void 3104 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 3105 { 3106 struct tunnel_ro *tro = p; 3107 3108 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP); 3109 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 3110 } 3111 3112 static void 3113 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 3114 { 3115 struct tunnel_ro *tro = p; 3116 3117 rtcache_free(tro->tr_ro); 3118 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro)); 3119 3120 mutex_obj_free(tro->tr_lock); 3121 } 3122 3123 percpu_t * 3124 if_tunnel_alloc_ro_percpu(void) 3125 { 3126 3127 return percpu_create(sizeof(struct tunnel_ro), 3128 if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL); 3129 } 3130 3131 void 3132 if_tunnel_free_ro_percpu(percpu_t *ro_percpu) 3133 { 3134 3135 percpu_free(ro_percpu, sizeof(struct tunnel_ro)); 3136 } 3137 3138 3139 static void 3140 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, 3141 struct cpu_info *ci __unused) 3142 { 3143 struct tunnel_ro *tro = p; 3144 3145 mutex_enter(tro->tr_lock); 3146 rtcache_free(tro->tr_ro); 3147 mutex_exit(tro->tr_lock); 3148 } 3149 3150 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu) 3151 { 3152 3153 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL); 3154 } 3155 3156 void 3157 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats) 3158 { 3159 3160 /* Collect the volatile stats first; this zeros *ifi. */ 3161 if_stats_to_if_data(ifp, ifi, zero_stats); 3162 3163 ifi->ifi_type = ifp->if_type; 3164 ifi->ifi_addrlen = ifp->if_addrlen; 3165 ifi->ifi_hdrlen = ifp->if_hdrlen; 3166 ifi->ifi_link_state = ifp->if_link_state; 3167 ifi->ifi_mtu = ifp->if_mtu; 3168 ifi->ifi_metric = ifp->if_metric; 3169 ifi->ifi_baudrate = ifp->if_baudrate; 3170 ifi->ifi_lastchange = ifp->if_lastchange; 3171 } 3172 3173 /* common */ 3174 int 3175 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 3176 { 3177 struct ifreq *ifr; 3178 struct ifcapreq *ifcr; 3179 struct ifdatareq *ifdr; 3180 unsigned short flags; 3181 char *descr; 3182 int error; 3183 3184 switch (cmd) { 3185 case SIOCSIFCAP: 3186 ifcr = data; 3187 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 3188 return EINVAL; 3189 3190 if (ifcr->ifcr_capenable == ifp->if_capenable) 3191 return 0; 3192 3193 ifp->if_capenable = ifcr->ifcr_capenable; 3194 3195 /* Pre-compute the checksum flags mask. */ 3196 ifp->if_csum_flags_tx = 0; 3197 ifp->if_csum_flags_rx = 0; 3198 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) 3199 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 3200 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 3201 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 3202 3203 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) 3204 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 3205 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) 3206 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 3207 3208 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) 3209 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 3210 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) 3211 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 3212 3213 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) 3214 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 3215 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) 3216 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 3217 3218 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) 3219 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 3220 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) 3221 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 3222 3223 if (ifp->if_capenable & IFCAP_TSOv4) 3224 ifp->if_csum_flags_tx |= M_CSUM_TSOv4; 3225 if (ifp->if_capenable & IFCAP_TSOv6) 3226 ifp->if_csum_flags_tx |= M_CSUM_TSOv6; 3227 3228 #if NBRIDGE > 0 3229 if (ifp->if_bridge != NULL) 3230 bridge_calc_csum_flags(ifp->if_bridge); 3231 #endif 3232 3233 if (ifp->if_flags & IFF_UP) 3234 return ENETRESET; 3235 return 0; 3236 case SIOCSIFFLAGS: 3237 ifr = data; 3238 /* 3239 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up 3240 * and if_down aren't MP-safe yet, so we must hold the lock. 3241 */ 3242 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3243 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 3244 const int s = splsoftnet(); 3245 if_down_locked(ifp); 3246 splx(s); 3247 } 3248 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 3249 const int s = splsoftnet(); 3250 if_up_locked(ifp); 3251 splx(s); 3252 } 3253 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3254 flags = (ifp->if_flags & IFF_CANTCHANGE) | 3255 (ifr->ifr_flags &~ IFF_CANTCHANGE); 3256 if (ifp->if_flags != flags) { 3257 ifp->if_flags = flags; 3258 /* Notify that the flags have changed. */ 3259 rt_ifmsg(ifp); 3260 } 3261 break; 3262 case SIOCGIFFLAGS: 3263 ifr = data; 3264 ifr->ifr_flags = ifp->if_flags; 3265 break; 3266 3267 case SIOCGIFMETRIC: 3268 ifr = data; 3269 ifr->ifr_metric = ifp->if_metric; 3270 break; 3271 3272 case SIOCGIFMTU: 3273 ifr = data; 3274 ifr->ifr_mtu = ifp->if_mtu; 3275 break; 3276 3277 case SIOCGIFDLT: 3278 ifr = data; 3279 ifr->ifr_dlt = ifp->if_dlt; 3280 break; 3281 3282 case SIOCGIFCAP: 3283 ifcr = data; 3284 ifcr->ifcr_capabilities = ifp->if_capabilities; 3285 ifcr->ifcr_capenable = ifp->if_capenable; 3286 break; 3287 3288 case SIOCSIFMETRIC: 3289 ifr = data; 3290 ifp->if_metric = ifr->ifr_metric; 3291 break; 3292 3293 case SIOCGIFDATA: 3294 ifdr = data; 3295 if_export_if_data(ifp, &ifdr->ifdr_data, false); 3296 break; 3297 3298 case SIOCGIFINDEX: 3299 ifr = data; 3300 ifr->ifr_index = ifp->if_index; 3301 break; 3302 3303 case SIOCZIFDATA: 3304 ifdr = data; 3305 if_export_if_data(ifp, &ifdr->ifdr_data, true); 3306 getnanotime(&ifp->if_lastchange); 3307 break; 3308 case SIOCSIFMTU: 3309 ifr = data; 3310 if (ifp->if_mtu == ifr->ifr_mtu) 3311 break; 3312 ifp->if_mtu = ifr->ifr_mtu; 3313 return ENETRESET; 3314 case SIOCSIFDESCR: 3315 error = kauth_authorize_network(kauth_cred_get(), 3316 KAUTH_NETWORK_INTERFACE, 3317 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3318 NULL); 3319 if (error) 3320 return error; 3321 3322 ifr = data; 3323 3324 if (ifr->ifr_buflen > IFDESCRSIZE) 3325 return ENAMETOOLONG; 3326 3327 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) { 3328 /* unset description */ 3329 descr = NULL; 3330 } else { 3331 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP); 3332 /* 3333 * copy (IFDESCRSIZE - 1) bytes to ensure 3334 * terminating nul 3335 */ 3336 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1); 3337 if (error) { 3338 kmem_free(descr, IFDESCRSIZE); 3339 return error; 3340 } 3341 } 3342 3343 if (ifp->if_description != NULL) 3344 kmem_free(ifp->if_description, IFDESCRSIZE); 3345 3346 ifp->if_description = descr; 3347 break; 3348 3349 case SIOCGIFDESCR: 3350 ifr = data; 3351 descr = ifp->if_description; 3352 3353 if (descr == NULL) 3354 return ENOMSG; 3355 3356 if (ifr->ifr_buflen < IFDESCRSIZE) 3357 return EINVAL; 3358 3359 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE); 3360 if (error) 3361 return error; 3362 break; 3363 3364 default: 3365 return ENOTTY; 3366 } 3367 return 0; 3368 } 3369 3370 int 3371 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 3372 { 3373 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 3374 struct ifaddr *ifa; 3375 const struct sockaddr *any, *sa; 3376 union { 3377 struct sockaddr sa; 3378 struct sockaddr_storage ss; 3379 } u, v; 3380 int s, error = 0; 3381 3382 switch (cmd) { 3383 case SIOCSIFADDRPREF: 3384 error = kauth_authorize_network(kauth_cred_get(), 3385 KAUTH_NETWORK_INTERFACE, 3386 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3387 NULL); 3388 if (error) 3389 return error; 3390 break; 3391 case SIOCGIFADDRPREF: 3392 break; 3393 default: 3394 return EOPNOTSUPP; 3395 } 3396 3397 /* sanity checks */ 3398 if (data == NULL || ifp == NULL) { 3399 panic("invalid argument to %s", __func__); 3400 /*NOTREACHED*/ 3401 } 3402 3403 /* address must be specified on ADD and DELETE */ 3404 sa = sstocsa(&ifap->ifap_addr); 3405 if (sa->sa_family != sofamily(so)) 3406 return EINVAL; 3407 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 3408 return EINVAL; 3409 3410 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 3411 3412 s = pserialize_read_enter(); 3413 IFADDR_READER_FOREACH(ifa, ifp) { 3414 if (ifa->ifa_addr->sa_family != sa->sa_family) 3415 continue; 3416 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 3417 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 3418 break; 3419 } 3420 if (ifa == NULL) { 3421 error = EADDRNOTAVAIL; 3422 goto out; 3423 } 3424 3425 switch (cmd) { 3426 case SIOCSIFADDRPREF: 3427 ifa->ifa_preference = ifap->ifap_preference; 3428 goto out; 3429 case SIOCGIFADDRPREF: 3430 /* fill in the if_laddrreq structure */ 3431 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 3432 sizeof(ifap->ifap_addr), ifa->ifa_addr); 3433 ifap->ifap_preference = ifa->ifa_preference; 3434 goto out; 3435 default: 3436 error = EOPNOTSUPP; 3437 } 3438 out: 3439 pserialize_read_exit(s); 3440 return error; 3441 } 3442 3443 /* 3444 * Interface ioctls. 3445 */ 3446 static int 3447 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 3448 { 3449 struct ifnet *ifp; 3450 struct ifreq *ifr; 3451 int error = 0; 3452 u_long ocmd = cmd; 3453 u_short oif_flags; 3454 struct ifreq ifrb; 3455 struct oifreq *oifr = NULL; 3456 int r; 3457 struct psref psref; 3458 bool do_if43_post = false; 3459 bool do_ifm80_post = false; 3460 3461 switch (cmd) { 3462 case SIOCGIFCONF: 3463 return ifconf(cmd, data); 3464 case SIOCINITIFADDR: 3465 return EPERM; 3466 default: 3467 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(), 3468 error); 3469 if (error != ENOSYS) 3470 return error; 3471 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data), 3472 enosys(), error); 3473 if (error != ENOSYS) 3474 return error; 3475 error = 0; 3476 break; 3477 } 3478 3479 ifr = data; 3480 /* Pre-conversion */ 3481 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error); 3482 if (cmd != ocmd) { 3483 oifr = data; 3484 data = ifr = &ifrb; 3485 IFREQO2N_43(oifr, ifr); 3486 do_if43_post = true; 3487 } 3488 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post), 3489 enosys(), error); 3490 3491 switch (cmd) { 3492 case SIOCIFCREATE: 3493 case SIOCIFDESTROY: { 3494 const int bound = curlwp_bind(); 3495 if (l != NULL) { 3496 ifp = if_get(ifr->ifr_name, &psref); 3497 error = kauth_authorize_network(l->l_cred, 3498 KAUTH_NETWORK_INTERFACE, 3499 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3500 KAUTH_ARG(cmd), NULL); 3501 if (ifp != NULL) 3502 if_put(ifp, &psref); 3503 if (error != 0) { 3504 curlwp_bindx(bound); 3505 return error; 3506 } 3507 } 3508 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3509 mutex_enter(&if_clone_mtx); 3510 r = (cmd == SIOCIFCREATE) ? 3511 if_clone_create(ifr->ifr_name) : 3512 if_clone_destroy(ifr->ifr_name); 3513 mutex_exit(&if_clone_mtx); 3514 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3515 curlwp_bindx(bound); 3516 return r; 3517 } 3518 case SIOCIFGCLONERS: { 3519 struct if_clonereq *req = (struct if_clonereq *)data; 3520 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 3521 &req->ifcr_total); 3522 } 3523 } 3524 3525 if ((cmd & IOC_IN) == 0 || IOCPARM_LEN(cmd) < sizeof(ifr->ifr_name)) 3526 return EINVAL; 3527 3528 const int bound = curlwp_bind(); 3529 ifp = if_get(ifr->ifr_name, &psref); 3530 if (ifp == NULL) { 3531 curlwp_bindx(bound); 3532 return ENXIO; 3533 } 3534 3535 switch (cmd) { 3536 case SIOCALIFADDR: 3537 case SIOCDLIFADDR: 3538 case SIOCSIFADDRPREF: 3539 case SIOCSIFFLAGS: 3540 case SIOCSIFCAP: 3541 case SIOCSIFMETRIC: 3542 case SIOCZIFDATA: 3543 case SIOCSIFMTU: 3544 case SIOCSIFPHYADDR: 3545 case SIOCDIFPHYADDR: 3546 #ifdef INET6 3547 case SIOCSIFPHYADDR_IN6: 3548 #endif 3549 case SIOCSLIFPHYADDR: 3550 case SIOCADDMULTI: 3551 case SIOCDELMULTI: 3552 case SIOCSETHERCAP: 3553 case SIOCSIFMEDIA: 3554 case SIOCSDRVSPEC: 3555 case SIOCG80211: 3556 case SIOCS80211: 3557 case SIOCS80211NWID: 3558 case SIOCS80211NWKEY: 3559 case SIOCS80211POWER: 3560 case SIOCS80211BSSID: 3561 case SIOCS80211CHANNEL: 3562 case SIOCSLINKSTR: 3563 if (l != NULL) { 3564 error = kauth_authorize_network(l->l_cred, 3565 KAUTH_NETWORK_INTERFACE, 3566 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3567 KAUTH_ARG(cmd), NULL); 3568 if (error != 0) 3569 goto out; 3570 } 3571 } 3572 3573 oif_flags = ifp->if_flags; 3574 3575 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); 3576 IFNET_LOCK(ifp); 3577 3578 error = if_ioctl(ifp, cmd, data); 3579 if (error != ENOTTY) 3580 ; 3581 else if (so->so_proto == NULL) 3582 error = EOPNOTSUPP; 3583 else { 3584 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3585 MODULE_HOOK_CALL(if_ifioctl_43_hook, 3586 (so, ocmd, cmd, data, l), enosys(), error); 3587 if (error == ENOSYS) 3588 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 3589 cmd, data, ifp); 3590 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3591 } 3592 3593 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 3594 if ((ifp->if_flags & IFF_UP) != 0) { 3595 const int s = splsoftnet(); 3596 if_up_locked(ifp); 3597 splx(s); 3598 } 3599 } 3600 3601 /* Post-conversion */ 3602 if (do_ifm80_post && (error == 0)) 3603 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd), 3604 enosys(), error); 3605 if (do_if43_post) 3606 IFREQN2O_43(oifr, ifr); 3607 3608 IFNET_UNLOCK(ifp); 3609 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); 3610 out: 3611 if_put(ifp, &psref); 3612 curlwp_bindx(bound); 3613 return error; 3614 } 3615 3616 /* 3617 * Return interface configuration 3618 * of system. List may be used 3619 * in later ioctl's (above) to get 3620 * other information. 3621 * 3622 * Each record is a struct ifreq. Before the addition of 3623 * sockaddr_storage, the API rule was that sockaddr flavors that did 3624 * not fit would extend beyond the struct ifreq, with the next struct 3625 * ifreq starting sa_len beyond the struct sockaddr. Because the 3626 * union in struct ifreq includes struct sockaddr_storage, every kind 3627 * of sockaddr must fit. Thus, there are no longer any overlength 3628 * records. 3629 * 3630 * Records are added to the user buffer if they fit, and ifc_len is 3631 * adjusted to the length that was written. Thus, the user is only 3632 * assured of getting the complete list if ifc_len on return is at 3633 * least sizeof(struct ifreq) less than it was on entry. 3634 * 3635 * If the user buffer pointer is NULL, this routine copies no data and 3636 * returns the amount of space that would be needed. 3637 * 3638 * Invariants: 3639 * ifrp points to the next part of the user's buffer to be used. If 3640 * ifrp != NULL, space holds the number of bytes remaining that we may 3641 * write at ifrp. Otherwise, space holds the number of bytes that 3642 * would have been written had there been adequate space. 3643 */ 3644 /*ARGSUSED*/ 3645 static int 3646 ifconf(u_long cmd, void *data) 3647 { 3648 struct ifconf *ifc = (struct ifconf *)data; 3649 struct ifnet *ifp; 3650 struct ifaddr *ifa; 3651 struct ifreq ifr, *ifrp = NULL; 3652 int space = 0, error = 0; 3653 const int sz = (int)sizeof(struct ifreq); 3654 const bool docopy = ifc->ifc_req != NULL; 3655 struct psref psref; 3656 3657 if (docopy) { 3658 if (ifc->ifc_len < 0) 3659 return EINVAL; 3660 3661 space = ifc->ifc_len; 3662 ifrp = ifc->ifc_req; 3663 } 3664 memset(&ifr, 0, sizeof(ifr)); 3665 3666 const int bound = curlwp_bind(); 3667 int s = pserialize_read_enter(); 3668 IFNET_READER_FOREACH(ifp) { 3669 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3670 pserialize_read_exit(s); 3671 3672 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3673 sizeof(ifr.ifr_name)); 3674 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3675 error = ENAMETOOLONG; 3676 goto release_exit; 3677 } 3678 if (IFADDR_READER_EMPTY(ifp)) { 3679 /* Interface with no addresses - send zero sockaddr. */ 3680 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3681 if (!docopy) { 3682 space += sz; 3683 goto next; 3684 } 3685 if (space >= sz) { 3686 error = copyout(&ifr, ifrp, sz); 3687 if (error != 0) 3688 goto release_exit; 3689 ifrp++; 3690 space -= sz; 3691 } 3692 } 3693 3694 s = pserialize_read_enter(); 3695 IFADDR_READER_FOREACH(ifa, ifp) { 3696 struct sockaddr *sa = ifa->ifa_addr; 3697 /* all sockaddrs must fit in sockaddr_storage */ 3698 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3699 3700 if (!docopy) { 3701 space += sz; 3702 continue; 3703 } 3704 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3705 pserialize_read_exit(s); 3706 3707 if (space >= sz) { 3708 error = copyout(&ifr, ifrp, sz); 3709 if (error != 0) 3710 goto release_exit; 3711 ifrp++; space -= sz; 3712 } 3713 s = pserialize_read_enter(); 3714 } 3715 pserialize_read_exit(s); 3716 3717 next: 3718 s = pserialize_read_enter(); 3719 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3720 } 3721 pserialize_read_exit(s); 3722 curlwp_bindx(bound); 3723 3724 if (docopy) { 3725 KASSERT(0 <= space && space <= ifc->ifc_len); 3726 ifc->ifc_len -= space; 3727 } else { 3728 KASSERT(space >= 0); 3729 ifc->ifc_len = space; 3730 } 3731 return 0; 3732 3733 release_exit: 3734 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3735 curlwp_bindx(bound); 3736 return error; 3737 } 3738 3739 int 3740 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3741 { 3742 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space); 3743 struct ifreq ifrb; 3744 struct oifreq *oifr = NULL; 3745 u_long ocmd = cmd; 3746 int hook; 3747 3748 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook); 3749 if (hook != ENOSYS) { 3750 if (cmd != ocmd) { 3751 oifr = (struct oifreq *)(void *)ifr; 3752 ifr = &ifrb; 3753 IFREQO2N_43(oifr, ifr); 3754 len = sizeof(oifr->ifr_addr); 3755 } 3756 } 3757 3758 if (len < sa->sa_len) 3759 return EFBIG; 3760 3761 memset(&ifr->ifr_addr, 0, len); 3762 sockaddr_copy(&ifr->ifr_addr, len, sa); 3763 3764 if (cmd != ocmd) 3765 IFREQN2O_43(oifr, ifr); 3766 return 0; 3767 } 3768 3769 /* 3770 * wrapper function for the drivers which doesn't have if_transmit(). 3771 */ 3772 static int 3773 if_transmit(struct ifnet *ifp, struct mbuf *m) 3774 { 3775 int error; 3776 size_t pktlen = m->m_pkthdr.len; 3777 bool mcast = (m->m_flags & M_MCAST) != 0; 3778 3779 const int s = splnet(); 3780 3781 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3782 if (error != 0) { 3783 /* mbuf is already freed */ 3784 goto out; 3785 } 3786 3787 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 3788 if_statadd_ref(ifp, nsr, if_obytes, pktlen); 3789 if (mcast) 3790 if_statinc_ref(ifp, nsr, if_omcasts); 3791 IF_STAT_PUTREF(ifp); 3792 3793 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3794 if_start_lock(ifp); 3795 out: 3796 splx(s); 3797 3798 return error; 3799 } 3800 3801 int 3802 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3803 { 3804 int error; 3805 3806 kmsan_check_mbuf(m); 3807 3808 #ifdef ALTQ 3809 KERNEL_LOCK(1, NULL); 3810 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3811 error = if_transmit(ifp, m); 3812 KERNEL_UNLOCK_ONE(NULL); 3813 } else { 3814 KERNEL_UNLOCK_ONE(NULL); 3815 error = (*ifp->if_transmit)(ifp, m); 3816 /* mbuf is already freed */ 3817 } 3818 #else /* !ALTQ */ 3819 error = (*ifp->if_transmit)(ifp, m); 3820 /* mbuf is already freed */ 3821 #endif /* !ALTQ */ 3822 3823 return error; 3824 } 3825 3826 /* 3827 * Queue message on interface, and start output if interface 3828 * not yet active. 3829 */ 3830 int 3831 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3832 { 3833 3834 return if_transmit_lock(ifp, m); 3835 } 3836 3837 /* 3838 * Queue message on interface, possibly using a second fast queue 3839 */ 3840 int 3841 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3842 { 3843 int error = 0; 3844 3845 if (ifq != NULL 3846 #ifdef ALTQ 3847 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3848 #endif 3849 ) { 3850 if (IF_QFULL(ifq)) { 3851 IF_DROP(&ifp->if_snd); 3852 m_freem(m); 3853 if (error == 0) 3854 error = ENOBUFS; 3855 } else 3856 IF_ENQUEUE(ifq, m); 3857 } else 3858 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3859 if (error != 0) { 3860 if_statinc(ifp, if_oerrors); 3861 return error; 3862 } 3863 return 0; 3864 } 3865 3866 int 3867 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3868 { 3869 int rc; 3870 3871 KASSERT(IFNET_LOCKED(ifp)); 3872 if (ifp->if_initaddr != NULL) 3873 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3874 else if (src || (rc = if_ioctl(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3875 rc = if_ioctl(ifp, SIOCINITIFADDR, ifa); 3876 3877 return rc; 3878 } 3879 3880 int 3881 if_do_dad(struct ifnet *ifp) 3882 { 3883 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3884 return 0; 3885 3886 switch (ifp->if_type) { 3887 case IFT_FAITH: 3888 /* 3889 * These interfaces do not have the IFF_LOOPBACK flag, 3890 * but loop packets back. We do not have to do DAD on such 3891 * interfaces. We should even omit it, because loop-backed 3892 * responses would confuse the DAD procedure. 3893 */ 3894 return 0; 3895 default: 3896 /* 3897 * Our DAD routine requires the interface up and running. 3898 * However, some interfaces can be up before the RUNNING 3899 * status. Additionally, users may try to assign addresses 3900 * before the interface becomes up (or running). 3901 * We simply skip DAD in such a case as a work around. 3902 * XXX: we should rather mark "tentative" on such addresses, 3903 * and do DAD after the interface becomes ready. 3904 */ 3905 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 3906 (IFF_UP | IFF_RUNNING)) 3907 return 0; 3908 3909 return 1; 3910 } 3911 } 3912 3913 /* 3914 * if_flags_set(ifp, flags) 3915 * 3916 * Ask ifp to change ifp->if_flags to flags, as if with the 3917 * SIOCSIFFLAGS ioctl command. 3918 * 3919 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 3920 * IFNET_LOCK. 3921 */ 3922 int 3923 if_flags_set(ifnet_t *ifp, const u_short flags) 3924 { 3925 int rc; 3926 3927 KASSERT(IFNET_LOCKED(ifp)); 3928 3929 if (ifp->if_setflags != NULL) 3930 rc = (*ifp->if_setflags)(ifp, flags); 3931 else { 3932 u_short cantflags, chgdflags; 3933 struct ifreq ifr; 3934 3935 chgdflags = ifp->if_flags ^ flags; 3936 cantflags = chgdflags & IFF_CANTCHANGE; 3937 3938 if (cantflags != 0) 3939 ifp->if_flags ^= cantflags; 3940 3941 /* 3942 * Traditionally, we do not call if_ioctl after 3943 * setting/clearing only IFF_PROMISC if the interface 3944 * isn't IFF_UP. Uphold that tradition. 3945 */ 3946 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3947 return 0; 3948 3949 memset(&ifr, 0, sizeof(ifr)); 3950 3951 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3952 rc = if_ioctl(ifp, SIOCSIFFLAGS, &ifr); 3953 3954 if (rc != 0 && cantflags != 0) 3955 ifp->if_flags ^= cantflags; 3956 } 3957 3958 return rc; 3959 } 3960 3961 /* 3962 * if_mcast_op(ifp, cmd, sa) 3963 * 3964 * Apply a multicast command, SIOCADDMULTI/SIOCDELMULTI, to the 3965 * interface. Returns 0 on success, nonzero errno(3) number on 3966 * failure. 3967 * 3968 * May sleep. 3969 * 3970 * Use this, not if_ioctl, for the multicast commands. 3971 */ 3972 int 3973 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3974 { 3975 int rc; 3976 struct ifreq ifr; 3977 3978 switch (cmd) { 3979 case SIOCADDMULTI: 3980 case SIOCDELMULTI: 3981 break; 3982 default: 3983 panic("invalid ifnet multicast command: 0x%lx", cmd); 3984 } 3985 3986 ifreq_setaddr(cmd, &ifr, sa); 3987 rc = if_ioctl(ifp, cmd, &ifr); 3988 3989 return rc; 3990 } 3991 3992 static void 3993 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3994 struct ifaltq *ifq) 3995 { 3996 const struct sysctlnode *cnode, *rnode; 3997 3998 if (sysctl_createv(clog, 0, NULL, &rnode, 3999 CTLFLAG_PERMANENT, 4000 CTLTYPE_NODE, "interfaces", 4001 SYSCTL_DESCR("Per-interface controls"), 4002 NULL, 0, NULL, 0, 4003 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 4004 goto bad; 4005 4006 if (sysctl_createv(clog, 0, &rnode, &rnode, 4007 CTLFLAG_PERMANENT, 4008 CTLTYPE_NODE, ifname, 4009 SYSCTL_DESCR("Interface controls"), 4010 NULL, 0, NULL, 0, 4011 CTL_CREATE, CTL_EOL) != 0) 4012 goto bad; 4013 4014 if (sysctl_createv(clog, 0, &rnode, &rnode, 4015 CTLFLAG_PERMANENT, 4016 CTLTYPE_NODE, "sndq", 4017 SYSCTL_DESCR("Interface output queue controls"), 4018 NULL, 0, NULL, 0, 4019 CTL_CREATE, CTL_EOL) != 0) 4020 goto bad; 4021 4022 if (sysctl_createv(clog, 0, &rnode, &cnode, 4023 CTLFLAG_PERMANENT, 4024 CTLTYPE_INT, "len", 4025 SYSCTL_DESCR("Current output queue length"), 4026 NULL, 0, &ifq->ifq_len, 0, 4027 CTL_CREATE, CTL_EOL) != 0) 4028 goto bad; 4029 4030 if (sysctl_createv(clog, 0, &rnode, &cnode, 4031 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 4032 CTLTYPE_INT, "maxlen", 4033 SYSCTL_DESCR("Maximum allowed output queue length"), 4034 NULL, 0, &ifq->ifq_maxlen, 0, 4035 CTL_CREATE, CTL_EOL) != 0) 4036 goto bad; 4037 4038 if (sysctl_createv(clog, 0, &rnode, &cnode, 4039 CTLFLAG_PERMANENT, 4040 CTLTYPE_QUAD, "drops", 4041 SYSCTL_DESCR("Packets dropped due to full output queue"), 4042 NULL, 0, &ifq->ifq_drops, 0, 4043 CTL_CREATE, CTL_EOL) != 0) 4044 goto bad; 4045 4046 return; 4047 bad: 4048 printf("%s: could not attach sysctl nodes\n", ifname); 4049 return; 4050 } 4051 4052 static int 4053 if_sdl_sysctl(SYSCTLFN_ARGS) 4054 { 4055 struct ifnet *ifp; 4056 const struct sockaddr_dl *sdl; 4057 struct psref psref; 4058 int error = 0; 4059 4060 if (namelen != 1) 4061 return EINVAL; 4062 4063 const int bound = curlwp_bind(); 4064 ifp = if_get_byindex(name[0], &psref); 4065 if (ifp == NULL) { 4066 error = ENODEV; 4067 goto out0; 4068 } 4069 4070 sdl = ifp->if_sadl; 4071 if (sdl == NULL) { 4072 *oldlenp = 0; 4073 goto out1; 4074 } 4075 4076 if (oldp == NULL) { 4077 *oldlenp = sdl->sdl_alen; 4078 goto out1; 4079 } 4080 4081 if (*oldlenp >= sdl->sdl_alen) 4082 *oldlenp = sdl->sdl_alen; 4083 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], 4084 oldp, *oldlenp); 4085 out1: 4086 if_put(ifp, &psref); 4087 out0: 4088 curlwp_bindx(bound); 4089 return error; 4090 } 4091 4092 static void 4093 if_sysctl_setup(struct sysctllog **clog) 4094 { 4095 const struct sysctlnode *rnode = NULL; 4096 4097 sysctl_createv(clog, 0, NULL, &rnode, 4098 CTLFLAG_PERMANENT, 4099 CTLTYPE_NODE, "sdl", 4100 SYSCTL_DESCR("Get active link-layer address"), 4101 if_sdl_sysctl, 0, NULL, 0, 4102 CTL_NET, CTL_CREATE, CTL_EOL); 4103 } 4104