1 /* $NetBSD: if.c,v 1.430 2018/07/09 14:54:01 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.430 2018/07/09 14:54:01 christos Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 #include "opt_atalk.h" 99 #include "opt_natm.h" 100 #include "opt_wlan.h" 101 #include "opt_net_mpsafe.h" 102 #include "opt_mrouting.h" 103 #endif 104 105 #include <sys/param.h> 106 #include <sys/mbuf.h> 107 #include <sys/systm.h> 108 #include <sys/callout.h> 109 #include <sys/proc.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/domain.h> 113 #include <sys/protosw.h> 114 #include <sys/kernel.h> 115 #include <sys/ioctl.h> 116 #include <sys/sysctl.h> 117 #include <sys/syslog.h> 118 #include <sys/kauth.h> 119 #include <sys/kmem.h> 120 #include <sys/xcall.h> 121 #include <sys/cpu.h> 122 #include <sys/intr.h> 123 124 #include <net/if.h> 125 #include <net/if_dl.h> 126 #include <net/if_ether.h> 127 #include <net/if_media.h> 128 #include <net80211/ieee80211.h> 129 #include <net80211/ieee80211_ioctl.h> 130 #include <net/if_types.h> 131 #include <net/route.h> 132 #include <net/netisr.h> 133 #include <sys/module.h> 134 #ifdef NETATALK 135 #include <netatalk/at_extern.h> 136 #include <netatalk/at.h> 137 #endif 138 #include <net/pfil.h> 139 #include <netinet/in.h> 140 #include <netinet/in_var.h> 141 #include <netinet/ip_encap.h> 142 #include <net/bpf.h> 143 144 #ifdef INET6 145 #include <netinet6/in6_var.h> 146 #include <netinet6/nd6.h> 147 #endif 148 149 #include "ether.h" 150 #include "fddi.h" 151 #include "token.h" 152 153 #include "carp.h" 154 #if NCARP > 0 155 #include <netinet/ip_carp.h> 156 #endif 157 158 #include <compat/sys/sockio.h> 159 #include <compat/sys/socket.h> 160 161 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 162 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 163 164 /* 165 * Global list of interfaces. 166 */ 167 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 168 struct ifnet_head ifnet_list; 169 170 struct pslist_head ifnet_pslist; 171 static ifnet_t ** ifindex2ifnet = NULL; 172 static u_int if_index = 1; 173 static size_t if_indexlim = 0; 174 static uint64_t index_gen; 175 /* Mutex to protect the above objects. */ 176 kmutex_t ifnet_mtx __cacheline_aligned; 177 static struct psref_class *ifnet_psref_class __read_mostly; 178 static pserialize_t ifnet_psz; 179 180 static kmutex_t if_clone_mtx; 181 182 struct ifnet *lo0ifp; 183 int ifqmaxlen = IFQ_MAXLEN; 184 185 struct psref_class *ifa_psref_class __read_mostly; 186 187 static int if_delroute_matcher(struct rtentry *, void *); 188 189 static bool if_is_unit(const char *); 190 static struct if_clone *if_clone_lookup(const char *, int *); 191 192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 193 static int if_cloners_count; 194 195 /* Packet filtering hook for interfaces. */ 196 pfil_head_t * if_pfil __read_mostly; 197 198 static kauth_listener_t if_listener; 199 200 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 201 static void if_detach_queues(struct ifnet *, struct ifqueue *); 202 static void sysctl_sndq_setup(struct sysctllog **, const char *, 203 struct ifaltq *); 204 static void if_slowtimo(void *); 205 static void if_free_sadl(struct ifnet *, int); 206 static void if_attachdomain1(struct ifnet *); 207 static int ifconf(u_long, void *); 208 static int if_transmit(struct ifnet *, struct mbuf *); 209 static int if_clone_create(const char *); 210 static int if_clone_destroy(const char *); 211 static void if_link_state_change_si(void *); 212 static void if_up_locked(struct ifnet *); 213 static void _if_down(struct ifnet *); 214 static void if_down_deactivated(struct ifnet *); 215 216 struct if_percpuq { 217 struct ifnet *ipq_ifp; 218 void *ipq_si; 219 struct percpu *ipq_ifqs; /* struct ifqueue */ 220 }; 221 222 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 223 224 static void if_percpuq_drops(void *, void *, struct cpu_info *); 225 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 226 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 227 struct if_percpuq *); 228 229 struct if_deferred_start { 230 struct ifnet *ids_ifp; 231 void (*ids_if_start)(struct ifnet *); 232 void *ids_si; 233 }; 234 235 static void if_deferred_start_softint(void *); 236 static void if_deferred_start_common(struct ifnet *); 237 static void if_deferred_start_destroy(struct ifnet *); 238 239 #if defined(INET) || defined(INET6) 240 static void sysctl_net_pktq_setup(struct sysctllog **, int); 241 #endif 242 243 static void if_sysctl_setup(struct sysctllog **); 244 245 /* Compatibility vector functions */ 246 u_long (*vec_compat_cvtcmd)(u_long) = NULL; 247 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *, 248 struct lwp *) = NULL; 249 int (*vec_compat_ifconf)(struct lwp *, u_long, void *) = (void *)enosys; 250 int (*vec_compat_ifdatareq)(struct lwp *, u_long, void *) = (void *)enosys; 251 252 static int 253 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 254 void *arg0, void *arg1, void *arg2, void *arg3) 255 { 256 int result; 257 enum kauth_network_req req; 258 259 result = KAUTH_RESULT_DEFER; 260 req = (enum kauth_network_req)arg1; 261 262 if (action != KAUTH_NETWORK_INTERFACE) 263 return result; 264 265 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 266 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 267 result = KAUTH_RESULT_ALLOW; 268 269 return result; 270 } 271 272 /* 273 * Network interface utility routines. 274 * 275 * Routines with ifa_ifwith* names take sockaddr *'s as 276 * parameters. 277 */ 278 void 279 ifinit(void) 280 { 281 282 #if (defined(INET) || defined(INET6)) 283 encapinit(); 284 #endif 285 286 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 287 if_listener_cb, NULL); 288 289 /* interfaces are available, inform socket code */ 290 ifioctl = doifioctl; 291 } 292 293 /* 294 * XXX Initialization before configure(). 295 * XXX hack to get pfil_add_hook working in autoconf. 296 */ 297 void 298 ifinit1(void) 299 { 300 301 #ifdef NET_MPSAFE 302 printf("NET_MPSAFE enabled\n"); 303 #endif 304 305 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 306 307 TAILQ_INIT(&ifnet_list); 308 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 309 ifnet_psz = pserialize_create(); 310 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 311 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 312 PSLIST_INIT(&ifnet_pslist); 313 314 if_indexlim = 8; 315 316 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 317 KASSERT(if_pfil != NULL); 318 319 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN) 320 etherinit(); 321 #endif 322 } 323 324 /* XXX must be after domaininit() */ 325 void 326 ifinit_post(void) 327 { 328 329 if_sysctl_setup(NULL); 330 } 331 332 ifnet_t * 333 if_alloc(u_char type) 334 { 335 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 336 } 337 338 void 339 if_free(ifnet_t *ifp) 340 { 341 kmem_free(ifp, sizeof(ifnet_t)); 342 } 343 344 void 345 if_initname(struct ifnet *ifp, const char *name, int unit) 346 { 347 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 348 "%s%d", name, unit); 349 } 350 351 /* 352 * Null routines used while an interface is going away. These routines 353 * just return an error. 354 */ 355 356 int 357 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 358 const struct sockaddr *so, const struct rtentry *rt) 359 { 360 361 return ENXIO; 362 } 363 364 void 365 if_nullinput(struct ifnet *ifp, struct mbuf *m) 366 { 367 368 /* Nothing. */ 369 } 370 371 void 372 if_nullstart(struct ifnet *ifp) 373 { 374 375 /* Nothing. */ 376 } 377 378 int 379 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 380 { 381 382 m_freem(m); 383 return ENXIO; 384 } 385 386 int 387 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 388 { 389 390 return ENXIO; 391 } 392 393 int 394 if_nullinit(struct ifnet *ifp) 395 { 396 397 return ENXIO; 398 } 399 400 void 401 if_nullstop(struct ifnet *ifp, int disable) 402 { 403 404 /* Nothing. */ 405 } 406 407 void 408 if_nullslowtimo(struct ifnet *ifp) 409 { 410 411 /* Nothing. */ 412 } 413 414 void 415 if_nulldrain(struct ifnet *ifp) 416 { 417 418 /* Nothing. */ 419 } 420 421 void 422 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 423 { 424 struct ifaddr *ifa; 425 struct sockaddr_dl *sdl; 426 427 ifp->if_addrlen = addrlen; 428 if_alloc_sadl(ifp); 429 ifa = ifp->if_dl; 430 sdl = satosdl(ifa->ifa_addr); 431 432 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 433 if (factory) { 434 KASSERT(ifp->if_hwdl == NULL); 435 ifp->if_hwdl = ifp->if_dl; 436 ifaref(ifp->if_hwdl); 437 } 438 /* TBD routing socket */ 439 } 440 441 struct ifaddr * 442 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 443 { 444 unsigned socksize, ifasize; 445 int addrlen, namelen; 446 struct sockaddr_dl *mask, *sdl; 447 struct ifaddr *ifa; 448 449 namelen = strlen(ifp->if_xname); 450 addrlen = ifp->if_addrlen; 451 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 452 ifasize = sizeof(*ifa) + 2 * socksize; 453 ifa = malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO); 454 455 sdl = (struct sockaddr_dl *)(ifa + 1); 456 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 457 458 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 459 ifp->if_xname, namelen, NULL, addrlen); 460 mask->sdl_family = AF_LINK; 461 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 462 memset(&mask->sdl_data[0], 0xff, namelen); 463 ifa->ifa_rtrequest = link_rtrequest; 464 ifa->ifa_addr = (struct sockaddr *)sdl; 465 ifa->ifa_netmask = (struct sockaddr *)mask; 466 ifa_psref_init(ifa); 467 468 *sdlp = sdl; 469 470 return ifa; 471 } 472 473 static void 474 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 475 { 476 const struct sockaddr_dl *sdl; 477 478 ifp->if_dl = ifa; 479 ifaref(ifa); 480 sdl = satosdl(ifa->ifa_addr); 481 ifp->if_sadl = sdl; 482 } 483 484 /* 485 * Allocate the link level name for the specified interface. This 486 * is an attachment helper. It must be called after ifp->if_addrlen 487 * is initialized, which may not be the case when if_attach() is 488 * called. 489 */ 490 void 491 if_alloc_sadl(struct ifnet *ifp) 492 { 493 struct ifaddr *ifa; 494 const struct sockaddr_dl *sdl; 495 496 /* 497 * If the interface already has a link name, release it 498 * now. This is useful for interfaces that can change 499 * link types, and thus switch link names often. 500 */ 501 if (ifp->if_sadl != NULL) 502 if_free_sadl(ifp, 0); 503 504 ifa = if_dl_create(ifp, &sdl); 505 506 ifa_insert(ifp, ifa); 507 if_sadl_setrefs(ifp, ifa); 508 } 509 510 static void 511 if_deactivate_sadl(struct ifnet *ifp) 512 { 513 struct ifaddr *ifa; 514 515 KASSERT(ifp->if_dl != NULL); 516 517 ifa = ifp->if_dl; 518 519 ifp->if_sadl = NULL; 520 521 ifp->if_dl = NULL; 522 ifafree(ifa); 523 } 524 525 static void 526 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa) 527 { 528 struct ifaddr *old; 529 530 KASSERT(ifp->if_dl != NULL); 531 532 old = ifp->if_dl; 533 534 ifaref(ifa); 535 /* XXX Update if_dl and if_sadl atomically */ 536 ifp->if_dl = ifa; 537 ifp->if_sadl = satosdl(ifa->ifa_addr); 538 539 ifafree(old); 540 } 541 542 void 543 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 544 const struct sockaddr_dl *sdl) 545 { 546 int s, ss; 547 struct ifaddr *ifa; 548 int bound = curlwp_bind(); 549 550 KASSERT(ifa_held(ifa0)); 551 552 s = splsoftnet(); 553 554 if_replace_sadl(ifp, ifa0); 555 556 ss = pserialize_read_enter(); 557 IFADDR_READER_FOREACH(ifa, ifp) { 558 struct psref psref; 559 ifa_acquire(ifa, &psref); 560 pserialize_read_exit(ss); 561 562 rtinit(ifa, RTM_LLINFO_UPD, 0); 563 564 ss = pserialize_read_enter(); 565 ifa_release(ifa, &psref); 566 } 567 pserialize_read_exit(ss); 568 569 splx(s); 570 curlwp_bindx(bound); 571 } 572 573 /* 574 * Free the link level name for the specified interface. This is 575 * a detach helper. This is called from if_detach(). 576 */ 577 static void 578 if_free_sadl(struct ifnet *ifp, int factory) 579 { 580 struct ifaddr *ifa; 581 int s; 582 583 if (factory && ifp->if_hwdl != NULL) { 584 ifa = ifp->if_hwdl; 585 ifp->if_hwdl = NULL; 586 ifafree(ifa); 587 } 588 589 ifa = ifp->if_dl; 590 if (ifa == NULL) { 591 KASSERT(ifp->if_sadl == NULL); 592 return; 593 } 594 595 KASSERT(ifp->if_sadl != NULL); 596 597 s = splsoftnet(); 598 KASSERT(ifa->ifa_addr->sa_family == AF_LINK); 599 ifa_remove(ifp, ifa); 600 if_deactivate_sadl(ifp); 601 splx(s); 602 } 603 604 static void 605 if_getindex(ifnet_t *ifp) 606 { 607 bool hitlimit = false; 608 609 ifp->if_index_gen = index_gen++; 610 611 ifp->if_index = if_index; 612 if (ifindex2ifnet == NULL) { 613 if_index++; 614 goto skip; 615 } 616 while (if_byindex(ifp->if_index)) { 617 /* 618 * If we hit USHRT_MAX, we skip back to 0 since 619 * there are a number of places where the value 620 * of if_index or if_index itself is compared 621 * to or stored in an unsigned short. By 622 * jumping back, we won't botch those assignments 623 * or comparisons. 624 */ 625 if (++if_index == 0) { 626 if_index = 1; 627 } else if (if_index == USHRT_MAX) { 628 /* 629 * However, if we have to jump back to 630 * zero *twice* without finding an empty 631 * slot in ifindex2ifnet[], then there 632 * there are too many (>65535) interfaces. 633 */ 634 if (hitlimit) { 635 panic("too many interfaces"); 636 } 637 hitlimit = true; 638 if_index = 1; 639 } 640 ifp->if_index = if_index; 641 } 642 skip: 643 /* 644 * ifindex2ifnet is indexed by if_index. Since if_index will 645 * grow dynamically, it should grow too. 646 */ 647 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 648 size_t m, n, oldlim; 649 void *q; 650 651 oldlim = if_indexlim; 652 while (ifp->if_index >= if_indexlim) 653 if_indexlim <<= 1; 654 655 /* grow ifindex2ifnet */ 656 m = oldlim * sizeof(struct ifnet *); 657 n = if_indexlim * sizeof(struct ifnet *); 658 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); 659 if (ifindex2ifnet != NULL) { 660 memcpy(q, ifindex2ifnet, m); 661 free(ifindex2ifnet, M_IFADDR); 662 } 663 ifindex2ifnet = (struct ifnet **)q; 664 } 665 ifindex2ifnet[ifp->if_index] = ifp; 666 } 667 668 /* 669 * Initialize an interface and assign an index for it. 670 * 671 * It must be called prior to a device specific attach routine 672 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 673 * and be followed by if_register: 674 * 675 * if_initialize(ifp); 676 * ether_ifattach(ifp, enaddr); 677 * if_register(ifp); 678 */ 679 int 680 if_initialize(ifnet_t *ifp) 681 { 682 int rv = 0; 683 684 KASSERT(if_indexlim > 0); 685 TAILQ_INIT(&ifp->if_addrlist); 686 687 /* 688 * Link level name is allocated later by a separate call to 689 * if_alloc_sadl(). 690 */ 691 692 if (ifp->if_snd.ifq_maxlen == 0) 693 ifp->if_snd.ifq_maxlen = ifqmaxlen; 694 695 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 696 697 ifp->if_link_state = LINK_STATE_UNKNOWN; 698 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 699 700 ifp->if_capenable = 0; 701 ifp->if_csum_flags_tx = 0; 702 ifp->if_csum_flags_rx = 0; 703 704 #ifdef ALTQ 705 ifp->if_snd.altq_type = 0; 706 ifp->if_snd.altq_disc = NULL; 707 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 708 ifp->if_snd.altq_tbr = NULL; 709 ifp->if_snd.altq_ifp = ifp; 710 #endif 711 712 IFQ_LOCK_INIT(&ifp->if_snd); 713 714 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 715 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); 716 717 IF_AFDATA_LOCK_INIT(ifp); 718 719 if (if_is_link_state_changeable(ifp)) { 720 u_int flags = SOFTINT_NET; 721 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 722 ifp->if_link_si = softint_establish(flags, 723 if_link_state_change_si, ifp); 724 if (ifp->if_link_si == NULL) { 725 rv = ENOMEM; 726 goto fail; 727 } 728 } 729 730 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 731 PSLIST_INIT(&ifp->if_addr_pslist); 732 psref_target_init(&ifp->if_psref, ifnet_psref_class); 733 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 734 LIST_INIT(&ifp->if_multiaddrs); 735 736 IFNET_GLOBAL_LOCK(); 737 if_getindex(ifp); 738 IFNET_GLOBAL_UNLOCK(); 739 740 return 0; 741 742 fail: 743 IF_AFDATA_LOCK_DESTROY(ifp); 744 745 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 746 (void)pfil_head_destroy(ifp->if_pfil); 747 748 IFQ_LOCK_DESTROY(&ifp->if_snd); 749 750 return rv; 751 } 752 753 /* 754 * Register an interface to the list of "active" interfaces. 755 */ 756 void 757 if_register(ifnet_t *ifp) 758 { 759 /* 760 * If the driver has not supplied its own if_ioctl, then 761 * supply the default. 762 */ 763 if (ifp->if_ioctl == NULL) 764 ifp->if_ioctl = ifioctl_common; 765 766 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 767 768 if (!STAILQ_EMPTY(&domains)) 769 if_attachdomain1(ifp); 770 771 /* Announce the interface. */ 772 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 773 774 if (ifp->if_slowtimo != NULL) { 775 ifp->if_slowtimo_ch = 776 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP); 777 callout_init(ifp->if_slowtimo_ch, 0); 778 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp); 779 if_slowtimo(ifp); 780 } 781 782 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 783 ifp->if_transmit = if_transmit; 784 785 IFNET_GLOBAL_LOCK(); 786 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 787 IFNET_WRITER_INSERT_TAIL(ifp); 788 IFNET_GLOBAL_UNLOCK(); 789 } 790 791 /* 792 * The if_percpuq framework 793 * 794 * It allows network device drivers to execute the network stack 795 * in softint (so called softint-based if_input). It utilizes 796 * softint and percpu ifqueue. It doesn't distribute any packets 797 * between CPUs, unlike pktqueue(9). 798 * 799 * Currently we support two options for device drivers to apply the framework: 800 * - Use it implicitly with less changes 801 * - If you use if_attach in driver's _attach function and if_input in 802 * driver's Rx interrupt handler, a packet is queued and a softint handles 803 * the packet implicitly 804 * - Use it explicitly in each driver (recommended) 805 * - You can use if_percpuq_* directly in your driver 806 * - In this case, you need to allocate struct if_percpuq in driver's softc 807 * - See wm(4) as a reference implementation 808 */ 809 810 static void 811 if_percpuq_softint(void *arg) 812 { 813 struct if_percpuq *ipq = arg; 814 struct ifnet *ifp = ipq->ipq_ifp; 815 struct mbuf *m; 816 817 while ((m = if_percpuq_dequeue(ipq)) != NULL) { 818 ifp->if_ipackets++; 819 bpf_mtap(ifp, m, BPF_D_IN); 820 821 ifp->_if_input(ifp, m); 822 } 823 } 824 825 static void 826 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 827 { 828 struct ifqueue *const ifq = p; 829 830 memset(ifq, 0, sizeof(*ifq)); 831 ifq->ifq_maxlen = IFQ_MAXLEN; 832 } 833 834 struct if_percpuq * 835 if_percpuq_create(struct ifnet *ifp) 836 { 837 struct if_percpuq *ipq; 838 u_int flags = SOFTINT_NET; 839 840 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 841 842 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 843 ipq->ipq_ifp = ifp; 844 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq); 845 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 846 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 847 848 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 849 850 return ipq; 851 } 852 853 static struct mbuf * 854 if_percpuq_dequeue(struct if_percpuq *ipq) 855 { 856 struct mbuf *m; 857 struct ifqueue *ifq; 858 int s; 859 860 s = splnet(); 861 ifq = percpu_getref(ipq->ipq_ifqs); 862 IF_DEQUEUE(ifq, m); 863 percpu_putref(ipq->ipq_ifqs); 864 splx(s); 865 866 return m; 867 } 868 869 static void 870 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 871 { 872 struct ifqueue *const ifq = p; 873 874 IF_PURGE(ifq); 875 } 876 877 void 878 if_percpuq_destroy(struct if_percpuq *ipq) 879 { 880 881 /* if_detach may already destroy it */ 882 if (ipq == NULL) 883 return; 884 885 softint_disestablish(ipq->ipq_si); 886 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 887 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 888 kmem_free(ipq, sizeof(*ipq)); 889 } 890 891 void 892 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 893 { 894 struct ifqueue *ifq; 895 int s; 896 897 KASSERT(ipq != NULL); 898 899 s = splnet(); 900 ifq = percpu_getref(ipq->ipq_ifqs); 901 if (IF_QFULL(ifq)) { 902 IF_DROP(ifq); 903 percpu_putref(ipq->ipq_ifqs); 904 m_freem(m); 905 goto out; 906 } 907 IF_ENQUEUE(ifq, m); 908 percpu_putref(ipq->ipq_ifqs); 909 910 softint_schedule(ipq->ipq_si); 911 out: 912 splx(s); 913 } 914 915 static void 916 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 917 { 918 struct ifqueue *const ifq = p; 919 int *sum = arg; 920 921 *sum += ifq->ifq_drops; 922 } 923 924 static int 925 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 926 { 927 struct sysctlnode node; 928 struct if_percpuq *ipq; 929 int sum = 0; 930 int error; 931 932 node = *rnode; 933 ipq = node.sysctl_data; 934 935 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 936 937 node.sysctl_data = ∑ 938 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 939 if (error != 0 || newp == NULL) 940 return error; 941 942 return 0; 943 } 944 945 static void 946 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 947 struct if_percpuq *ipq) 948 { 949 const struct sysctlnode *cnode, *rnode; 950 951 if (sysctl_createv(clog, 0, NULL, &rnode, 952 CTLFLAG_PERMANENT, 953 CTLTYPE_NODE, "interfaces", 954 SYSCTL_DESCR("Per-interface controls"), 955 NULL, 0, NULL, 0, 956 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 957 goto bad; 958 959 if (sysctl_createv(clog, 0, &rnode, &rnode, 960 CTLFLAG_PERMANENT, 961 CTLTYPE_NODE, ifname, 962 SYSCTL_DESCR("Interface controls"), 963 NULL, 0, NULL, 0, 964 CTL_CREATE, CTL_EOL) != 0) 965 goto bad; 966 967 if (sysctl_createv(clog, 0, &rnode, &rnode, 968 CTLFLAG_PERMANENT, 969 CTLTYPE_NODE, "rcvq", 970 SYSCTL_DESCR("Interface input queue controls"), 971 NULL, 0, NULL, 0, 972 CTL_CREATE, CTL_EOL) != 0) 973 goto bad; 974 975 #ifdef NOTYET 976 /* XXX Should show each per-CPU queue length? */ 977 if (sysctl_createv(clog, 0, &rnode, &rnode, 978 CTLFLAG_PERMANENT, 979 CTLTYPE_INT, "len", 980 SYSCTL_DESCR("Current input queue length"), 981 sysctl_percpuq_len, 0, NULL, 0, 982 CTL_CREATE, CTL_EOL) != 0) 983 goto bad; 984 985 if (sysctl_createv(clog, 0, &rnode, &cnode, 986 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 987 CTLTYPE_INT, "maxlen", 988 SYSCTL_DESCR("Maximum allowed input queue length"), 989 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 990 CTL_CREATE, CTL_EOL) != 0) 991 goto bad; 992 #endif 993 994 if (sysctl_createv(clog, 0, &rnode, &cnode, 995 CTLFLAG_PERMANENT, 996 CTLTYPE_INT, "drops", 997 SYSCTL_DESCR("Total packets dropped due to full input queue"), 998 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 999 CTL_CREATE, CTL_EOL) != 0) 1000 goto bad; 1001 1002 return; 1003 bad: 1004 printf("%s: could not attach sysctl nodes\n", ifname); 1005 return; 1006 } 1007 1008 /* 1009 * The deferred if_start framework 1010 * 1011 * The common APIs to defer if_start to softint when if_start is requested 1012 * from a device driver running in hardware interrupt context. 1013 */ 1014 /* 1015 * Call ifp->if_start (or equivalent) in a dedicated softint for 1016 * deferred if_start. 1017 */ 1018 static void 1019 if_deferred_start_softint(void *arg) 1020 { 1021 struct if_deferred_start *ids = arg; 1022 struct ifnet *ifp = ids->ids_ifp; 1023 1024 ids->ids_if_start(ifp); 1025 } 1026 1027 /* 1028 * The default callback function for deferred if_start. 1029 */ 1030 static void 1031 if_deferred_start_common(struct ifnet *ifp) 1032 { 1033 int s; 1034 1035 s = splnet(); 1036 if_start_lock(ifp); 1037 splx(s); 1038 } 1039 1040 static inline bool 1041 if_snd_is_used(struct ifnet *ifp) 1042 { 1043 1044 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit || 1045 ALTQ_IS_ENABLED(&ifp->if_snd); 1046 } 1047 1048 /* 1049 * Schedule deferred if_start. 1050 */ 1051 void 1052 if_schedule_deferred_start(struct ifnet *ifp) 1053 { 1054 1055 KASSERT(ifp->if_deferred_start != NULL); 1056 1057 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1058 return; 1059 1060 softint_schedule(ifp->if_deferred_start->ids_si); 1061 } 1062 1063 /* 1064 * Create an instance of deferred if_start. A driver should call the function 1065 * only if the driver needs deferred if_start. Drivers can setup their own 1066 * deferred if_start function via 2nd argument. 1067 */ 1068 void 1069 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1070 { 1071 struct if_deferred_start *ids; 1072 u_int flags = SOFTINT_NET; 1073 1074 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 1075 1076 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1077 ids->ids_ifp = ifp; 1078 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids); 1079 if (func != NULL) 1080 ids->ids_if_start = func; 1081 else 1082 ids->ids_if_start = if_deferred_start_common; 1083 1084 ifp->if_deferred_start = ids; 1085 } 1086 1087 static void 1088 if_deferred_start_destroy(struct ifnet *ifp) 1089 { 1090 1091 if (ifp->if_deferred_start == NULL) 1092 return; 1093 1094 softint_disestablish(ifp->if_deferred_start->ids_si); 1095 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1096 ifp->if_deferred_start = NULL; 1097 } 1098 1099 /* 1100 * The common interface input routine that is called by device drivers, 1101 * which should be used only when the driver's rx handler already runs 1102 * in softint. 1103 */ 1104 void 1105 if_input(struct ifnet *ifp, struct mbuf *m) 1106 { 1107 1108 KASSERT(ifp->if_percpuq == NULL); 1109 KASSERT(!cpu_intr_p()); 1110 1111 ifp->if_ipackets++; 1112 bpf_mtap(ifp, m, BPF_D_IN); 1113 1114 ifp->_if_input(ifp, m); 1115 } 1116 1117 /* 1118 * DEPRECATED. Use if_initialize and if_register instead. 1119 * See the above comment of if_initialize. 1120 * 1121 * Note that it implicitly enables if_percpuq to make drivers easy to 1122 * migrate softint-based if_input without much changes. If you don't 1123 * want to enable it, use if_initialize instead. 1124 */ 1125 int 1126 if_attach(ifnet_t *ifp) 1127 { 1128 int rv; 1129 1130 rv = if_initialize(ifp); 1131 if (rv != 0) 1132 return rv; 1133 1134 ifp->if_percpuq = if_percpuq_create(ifp); 1135 if_register(ifp); 1136 1137 return 0; 1138 } 1139 1140 void 1141 if_attachdomain(void) 1142 { 1143 struct ifnet *ifp; 1144 int s; 1145 int bound = curlwp_bind(); 1146 1147 s = pserialize_read_enter(); 1148 IFNET_READER_FOREACH(ifp) { 1149 struct psref psref; 1150 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1151 pserialize_read_exit(s); 1152 if_attachdomain1(ifp); 1153 s = pserialize_read_enter(); 1154 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1155 } 1156 pserialize_read_exit(s); 1157 curlwp_bindx(bound); 1158 } 1159 1160 static void 1161 if_attachdomain1(struct ifnet *ifp) 1162 { 1163 struct domain *dp; 1164 int s; 1165 1166 s = splsoftnet(); 1167 1168 /* address family dependent data region */ 1169 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1170 DOMAIN_FOREACH(dp) { 1171 if (dp->dom_ifattach != NULL) 1172 ifp->if_afdata[dp->dom_family] = 1173 (*dp->dom_ifattach)(ifp); 1174 } 1175 1176 splx(s); 1177 } 1178 1179 /* 1180 * Deactivate an interface. This points all of the procedure 1181 * handles at error stubs. May be called from interrupt context. 1182 */ 1183 void 1184 if_deactivate(struct ifnet *ifp) 1185 { 1186 int s; 1187 1188 s = splsoftnet(); 1189 1190 ifp->if_output = if_nulloutput; 1191 ifp->_if_input = if_nullinput; 1192 ifp->if_start = if_nullstart; 1193 ifp->if_transmit = if_nulltransmit; 1194 ifp->if_ioctl = if_nullioctl; 1195 ifp->if_init = if_nullinit; 1196 ifp->if_stop = if_nullstop; 1197 ifp->if_slowtimo = if_nullslowtimo; 1198 ifp->if_drain = if_nulldrain; 1199 1200 /* No more packets may be enqueued. */ 1201 ifp->if_snd.ifq_maxlen = 0; 1202 1203 splx(s); 1204 } 1205 1206 bool 1207 if_is_deactivated(const struct ifnet *ifp) 1208 { 1209 1210 return ifp->if_output == if_nulloutput; 1211 } 1212 1213 void 1214 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 1215 { 1216 struct ifaddr *ifa, *nifa; 1217 int s; 1218 1219 s = pserialize_read_enter(); 1220 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1221 nifa = IFADDR_READER_NEXT(ifa); 1222 if (ifa->ifa_addr->sa_family != family) 1223 continue; 1224 pserialize_read_exit(s); 1225 1226 (*purgeaddr)(ifa); 1227 1228 s = pserialize_read_enter(); 1229 } 1230 pserialize_read_exit(s); 1231 } 1232 1233 #ifdef IFAREF_DEBUG 1234 static struct ifaddr **ifa_list; 1235 static int ifa_list_size; 1236 1237 /* Depends on only one if_attach runs at once */ 1238 static void 1239 if_build_ifa_list(struct ifnet *ifp) 1240 { 1241 struct ifaddr *ifa; 1242 int i; 1243 1244 KASSERT(ifa_list == NULL); 1245 KASSERT(ifa_list_size == 0); 1246 1247 IFADDR_READER_FOREACH(ifa, ifp) 1248 ifa_list_size++; 1249 1250 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1251 i = 0; 1252 IFADDR_READER_FOREACH(ifa, ifp) { 1253 ifa_list[i++] = ifa; 1254 ifaref(ifa); 1255 } 1256 } 1257 1258 static void 1259 if_check_and_free_ifa_list(struct ifnet *ifp) 1260 { 1261 int i; 1262 struct ifaddr *ifa; 1263 1264 if (ifa_list == NULL) 1265 return; 1266 1267 for (i = 0; i < ifa_list_size; i++) { 1268 char buf[64]; 1269 1270 ifa = ifa_list[i]; 1271 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1272 if (ifa->ifa_refcnt > 1) { 1273 log(LOG_WARNING, 1274 "ifa(%s) still referenced (refcnt=%d)\n", 1275 buf, ifa->ifa_refcnt - 1); 1276 } else 1277 log(LOG_DEBUG, 1278 "ifa(%s) not referenced (refcnt=%d)\n", 1279 buf, ifa->ifa_refcnt - 1); 1280 ifafree(ifa); 1281 } 1282 1283 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1284 ifa_list = NULL; 1285 ifa_list_size = 0; 1286 } 1287 #endif 1288 1289 /* 1290 * Detach an interface from the list of "active" interfaces, 1291 * freeing any resources as we go along. 1292 * 1293 * NOTE: This routine must be called with a valid thread context, 1294 * as it may block. 1295 */ 1296 void 1297 if_detach(struct ifnet *ifp) 1298 { 1299 struct socket so; 1300 struct ifaddr *ifa; 1301 #ifdef IFAREF_DEBUG 1302 struct ifaddr *last_ifa = NULL; 1303 #endif 1304 struct domain *dp; 1305 const struct protosw *pr; 1306 int s, i, family, purged; 1307 uint64_t xc; 1308 1309 #ifdef IFAREF_DEBUG 1310 if_build_ifa_list(ifp); 1311 #endif 1312 /* 1313 * XXX It's kind of lame that we have to have the 1314 * XXX socket structure... 1315 */ 1316 memset(&so, 0, sizeof(so)); 1317 1318 s = splnet(); 1319 1320 sysctl_teardown(&ifp->if_sysctl_log); 1321 IFNET_LOCK(ifp); 1322 if_deactivate(ifp); 1323 IFNET_UNLOCK(ifp); 1324 1325 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) { 1326 ifp->if_slowtimo = NULL; 1327 callout_halt(ifp->if_slowtimo_ch, NULL); 1328 callout_destroy(ifp->if_slowtimo_ch); 1329 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch)); 1330 } 1331 if_deferred_start_destroy(ifp); 1332 1333 /* 1334 * Do an if_down() to give protocols a chance to do something. 1335 */ 1336 if_down_deactivated(ifp); 1337 1338 #ifdef ALTQ 1339 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1340 altq_disable(&ifp->if_snd); 1341 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1342 altq_detach(&ifp->if_snd); 1343 #endif 1344 1345 #if NCARP > 0 1346 /* Remove the interface from any carp group it is a part of. */ 1347 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1348 carp_ifdetach(ifp); 1349 #endif 1350 1351 /* 1352 * Rip all the addresses off the interface. This should make 1353 * all of the routes go away. 1354 * 1355 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1356 * from the list, including our "cursor", ifa. For safety, 1357 * and to honor the TAILQ abstraction, I just restart the 1358 * loop after each removal. Note that the loop will exit 1359 * when all of the remaining ifaddrs belong to the AF_LINK 1360 * family. I am counting on the historical fact that at 1361 * least one pr_usrreq in each address domain removes at 1362 * least one ifaddr. 1363 */ 1364 again: 1365 /* 1366 * At this point, no other one tries to remove ifa in the list, 1367 * so we don't need to take a lock or psref. Avoid using 1368 * IFADDR_READER_FOREACH to pass over an inspection of contract 1369 * violations of pserialize. 1370 */ 1371 IFADDR_WRITER_FOREACH(ifa, ifp) { 1372 family = ifa->ifa_addr->sa_family; 1373 #ifdef IFAREF_DEBUG 1374 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1375 ifa, family, ifa->ifa_refcnt); 1376 if (last_ifa != NULL && ifa == last_ifa) 1377 panic("if_detach: loop detected"); 1378 last_ifa = ifa; 1379 #endif 1380 if (family == AF_LINK) 1381 continue; 1382 dp = pffinddomain(family); 1383 KASSERTMSG(dp != NULL, "no domain for AF %d", family); 1384 /* 1385 * XXX These PURGEIF calls are redundant with the 1386 * purge-all-families calls below, but are left in for 1387 * now both to make a smaller change, and to avoid 1388 * unplanned interactions with clearing of 1389 * ifp->if_addrlist. 1390 */ 1391 purged = 0; 1392 for (pr = dp->dom_protosw; 1393 pr < dp->dom_protoswNPROTOSW; pr++) { 1394 so.so_proto = pr; 1395 if (pr->pr_usrreqs) { 1396 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1397 purged = 1; 1398 } 1399 } 1400 if (purged == 0) { 1401 /* 1402 * XXX What's really the best thing to do 1403 * XXX here? --thorpej@NetBSD.org 1404 */ 1405 printf("if_detach: WARNING: AF %d not purged\n", 1406 family); 1407 ifa_remove(ifp, ifa); 1408 } 1409 goto again; 1410 } 1411 1412 if_free_sadl(ifp, 1); 1413 1414 restart: 1415 IFADDR_WRITER_FOREACH(ifa, ifp) { 1416 family = ifa->ifa_addr->sa_family; 1417 KASSERT(family == AF_LINK); 1418 ifa_remove(ifp, ifa); 1419 goto restart; 1420 } 1421 1422 /* Delete stray routes from the routing table. */ 1423 for (i = 0; i <= AF_MAX; i++) 1424 rt_delete_matched_entries(i, if_delroute_matcher, ifp); 1425 1426 DOMAIN_FOREACH(dp) { 1427 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1428 { 1429 void *p = ifp->if_afdata[dp->dom_family]; 1430 if (p) { 1431 ifp->if_afdata[dp->dom_family] = NULL; 1432 (*dp->dom_ifdetach)(ifp, p); 1433 } 1434 } 1435 1436 /* 1437 * One would expect multicast memberships (INET and 1438 * INET6) on UDP sockets to be purged by the PURGEIF 1439 * calls above, but if all addresses were removed from 1440 * the interface prior to destruction, the calls will 1441 * not be made (e.g. ppp, for which pppd(8) generally 1442 * removes addresses before destroying the interface). 1443 * Because there is no invariant that multicast 1444 * memberships only exist for interfaces with IPv4 1445 * addresses, we must call PURGEIF regardless of 1446 * addresses. (Protocols which might store ifnet 1447 * pointers are marked with PR_PURGEIF.) 1448 */ 1449 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 1450 so.so_proto = pr; 1451 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1452 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1453 } 1454 } 1455 1456 /* Wait for all readers to drain before freeing. */ 1457 IFNET_GLOBAL_LOCK(); 1458 ifindex2ifnet[ifp->if_index] = NULL; 1459 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1460 IFNET_WRITER_REMOVE(ifp); 1461 pserialize_perform(ifnet_psz); 1462 IFNET_GLOBAL_UNLOCK(); 1463 1464 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1465 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1466 1467 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 1468 (void)pfil_head_destroy(ifp->if_pfil); 1469 1470 /* Announce that the interface is gone. */ 1471 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1472 1473 IF_AFDATA_LOCK_DESTROY(ifp); 1474 1475 if (if_is_link_state_changeable(ifp)) { 1476 softint_disestablish(ifp->if_link_si); 1477 ifp->if_link_si = NULL; 1478 } 1479 1480 /* 1481 * remove packets that came from ifp, from software interrupt queues. 1482 */ 1483 DOMAIN_FOREACH(dp) { 1484 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { 1485 struct ifqueue *iq = dp->dom_ifqueues[i]; 1486 if (iq == NULL) 1487 break; 1488 dp->dom_ifqueues[i] = NULL; 1489 if_detach_queues(ifp, iq); 1490 } 1491 } 1492 1493 /* 1494 * IP queues have to be processed separately: net-queue barrier 1495 * ensures that the packets are dequeued while a cross-call will 1496 * ensure that the interrupts have completed. FIXME: not quite.. 1497 */ 1498 #ifdef INET 1499 pktq_barrier(ip_pktq); 1500 #endif 1501 #ifdef INET6 1502 if (in6_present) 1503 pktq_barrier(ip6_pktq); 1504 #endif 1505 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 1506 xc_wait(xc); 1507 1508 if (ifp->if_percpuq != NULL) { 1509 if_percpuq_destroy(ifp->if_percpuq); 1510 ifp->if_percpuq = NULL; 1511 } 1512 1513 mutex_obj_free(ifp->if_ioctl_lock); 1514 ifp->if_ioctl_lock = NULL; 1515 mutex_obj_free(ifp->if_snd.ifq_lock); 1516 1517 splx(s); 1518 1519 #ifdef IFAREF_DEBUG 1520 if_check_and_free_ifa_list(ifp); 1521 #endif 1522 } 1523 1524 static void 1525 if_detach_queues(struct ifnet *ifp, struct ifqueue *q) 1526 { 1527 struct mbuf *m, *prev, *next; 1528 1529 prev = NULL; 1530 for (m = q->ifq_head; m != NULL; m = next) { 1531 KASSERT((m->m_flags & M_PKTHDR) != 0); 1532 1533 next = m->m_nextpkt; 1534 if (m->m_pkthdr.rcvif_index != ifp->if_index) { 1535 prev = m; 1536 continue; 1537 } 1538 1539 if (prev != NULL) 1540 prev->m_nextpkt = m->m_nextpkt; 1541 else 1542 q->ifq_head = m->m_nextpkt; 1543 if (q->ifq_tail == m) 1544 q->ifq_tail = prev; 1545 q->ifq_len--; 1546 1547 m->m_nextpkt = NULL; 1548 m_freem(m); 1549 IF_DROP(q); 1550 } 1551 } 1552 1553 /* 1554 * Callback for a radix tree walk to delete all references to an 1555 * ifnet. 1556 */ 1557 static int 1558 if_delroute_matcher(struct rtentry *rt, void *v) 1559 { 1560 struct ifnet *ifp = (struct ifnet *)v; 1561 1562 if (rt->rt_ifp == ifp) 1563 return 1; 1564 else 1565 return 0; 1566 } 1567 1568 /* 1569 * Create a clone network interface. 1570 */ 1571 static int 1572 if_clone_create(const char *name) 1573 { 1574 struct if_clone *ifc; 1575 int unit; 1576 struct ifnet *ifp; 1577 struct psref psref; 1578 1579 KASSERT(mutex_owned(&if_clone_mtx)); 1580 1581 ifc = if_clone_lookup(name, &unit); 1582 if (ifc == NULL) 1583 return EINVAL; 1584 1585 ifp = if_get(name, &psref); 1586 if (ifp != NULL) { 1587 if_put(ifp, &psref); 1588 return EEXIST; 1589 } 1590 1591 return (*ifc->ifc_create)(ifc, unit); 1592 } 1593 1594 /* 1595 * Destroy a clone network interface. 1596 */ 1597 static int 1598 if_clone_destroy(const char *name) 1599 { 1600 struct if_clone *ifc; 1601 struct ifnet *ifp; 1602 struct psref psref; 1603 1604 KASSERT(mutex_owned(&if_clone_mtx)); 1605 1606 ifc = if_clone_lookup(name, NULL); 1607 if (ifc == NULL) 1608 return EINVAL; 1609 1610 if (ifc->ifc_destroy == NULL) 1611 return EOPNOTSUPP; 1612 1613 ifp = if_get(name, &psref); 1614 if (ifp == NULL) 1615 return ENXIO; 1616 1617 /* We have to disable ioctls here */ 1618 IFNET_LOCK(ifp); 1619 ifp->if_ioctl = if_nullioctl; 1620 IFNET_UNLOCK(ifp); 1621 1622 /* 1623 * We cannot call ifc_destroy with holding ifp. 1624 * Releasing ifp here is safe thanks to if_clone_mtx. 1625 */ 1626 if_put(ifp, &psref); 1627 1628 return (*ifc->ifc_destroy)(ifp); 1629 } 1630 1631 static bool 1632 if_is_unit(const char *name) 1633 { 1634 1635 while(*name != '\0') { 1636 if (*name < '0' || *name > '9') 1637 return false; 1638 name++; 1639 } 1640 1641 return true; 1642 } 1643 1644 /* 1645 * Look up a network interface cloner. 1646 */ 1647 static struct if_clone * 1648 if_clone_lookup(const char *name, int *unitp) 1649 { 1650 struct if_clone *ifc; 1651 const char *cp; 1652 char *dp, ifname[IFNAMSIZ + 3]; 1653 int unit; 1654 1655 KASSERT(mutex_owned(&if_clone_mtx)); 1656 1657 strcpy(ifname, "if_"); 1658 /* separate interface name from unit */ 1659 /* TODO: search unit number from backward */ 1660 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1661 *cp && !if_is_unit(cp);) 1662 *dp++ = *cp++; 1663 1664 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1665 return NULL; /* No name or unit number */ 1666 *dp++ = '\0'; 1667 1668 again: 1669 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1670 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1671 break; 1672 } 1673 1674 if (ifc == NULL) { 1675 int error; 1676 if (*ifname == '\0') 1677 return NULL; 1678 mutex_exit(&if_clone_mtx); 1679 error = module_autoload(ifname, MODULE_CLASS_DRIVER); 1680 mutex_enter(&if_clone_mtx); 1681 if (error) 1682 return NULL; 1683 *ifname = '\0'; 1684 goto again; 1685 } 1686 1687 unit = 0; 1688 while (cp - name < IFNAMSIZ && *cp) { 1689 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1690 /* Bogus unit number. */ 1691 return NULL; 1692 } 1693 unit = (unit * 10) + (*cp++ - '0'); 1694 } 1695 1696 if (unitp != NULL) 1697 *unitp = unit; 1698 return ifc; 1699 } 1700 1701 /* 1702 * Register a network interface cloner. 1703 */ 1704 void 1705 if_clone_attach(struct if_clone *ifc) 1706 { 1707 1708 mutex_enter(&if_clone_mtx); 1709 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1710 if_cloners_count++; 1711 mutex_exit(&if_clone_mtx); 1712 } 1713 1714 /* 1715 * Unregister a network interface cloner. 1716 */ 1717 void 1718 if_clone_detach(struct if_clone *ifc) 1719 { 1720 1721 mutex_enter(&if_clone_mtx); 1722 LIST_REMOVE(ifc, ifc_list); 1723 if_cloners_count--; 1724 mutex_exit(&if_clone_mtx); 1725 } 1726 1727 /* 1728 * Provide list of interface cloners to userspace. 1729 */ 1730 int 1731 if_clone_list(int buf_count, char *buffer, int *total) 1732 { 1733 char outbuf[IFNAMSIZ], *dst; 1734 struct if_clone *ifc; 1735 int count, error = 0; 1736 1737 mutex_enter(&if_clone_mtx); 1738 *total = if_cloners_count; 1739 if ((dst = buffer) == NULL) { 1740 /* Just asking how many there are. */ 1741 goto out; 1742 } 1743 1744 if (buf_count < 0) { 1745 error = EINVAL; 1746 goto out; 1747 } 1748 1749 count = (if_cloners_count < buf_count) ? 1750 if_cloners_count : buf_count; 1751 1752 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1753 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1754 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1755 if (outbuf[sizeof(outbuf) - 1] != '\0') { 1756 error = ENAMETOOLONG; 1757 goto out; 1758 } 1759 error = copyout(outbuf, dst, sizeof(outbuf)); 1760 if (error != 0) 1761 break; 1762 } 1763 1764 out: 1765 mutex_exit(&if_clone_mtx); 1766 return error; 1767 } 1768 1769 void 1770 ifa_psref_init(struct ifaddr *ifa) 1771 { 1772 1773 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1774 } 1775 1776 void 1777 ifaref(struct ifaddr *ifa) 1778 { 1779 KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING)); 1780 ifa->ifa_refcnt++; 1781 } 1782 1783 void 1784 ifafree(struct ifaddr *ifa) 1785 { 1786 KASSERT(ifa != NULL); 1787 KASSERT(ifa->ifa_refcnt > 0); 1788 1789 if (--ifa->ifa_refcnt == 0) { 1790 free(ifa, M_IFADDR); 1791 } 1792 } 1793 1794 bool 1795 ifa_is_destroying(struct ifaddr *ifa) 1796 { 1797 1798 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1799 } 1800 1801 void 1802 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1803 { 1804 1805 ifa->ifa_ifp = ifp; 1806 1807 /* 1808 * Check MP-safety for IFEF_MPSAFE drivers. 1809 * Check !IFF_RUNNING for initialization routines that normally don't 1810 * take IFNET_LOCK but it's safe because there is no competitor. 1811 * XXX there are false positive cases because IFF_RUNNING can be off on 1812 * if_stop. 1813 */ 1814 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) || 1815 IFNET_LOCKED(ifp)); 1816 1817 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1818 IFADDR_ENTRY_INIT(ifa); 1819 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1820 1821 ifaref(ifa); 1822 } 1823 1824 void 1825 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1826 { 1827 1828 KASSERT(ifa->ifa_ifp == ifp); 1829 /* 1830 * Check MP-safety for IFEF_MPSAFE drivers. 1831 * if_is_deactivated indicates ifa_remove is called form if_detach 1832 * where is safe even if IFNET_LOCK isn't held. 1833 */ 1834 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp)); 1835 1836 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1837 IFADDR_WRITER_REMOVE(ifa); 1838 #ifdef NET_MPSAFE 1839 IFNET_GLOBAL_LOCK(); 1840 pserialize_perform(ifnet_psz); 1841 IFNET_GLOBAL_UNLOCK(); 1842 #endif 1843 1844 #ifdef NET_MPSAFE 1845 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1846 #endif 1847 IFADDR_ENTRY_DESTROY(ifa); 1848 ifafree(ifa); 1849 } 1850 1851 void 1852 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1853 { 1854 1855 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1856 } 1857 1858 void 1859 ifa_release(struct ifaddr *ifa, struct psref *psref) 1860 { 1861 1862 if (ifa == NULL) 1863 return; 1864 1865 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1866 } 1867 1868 bool 1869 ifa_held(struct ifaddr *ifa) 1870 { 1871 1872 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1873 } 1874 1875 static inline int 1876 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1877 { 1878 return sockaddr_cmp(sa1, sa2) == 0; 1879 } 1880 1881 /* 1882 * Locate an interface based on a complete address. 1883 */ 1884 /*ARGSUSED*/ 1885 struct ifaddr * 1886 ifa_ifwithaddr(const struct sockaddr *addr) 1887 { 1888 struct ifnet *ifp; 1889 struct ifaddr *ifa; 1890 1891 IFNET_READER_FOREACH(ifp) { 1892 if (if_is_deactivated(ifp)) 1893 continue; 1894 IFADDR_READER_FOREACH(ifa, ifp) { 1895 if (ifa->ifa_addr->sa_family != addr->sa_family) 1896 continue; 1897 if (equal(addr, ifa->ifa_addr)) 1898 return ifa; 1899 if ((ifp->if_flags & IFF_BROADCAST) && 1900 ifa->ifa_broadaddr && 1901 /* IP6 doesn't have broadcast */ 1902 ifa->ifa_broadaddr->sa_len != 0 && 1903 equal(ifa->ifa_broadaddr, addr)) 1904 return ifa; 1905 } 1906 } 1907 return NULL; 1908 } 1909 1910 struct ifaddr * 1911 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1912 { 1913 struct ifaddr *ifa; 1914 int s = pserialize_read_enter(); 1915 1916 ifa = ifa_ifwithaddr(addr); 1917 if (ifa != NULL) 1918 ifa_acquire(ifa, psref); 1919 pserialize_read_exit(s); 1920 1921 return ifa; 1922 } 1923 1924 /* 1925 * Locate the point to point interface with a given destination address. 1926 */ 1927 /*ARGSUSED*/ 1928 struct ifaddr * 1929 ifa_ifwithdstaddr(const struct sockaddr *addr) 1930 { 1931 struct ifnet *ifp; 1932 struct ifaddr *ifa; 1933 1934 IFNET_READER_FOREACH(ifp) { 1935 if (if_is_deactivated(ifp)) 1936 continue; 1937 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1938 continue; 1939 IFADDR_READER_FOREACH(ifa, ifp) { 1940 if (ifa->ifa_addr->sa_family != addr->sa_family || 1941 ifa->ifa_dstaddr == NULL) 1942 continue; 1943 if (equal(addr, ifa->ifa_dstaddr)) 1944 return ifa; 1945 } 1946 } 1947 1948 return NULL; 1949 } 1950 1951 struct ifaddr * 1952 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 1953 { 1954 struct ifaddr *ifa; 1955 int s; 1956 1957 s = pserialize_read_enter(); 1958 ifa = ifa_ifwithdstaddr(addr); 1959 if (ifa != NULL) 1960 ifa_acquire(ifa, psref); 1961 pserialize_read_exit(s); 1962 1963 return ifa; 1964 } 1965 1966 /* 1967 * Find an interface on a specific network. If many, choice 1968 * is most specific found. 1969 */ 1970 struct ifaddr * 1971 ifa_ifwithnet(const struct sockaddr *addr) 1972 { 1973 struct ifnet *ifp; 1974 struct ifaddr *ifa, *ifa_maybe = NULL; 1975 const struct sockaddr_dl *sdl; 1976 u_int af = addr->sa_family; 1977 const char *addr_data = addr->sa_data, *cplim; 1978 1979 if (af == AF_LINK) { 1980 sdl = satocsdl(addr); 1981 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1982 ifindex2ifnet[sdl->sdl_index] && 1983 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 1984 return ifindex2ifnet[sdl->sdl_index]->if_dl; 1985 } 1986 } 1987 #ifdef NETATALK 1988 if (af == AF_APPLETALK) { 1989 const struct sockaddr_at *sat, *sat2; 1990 sat = (const struct sockaddr_at *)addr; 1991 IFNET_READER_FOREACH(ifp) { 1992 if (if_is_deactivated(ifp)) 1993 continue; 1994 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 1995 if (ifa == NULL) 1996 continue; 1997 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 1998 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 1999 return ifa; /* exact match */ 2000 if (ifa_maybe == NULL) { 2001 /* else keep the if with the right range */ 2002 ifa_maybe = ifa; 2003 } 2004 } 2005 return ifa_maybe; 2006 } 2007 #endif 2008 IFNET_READER_FOREACH(ifp) { 2009 if (if_is_deactivated(ifp)) 2010 continue; 2011 IFADDR_READER_FOREACH(ifa, ifp) { 2012 const char *cp, *cp2, *cp3; 2013 2014 if (ifa->ifa_addr->sa_family != af || 2015 ifa->ifa_netmask == NULL) 2016 next: continue; 2017 cp = addr_data; 2018 cp2 = ifa->ifa_addr->sa_data; 2019 cp3 = ifa->ifa_netmask->sa_data; 2020 cplim = (const char *)ifa->ifa_netmask + 2021 ifa->ifa_netmask->sa_len; 2022 while (cp3 < cplim) { 2023 if ((*cp++ ^ *cp2++) & *cp3++) { 2024 /* want to continue for() loop */ 2025 goto next; 2026 } 2027 } 2028 if (ifa_maybe == NULL || 2029 rt_refines(ifa->ifa_netmask, 2030 ifa_maybe->ifa_netmask)) 2031 ifa_maybe = ifa; 2032 } 2033 } 2034 return ifa_maybe; 2035 } 2036 2037 struct ifaddr * 2038 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 2039 { 2040 struct ifaddr *ifa; 2041 int s; 2042 2043 s = pserialize_read_enter(); 2044 ifa = ifa_ifwithnet(addr); 2045 if (ifa != NULL) 2046 ifa_acquire(ifa, psref); 2047 pserialize_read_exit(s); 2048 2049 return ifa; 2050 } 2051 2052 /* 2053 * Find the interface of the addresss. 2054 */ 2055 struct ifaddr * 2056 ifa_ifwithladdr(const struct sockaddr *addr) 2057 { 2058 struct ifaddr *ia; 2059 2060 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 2061 (ia = ifa_ifwithnet(addr))) 2062 return ia; 2063 return NULL; 2064 } 2065 2066 struct ifaddr * 2067 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 2068 { 2069 struct ifaddr *ifa; 2070 int s; 2071 2072 s = pserialize_read_enter(); 2073 ifa = ifa_ifwithladdr(addr); 2074 if (ifa != NULL) 2075 ifa_acquire(ifa, psref); 2076 pserialize_read_exit(s); 2077 2078 return ifa; 2079 } 2080 2081 /* 2082 * Find an interface using a specific address family 2083 */ 2084 struct ifaddr * 2085 ifa_ifwithaf(int af) 2086 { 2087 struct ifnet *ifp; 2088 struct ifaddr *ifa = NULL; 2089 int s; 2090 2091 s = pserialize_read_enter(); 2092 IFNET_READER_FOREACH(ifp) { 2093 if (if_is_deactivated(ifp)) 2094 continue; 2095 IFADDR_READER_FOREACH(ifa, ifp) { 2096 if (ifa->ifa_addr->sa_family == af) 2097 goto out; 2098 } 2099 } 2100 out: 2101 pserialize_read_exit(s); 2102 return ifa; 2103 } 2104 2105 /* 2106 * Find an interface address specific to an interface best matching 2107 * a given address. 2108 */ 2109 struct ifaddr * 2110 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2111 { 2112 struct ifaddr *ifa; 2113 const char *cp, *cp2, *cp3; 2114 const char *cplim; 2115 struct ifaddr *ifa_maybe = 0; 2116 u_int af = addr->sa_family; 2117 2118 if (if_is_deactivated(ifp)) 2119 return NULL; 2120 2121 if (af >= AF_MAX) 2122 return NULL; 2123 2124 IFADDR_READER_FOREACH(ifa, ifp) { 2125 if (ifa->ifa_addr->sa_family != af) 2126 continue; 2127 ifa_maybe = ifa; 2128 if (ifa->ifa_netmask == NULL) { 2129 if (equal(addr, ifa->ifa_addr) || 2130 (ifa->ifa_dstaddr && 2131 equal(addr, ifa->ifa_dstaddr))) 2132 return ifa; 2133 continue; 2134 } 2135 cp = addr->sa_data; 2136 cp2 = ifa->ifa_addr->sa_data; 2137 cp3 = ifa->ifa_netmask->sa_data; 2138 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2139 for (; cp3 < cplim; cp3++) { 2140 if ((*cp++ ^ *cp2++) & *cp3) 2141 break; 2142 } 2143 if (cp3 == cplim) 2144 return ifa; 2145 } 2146 return ifa_maybe; 2147 } 2148 2149 struct ifaddr * 2150 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2151 struct psref *psref) 2152 { 2153 struct ifaddr *ifa; 2154 int s; 2155 2156 s = pserialize_read_enter(); 2157 ifa = ifaof_ifpforaddr(addr, ifp); 2158 if (ifa != NULL) 2159 ifa_acquire(ifa, psref); 2160 pserialize_read_exit(s); 2161 2162 return ifa; 2163 } 2164 2165 /* 2166 * Default action when installing a route with a Link Level gateway. 2167 * Lookup an appropriate real ifa to point to. 2168 * This should be moved to /sys/net/link.c eventually. 2169 */ 2170 void 2171 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2172 { 2173 struct ifaddr *ifa; 2174 const struct sockaddr *dst; 2175 struct ifnet *ifp; 2176 struct psref psref; 2177 2178 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 2179 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL) 2180 return; 2181 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2182 rt_replace_ifa(rt, ifa); 2183 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2184 ifa->ifa_rtrequest(cmd, rt, info); 2185 ifa_release(ifa, &psref); 2186 } 2187 } 2188 2189 /* 2190 * bitmask macros to manage a densely packed link_state change queue. 2191 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2192 * LINK_STATE_UP(2) we need 2 bits for each state change. 2193 * As a state change to store is 0, treat all bits set as an unset item. 2194 */ 2195 #define LQ_ITEM_BITS 2 2196 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2197 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2198 #define LINK_STATE_UNSET LQ_ITEM_MASK 2199 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2200 #define LQ_STORE(q, i, v) \ 2201 do { \ 2202 (q) &= ~LQ_MASK((i)); \ 2203 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2204 } while (0 /* CONSTCOND */) 2205 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2206 #define LQ_POP(q, v) \ 2207 do { \ 2208 (v) = LQ_ITEM((q), 0); \ 2209 (q) >>= LQ_ITEM_BITS; \ 2210 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2211 } while (0 /* CONSTCOND */) 2212 #define LQ_PUSH(q, v) \ 2213 do { \ 2214 (q) >>= LQ_ITEM_BITS; \ 2215 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2216 } while (0 /* CONSTCOND */) 2217 #define LQ_FIND_UNSET(q, i) \ 2218 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2219 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2220 break; \ 2221 } 2222 2223 /* 2224 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex 2225 * for each ifnet. It doesn't matter because: 2226 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on 2227 * ifq_lock don't happen 2228 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock 2229 * because if_snd, if_link_state_change and if_link_state_change_softint 2230 * are all called with KERNEL_LOCK 2231 */ 2232 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \ 2233 mutex_enter((ifp)->if_snd.ifq_lock) 2234 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \ 2235 mutex_exit((ifp)->if_snd.ifq_lock) 2236 2237 /* 2238 * Handle a change in the interface link state and 2239 * queue notifications. 2240 */ 2241 void 2242 if_link_state_change(struct ifnet *ifp, int link_state) 2243 { 2244 int idx; 2245 2246 KASSERTMSG(if_is_link_state_changeable(ifp), 2247 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x", 2248 ifp->if_xname, ifp->if_extflags); 2249 2250 /* Ensure change is to a valid state */ 2251 switch (link_state) { 2252 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2253 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2254 case LINK_STATE_UP: 2255 break; 2256 default: 2257 #ifdef DEBUG 2258 printf("%s: invalid link state %d\n", 2259 ifp->if_xname, link_state); 2260 #endif 2261 return; 2262 } 2263 2264 IF_LINK_STATE_CHANGE_LOCK(ifp); 2265 2266 /* Find the last unset event in the queue. */ 2267 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2268 2269 /* 2270 * Ensure link_state doesn't match the last event in the queue. 2271 * ifp->if_link_state is not checked and set here because 2272 * that would present an inconsistent picture to the system. 2273 */ 2274 if (idx != 0 && 2275 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state) 2276 goto out; 2277 2278 /* Handle queue overflow. */ 2279 if (idx == LQ_MAX(ifp->if_link_queue)) { 2280 uint8_t lost; 2281 2282 /* 2283 * The DOWN state must be protected from being pushed off 2284 * the queue to ensure that userland will always be 2285 * in a sane state. 2286 * Because DOWN is protected, there is no need to protect 2287 * UNKNOWN. 2288 * It should be invalid to change from any other state to 2289 * UNKNOWN anyway ... 2290 */ 2291 lost = LQ_ITEM(ifp->if_link_queue, 0); 2292 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2293 if (lost == LINK_STATE_DOWN) { 2294 lost = LQ_ITEM(ifp->if_link_queue, 0); 2295 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2296 } 2297 printf("%s: lost link state change %s\n", 2298 ifp->if_xname, 2299 lost == LINK_STATE_UP ? "UP" : 2300 lost == LINK_STATE_DOWN ? "DOWN" : 2301 "UNKNOWN"); 2302 } else 2303 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2304 2305 softint_schedule(ifp->if_link_si); 2306 2307 out: 2308 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2309 } 2310 2311 /* 2312 * Handle interface link state change notifications. 2313 */ 2314 void 2315 if_link_state_change_softint(struct ifnet *ifp, int link_state) 2316 { 2317 struct domain *dp; 2318 int s = splnet(); 2319 bool notify; 2320 2321 KASSERT(!cpu_intr_p()); 2322 2323 IF_LINK_STATE_CHANGE_LOCK(ifp); 2324 2325 /* Ensure the change is still valid. */ 2326 if (ifp->if_link_state == link_state) { 2327 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2328 return; 2329 } 2330 2331 #ifdef DEBUG 2332 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2333 link_state == LINK_STATE_UP ? "UP" : 2334 link_state == LINK_STATE_DOWN ? "DOWN" : 2335 "UNKNOWN", 2336 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2337 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2338 "UNKNOWN"); 2339 #endif 2340 2341 /* 2342 * When going from UNKNOWN to UP, we need to mark existing 2343 * addresses as tentative and restart DAD as we may have 2344 * erroneously not found a duplicate. 2345 * 2346 * This needs to happen before rt_ifmsg to avoid a race where 2347 * listeners would have an address and expect it to work right 2348 * away. 2349 */ 2350 notify = (link_state == LINK_STATE_UP && 2351 ifp->if_link_state == LINK_STATE_UNKNOWN); 2352 ifp->if_link_state = link_state; 2353 /* The following routines may sleep so release the spin mutex */ 2354 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2355 2356 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2357 if (notify) { 2358 DOMAIN_FOREACH(dp) { 2359 if (dp->dom_if_link_state_change != NULL) 2360 dp->dom_if_link_state_change(ifp, 2361 LINK_STATE_DOWN); 2362 } 2363 } 2364 2365 /* Notify that the link state has changed. */ 2366 rt_ifmsg(ifp); 2367 2368 #if NCARP > 0 2369 if (ifp->if_carp) 2370 carp_carpdev_state(ifp); 2371 #endif 2372 2373 DOMAIN_FOREACH(dp) { 2374 if (dp->dom_if_link_state_change != NULL) 2375 dp->dom_if_link_state_change(ifp, link_state); 2376 } 2377 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2378 splx(s); 2379 } 2380 2381 /* 2382 * Process the interface link state change queue. 2383 */ 2384 static void 2385 if_link_state_change_si(void *arg) 2386 { 2387 struct ifnet *ifp = arg; 2388 int s; 2389 uint8_t state; 2390 bool schedule; 2391 2392 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2393 s = splnet(); 2394 2395 /* Pop a link state change from the queue and process it. */ 2396 IF_LINK_STATE_CHANGE_LOCK(ifp); 2397 LQ_POP(ifp->if_link_queue, state); 2398 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2399 2400 if_link_state_change_softint(ifp, state); 2401 2402 /* If there is a link state change to come, schedule it. */ 2403 IF_LINK_STATE_CHANGE_LOCK(ifp); 2404 schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET); 2405 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2406 if (schedule) 2407 softint_schedule(ifp->if_link_si); 2408 2409 splx(s); 2410 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2411 } 2412 2413 /* 2414 * Default action when installing a local route on a point-to-point 2415 * interface. 2416 */ 2417 void 2418 p2p_rtrequest(int req, struct rtentry *rt, 2419 __unused const struct rt_addrinfo *info) 2420 { 2421 struct ifnet *ifp = rt->rt_ifp; 2422 struct ifaddr *ifa, *lo0ifa; 2423 int s = pserialize_read_enter(); 2424 2425 switch (req) { 2426 case RTM_ADD: 2427 if ((rt->rt_flags & RTF_LOCAL) == 0) 2428 break; 2429 2430 rt->rt_ifp = lo0ifp; 2431 2432 IFADDR_READER_FOREACH(ifa, ifp) { 2433 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2434 break; 2435 } 2436 if (ifa == NULL) 2437 break; 2438 2439 /* 2440 * Ensure lo0 has an address of the same family. 2441 */ 2442 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2443 if (lo0ifa->ifa_addr->sa_family == 2444 ifa->ifa_addr->sa_family) 2445 break; 2446 } 2447 if (lo0ifa == NULL) 2448 break; 2449 2450 /* 2451 * Make sure to set rt->rt_ifa to the interface 2452 * address we are using, otherwise we will have trouble 2453 * with source address selection. 2454 */ 2455 if (ifa != rt->rt_ifa) 2456 rt_replace_ifa(rt, ifa); 2457 break; 2458 case RTM_DELETE: 2459 default: 2460 break; 2461 } 2462 pserialize_read_exit(s); 2463 } 2464 2465 static void 2466 _if_down(struct ifnet *ifp) 2467 { 2468 struct ifaddr *ifa; 2469 struct domain *dp; 2470 int s, bound; 2471 struct psref psref; 2472 2473 ifp->if_flags &= ~IFF_UP; 2474 nanotime(&ifp->if_lastchange); 2475 2476 bound = curlwp_bind(); 2477 s = pserialize_read_enter(); 2478 IFADDR_READER_FOREACH(ifa, ifp) { 2479 ifa_acquire(ifa, &psref); 2480 pserialize_read_exit(s); 2481 2482 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2483 2484 s = pserialize_read_enter(); 2485 ifa_release(ifa, &psref); 2486 } 2487 pserialize_read_exit(s); 2488 curlwp_bindx(bound); 2489 2490 IFQ_PURGE(&ifp->if_snd); 2491 #if NCARP > 0 2492 if (ifp->if_carp) 2493 carp_carpdev_state(ifp); 2494 #endif 2495 rt_ifmsg(ifp); 2496 DOMAIN_FOREACH(dp) { 2497 if (dp->dom_if_down) 2498 dp->dom_if_down(ifp); 2499 } 2500 } 2501 2502 static void 2503 if_down_deactivated(struct ifnet *ifp) 2504 { 2505 2506 KASSERT(if_is_deactivated(ifp)); 2507 _if_down(ifp); 2508 } 2509 2510 void 2511 if_down_locked(struct ifnet *ifp) 2512 { 2513 2514 KASSERT(IFNET_LOCKED(ifp)); 2515 _if_down(ifp); 2516 } 2517 2518 /* 2519 * Mark an interface down and notify protocols of 2520 * the transition. 2521 * NOTE: must be called at splsoftnet or equivalent. 2522 */ 2523 void 2524 if_down(struct ifnet *ifp) 2525 { 2526 2527 IFNET_LOCK(ifp); 2528 if_down_locked(ifp); 2529 IFNET_UNLOCK(ifp); 2530 } 2531 2532 /* 2533 * Must be called with holding if_ioctl_lock. 2534 */ 2535 static void 2536 if_up_locked(struct ifnet *ifp) 2537 { 2538 #ifdef notyet 2539 struct ifaddr *ifa; 2540 #endif 2541 struct domain *dp; 2542 2543 KASSERT(IFNET_LOCKED(ifp)); 2544 2545 KASSERT(!if_is_deactivated(ifp)); 2546 ifp->if_flags |= IFF_UP; 2547 nanotime(&ifp->if_lastchange); 2548 #ifdef notyet 2549 /* this has no effect on IP, and will kill all ISO connections XXX */ 2550 IFADDR_READER_FOREACH(ifa, ifp) 2551 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2552 #endif 2553 #if NCARP > 0 2554 if (ifp->if_carp) 2555 carp_carpdev_state(ifp); 2556 #endif 2557 rt_ifmsg(ifp); 2558 DOMAIN_FOREACH(dp) { 2559 if (dp->dom_if_up) 2560 dp->dom_if_up(ifp); 2561 } 2562 } 2563 2564 /* 2565 * Handle interface slowtimo timer routine. Called 2566 * from softclock, we decrement timer (if set) and 2567 * call the appropriate interface routine on expiration. 2568 */ 2569 static void 2570 if_slowtimo(void *arg) 2571 { 2572 void (*slowtimo)(struct ifnet *); 2573 struct ifnet *ifp = arg; 2574 int s; 2575 2576 slowtimo = ifp->if_slowtimo; 2577 if (__predict_false(slowtimo == NULL)) 2578 return; 2579 2580 s = splnet(); 2581 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2582 (*slowtimo)(ifp); 2583 2584 splx(s); 2585 2586 if (__predict_true(ifp->if_slowtimo != NULL)) 2587 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ); 2588 } 2589 2590 /* 2591 * Mark an interface up and notify protocols of 2592 * the transition. 2593 * NOTE: must be called at splsoftnet or equivalent. 2594 */ 2595 void 2596 if_up(struct ifnet *ifp) 2597 { 2598 2599 IFNET_LOCK(ifp); 2600 if_up_locked(ifp); 2601 IFNET_UNLOCK(ifp); 2602 } 2603 2604 /* 2605 * Set/clear promiscuous mode on interface ifp based on the truth value 2606 * of pswitch. The calls are reference counted so that only the first 2607 * "on" request actually has an effect, as does the final "off" request. 2608 * Results are undefined if the "off" and "on" requests are not matched. 2609 */ 2610 int 2611 ifpromisc_locked(struct ifnet *ifp, int pswitch) 2612 { 2613 int pcount, ret = 0; 2614 short nflags; 2615 2616 KASSERT(IFNET_LOCKED(ifp)); 2617 2618 pcount = ifp->if_pcount; 2619 if (pswitch) { 2620 /* 2621 * Allow the device to be "placed" into promiscuous 2622 * mode even if it is not configured up. It will 2623 * consult IFF_PROMISC when it is brought up. 2624 */ 2625 if (ifp->if_pcount++ != 0) 2626 goto out; 2627 nflags = ifp->if_flags | IFF_PROMISC; 2628 } else { 2629 if (--ifp->if_pcount > 0) 2630 goto out; 2631 nflags = ifp->if_flags & ~IFF_PROMISC; 2632 } 2633 ret = if_flags_set(ifp, nflags); 2634 /* Restore interface state if not successful. */ 2635 if (ret != 0) { 2636 ifp->if_pcount = pcount; 2637 } 2638 out: 2639 return ret; 2640 } 2641 2642 int 2643 ifpromisc(struct ifnet *ifp, int pswitch) 2644 { 2645 int e; 2646 2647 IFNET_LOCK(ifp); 2648 e = ifpromisc_locked(ifp, pswitch); 2649 IFNET_UNLOCK(ifp); 2650 2651 return e; 2652 } 2653 2654 /* 2655 * Map interface name to 2656 * interface structure pointer. 2657 */ 2658 struct ifnet * 2659 ifunit(const char *name) 2660 { 2661 struct ifnet *ifp; 2662 const char *cp = name; 2663 u_int unit = 0; 2664 u_int i; 2665 int s; 2666 2667 /* 2668 * If the entire name is a number, treat it as an ifindex. 2669 */ 2670 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2671 unit = unit * 10 + (*cp - '0'); 2672 } 2673 2674 /* 2675 * If the number took all of the name, then it's a valid ifindex. 2676 */ 2677 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2678 return if_byindex(unit); 2679 2680 ifp = NULL; 2681 s = pserialize_read_enter(); 2682 IFNET_READER_FOREACH(ifp) { 2683 if (if_is_deactivated(ifp)) 2684 continue; 2685 if (strcmp(ifp->if_xname, name) == 0) 2686 goto out; 2687 } 2688 out: 2689 pserialize_read_exit(s); 2690 return ifp; 2691 } 2692 2693 /* 2694 * Get a reference of an ifnet object by an interface name. 2695 * The returned reference is protected by psref(9). The caller 2696 * must release a returned reference by if_put after use. 2697 */ 2698 struct ifnet * 2699 if_get(const char *name, struct psref *psref) 2700 { 2701 struct ifnet *ifp; 2702 const char *cp = name; 2703 u_int unit = 0; 2704 u_int i; 2705 int s; 2706 2707 /* 2708 * If the entire name is a number, treat it as an ifindex. 2709 */ 2710 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2711 unit = unit * 10 + (*cp - '0'); 2712 } 2713 2714 /* 2715 * If the number took all of the name, then it's a valid ifindex. 2716 */ 2717 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2718 return if_get_byindex(unit, psref); 2719 2720 ifp = NULL; 2721 s = pserialize_read_enter(); 2722 IFNET_READER_FOREACH(ifp) { 2723 if (if_is_deactivated(ifp)) 2724 continue; 2725 if (strcmp(ifp->if_xname, name) == 0) { 2726 psref_acquire(psref, &ifp->if_psref, 2727 ifnet_psref_class); 2728 goto out; 2729 } 2730 } 2731 out: 2732 pserialize_read_exit(s); 2733 return ifp; 2734 } 2735 2736 /* 2737 * Release a reference of an ifnet object given by if_get, if_get_byindex 2738 * or if_get_bylla. 2739 */ 2740 void 2741 if_put(const struct ifnet *ifp, struct psref *psref) 2742 { 2743 2744 if (ifp == NULL) 2745 return; 2746 2747 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2748 } 2749 2750 /* 2751 * Return ifp having idx. Return NULL if not found. Normally if_byindex 2752 * should be used. 2753 */ 2754 ifnet_t * 2755 _if_byindex(u_int idx) 2756 { 2757 2758 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2759 } 2760 2761 /* 2762 * Return ifp having idx. Return NULL if not found or the found ifp is 2763 * already deactivated. 2764 */ 2765 ifnet_t * 2766 if_byindex(u_int idx) 2767 { 2768 ifnet_t *ifp; 2769 2770 ifp = _if_byindex(idx); 2771 if (ifp != NULL && if_is_deactivated(ifp)) 2772 ifp = NULL; 2773 return ifp; 2774 } 2775 2776 /* 2777 * Get a reference of an ifnet object by an interface index. 2778 * The returned reference is protected by psref(9). The caller 2779 * must release a returned reference by if_put after use. 2780 */ 2781 ifnet_t * 2782 if_get_byindex(u_int idx, struct psref *psref) 2783 { 2784 ifnet_t *ifp; 2785 int s; 2786 2787 s = pserialize_read_enter(); 2788 ifp = if_byindex(idx); 2789 if (__predict_true(ifp != NULL)) 2790 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2791 pserialize_read_exit(s); 2792 2793 return ifp; 2794 } 2795 2796 ifnet_t * 2797 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref) 2798 { 2799 ifnet_t *ifp; 2800 int s; 2801 2802 s = pserialize_read_enter(); 2803 IFNET_READER_FOREACH(ifp) { 2804 if (if_is_deactivated(ifp)) 2805 continue; 2806 if (ifp->if_addrlen != lla_len) 2807 continue; 2808 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) { 2809 psref_acquire(psref, &ifp->if_psref, 2810 ifnet_psref_class); 2811 break; 2812 } 2813 } 2814 pserialize_read_exit(s); 2815 2816 return ifp; 2817 } 2818 2819 /* 2820 * Note that it's safe only if the passed ifp is guaranteed to not be freed, 2821 * for example using pserialize or the ifp is already held or some other 2822 * object is held which guarantes the ifp to not be freed indirectly. 2823 */ 2824 void 2825 if_acquire(struct ifnet *ifp, struct psref *psref) 2826 { 2827 2828 KASSERT(ifp->if_index != 0); 2829 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2830 } 2831 2832 bool 2833 if_held(struct ifnet *ifp) 2834 { 2835 2836 return psref_held(&ifp->if_psref, ifnet_psref_class); 2837 } 2838 2839 /* 2840 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4. 2841 * Check the tunnel nesting count. 2842 * Return > 0, if tunnel nesting count is more than limit. 2843 * Return 0, if tunnel nesting count is equal or less than limit. 2844 */ 2845 int 2846 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit) 2847 { 2848 struct m_tag *mtag; 2849 int *count; 2850 2851 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO, NULL); 2852 if (mtag != NULL) { 2853 count = (int *)(mtag + 1); 2854 if (++(*count) > limit) { 2855 log(LOG_NOTICE, 2856 "%s: recursively called too many times(%d)\n", 2857 ifp->if_xname, *count); 2858 return EIO; 2859 } 2860 } else { 2861 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count), 2862 M_NOWAIT); 2863 if (mtag != NULL) { 2864 m_tag_prepend(m, mtag); 2865 count = (int *)(mtag + 1); 2866 *count = 0; 2867 } else { 2868 log(LOG_DEBUG, 2869 "%s: m_tag_get() failed, recursion calls are not prevented.\n", 2870 ifp->if_xname); 2871 } 2872 } 2873 2874 return 0; 2875 } 2876 2877 /* common */ 2878 int 2879 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 2880 { 2881 int s; 2882 struct ifreq *ifr; 2883 struct ifcapreq *ifcr; 2884 struct ifdatareq *ifdr; 2885 2886 switch (cmd) { 2887 case SIOCSIFCAP: 2888 ifcr = data; 2889 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 2890 return EINVAL; 2891 2892 if (ifcr->ifcr_capenable == ifp->if_capenable) 2893 return 0; 2894 2895 ifp->if_capenable = ifcr->ifcr_capenable; 2896 2897 /* Pre-compute the checksum flags mask. */ 2898 ifp->if_csum_flags_tx = 0; 2899 ifp->if_csum_flags_rx = 0; 2900 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) { 2901 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 2902 } 2903 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { 2904 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 2905 } 2906 2907 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) { 2908 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 2909 } 2910 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) { 2911 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 2912 } 2913 2914 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) { 2915 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 2916 } 2917 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) { 2918 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 2919 } 2920 2921 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) { 2922 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 2923 } 2924 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) { 2925 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 2926 } 2927 2928 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) { 2929 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 2930 } 2931 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) { 2932 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 2933 } 2934 if (ifp->if_flags & IFF_UP) 2935 return ENETRESET; 2936 return 0; 2937 case SIOCSIFFLAGS: 2938 ifr = data; 2939 /* 2940 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up 2941 * and if_down aren't MP-safe yet, so we must hold the lock. 2942 */ 2943 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 2944 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 2945 s = splsoftnet(); 2946 if_down_locked(ifp); 2947 splx(s); 2948 } 2949 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 2950 s = splsoftnet(); 2951 if_up_locked(ifp); 2952 splx(s); 2953 } 2954 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 2955 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2956 (ifr->ifr_flags &~ IFF_CANTCHANGE); 2957 break; 2958 case SIOCGIFFLAGS: 2959 ifr = data; 2960 ifr->ifr_flags = ifp->if_flags; 2961 break; 2962 2963 case SIOCGIFMETRIC: 2964 ifr = data; 2965 ifr->ifr_metric = ifp->if_metric; 2966 break; 2967 2968 case SIOCGIFMTU: 2969 ifr = data; 2970 ifr->ifr_mtu = ifp->if_mtu; 2971 break; 2972 2973 case SIOCGIFDLT: 2974 ifr = data; 2975 ifr->ifr_dlt = ifp->if_dlt; 2976 break; 2977 2978 case SIOCGIFCAP: 2979 ifcr = data; 2980 ifcr->ifcr_capabilities = ifp->if_capabilities; 2981 ifcr->ifcr_capenable = ifp->if_capenable; 2982 break; 2983 2984 case SIOCSIFMETRIC: 2985 ifr = data; 2986 ifp->if_metric = ifr->ifr_metric; 2987 break; 2988 2989 case SIOCGIFDATA: 2990 ifdr = data; 2991 ifdr->ifdr_data = ifp->if_data; 2992 break; 2993 2994 case SIOCGIFINDEX: 2995 ifr = data; 2996 ifr->ifr_index = ifp->if_index; 2997 break; 2998 2999 case SIOCZIFDATA: 3000 ifdr = data; 3001 ifdr->ifdr_data = ifp->if_data; 3002 /* 3003 * Assumes that the volatile counters that can be 3004 * zero'ed are at the end of if_data. 3005 */ 3006 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) - 3007 offsetof(struct if_data, ifi_ipackets)); 3008 /* 3009 * The memset() clears to the bottm of if_data. In the area, 3010 * if_lastchange is included. Please be careful if new entry 3011 * will be added into if_data or rewite this. 3012 * 3013 * And also, update if_lastchnage. 3014 */ 3015 getnanotime(&ifp->if_lastchange); 3016 break; 3017 case SIOCSIFMTU: 3018 ifr = data; 3019 if (ifp->if_mtu == ifr->ifr_mtu) 3020 break; 3021 ifp->if_mtu = ifr->ifr_mtu; 3022 /* 3023 * If the link MTU changed, do network layer specific procedure. 3024 */ 3025 #ifdef INET6 3026 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3027 if (in6_present) 3028 nd6_setmtu(ifp); 3029 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3030 #endif 3031 return ENETRESET; 3032 default: 3033 return ENOTTY; 3034 } 3035 return 0; 3036 } 3037 3038 int 3039 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 3040 { 3041 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 3042 struct ifaddr *ifa; 3043 const struct sockaddr *any, *sa; 3044 union { 3045 struct sockaddr sa; 3046 struct sockaddr_storage ss; 3047 } u, v; 3048 int s, error = 0; 3049 3050 switch (cmd) { 3051 case SIOCSIFADDRPREF: 3052 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, 3053 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 3054 NULL) != 0) 3055 return EPERM; 3056 case SIOCGIFADDRPREF: 3057 break; 3058 default: 3059 return EOPNOTSUPP; 3060 } 3061 3062 /* sanity checks */ 3063 if (data == NULL || ifp == NULL) { 3064 panic("invalid argument to %s", __func__); 3065 /*NOTREACHED*/ 3066 } 3067 3068 /* address must be specified on ADD and DELETE */ 3069 sa = sstocsa(&ifap->ifap_addr); 3070 if (sa->sa_family != sofamily(so)) 3071 return EINVAL; 3072 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 3073 return EINVAL; 3074 3075 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 3076 3077 s = pserialize_read_enter(); 3078 IFADDR_READER_FOREACH(ifa, ifp) { 3079 if (ifa->ifa_addr->sa_family != sa->sa_family) 3080 continue; 3081 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 3082 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 3083 break; 3084 } 3085 if (ifa == NULL) { 3086 error = EADDRNOTAVAIL; 3087 goto out; 3088 } 3089 3090 switch (cmd) { 3091 case SIOCSIFADDRPREF: 3092 ifa->ifa_preference = ifap->ifap_preference; 3093 goto out; 3094 case SIOCGIFADDRPREF: 3095 /* fill in the if_laddrreq structure */ 3096 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 3097 sizeof(ifap->ifap_addr), ifa->ifa_addr); 3098 ifap->ifap_preference = ifa->ifa_preference; 3099 goto out; 3100 default: 3101 error = EOPNOTSUPP; 3102 } 3103 out: 3104 pserialize_read_exit(s); 3105 return error; 3106 } 3107 3108 /* 3109 * Interface ioctls. 3110 */ 3111 static int 3112 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 3113 { 3114 struct ifnet *ifp; 3115 struct ifreq *ifr; 3116 int error = 0; 3117 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ) 3118 u_long ocmd = cmd; 3119 #endif 3120 short oif_flags; 3121 #ifdef COMPAT_OIFREQ 3122 struct ifreq ifrb; 3123 struct oifreq *oifr = NULL; 3124 #endif 3125 int r; 3126 struct psref psref; 3127 int bound; 3128 3129 switch (cmd) { 3130 case SIOCGIFCONF: 3131 return ifconf(cmd, data); 3132 case SIOCINITIFADDR: 3133 return EPERM; 3134 default: 3135 error = (*vec_compat_ifconf)(l, cmd, data); 3136 if (error != ENOSYS) 3137 return error; 3138 error = (*vec_compat_ifdatareq)(l, cmd, data); 3139 if (error != ENOSYS) 3140 return error; 3141 break; 3142 } 3143 3144 ifr = data; 3145 #ifdef COMPAT_OIFREQ 3146 if (vec_compat_cvtcmd) { 3147 cmd = (*vec_compat_cvtcmd)(cmd); 3148 if (cmd != ocmd) { 3149 oifr = data; 3150 data = ifr = &ifrb; 3151 ifreqo2n(oifr, ifr); 3152 } 3153 } 3154 #endif 3155 3156 switch (cmd) { 3157 case SIOCIFCREATE: 3158 case SIOCIFDESTROY: 3159 bound = curlwp_bind(); 3160 if (l != NULL) { 3161 ifp = if_get(ifr->ifr_name, &psref); 3162 error = kauth_authorize_network(l->l_cred, 3163 KAUTH_NETWORK_INTERFACE, 3164 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3165 (void *)cmd, NULL); 3166 if (ifp != NULL) 3167 if_put(ifp, &psref); 3168 if (error != 0) { 3169 curlwp_bindx(bound); 3170 return error; 3171 } 3172 } 3173 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3174 mutex_enter(&if_clone_mtx); 3175 r = (cmd == SIOCIFCREATE) ? 3176 if_clone_create(ifr->ifr_name) : 3177 if_clone_destroy(ifr->ifr_name); 3178 mutex_exit(&if_clone_mtx); 3179 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3180 curlwp_bindx(bound); 3181 return r; 3182 3183 case SIOCIFGCLONERS: 3184 { 3185 struct if_clonereq *req = (struct if_clonereq *)data; 3186 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 3187 &req->ifcr_total); 3188 } 3189 } 3190 3191 bound = curlwp_bind(); 3192 ifp = if_get(ifr->ifr_name, &psref); 3193 if (ifp == NULL) { 3194 curlwp_bindx(bound); 3195 return ENXIO; 3196 } 3197 3198 switch (cmd) { 3199 case SIOCALIFADDR: 3200 case SIOCDLIFADDR: 3201 case SIOCSIFADDRPREF: 3202 case SIOCSIFFLAGS: 3203 case SIOCSIFCAP: 3204 case SIOCSIFMETRIC: 3205 case SIOCZIFDATA: 3206 case SIOCSIFMTU: 3207 case SIOCSIFPHYADDR: 3208 case SIOCDIFPHYADDR: 3209 #ifdef INET6 3210 case SIOCSIFPHYADDR_IN6: 3211 #endif 3212 case SIOCSLIFPHYADDR: 3213 case SIOCADDMULTI: 3214 case SIOCDELMULTI: 3215 case SIOCSIFMEDIA: 3216 case SIOCSDRVSPEC: 3217 case SIOCG80211: 3218 case SIOCS80211: 3219 case SIOCS80211NWID: 3220 case SIOCS80211NWKEY: 3221 case SIOCS80211POWER: 3222 case SIOCS80211BSSID: 3223 case SIOCS80211CHANNEL: 3224 case SIOCSLINKSTR: 3225 if (l != NULL) { 3226 error = kauth_authorize_network(l->l_cred, 3227 KAUTH_NETWORK_INTERFACE, 3228 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3229 (void *)cmd, NULL); 3230 if (error != 0) 3231 goto out; 3232 } 3233 } 3234 3235 oif_flags = ifp->if_flags; 3236 3237 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); 3238 IFNET_LOCK(ifp); 3239 3240 error = (*ifp->if_ioctl)(ifp, cmd, data); 3241 if (error != ENOTTY) 3242 ; 3243 else if (so->so_proto == NULL) 3244 error = EOPNOTSUPP; 3245 else { 3246 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3247 #ifdef COMPAT_OSOCK 3248 if (vec_compat_ifioctl != NULL) 3249 error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l); 3250 else 3251 #endif 3252 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 3253 cmd, data, ifp); 3254 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3255 } 3256 3257 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 3258 if ((ifp->if_flags & IFF_UP) != 0) { 3259 int s = splsoftnet(); 3260 if_up_locked(ifp); 3261 splx(s); 3262 } 3263 } 3264 #ifdef COMPAT_OIFREQ 3265 if (cmd != ocmd) 3266 ifreqn2o(oifr, ifr); 3267 #endif 3268 3269 IFNET_UNLOCK(ifp); 3270 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); 3271 out: 3272 if_put(ifp, &psref); 3273 curlwp_bindx(bound); 3274 return error; 3275 } 3276 3277 /* 3278 * Return interface configuration 3279 * of system. List may be used 3280 * in later ioctl's (above) to get 3281 * other information. 3282 * 3283 * Each record is a struct ifreq. Before the addition of 3284 * sockaddr_storage, the API rule was that sockaddr flavors that did 3285 * not fit would extend beyond the struct ifreq, with the next struct 3286 * ifreq starting sa_len beyond the struct sockaddr. Because the 3287 * union in struct ifreq includes struct sockaddr_storage, every kind 3288 * of sockaddr must fit. Thus, there are no longer any overlength 3289 * records. 3290 * 3291 * Records are added to the user buffer if they fit, and ifc_len is 3292 * adjusted to the length that was written. Thus, the user is only 3293 * assured of getting the complete list if ifc_len on return is at 3294 * least sizeof(struct ifreq) less than it was on entry. 3295 * 3296 * If the user buffer pointer is NULL, this routine copies no data and 3297 * returns the amount of space that would be needed. 3298 * 3299 * Invariants: 3300 * ifrp points to the next part of the user's buffer to be used. If 3301 * ifrp != NULL, space holds the number of bytes remaining that we may 3302 * write at ifrp. Otherwise, space holds the number of bytes that 3303 * would have been written had there been adequate space. 3304 */ 3305 /*ARGSUSED*/ 3306 static int 3307 ifconf(u_long cmd, void *data) 3308 { 3309 struct ifconf *ifc = (struct ifconf *)data; 3310 struct ifnet *ifp; 3311 struct ifaddr *ifa; 3312 struct ifreq ifr, *ifrp = NULL; 3313 int space = 0, error = 0; 3314 const int sz = (int)sizeof(struct ifreq); 3315 const bool docopy = ifc->ifc_req != NULL; 3316 int s; 3317 int bound; 3318 struct psref psref; 3319 3320 if (docopy) { 3321 space = ifc->ifc_len; 3322 ifrp = ifc->ifc_req; 3323 } 3324 3325 bound = curlwp_bind(); 3326 s = pserialize_read_enter(); 3327 IFNET_READER_FOREACH(ifp) { 3328 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3329 pserialize_read_exit(s); 3330 3331 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3332 sizeof(ifr.ifr_name)); 3333 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3334 error = ENAMETOOLONG; 3335 goto release_exit; 3336 } 3337 if (IFADDR_READER_EMPTY(ifp)) { 3338 /* Interface with no addresses - send zero sockaddr. */ 3339 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3340 if (!docopy) { 3341 space += sz; 3342 goto next; 3343 } 3344 if (space >= sz) { 3345 error = copyout(&ifr, ifrp, sz); 3346 if (error != 0) 3347 goto release_exit; 3348 ifrp++; 3349 space -= sz; 3350 } 3351 } 3352 3353 s = pserialize_read_enter(); 3354 IFADDR_READER_FOREACH(ifa, ifp) { 3355 struct sockaddr *sa = ifa->ifa_addr; 3356 /* all sockaddrs must fit in sockaddr_storage */ 3357 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3358 3359 if (!docopy) { 3360 space += sz; 3361 continue; 3362 } 3363 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3364 pserialize_read_exit(s); 3365 3366 if (space >= sz) { 3367 error = copyout(&ifr, ifrp, sz); 3368 if (error != 0) 3369 goto release_exit; 3370 ifrp++; space -= sz; 3371 } 3372 s = pserialize_read_enter(); 3373 } 3374 pserialize_read_exit(s); 3375 3376 next: 3377 s = pserialize_read_enter(); 3378 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3379 } 3380 pserialize_read_exit(s); 3381 curlwp_bindx(bound); 3382 3383 if (docopy) { 3384 KASSERT(0 <= space && space <= ifc->ifc_len); 3385 ifc->ifc_len -= space; 3386 } else { 3387 KASSERT(space >= 0); 3388 ifc->ifc_len = space; 3389 } 3390 return (0); 3391 3392 release_exit: 3393 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3394 curlwp_bindx(bound); 3395 return error; 3396 } 3397 3398 int 3399 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3400 { 3401 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space); 3402 #ifdef COMPAT_OIFREQ 3403 struct ifreq ifrb; 3404 struct oifreq *oifr = NULL; 3405 u_long ocmd = cmd; 3406 3407 if (vec_compat_cvtcmd) { 3408 cmd = (*vec_compat_cvtcmd)(cmd); 3409 if (cmd != ocmd) { 3410 oifr = (struct oifreq *)(void *)ifr; 3411 ifr = &ifrb; 3412 ifreqo2n(oifr, ifr); 3413 len = sizeof(oifr->ifr_addr); 3414 } 3415 } 3416 #endif 3417 if (len < sa->sa_len) 3418 return EFBIG; 3419 3420 memset(&ifr->ifr_addr, 0, len); 3421 sockaddr_copy(&ifr->ifr_addr, len, sa); 3422 3423 #ifdef COMPAT_OIFREQ 3424 if (cmd != ocmd) 3425 ifreqn2o(oifr, ifr); 3426 #endif 3427 return 0; 3428 } 3429 3430 /* 3431 * wrapper function for the drivers which doesn't have if_transmit(). 3432 */ 3433 static int 3434 if_transmit(struct ifnet *ifp, struct mbuf *m) 3435 { 3436 int s, error; 3437 size_t pktlen = m->m_pkthdr.len; 3438 bool mcast = (m->m_flags & M_MCAST) != 0; 3439 3440 s = splnet(); 3441 3442 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3443 if (error != 0) { 3444 /* mbuf is already freed */ 3445 goto out; 3446 } 3447 3448 ifp->if_obytes += pktlen; 3449 if (mcast) 3450 ifp->if_omcasts++; 3451 3452 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3453 if_start_lock(ifp); 3454 out: 3455 splx(s); 3456 3457 return error; 3458 } 3459 3460 int 3461 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3462 { 3463 int error; 3464 3465 #ifdef ALTQ 3466 KERNEL_LOCK(1, NULL); 3467 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3468 error = if_transmit(ifp, m); 3469 KERNEL_UNLOCK_ONE(NULL); 3470 } else { 3471 KERNEL_UNLOCK_ONE(NULL); 3472 error = (*ifp->if_transmit)(ifp, m); 3473 /* mbuf is alredy freed */ 3474 } 3475 #else /* !ALTQ */ 3476 error = (*ifp->if_transmit)(ifp, m); 3477 /* mbuf is alredy freed */ 3478 #endif /* !ALTQ */ 3479 3480 return error; 3481 } 3482 3483 /* 3484 * Queue message on interface, and start output if interface 3485 * not yet active. 3486 */ 3487 int 3488 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3489 { 3490 3491 return if_transmit_lock(ifp, m); 3492 } 3493 3494 /* 3495 * Queue message on interface, possibly using a second fast queue 3496 */ 3497 int 3498 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3499 { 3500 int error = 0; 3501 3502 if (ifq != NULL 3503 #ifdef ALTQ 3504 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3505 #endif 3506 ) { 3507 if (IF_QFULL(ifq)) { 3508 IF_DROP(&ifp->if_snd); 3509 m_freem(m); 3510 if (error == 0) 3511 error = ENOBUFS; 3512 } else 3513 IF_ENQUEUE(ifq, m); 3514 } else 3515 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3516 if (error != 0) { 3517 ++ifp->if_oerrors; 3518 return error; 3519 } 3520 return 0; 3521 } 3522 3523 int 3524 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3525 { 3526 int rc; 3527 3528 KASSERT(IFNET_LOCKED(ifp)); 3529 if (ifp->if_initaddr != NULL) 3530 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3531 else if (src || 3532 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3533 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); 3534 3535 return rc; 3536 } 3537 3538 int 3539 if_do_dad(struct ifnet *ifp) 3540 { 3541 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3542 return 0; 3543 3544 switch (ifp->if_type) { 3545 case IFT_FAITH: 3546 /* 3547 * These interfaces do not have the IFF_LOOPBACK flag, 3548 * but loop packets back. We do not have to do DAD on such 3549 * interfaces. We should even omit it, because loop-backed 3550 * responses would confuse the DAD procedure. 3551 */ 3552 return 0; 3553 default: 3554 /* 3555 * Our DAD routine requires the interface up and running. 3556 * However, some interfaces can be up before the RUNNING 3557 * status. Additionaly, users may try to assign addresses 3558 * before the interface becomes up (or running). 3559 * We simply skip DAD in such a case as a work around. 3560 * XXX: we should rather mark "tentative" on such addresses, 3561 * and do DAD after the interface becomes ready. 3562 */ 3563 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 3564 (IFF_UP|IFF_RUNNING)) 3565 return 0; 3566 3567 return 1; 3568 } 3569 } 3570 3571 int 3572 if_flags_set(ifnet_t *ifp, const short flags) 3573 { 3574 int rc; 3575 3576 KASSERT(IFNET_LOCKED(ifp)); 3577 3578 if (ifp->if_setflags != NULL) 3579 rc = (*ifp->if_setflags)(ifp, flags); 3580 else { 3581 short cantflags, chgdflags; 3582 struct ifreq ifr; 3583 3584 chgdflags = ifp->if_flags ^ flags; 3585 cantflags = chgdflags & IFF_CANTCHANGE; 3586 3587 if (cantflags != 0) 3588 ifp->if_flags ^= cantflags; 3589 3590 /* Traditionally, we do not call if_ioctl after 3591 * setting/clearing only IFF_PROMISC if the interface 3592 * isn't IFF_UP. Uphold that tradition. 3593 */ 3594 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3595 return 0; 3596 3597 memset(&ifr, 0, sizeof(ifr)); 3598 3599 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3600 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); 3601 3602 if (rc != 0 && cantflags != 0) 3603 ifp->if_flags ^= cantflags; 3604 } 3605 3606 return rc; 3607 } 3608 3609 int 3610 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3611 { 3612 int rc; 3613 struct ifreq ifr; 3614 3615 /* There remain some paths that don't hold IFNET_LOCK yet */ 3616 #ifdef NET_MPSAFE 3617 /* CARP and MROUTING still don't deal with the lock yet */ 3618 #if (!defined(NCARP) || (NCARP == 0)) && !defined(MROUTING) 3619 KASSERT(IFNET_LOCKED(ifp)); 3620 #endif 3621 #endif 3622 if (ifp->if_mcastop != NULL) 3623 rc = (*ifp->if_mcastop)(ifp, cmd, sa); 3624 else { 3625 ifreq_setaddr(cmd, &ifr, sa); 3626 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); 3627 } 3628 3629 return rc; 3630 } 3631 3632 static void 3633 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3634 struct ifaltq *ifq) 3635 { 3636 const struct sysctlnode *cnode, *rnode; 3637 3638 if (sysctl_createv(clog, 0, NULL, &rnode, 3639 CTLFLAG_PERMANENT, 3640 CTLTYPE_NODE, "interfaces", 3641 SYSCTL_DESCR("Per-interface controls"), 3642 NULL, 0, NULL, 0, 3643 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 3644 goto bad; 3645 3646 if (sysctl_createv(clog, 0, &rnode, &rnode, 3647 CTLFLAG_PERMANENT, 3648 CTLTYPE_NODE, ifname, 3649 SYSCTL_DESCR("Interface controls"), 3650 NULL, 0, NULL, 0, 3651 CTL_CREATE, CTL_EOL) != 0) 3652 goto bad; 3653 3654 if (sysctl_createv(clog, 0, &rnode, &rnode, 3655 CTLFLAG_PERMANENT, 3656 CTLTYPE_NODE, "sndq", 3657 SYSCTL_DESCR("Interface output queue controls"), 3658 NULL, 0, NULL, 0, 3659 CTL_CREATE, CTL_EOL) != 0) 3660 goto bad; 3661 3662 if (sysctl_createv(clog, 0, &rnode, &cnode, 3663 CTLFLAG_PERMANENT, 3664 CTLTYPE_INT, "len", 3665 SYSCTL_DESCR("Current output queue length"), 3666 NULL, 0, &ifq->ifq_len, 0, 3667 CTL_CREATE, CTL_EOL) != 0) 3668 goto bad; 3669 3670 if (sysctl_createv(clog, 0, &rnode, &cnode, 3671 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3672 CTLTYPE_INT, "maxlen", 3673 SYSCTL_DESCR("Maximum allowed output queue length"), 3674 NULL, 0, &ifq->ifq_maxlen, 0, 3675 CTL_CREATE, CTL_EOL) != 0) 3676 goto bad; 3677 3678 if (sysctl_createv(clog, 0, &rnode, &cnode, 3679 CTLFLAG_PERMANENT, 3680 CTLTYPE_INT, "drops", 3681 SYSCTL_DESCR("Packets dropped due to full output queue"), 3682 NULL, 0, &ifq->ifq_drops, 0, 3683 CTL_CREATE, CTL_EOL) != 0) 3684 goto bad; 3685 3686 return; 3687 bad: 3688 printf("%s: could not attach sysctl nodes\n", ifname); 3689 return; 3690 } 3691 3692 #if defined(INET) || defined(INET6) 3693 3694 #define SYSCTL_NET_PKTQ(q, cn, c) \ 3695 static int \ 3696 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \ 3697 { \ 3698 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \ 3699 } 3700 3701 #if defined(INET) 3702 static int 3703 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS) 3704 { 3705 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq); 3706 } 3707 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS) 3708 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS) 3709 #endif 3710 3711 #if defined(INET6) 3712 static int 3713 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS) 3714 { 3715 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq); 3716 } 3717 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS) 3718 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS) 3719 #endif 3720 3721 static void 3722 sysctl_net_pktq_setup(struct sysctllog **clog, int pf) 3723 { 3724 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL; 3725 const char *pfname = NULL, *ipname = NULL; 3726 int ipn = 0, qid = 0; 3727 3728 switch (pf) { 3729 #if defined(INET) 3730 case PF_INET: 3731 len_func = sysctl_net_ip_pktq_items; 3732 maxlen_func = sysctl_net_ip_pktq_maxlen; 3733 drops_func = sysctl_net_ip_pktq_drops; 3734 pfname = "inet", ipn = IPPROTO_IP; 3735 ipname = "ip", qid = IPCTL_IFQ; 3736 break; 3737 #endif 3738 #if defined(INET6) 3739 case PF_INET6: 3740 len_func = sysctl_net_ip6_pktq_items; 3741 maxlen_func = sysctl_net_ip6_pktq_maxlen; 3742 drops_func = sysctl_net_ip6_pktq_drops; 3743 pfname = "inet6", ipn = IPPROTO_IPV6; 3744 ipname = "ip6", qid = IPV6CTL_IFQ; 3745 break; 3746 #endif 3747 default: 3748 KASSERT(false); 3749 } 3750 3751 sysctl_createv(clog, 0, NULL, NULL, 3752 CTLFLAG_PERMANENT, 3753 CTLTYPE_NODE, pfname, NULL, 3754 NULL, 0, NULL, 0, 3755 CTL_NET, pf, CTL_EOL); 3756 sysctl_createv(clog, 0, NULL, NULL, 3757 CTLFLAG_PERMANENT, 3758 CTLTYPE_NODE, ipname, NULL, 3759 NULL, 0, NULL, 0, 3760 CTL_NET, pf, ipn, CTL_EOL); 3761 sysctl_createv(clog, 0, NULL, NULL, 3762 CTLFLAG_PERMANENT, 3763 CTLTYPE_NODE, "ifq", 3764 SYSCTL_DESCR("Protocol input queue controls"), 3765 NULL, 0, NULL, 0, 3766 CTL_NET, pf, ipn, qid, CTL_EOL); 3767 3768 sysctl_createv(clog, 0, NULL, NULL, 3769 CTLFLAG_PERMANENT, 3770 CTLTYPE_INT, "len", 3771 SYSCTL_DESCR("Current input queue length"), 3772 len_func, 0, NULL, 0, 3773 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); 3774 sysctl_createv(clog, 0, NULL, NULL, 3775 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3776 CTLTYPE_INT, "maxlen", 3777 SYSCTL_DESCR("Maximum allowed input queue length"), 3778 maxlen_func, 0, NULL, 0, 3779 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); 3780 sysctl_createv(clog, 0, NULL, NULL, 3781 CTLFLAG_PERMANENT, 3782 CTLTYPE_INT, "drops", 3783 SYSCTL_DESCR("Packets dropped due to full input queue"), 3784 drops_func, 0, NULL, 0, 3785 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); 3786 } 3787 #endif /* INET || INET6 */ 3788 3789 static int 3790 if_sdl_sysctl(SYSCTLFN_ARGS) 3791 { 3792 struct ifnet *ifp; 3793 const struct sockaddr_dl *sdl; 3794 struct psref psref; 3795 int error = 0; 3796 int bound; 3797 3798 if (namelen != 1) 3799 return EINVAL; 3800 3801 bound = curlwp_bind(); 3802 ifp = if_get_byindex(name[0], &psref); 3803 if (ifp == NULL) { 3804 error = ENODEV; 3805 goto out0; 3806 } 3807 3808 sdl = ifp->if_sadl; 3809 if (sdl == NULL) { 3810 *oldlenp = 0; 3811 goto out1; 3812 } 3813 3814 if (oldp == NULL) { 3815 *oldlenp = sdl->sdl_alen; 3816 goto out1; 3817 } 3818 3819 if (*oldlenp >= sdl->sdl_alen) 3820 *oldlenp = sdl->sdl_alen; 3821 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp); 3822 out1: 3823 if_put(ifp, &psref); 3824 out0: 3825 curlwp_bindx(bound); 3826 return error; 3827 } 3828 3829 static void 3830 if_sysctl_setup(struct sysctllog **clog) 3831 { 3832 const struct sysctlnode *rnode = NULL; 3833 3834 sysctl_createv(clog, 0, NULL, &rnode, 3835 CTLFLAG_PERMANENT, 3836 CTLTYPE_NODE, "sdl", 3837 SYSCTL_DESCR("Get active link-layer address"), 3838 if_sdl_sysctl, 0, NULL, 0, 3839 CTL_NET, CTL_CREATE, CTL_EOL); 3840 3841 #if defined(INET) 3842 sysctl_net_pktq_setup(NULL, PF_INET); 3843 #endif 3844 #ifdef INET6 3845 if (in6_present) 3846 sysctl_net_pktq_setup(NULL, PF_INET6); 3847 #endif 3848 } 3849