1 /* $NetBSD: if.c,v 1.526 2022/09/20 02:23:37 knakahara Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.526 2022/09/20 02:23:37 knakahara Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 #include "opt_atalk.h" 99 #include "opt_wlan.h" 100 #include "opt_net_mpsafe.h" 101 #include "opt_mrouting.h" 102 #endif 103 104 #include <sys/param.h> 105 #include <sys/mbuf.h> 106 #include <sys/systm.h> 107 #include <sys/callout.h> 108 #include <sys/proc.h> 109 #include <sys/socket.h> 110 #include <sys/socketvar.h> 111 #include <sys/domain.h> 112 #include <sys/protosw.h> 113 #include <sys/kernel.h> 114 #include <sys/ioctl.h> 115 #include <sys/sysctl.h> 116 #include <sys/syslog.h> 117 #include <sys/kauth.h> 118 #include <sys/kmem.h> 119 #include <sys/xcall.h> 120 #include <sys/cpu.h> 121 #include <sys/intr.h> 122 #include <sys/module_hook.h> 123 #include <sys/compat_stub.h> 124 #include <sys/msan.h> 125 #include <sys/hook.h> 126 127 #include <net/if.h> 128 #include <net/if_dl.h> 129 #include <net/if_ether.h> 130 #include <net/if_media.h> 131 #include <net80211/ieee80211.h> 132 #include <net80211/ieee80211_ioctl.h> 133 #include <net/if_types.h> 134 #include <net/route.h> 135 #include <sys/module.h> 136 #ifdef NETATALK 137 #include <netatalk/at_extern.h> 138 #include <netatalk/at.h> 139 #endif 140 #include <net/pfil.h> 141 #include <netinet/in.h> 142 #include <netinet/in_var.h> 143 #include <netinet/ip_encap.h> 144 #include <net/bpf.h> 145 146 #ifdef INET6 147 #include <netinet6/in6_var.h> 148 #include <netinet6/nd6.h> 149 #endif 150 151 #include "ether.h" 152 153 #include "bridge.h" 154 #if NBRIDGE > 0 155 #include <net/if_bridgevar.h> 156 #endif 157 158 #include "carp.h" 159 #if NCARP > 0 160 #include <netinet/ip_carp.h> 161 #endif 162 163 #include <compat/sys/sockio.h> 164 165 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 166 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 167 168 /* 169 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex 170 * for each ifnet. It doesn't matter because: 171 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on 172 * ifq_lock don't happen 173 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock 174 * because if_snd, if_link_state_change and if_link_state_change_process 175 * are all called with KERNEL_LOCK 176 */ 177 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \ 178 mutex_enter((ifp)->if_snd.ifq_lock) 179 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \ 180 mutex_exit((ifp)->if_snd.ifq_lock) 181 182 /* 183 * Global list of interfaces. 184 */ 185 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 186 struct ifnet_head ifnet_list; 187 188 struct pslist_head ifnet_pslist; 189 static ifnet_t ** ifindex2ifnet = NULL; 190 static u_int if_index = 1; 191 static size_t if_indexlim = 0; 192 static uint64_t index_gen; 193 /* Mutex to protect the above objects. */ 194 kmutex_t ifnet_mtx __cacheline_aligned; 195 static struct psref_class *ifnet_psref_class __read_mostly; 196 static pserialize_t ifnet_psz; 197 static struct workqueue *ifnet_link_state_wq __read_mostly; 198 199 static struct workqueue *if_slowtimo_wq __read_mostly; 200 201 static kmutex_t if_clone_mtx; 202 203 struct ifnet *lo0ifp; 204 int ifqmaxlen = IFQ_MAXLEN; 205 206 struct psref_class *ifa_psref_class __read_mostly; 207 208 static int if_delroute_matcher(struct rtentry *, void *); 209 210 static bool if_is_unit(const char *); 211 static struct if_clone *if_clone_lookup(const char *, int *); 212 213 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 214 static int if_cloners_count; 215 216 /* Packet filtering hook for interfaces. */ 217 pfil_head_t * if_pfil __read_mostly; 218 219 static kauth_listener_t if_listener; 220 221 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 222 static void sysctl_sndq_setup(struct sysctllog **, const char *, 223 struct ifaltq *); 224 static void if_slowtimo_intr(void *); 225 static void if_slowtimo_work(struct work *, void *); 226 static int sysctl_if_watchdog(SYSCTLFN_PROTO); 227 static void sysctl_watchdog_setup(struct ifnet *); 228 static void if_attachdomain1(struct ifnet *); 229 static int ifconf(u_long, void *); 230 static int if_transmit(struct ifnet *, struct mbuf *); 231 static int if_clone_create(const char *); 232 static int if_clone_destroy(const char *); 233 static void if_link_state_change_work(struct work *, void *); 234 static void if_up_locked(struct ifnet *); 235 static void _if_down(struct ifnet *); 236 static void if_down_deactivated(struct ifnet *); 237 238 struct if_percpuq { 239 struct ifnet *ipq_ifp; 240 void *ipq_si; 241 struct percpu *ipq_ifqs; /* struct ifqueue */ 242 }; 243 244 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 245 246 static void if_percpuq_drops(void *, void *, struct cpu_info *); 247 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 248 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 249 struct if_percpuq *); 250 251 struct if_deferred_start { 252 struct ifnet *ids_ifp; 253 void (*ids_if_start)(struct ifnet *); 254 void *ids_si; 255 }; 256 257 static void if_deferred_start_softint(void *); 258 static void if_deferred_start_common(struct ifnet *); 259 static void if_deferred_start_destroy(struct ifnet *); 260 261 struct if_slowtimo_data { 262 kmutex_t isd_lock; 263 struct callout isd_ch; 264 struct work isd_work; 265 struct ifnet *isd_ifp; 266 bool isd_queued; 267 bool isd_dying; 268 bool isd_trigger; 269 }; 270 271 /* 272 * Hook for if_vlan - needed by if_agr 273 */ 274 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook; 275 276 static void if_sysctl_setup(struct sysctllog **); 277 278 static int 279 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 280 void *arg0, void *arg1, void *arg2, void *arg3) 281 { 282 int result; 283 enum kauth_network_req req; 284 285 result = KAUTH_RESULT_DEFER; 286 req = (enum kauth_network_req)(uintptr_t)arg1; 287 288 if (action != KAUTH_NETWORK_INTERFACE) 289 return result; 290 291 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 292 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 293 result = KAUTH_RESULT_ALLOW; 294 295 return result; 296 } 297 298 /* 299 * Network interface utility routines. 300 * 301 * Routines with ifa_ifwith* names take sockaddr *'s as 302 * parameters. 303 */ 304 void 305 ifinit(void) 306 { 307 308 #if (defined(INET) || defined(INET6)) 309 encapinit(); 310 #endif 311 312 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 313 if_listener_cb, NULL); 314 315 /* interfaces are available, inform socket code */ 316 ifioctl = doifioctl; 317 } 318 319 /* 320 * XXX Initialization before configure(). 321 * XXX hack to get pfil_add_hook working in autoconf. 322 */ 323 void 324 ifinit1(void) 325 { 326 int error __diagused; 327 328 #ifdef NET_MPSAFE 329 printf("NET_MPSAFE enabled\n"); 330 #endif 331 332 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 333 334 TAILQ_INIT(&ifnet_list); 335 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 336 ifnet_psz = pserialize_create(); 337 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 338 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 339 error = workqueue_create(&ifnet_link_state_wq, "iflnkst", 340 if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET, 341 WQ_MPSAFE); 342 KASSERT(error == 0); 343 PSLIST_INIT(&ifnet_pslist); 344 345 error = workqueue_create(&if_slowtimo_wq, "ifwdog", 346 if_slowtimo_work, NULL, PRI_SOFTNET, IPL_SOFTCLOCK, WQ_MPSAFE); 347 KASSERTMSG(error == 0, "error=%d", error); 348 349 if_indexlim = 8; 350 351 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 352 KASSERT(if_pfil != NULL); 353 354 #if NETHER > 0 || defined(NETATALK) || defined(WLAN) 355 etherinit(); 356 #endif 357 } 358 359 /* XXX must be after domaininit() */ 360 void 361 ifinit_post(void) 362 { 363 364 if_sysctl_setup(NULL); 365 } 366 367 ifnet_t * 368 if_alloc(u_char type) 369 { 370 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 371 } 372 373 void 374 if_free(ifnet_t *ifp) 375 { 376 kmem_free(ifp, sizeof(ifnet_t)); 377 } 378 379 void 380 if_initname(struct ifnet *ifp, const char *name, int unit) 381 { 382 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 383 "%s%d", name, unit); 384 } 385 386 /* 387 * Null routines used while an interface is going away. These routines 388 * just return an error. 389 */ 390 391 int 392 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 393 const struct sockaddr *so, const struct rtentry *rt) 394 { 395 396 return ENXIO; 397 } 398 399 void 400 if_nullinput(struct ifnet *ifp, struct mbuf *m) 401 { 402 403 /* Nothing. */ 404 } 405 406 void 407 if_nullstart(struct ifnet *ifp) 408 { 409 410 /* Nothing. */ 411 } 412 413 int 414 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 415 { 416 417 m_freem(m); 418 return ENXIO; 419 } 420 421 int 422 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 423 { 424 425 return ENXIO; 426 } 427 428 int 429 if_nullinit(struct ifnet *ifp) 430 { 431 432 return ENXIO; 433 } 434 435 void 436 if_nullstop(struct ifnet *ifp, int disable) 437 { 438 439 /* Nothing. */ 440 } 441 442 void 443 if_nullslowtimo(struct ifnet *ifp) 444 { 445 446 /* Nothing. */ 447 } 448 449 void 450 if_nulldrain(struct ifnet *ifp) 451 { 452 453 /* Nothing. */ 454 } 455 456 void 457 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 458 { 459 struct ifaddr *ifa; 460 struct sockaddr_dl *sdl; 461 462 ifp->if_addrlen = addrlen; 463 if_alloc_sadl(ifp); 464 ifa = ifp->if_dl; 465 sdl = satosdl(ifa->ifa_addr); 466 467 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 468 if (factory) { 469 KASSERT(ifp->if_hwdl == NULL); 470 ifp->if_hwdl = ifp->if_dl; 471 ifaref(ifp->if_hwdl); 472 } 473 /* TBD routing socket */ 474 } 475 476 struct ifaddr * 477 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 478 { 479 unsigned socksize, ifasize; 480 int addrlen, namelen; 481 struct sockaddr_dl *mask, *sdl; 482 struct ifaddr *ifa; 483 484 namelen = strlen(ifp->if_xname); 485 addrlen = ifp->if_addrlen; 486 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 487 ifasize = sizeof(*ifa) + 2 * socksize; 488 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO); 489 490 sdl = (struct sockaddr_dl *)(ifa + 1); 491 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 492 493 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 494 ifp->if_xname, namelen, NULL, addrlen); 495 mask->sdl_family = AF_LINK; 496 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 497 memset(&mask->sdl_data[0], 0xff, namelen); 498 ifa->ifa_rtrequest = link_rtrequest; 499 ifa->ifa_addr = (struct sockaddr *)sdl; 500 ifa->ifa_netmask = (struct sockaddr *)mask; 501 ifa_psref_init(ifa); 502 503 *sdlp = sdl; 504 505 return ifa; 506 } 507 508 static void 509 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 510 { 511 const struct sockaddr_dl *sdl; 512 513 ifp->if_dl = ifa; 514 ifaref(ifa); 515 sdl = satosdl(ifa->ifa_addr); 516 ifp->if_sadl = sdl; 517 } 518 519 /* 520 * Allocate the link level name for the specified interface. This 521 * is an attachment helper. It must be called after ifp->if_addrlen 522 * is initialized, which may not be the case when if_attach() is 523 * called. 524 */ 525 void 526 if_alloc_sadl(struct ifnet *ifp) 527 { 528 struct ifaddr *ifa; 529 const struct sockaddr_dl *sdl; 530 531 /* 532 * If the interface already has a link name, release it 533 * now. This is useful for interfaces that can change 534 * link types, and thus switch link names often. 535 */ 536 if (ifp->if_sadl != NULL) 537 if_free_sadl(ifp, 0); 538 539 ifa = if_dl_create(ifp, &sdl); 540 541 ifa_insert(ifp, ifa); 542 if_sadl_setrefs(ifp, ifa); 543 } 544 545 static void 546 if_deactivate_sadl(struct ifnet *ifp) 547 { 548 struct ifaddr *ifa; 549 550 KASSERT(ifp->if_dl != NULL); 551 552 ifa = ifp->if_dl; 553 554 ifp->if_sadl = NULL; 555 556 ifp->if_dl = NULL; 557 ifafree(ifa); 558 } 559 560 static void 561 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa) 562 { 563 struct ifaddr *old; 564 565 KASSERT(ifp->if_dl != NULL); 566 567 old = ifp->if_dl; 568 569 ifaref(ifa); 570 /* XXX Update if_dl and if_sadl atomically */ 571 ifp->if_dl = ifa; 572 ifp->if_sadl = satosdl(ifa->ifa_addr); 573 574 ifafree(old); 575 } 576 577 void 578 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 579 const struct sockaddr_dl *sdl) 580 { 581 struct ifaddr *ifa; 582 const int bound = curlwp_bind(); 583 584 KASSERT(ifa_held(ifa0)); 585 586 const int s = splsoftnet(); 587 588 if_replace_sadl(ifp, ifa0); 589 590 int ss = pserialize_read_enter(); 591 IFADDR_READER_FOREACH(ifa, ifp) { 592 struct psref psref; 593 ifa_acquire(ifa, &psref); 594 pserialize_read_exit(ss); 595 596 rtinit(ifa, RTM_LLINFO_UPD, 0); 597 598 ss = pserialize_read_enter(); 599 ifa_release(ifa, &psref); 600 } 601 pserialize_read_exit(ss); 602 603 splx(s); 604 curlwp_bindx(bound); 605 } 606 607 /* 608 * Free the link level name for the specified interface. This is 609 * a detach helper. This is called from if_detach(). 610 */ 611 void 612 if_free_sadl(struct ifnet *ifp, int factory) 613 { 614 struct ifaddr *ifa; 615 616 if (factory && ifp->if_hwdl != NULL) { 617 ifa = ifp->if_hwdl; 618 ifp->if_hwdl = NULL; 619 ifafree(ifa); 620 } 621 622 ifa = ifp->if_dl; 623 if (ifa == NULL) { 624 KASSERT(ifp->if_sadl == NULL); 625 return; 626 } 627 628 KASSERT(ifp->if_sadl != NULL); 629 630 const int s = splsoftnet(); 631 KASSERT(ifa->ifa_addr->sa_family == AF_LINK); 632 ifa_remove(ifp, ifa); 633 if_deactivate_sadl(ifp); 634 splx(s); 635 } 636 637 static void 638 if_getindex(ifnet_t *ifp) 639 { 640 bool hitlimit = false; 641 char xnamebuf[HOOKNAMSIZ]; 642 643 ifp->if_index_gen = index_gen++; 644 snprintf(xnamebuf, sizeof(xnamebuf), 645 "%s-lshk", ifp->if_xname); 646 ifp->if_linkstate_hooks = simplehook_create(IPL_NET, 647 xnamebuf); 648 649 ifp->if_index = if_index; 650 if (ifindex2ifnet == NULL) { 651 if_index++; 652 goto skip; 653 } 654 while (if_byindex(ifp->if_index)) { 655 /* 656 * If we hit USHRT_MAX, we skip back to 0 since 657 * there are a number of places where the value 658 * of if_index or if_index itself is compared 659 * to or stored in an unsigned short. By 660 * jumping back, we won't botch those assignments 661 * or comparisons. 662 */ 663 if (++if_index == 0) { 664 if_index = 1; 665 } else if (if_index == USHRT_MAX) { 666 /* 667 * However, if we have to jump back to 668 * zero *twice* without finding an empty 669 * slot in ifindex2ifnet[], then there 670 * there are too many (>65535) interfaces. 671 */ 672 if (hitlimit) { 673 panic("too many interfaces"); 674 } 675 hitlimit = true; 676 if_index = 1; 677 } 678 ifp->if_index = if_index; 679 } 680 skip: 681 /* 682 * ifindex2ifnet is indexed by if_index. Since if_index will 683 * grow dynamically, it should grow too. 684 */ 685 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 686 size_t m, n, oldlim; 687 void *q; 688 689 oldlim = if_indexlim; 690 while (ifp->if_index >= if_indexlim) 691 if_indexlim <<= 1; 692 693 /* grow ifindex2ifnet */ 694 m = oldlim * sizeof(struct ifnet *); 695 n = if_indexlim * sizeof(struct ifnet *); 696 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO); 697 if (ifindex2ifnet != NULL) { 698 memcpy(q, ifindex2ifnet, m); 699 free(ifindex2ifnet, M_IFADDR); 700 } 701 ifindex2ifnet = (struct ifnet **)q; 702 } 703 ifindex2ifnet[ifp->if_index] = ifp; 704 } 705 706 /* 707 * Initialize an interface and assign an index for it. 708 * 709 * It must be called prior to a device specific attach routine 710 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 711 * and be followed by if_register: 712 * 713 * if_initialize(ifp); 714 * ether_ifattach(ifp, enaddr); 715 * if_register(ifp); 716 */ 717 void 718 if_initialize(ifnet_t *ifp) 719 { 720 721 KASSERT(if_indexlim > 0); 722 TAILQ_INIT(&ifp->if_addrlist); 723 724 /* 725 * Link level name is allocated later by a separate call to 726 * if_alloc_sadl(). 727 */ 728 729 if (ifp->if_snd.ifq_maxlen == 0) 730 ifp->if_snd.ifq_maxlen = ifqmaxlen; 731 732 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 733 734 ifp->if_link_state = LINK_STATE_UNKNOWN; 735 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 736 ifp->if_link_scheduled = false; 737 738 ifp->if_capenable = 0; 739 ifp->if_csum_flags_tx = 0; 740 ifp->if_csum_flags_rx = 0; 741 742 #ifdef ALTQ 743 ifp->if_snd.altq_type = 0; 744 ifp->if_snd.altq_disc = NULL; 745 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 746 ifp->if_snd.altq_tbr = NULL; 747 ifp->if_snd.altq_ifp = ifp; 748 #endif 749 750 IFQ_LOCK_INIT(&ifp->if_snd); 751 752 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 753 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); 754 755 IF_AFDATA_LOCK_INIT(ifp); 756 757 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 758 PSLIST_INIT(&ifp->if_addr_pslist); 759 psref_target_init(&ifp->if_psref, ifnet_psref_class); 760 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 761 LIST_INIT(&ifp->if_multiaddrs); 762 if_stats_init(ifp); 763 764 IFNET_GLOBAL_LOCK(); 765 if_getindex(ifp); 766 IFNET_GLOBAL_UNLOCK(); 767 } 768 769 /* 770 * Register an interface to the list of "active" interfaces. 771 */ 772 void 773 if_register(ifnet_t *ifp) 774 { 775 /* 776 * If the driver has not supplied its own if_ioctl or if_stop, 777 * then supply the default. 778 */ 779 if (ifp->if_ioctl == NULL) 780 ifp->if_ioctl = ifioctl_common; 781 if (ifp->if_stop == NULL) 782 ifp->if_stop = if_nullstop; 783 784 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 785 786 if (!STAILQ_EMPTY(&domains)) 787 if_attachdomain1(ifp); 788 789 /* Announce the interface. */ 790 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 791 792 if (ifp->if_slowtimo != NULL) { 793 struct if_slowtimo_data *isd; 794 795 isd = kmem_zalloc(sizeof(*isd), KM_SLEEP); 796 mutex_init(&isd->isd_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK); 797 callout_init(&isd->isd_ch, CALLOUT_MPSAFE); 798 callout_setfunc(&isd->isd_ch, if_slowtimo_intr, ifp); 799 isd->isd_ifp = ifp; 800 801 ifp->if_slowtimo_data = isd; 802 803 if_slowtimo_intr(ifp); 804 805 sysctl_watchdog_setup(ifp); 806 } 807 808 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 809 ifp->if_transmit = if_transmit; 810 811 IFNET_GLOBAL_LOCK(); 812 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 813 IFNET_WRITER_INSERT_TAIL(ifp); 814 IFNET_GLOBAL_UNLOCK(); 815 } 816 817 /* 818 * The if_percpuq framework 819 * 820 * It allows network device drivers to execute the network stack 821 * in softint (so called softint-based if_input). It utilizes 822 * softint and percpu ifqueue. It doesn't distribute any packets 823 * between CPUs, unlike pktqueue(9). 824 * 825 * Currently we support two options for device drivers to apply the framework: 826 * - Use it implicitly with less changes 827 * - If you use if_attach in driver's _attach function and if_input in 828 * driver's Rx interrupt handler, a packet is queued and a softint handles 829 * the packet implicitly 830 * - Use it explicitly in each driver (recommended) 831 * - You can use if_percpuq_* directly in your driver 832 * - In this case, you need to allocate struct if_percpuq in driver's softc 833 * - See wm(4) as a reference implementation 834 */ 835 836 static void 837 if_percpuq_softint(void *arg) 838 { 839 struct if_percpuq *ipq = arg; 840 struct ifnet *ifp = ipq->ipq_ifp; 841 struct mbuf *m; 842 843 while ((m = if_percpuq_dequeue(ipq)) != NULL) { 844 if_statinc(ifp, if_ipackets); 845 bpf_mtap(ifp, m, BPF_D_IN); 846 847 ifp->_if_input(ifp, m); 848 } 849 } 850 851 static void 852 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 853 { 854 struct ifqueue *const ifq = p; 855 856 memset(ifq, 0, sizeof(*ifq)); 857 ifq->ifq_maxlen = IFQ_MAXLEN; 858 } 859 860 struct if_percpuq * 861 if_percpuq_create(struct ifnet *ifp) 862 { 863 struct if_percpuq *ipq; 864 u_int flags = SOFTINT_NET; 865 866 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 867 868 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 869 ipq->ipq_ifp = ifp; 870 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq); 871 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 872 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 873 874 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 875 876 return ipq; 877 } 878 879 static struct mbuf * 880 if_percpuq_dequeue(struct if_percpuq *ipq) 881 { 882 struct mbuf *m; 883 struct ifqueue *ifq; 884 885 const int s = splnet(); 886 ifq = percpu_getref(ipq->ipq_ifqs); 887 IF_DEQUEUE(ifq, m); 888 percpu_putref(ipq->ipq_ifqs); 889 splx(s); 890 891 return m; 892 } 893 894 static void 895 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 896 { 897 struct ifqueue *const ifq = p; 898 899 IF_PURGE(ifq); 900 } 901 902 void 903 if_percpuq_destroy(struct if_percpuq *ipq) 904 { 905 906 /* if_detach may already destroy it */ 907 if (ipq == NULL) 908 return; 909 910 softint_disestablish(ipq->ipq_si); 911 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 912 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 913 kmem_free(ipq, sizeof(*ipq)); 914 } 915 916 void 917 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 918 { 919 struct ifqueue *ifq; 920 921 KASSERT(ipq != NULL); 922 923 const int s = splnet(); 924 ifq = percpu_getref(ipq->ipq_ifqs); 925 if (IF_QFULL(ifq)) { 926 IF_DROP(ifq); 927 percpu_putref(ipq->ipq_ifqs); 928 m_freem(m); 929 goto out; 930 } 931 IF_ENQUEUE(ifq, m); 932 percpu_putref(ipq->ipq_ifqs); 933 934 softint_schedule(ipq->ipq_si); 935 out: 936 splx(s); 937 } 938 939 static void 940 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 941 { 942 struct ifqueue *const ifq = p; 943 int *sum = arg; 944 945 *sum += ifq->ifq_drops; 946 } 947 948 static int 949 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 950 { 951 struct sysctlnode node; 952 struct if_percpuq *ipq; 953 int sum = 0; 954 int error; 955 956 node = *rnode; 957 ipq = node.sysctl_data; 958 959 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 960 961 node.sysctl_data = ∑ 962 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 963 if (error != 0 || newp == NULL) 964 return error; 965 966 return 0; 967 } 968 969 static void 970 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 971 struct if_percpuq *ipq) 972 { 973 const struct sysctlnode *cnode, *rnode; 974 975 if (sysctl_createv(clog, 0, NULL, &rnode, 976 CTLFLAG_PERMANENT, 977 CTLTYPE_NODE, "interfaces", 978 SYSCTL_DESCR("Per-interface controls"), 979 NULL, 0, NULL, 0, 980 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 981 goto bad; 982 983 if (sysctl_createv(clog, 0, &rnode, &rnode, 984 CTLFLAG_PERMANENT, 985 CTLTYPE_NODE, ifname, 986 SYSCTL_DESCR("Interface controls"), 987 NULL, 0, NULL, 0, 988 CTL_CREATE, CTL_EOL) != 0) 989 goto bad; 990 991 if (sysctl_createv(clog, 0, &rnode, &rnode, 992 CTLFLAG_PERMANENT, 993 CTLTYPE_NODE, "rcvq", 994 SYSCTL_DESCR("Interface input queue controls"), 995 NULL, 0, NULL, 0, 996 CTL_CREATE, CTL_EOL) != 0) 997 goto bad; 998 999 #ifdef NOTYET 1000 /* XXX Should show each per-CPU queue length? */ 1001 if (sysctl_createv(clog, 0, &rnode, &rnode, 1002 CTLFLAG_PERMANENT, 1003 CTLTYPE_INT, "len", 1004 SYSCTL_DESCR("Current input queue length"), 1005 sysctl_percpuq_len, 0, NULL, 0, 1006 CTL_CREATE, CTL_EOL) != 0) 1007 goto bad; 1008 1009 if (sysctl_createv(clog, 0, &rnode, &cnode, 1010 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1011 CTLTYPE_INT, "maxlen", 1012 SYSCTL_DESCR("Maximum allowed input queue length"), 1013 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 1014 CTL_CREATE, CTL_EOL) != 0) 1015 goto bad; 1016 #endif 1017 1018 if (sysctl_createv(clog, 0, &rnode, &cnode, 1019 CTLFLAG_PERMANENT, 1020 CTLTYPE_INT, "drops", 1021 SYSCTL_DESCR("Total packets dropped due to full input queue"), 1022 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 1023 CTL_CREATE, CTL_EOL) != 0) 1024 goto bad; 1025 1026 return; 1027 bad: 1028 printf("%s: could not attach sysctl nodes\n", ifname); 1029 return; 1030 } 1031 1032 /* 1033 * The deferred if_start framework 1034 * 1035 * The common APIs to defer if_start to softint when if_start is requested 1036 * from a device driver running in hardware interrupt context. 1037 */ 1038 /* 1039 * Call ifp->if_start (or equivalent) in a dedicated softint for 1040 * deferred if_start. 1041 */ 1042 static void 1043 if_deferred_start_softint(void *arg) 1044 { 1045 struct if_deferred_start *ids = arg; 1046 struct ifnet *ifp = ids->ids_ifp; 1047 1048 ids->ids_if_start(ifp); 1049 } 1050 1051 /* 1052 * The default callback function for deferred if_start. 1053 */ 1054 static void 1055 if_deferred_start_common(struct ifnet *ifp) 1056 { 1057 const int s = splnet(); 1058 if_start_lock(ifp); 1059 splx(s); 1060 } 1061 1062 static inline bool 1063 if_snd_is_used(struct ifnet *ifp) 1064 { 1065 1066 return ALTQ_IS_ENABLED(&ifp->if_snd) || 1067 ifp->if_transmit == if_transmit || 1068 ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit; 1069 } 1070 1071 /* 1072 * Schedule deferred if_start. 1073 */ 1074 void 1075 if_schedule_deferred_start(struct ifnet *ifp) 1076 { 1077 1078 KASSERT(ifp->if_deferred_start != NULL); 1079 1080 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1081 return; 1082 1083 softint_schedule(ifp->if_deferred_start->ids_si); 1084 } 1085 1086 /* 1087 * Create an instance of deferred if_start. A driver should call the function 1088 * only if the driver needs deferred if_start. Drivers can setup their own 1089 * deferred if_start function via 2nd argument. 1090 */ 1091 void 1092 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1093 { 1094 struct if_deferred_start *ids; 1095 u_int flags = SOFTINT_NET; 1096 1097 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 1098 1099 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1100 ids->ids_ifp = ifp; 1101 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids); 1102 if (func != NULL) 1103 ids->ids_if_start = func; 1104 else 1105 ids->ids_if_start = if_deferred_start_common; 1106 1107 ifp->if_deferred_start = ids; 1108 } 1109 1110 static void 1111 if_deferred_start_destroy(struct ifnet *ifp) 1112 { 1113 1114 if (ifp->if_deferred_start == NULL) 1115 return; 1116 1117 softint_disestablish(ifp->if_deferred_start->ids_si); 1118 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1119 ifp->if_deferred_start = NULL; 1120 } 1121 1122 /* 1123 * The common interface input routine that is called by device drivers, 1124 * which should be used only when the driver's rx handler already runs 1125 * in softint. 1126 */ 1127 void 1128 if_input(struct ifnet *ifp, struct mbuf *m) 1129 { 1130 1131 KASSERT(ifp->if_percpuq == NULL); 1132 KASSERT(!cpu_intr_p()); 1133 1134 if_statinc(ifp, if_ipackets); 1135 bpf_mtap(ifp, m, BPF_D_IN); 1136 1137 ifp->_if_input(ifp, m); 1138 } 1139 1140 /* 1141 * DEPRECATED. Use if_initialize and if_register instead. 1142 * See the above comment of if_initialize. 1143 * 1144 * Note that it implicitly enables if_percpuq to make drivers easy to 1145 * migrate softint-based if_input without much changes. If you don't 1146 * want to enable it, use if_initialize instead. 1147 */ 1148 void 1149 if_attach(ifnet_t *ifp) 1150 { 1151 1152 if_initialize(ifp); 1153 ifp->if_percpuq = if_percpuq_create(ifp); 1154 if_register(ifp); 1155 } 1156 1157 void 1158 if_attachdomain(void) 1159 { 1160 struct ifnet *ifp; 1161 const int bound = curlwp_bind(); 1162 1163 int s = pserialize_read_enter(); 1164 IFNET_READER_FOREACH(ifp) { 1165 struct psref psref; 1166 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1167 pserialize_read_exit(s); 1168 if_attachdomain1(ifp); 1169 s = pserialize_read_enter(); 1170 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1171 } 1172 pserialize_read_exit(s); 1173 curlwp_bindx(bound); 1174 } 1175 1176 static void 1177 if_attachdomain1(struct ifnet *ifp) 1178 { 1179 struct domain *dp; 1180 const int s = splsoftnet(); 1181 1182 /* address family dependent data region */ 1183 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1184 DOMAIN_FOREACH(dp) { 1185 if (dp->dom_ifattach != NULL) 1186 ifp->if_afdata[dp->dom_family] = 1187 (*dp->dom_ifattach)(ifp); 1188 } 1189 1190 splx(s); 1191 } 1192 1193 /* 1194 * Deactivate an interface. This points all of the procedure 1195 * handles at error stubs. May be called from interrupt context. 1196 */ 1197 void 1198 if_deactivate(struct ifnet *ifp) 1199 { 1200 const int s = splsoftnet(); 1201 1202 ifp->if_output = if_nulloutput; 1203 ifp->_if_input = if_nullinput; 1204 ifp->if_start = if_nullstart; 1205 ifp->if_transmit = if_nulltransmit; 1206 ifp->if_ioctl = if_nullioctl; 1207 ifp->if_init = if_nullinit; 1208 ifp->if_stop = if_nullstop; 1209 if (ifp->if_slowtimo) 1210 ifp->if_slowtimo = if_nullslowtimo; 1211 ifp->if_drain = if_nulldrain; 1212 1213 /* No more packets may be enqueued. */ 1214 ifp->if_snd.ifq_maxlen = 0; 1215 1216 splx(s); 1217 } 1218 1219 bool 1220 if_is_deactivated(const struct ifnet *ifp) 1221 { 1222 1223 return ifp->if_output == if_nulloutput; 1224 } 1225 1226 void 1227 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 1228 { 1229 struct ifaddr *ifa, *nifa; 1230 int s; 1231 1232 s = pserialize_read_enter(); 1233 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1234 nifa = IFADDR_READER_NEXT(ifa); 1235 if (ifa->ifa_addr->sa_family != family) 1236 continue; 1237 pserialize_read_exit(s); 1238 1239 (*purgeaddr)(ifa); 1240 1241 s = pserialize_read_enter(); 1242 } 1243 pserialize_read_exit(s); 1244 } 1245 1246 #ifdef IFAREF_DEBUG 1247 static struct ifaddr **ifa_list; 1248 static int ifa_list_size; 1249 1250 /* Depends on only one if_attach runs at once */ 1251 static void 1252 if_build_ifa_list(struct ifnet *ifp) 1253 { 1254 struct ifaddr *ifa; 1255 int i; 1256 1257 KASSERT(ifa_list == NULL); 1258 KASSERT(ifa_list_size == 0); 1259 1260 IFADDR_READER_FOREACH(ifa, ifp) 1261 ifa_list_size++; 1262 1263 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1264 i = 0; 1265 IFADDR_READER_FOREACH(ifa, ifp) { 1266 ifa_list[i++] = ifa; 1267 ifaref(ifa); 1268 } 1269 } 1270 1271 static void 1272 if_check_and_free_ifa_list(struct ifnet *ifp) 1273 { 1274 int i; 1275 struct ifaddr *ifa; 1276 1277 if (ifa_list == NULL) 1278 return; 1279 1280 for (i = 0; i < ifa_list_size; i++) { 1281 char buf[64]; 1282 1283 ifa = ifa_list[i]; 1284 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1285 if (ifa->ifa_refcnt > 1) { 1286 log(LOG_WARNING, 1287 "ifa(%s) still referenced (refcnt=%d)\n", 1288 buf, ifa->ifa_refcnt - 1); 1289 } else 1290 log(LOG_DEBUG, 1291 "ifa(%s) not referenced (refcnt=%d)\n", 1292 buf, ifa->ifa_refcnt - 1); 1293 ifafree(ifa); 1294 } 1295 1296 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1297 ifa_list = NULL; 1298 ifa_list_size = 0; 1299 } 1300 #endif 1301 1302 /* 1303 * Detach an interface from the list of "active" interfaces, 1304 * freeing any resources as we go along. 1305 * 1306 * NOTE: This routine must be called with a valid thread context, 1307 * as it may block. 1308 */ 1309 void 1310 if_detach(struct ifnet *ifp) 1311 { 1312 struct socket so; 1313 struct ifaddr *ifa; 1314 #ifdef IFAREF_DEBUG 1315 struct ifaddr *last_ifa = NULL; 1316 #endif 1317 struct domain *dp; 1318 const struct protosw *pr; 1319 int i, family, purged; 1320 1321 #ifdef IFAREF_DEBUG 1322 if_build_ifa_list(ifp); 1323 #endif 1324 /* 1325 * XXX It's kind of lame that we have to have the 1326 * XXX socket structure... 1327 */ 1328 memset(&so, 0, sizeof(so)); 1329 1330 const int s = splnet(); 1331 1332 sysctl_teardown(&ifp->if_sysctl_log); 1333 1334 IFNET_LOCK(ifp); 1335 1336 /* 1337 * Unset all queued link states and pretend a 1338 * link state change is scheduled. 1339 * This stops any more link state changes occurring for this 1340 * interface while it's being detached so it's safe 1341 * to drain the workqueue. 1342 */ 1343 IF_LINK_STATE_CHANGE_LOCK(ifp); 1344 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 1345 ifp->if_link_scheduled = true; 1346 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 1347 workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work); 1348 1349 if_deactivate(ifp); 1350 IFNET_UNLOCK(ifp); 1351 1352 /* 1353 * Unlink from the list and wait for all readers to leave 1354 * from pserialize read sections. Note that we can't do 1355 * psref_target_destroy here. See below. 1356 */ 1357 IFNET_GLOBAL_LOCK(); 1358 ifindex2ifnet[ifp->if_index] = NULL; 1359 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1360 IFNET_WRITER_REMOVE(ifp); 1361 pserialize_perform(ifnet_psz); 1362 IFNET_GLOBAL_UNLOCK(); 1363 1364 if (ifp->if_slowtimo != NULL) { 1365 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 1366 1367 mutex_enter(&isd->isd_lock); 1368 isd->isd_dying = true; 1369 mutex_exit(&isd->isd_lock); 1370 callout_halt(&isd->isd_ch, NULL); 1371 workqueue_wait(if_slowtimo_wq, &isd->isd_work); 1372 callout_destroy(&isd->isd_ch); 1373 mutex_destroy(&isd->isd_lock); 1374 kmem_free(isd, sizeof(*isd)); 1375 1376 ifp->if_slowtimo_data = NULL; /* paraonia */ 1377 ifp->if_slowtimo = NULL; /* paranoia */ 1378 } 1379 if_deferred_start_destroy(ifp); 1380 1381 /* 1382 * Do an if_down() to give protocols a chance to do something. 1383 */ 1384 if_down_deactivated(ifp); 1385 1386 #ifdef ALTQ 1387 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1388 altq_disable(&ifp->if_snd); 1389 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1390 altq_detach(&ifp->if_snd); 1391 #endif 1392 1393 #if NCARP > 0 1394 /* Remove the interface from any carp group it is a part of. */ 1395 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1396 carp_ifdetach(ifp); 1397 #endif 1398 1399 /* 1400 * Ensure that all packets on protocol input pktqueues have been 1401 * processed, or, at least, removed from the queues. 1402 * 1403 * A cross-call will ensure that the interrupts have completed. 1404 * FIXME: not quite.. 1405 */ 1406 pktq_ifdetach(); 1407 xc_barrier(0); 1408 1409 /* 1410 * Rip all the addresses off the interface. This should make 1411 * all of the routes go away. 1412 * 1413 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1414 * from the list, including our "cursor", ifa. For safety, 1415 * and to honor the TAILQ abstraction, I just restart the 1416 * loop after each removal. Note that the loop will exit 1417 * when all of the remaining ifaddrs belong to the AF_LINK 1418 * family. I am counting on the historical fact that at 1419 * least one pr_usrreq in each address domain removes at 1420 * least one ifaddr. 1421 */ 1422 again: 1423 /* 1424 * At this point, no other one tries to remove ifa in the list, 1425 * so we don't need to take a lock or psref. Avoid using 1426 * IFADDR_READER_FOREACH to pass over an inspection of contract 1427 * violations of pserialize. 1428 */ 1429 IFADDR_WRITER_FOREACH(ifa, ifp) { 1430 family = ifa->ifa_addr->sa_family; 1431 #ifdef IFAREF_DEBUG 1432 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1433 ifa, family, ifa->ifa_refcnt); 1434 if (last_ifa != NULL && ifa == last_ifa) 1435 panic("if_detach: loop detected"); 1436 last_ifa = ifa; 1437 #endif 1438 if (family == AF_LINK) 1439 continue; 1440 dp = pffinddomain(family); 1441 KASSERTMSG(dp != NULL, "no domain for AF %d", family); 1442 /* 1443 * XXX These PURGEIF calls are redundant with the 1444 * purge-all-families calls below, but are left in for 1445 * now both to make a smaller change, and to avoid 1446 * unplanned interactions with clearing of 1447 * ifp->if_addrlist. 1448 */ 1449 purged = 0; 1450 for (pr = dp->dom_protosw; 1451 pr < dp->dom_protoswNPROTOSW; pr++) { 1452 so.so_proto = pr; 1453 if (pr->pr_usrreqs) { 1454 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1455 purged = 1; 1456 } 1457 } 1458 if (purged == 0) { 1459 /* 1460 * XXX What's really the best thing to do 1461 * XXX here? --thorpej@NetBSD.org 1462 */ 1463 printf("if_detach: WARNING: AF %d not purged\n", 1464 family); 1465 ifa_remove(ifp, ifa); 1466 } 1467 goto again; 1468 } 1469 1470 if_free_sadl(ifp, 1); 1471 1472 restart: 1473 IFADDR_WRITER_FOREACH(ifa, ifp) { 1474 family = ifa->ifa_addr->sa_family; 1475 KASSERT(family == AF_LINK); 1476 ifa_remove(ifp, ifa); 1477 goto restart; 1478 } 1479 1480 /* Delete stray routes from the routing table. */ 1481 for (i = 0; i <= AF_MAX; i++) 1482 rt_delete_matched_entries(i, if_delroute_matcher, ifp, false); 1483 1484 DOMAIN_FOREACH(dp) { 1485 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1486 { 1487 void *p = ifp->if_afdata[dp->dom_family]; 1488 if (p) { 1489 ifp->if_afdata[dp->dom_family] = NULL; 1490 (*dp->dom_ifdetach)(ifp, p); 1491 } 1492 } 1493 1494 /* 1495 * One would expect multicast memberships (INET and 1496 * INET6) on UDP sockets to be purged by the PURGEIF 1497 * calls above, but if all addresses were removed from 1498 * the interface prior to destruction, the calls will 1499 * not be made (e.g. ppp, for which pppd(8) generally 1500 * removes addresses before destroying the interface). 1501 * Because there is no invariant that multicast 1502 * memberships only exist for interfaces with IPv4 1503 * addresses, we must call PURGEIF regardless of 1504 * addresses. (Protocols which might store ifnet 1505 * pointers are marked with PR_PURGEIF.) 1506 */ 1507 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 1508 so.so_proto = pr; 1509 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1510 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1511 } 1512 } 1513 1514 /* 1515 * Must be done after the above pr_purgeif because if_psref may be 1516 * still used in pr_purgeif. 1517 */ 1518 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1519 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1520 1521 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 1522 (void)pfil_head_destroy(ifp->if_pfil); 1523 1524 /* Announce that the interface is gone. */ 1525 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1526 1527 IF_AFDATA_LOCK_DESTROY(ifp); 1528 1529 if (ifp->if_percpuq != NULL) { 1530 if_percpuq_destroy(ifp->if_percpuq); 1531 ifp->if_percpuq = NULL; 1532 } 1533 1534 mutex_obj_free(ifp->if_ioctl_lock); 1535 ifp->if_ioctl_lock = NULL; 1536 mutex_obj_free(ifp->if_snd.ifq_lock); 1537 if_stats_fini(ifp); 1538 KASSERT(!simplehook_has_hooks(ifp->if_linkstate_hooks)); 1539 simplehook_destroy(ifp->if_linkstate_hooks); 1540 1541 splx(s); 1542 1543 #ifdef IFAREF_DEBUG 1544 if_check_and_free_ifa_list(ifp); 1545 #endif 1546 } 1547 1548 /* 1549 * Callback for a radix tree walk to delete all references to an 1550 * ifnet. 1551 */ 1552 static int 1553 if_delroute_matcher(struct rtentry *rt, void *v) 1554 { 1555 struct ifnet *ifp = (struct ifnet *)v; 1556 1557 if (rt->rt_ifp == ifp) 1558 return 1; 1559 else 1560 return 0; 1561 } 1562 1563 /* 1564 * Create a clone network interface. 1565 */ 1566 static int 1567 if_clone_create(const char *name) 1568 { 1569 struct if_clone *ifc; 1570 int unit; 1571 struct ifnet *ifp; 1572 struct psref psref; 1573 1574 KASSERT(mutex_owned(&if_clone_mtx)); 1575 1576 ifc = if_clone_lookup(name, &unit); 1577 if (ifc == NULL) 1578 return EINVAL; 1579 1580 ifp = if_get(name, &psref); 1581 if (ifp != NULL) { 1582 if_put(ifp, &psref); 1583 return EEXIST; 1584 } 1585 1586 return (*ifc->ifc_create)(ifc, unit); 1587 } 1588 1589 /* 1590 * Destroy a clone network interface. 1591 */ 1592 static int 1593 if_clone_destroy(const char *name) 1594 { 1595 struct if_clone *ifc; 1596 struct ifnet *ifp; 1597 struct psref psref; 1598 int error; 1599 int (*if_ioctlfn)(struct ifnet *, u_long, void *); 1600 1601 KASSERT(mutex_owned(&if_clone_mtx)); 1602 1603 ifc = if_clone_lookup(name, NULL); 1604 if (ifc == NULL) 1605 return EINVAL; 1606 1607 if (ifc->ifc_destroy == NULL) 1608 return EOPNOTSUPP; 1609 1610 ifp = if_get(name, &psref); 1611 if (ifp == NULL) 1612 return ENXIO; 1613 1614 /* We have to disable ioctls here */ 1615 IFNET_LOCK(ifp); 1616 if_ioctlfn = ifp->if_ioctl; 1617 ifp->if_ioctl = if_nullioctl; 1618 IFNET_UNLOCK(ifp); 1619 1620 /* 1621 * We cannot call ifc_destroy with holding ifp. 1622 * Releasing ifp here is safe thanks to if_clone_mtx. 1623 */ 1624 if_put(ifp, &psref); 1625 1626 error = (*ifc->ifc_destroy)(ifp); 1627 1628 if (error != 0) { 1629 /* We have to restore if_ioctl on error */ 1630 IFNET_LOCK(ifp); 1631 ifp->if_ioctl = if_ioctlfn; 1632 IFNET_UNLOCK(ifp); 1633 } 1634 1635 return error; 1636 } 1637 1638 static bool 1639 if_is_unit(const char *name) 1640 { 1641 1642 while (*name != '\0') { 1643 if (*name < '0' || *name > '9') 1644 return false; 1645 name++; 1646 } 1647 1648 return true; 1649 } 1650 1651 /* 1652 * Look up a network interface cloner. 1653 */ 1654 static struct if_clone * 1655 if_clone_lookup(const char *name, int *unitp) 1656 { 1657 struct if_clone *ifc; 1658 const char *cp; 1659 char *dp, ifname[IFNAMSIZ + 3]; 1660 int unit; 1661 1662 KASSERT(mutex_owned(&if_clone_mtx)); 1663 1664 strcpy(ifname, "if_"); 1665 /* separate interface name from unit */ 1666 /* TODO: search unit number from backward */ 1667 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1668 *cp && !if_is_unit(cp);) 1669 *dp++ = *cp++; 1670 1671 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1672 return NULL; /* No name or unit number */ 1673 *dp++ = '\0'; 1674 1675 again: 1676 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1677 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1678 break; 1679 } 1680 1681 if (ifc == NULL) { 1682 int error; 1683 if (*ifname == '\0') 1684 return NULL; 1685 mutex_exit(&if_clone_mtx); 1686 error = module_autoload(ifname, MODULE_CLASS_DRIVER); 1687 mutex_enter(&if_clone_mtx); 1688 if (error) 1689 return NULL; 1690 *ifname = '\0'; 1691 goto again; 1692 } 1693 1694 unit = 0; 1695 while (cp - name < IFNAMSIZ && *cp) { 1696 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1697 /* Bogus unit number. */ 1698 return NULL; 1699 } 1700 unit = (unit * 10) + (*cp++ - '0'); 1701 } 1702 1703 if (unitp != NULL) 1704 *unitp = unit; 1705 return ifc; 1706 } 1707 1708 /* 1709 * Register a network interface cloner. 1710 */ 1711 void 1712 if_clone_attach(struct if_clone *ifc) 1713 { 1714 1715 mutex_enter(&if_clone_mtx); 1716 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1717 if_cloners_count++; 1718 mutex_exit(&if_clone_mtx); 1719 } 1720 1721 /* 1722 * Unregister a network interface cloner. 1723 */ 1724 void 1725 if_clone_detach(struct if_clone *ifc) 1726 { 1727 1728 mutex_enter(&if_clone_mtx); 1729 LIST_REMOVE(ifc, ifc_list); 1730 if_cloners_count--; 1731 mutex_exit(&if_clone_mtx); 1732 } 1733 1734 /* 1735 * Provide list of interface cloners to userspace. 1736 */ 1737 int 1738 if_clone_list(int buf_count, char *buffer, int *total) 1739 { 1740 char outbuf[IFNAMSIZ], *dst; 1741 struct if_clone *ifc; 1742 int count, error = 0; 1743 1744 mutex_enter(&if_clone_mtx); 1745 *total = if_cloners_count; 1746 if ((dst = buffer) == NULL) { 1747 /* Just asking how many there are. */ 1748 goto out; 1749 } 1750 1751 if (buf_count < 0) { 1752 error = EINVAL; 1753 goto out; 1754 } 1755 1756 count = (if_cloners_count < buf_count) ? 1757 if_cloners_count : buf_count; 1758 1759 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1760 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1761 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1762 if (outbuf[sizeof(outbuf) - 1] != '\0') { 1763 error = ENAMETOOLONG; 1764 goto out; 1765 } 1766 error = copyout(outbuf, dst, sizeof(outbuf)); 1767 if (error != 0) 1768 break; 1769 } 1770 1771 out: 1772 mutex_exit(&if_clone_mtx); 1773 return error; 1774 } 1775 1776 void 1777 ifa_psref_init(struct ifaddr *ifa) 1778 { 1779 1780 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1781 } 1782 1783 void 1784 ifaref(struct ifaddr *ifa) 1785 { 1786 1787 atomic_inc_uint(&ifa->ifa_refcnt); 1788 } 1789 1790 void 1791 ifafree(struct ifaddr *ifa) 1792 { 1793 KASSERT(ifa != NULL); 1794 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt); 1795 1796 #ifndef __HAVE_ATOMIC_AS_MEMBAR 1797 membar_release(); 1798 #endif 1799 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) != 0) 1800 return; 1801 #ifndef __HAVE_ATOMIC_AS_MEMBAR 1802 membar_acquire(); 1803 #endif 1804 free(ifa, M_IFADDR); 1805 } 1806 1807 bool 1808 ifa_is_destroying(struct ifaddr *ifa) 1809 { 1810 1811 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1812 } 1813 1814 void 1815 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1816 { 1817 1818 ifa->ifa_ifp = ifp; 1819 1820 /* 1821 * Check MP-safety for IFEF_MPSAFE drivers. 1822 * Check !IFF_RUNNING for initialization routines that normally don't 1823 * take IFNET_LOCK but it's safe because there is no competitor. 1824 * XXX there are false positive cases because IFF_RUNNING can be off on 1825 * if_stop. 1826 */ 1827 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) || 1828 IFNET_LOCKED(ifp)); 1829 1830 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1831 IFADDR_ENTRY_INIT(ifa); 1832 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1833 1834 ifaref(ifa); 1835 } 1836 1837 void 1838 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1839 { 1840 1841 KASSERT(ifa->ifa_ifp == ifp); 1842 /* 1843 * Check MP-safety for IFEF_MPSAFE drivers. 1844 * if_is_deactivated indicates ifa_remove is called from if_detach 1845 * where it is safe even if IFNET_LOCK isn't held. 1846 */ 1847 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp)); 1848 1849 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1850 IFADDR_WRITER_REMOVE(ifa); 1851 #ifdef NET_MPSAFE 1852 IFNET_GLOBAL_LOCK(); 1853 pserialize_perform(ifnet_psz); 1854 IFNET_GLOBAL_UNLOCK(); 1855 #endif 1856 1857 #ifdef NET_MPSAFE 1858 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1859 #endif 1860 IFADDR_ENTRY_DESTROY(ifa); 1861 ifafree(ifa); 1862 } 1863 1864 void 1865 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1866 { 1867 1868 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 1869 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1870 } 1871 1872 void 1873 ifa_release(struct ifaddr *ifa, struct psref *psref) 1874 { 1875 1876 if (ifa == NULL) 1877 return; 1878 1879 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1880 } 1881 1882 bool 1883 ifa_held(struct ifaddr *ifa) 1884 { 1885 1886 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1887 } 1888 1889 static inline int 1890 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1891 { 1892 return sockaddr_cmp(sa1, sa2) == 0; 1893 } 1894 1895 /* 1896 * Locate an interface based on a complete address. 1897 */ 1898 /*ARGSUSED*/ 1899 struct ifaddr * 1900 ifa_ifwithaddr(const struct sockaddr *addr) 1901 { 1902 struct ifnet *ifp; 1903 struct ifaddr *ifa; 1904 1905 IFNET_READER_FOREACH(ifp) { 1906 if (if_is_deactivated(ifp)) 1907 continue; 1908 IFADDR_READER_FOREACH(ifa, ifp) { 1909 if (ifa->ifa_addr->sa_family != addr->sa_family) 1910 continue; 1911 if (equal(addr, ifa->ifa_addr)) 1912 return ifa; 1913 if ((ifp->if_flags & IFF_BROADCAST) && 1914 ifa->ifa_broadaddr && 1915 /* IP6 doesn't have broadcast */ 1916 ifa->ifa_broadaddr->sa_len != 0 && 1917 equal(ifa->ifa_broadaddr, addr)) 1918 return ifa; 1919 } 1920 } 1921 return NULL; 1922 } 1923 1924 struct ifaddr * 1925 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1926 { 1927 struct ifaddr *ifa; 1928 int s = pserialize_read_enter(); 1929 1930 ifa = ifa_ifwithaddr(addr); 1931 if (ifa != NULL) 1932 ifa_acquire(ifa, psref); 1933 pserialize_read_exit(s); 1934 1935 return ifa; 1936 } 1937 1938 /* 1939 * Locate the point to point interface with a given destination address. 1940 */ 1941 /*ARGSUSED*/ 1942 struct ifaddr * 1943 ifa_ifwithdstaddr(const struct sockaddr *addr) 1944 { 1945 struct ifnet *ifp; 1946 struct ifaddr *ifa; 1947 1948 IFNET_READER_FOREACH(ifp) { 1949 if (if_is_deactivated(ifp)) 1950 continue; 1951 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1952 continue; 1953 IFADDR_READER_FOREACH(ifa, ifp) { 1954 if (ifa->ifa_addr->sa_family != addr->sa_family || 1955 ifa->ifa_dstaddr == NULL) 1956 continue; 1957 if (equal(addr, ifa->ifa_dstaddr)) 1958 return ifa; 1959 } 1960 } 1961 1962 return NULL; 1963 } 1964 1965 struct ifaddr * 1966 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 1967 { 1968 struct ifaddr *ifa; 1969 int s; 1970 1971 s = pserialize_read_enter(); 1972 ifa = ifa_ifwithdstaddr(addr); 1973 if (ifa != NULL) 1974 ifa_acquire(ifa, psref); 1975 pserialize_read_exit(s); 1976 1977 return ifa; 1978 } 1979 1980 /* 1981 * Find an interface on a specific network. If many, choice 1982 * is most specific found. 1983 */ 1984 struct ifaddr * 1985 ifa_ifwithnet(const struct sockaddr *addr) 1986 { 1987 struct ifnet *ifp; 1988 struct ifaddr *ifa, *ifa_maybe = NULL; 1989 const struct sockaddr_dl *sdl; 1990 u_int af = addr->sa_family; 1991 const char *addr_data = addr->sa_data, *cplim; 1992 1993 if (af == AF_LINK) { 1994 sdl = satocsdl(addr); 1995 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1996 ifindex2ifnet[sdl->sdl_index] && 1997 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 1998 return ifindex2ifnet[sdl->sdl_index]->if_dl; 1999 } 2000 } 2001 #ifdef NETATALK 2002 if (af == AF_APPLETALK) { 2003 const struct sockaddr_at *sat, *sat2; 2004 sat = (const struct sockaddr_at *)addr; 2005 IFNET_READER_FOREACH(ifp) { 2006 if (if_is_deactivated(ifp)) 2007 continue; 2008 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 2009 if (ifa == NULL) 2010 continue; 2011 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 2012 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 2013 return ifa; /* exact match */ 2014 if (ifa_maybe == NULL) { 2015 /* else keep the if with the right range */ 2016 ifa_maybe = ifa; 2017 } 2018 } 2019 return ifa_maybe; 2020 } 2021 #endif 2022 IFNET_READER_FOREACH(ifp) { 2023 if (if_is_deactivated(ifp)) 2024 continue; 2025 IFADDR_READER_FOREACH(ifa, ifp) { 2026 const char *cp, *cp2, *cp3; 2027 2028 if (ifa->ifa_addr->sa_family != af || 2029 ifa->ifa_netmask == NULL) 2030 next: continue; 2031 cp = addr_data; 2032 cp2 = ifa->ifa_addr->sa_data; 2033 cp3 = ifa->ifa_netmask->sa_data; 2034 cplim = (const char *)ifa->ifa_netmask + 2035 ifa->ifa_netmask->sa_len; 2036 while (cp3 < cplim) { 2037 if ((*cp++ ^ *cp2++) & *cp3++) { 2038 /* want to continue for() loop */ 2039 goto next; 2040 } 2041 } 2042 if (ifa_maybe == NULL || 2043 rt_refines(ifa->ifa_netmask, 2044 ifa_maybe->ifa_netmask)) 2045 ifa_maybe = ifa; 2046 } 2047 } 2048 return ifa_maybe; 2049 } 2050 2051 struct ifaddr * 2052 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 2053 { 2054 struct ifaddr *ifa; 2055 int s; 2056 2057 s = pserialize_read_enter(); 2058 ifa = ifa_ifwithnet(addr); 2059 if (ifa != NULL) 2060 ifa_acquire(ifa, psref); 2061 pserialize_read_exit(s); 2062 2063 return ifa; 2064 } 2065 2066 /* 2067 * Find the interface of the address. 2068 */ 2069 struct ifaddr * 2070 ifa_ifwithladdr(const struct sockaddr *addr) 2071 { 2072 struct ifaddr *ia; 2073 2074 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 2075 (ia = ifa_ifwithnet(addr))) 2076 return ia; 2077 return NULL; 2078 } 2079 2080 struct ifaddr * 2081 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 2082 { 2083 struct ifaddr *ifa; 2084 int s; 2085 2086 s = pserialize_read_enter(); 2087 ifa = ifa_ifwithladdr(addr); 2088 if (ifa != NULL) 2089 ifa_acquire(ifa, psref); 2090 pserialize_read_exit(s); 2091 2092 return ifa; 2093 } 2094 2095 /* 2096 * Find an interface using a specific address family 2097 */ 2098 struct ifaddr * 2099 ifa_ifwithaf(int af) 2100 { 2101 struct ifnet *ifp; 2102 struct ifaddr *ifa = NULL; 2103 int s; 2104 2105 s = pserialize_read_enter(); 2106 IFNET_READER_FOREACH(ifp) { 2107 if (if_is_deactivated(ifp)) 2108 continue; 2109 IFADDR_READER_FOREACH(ifa, ifp) { 2110 if (ifa->ifa_addr->sa_family == af) 2111 goto out; 2112 } 2113 } 2114 out: 2115 pserialize_read_exit(s); 2116 return ifa; 2117 } 2118 2119 /* 2120 * Find an interface address specific to an interface best matching 2121 * a given address. 2122 */ 2123 struct ifaddr * 2124 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2125 { 2126 struct ifaddr *ifa; 2127 const char *cp, *cp2, *cp3; 2128 const char *cplim; 2129 struct ifaddr *ifa_maybe = 0; 2130 u_int af = addr->sa_family; 2131 2132 if (if_is_deactivated(ifp)) 2133 return NULL; 2134 2135 if (af >= AF_MAX) 2136 return NULL; 2137 2138 IFADDR_READER_FOREACH(ifa, ifp) { 2139 if (ifa->ifa_addr->sa_family != af) 2140 continue; 2141 ifa_maybe = ifa; 2142 if (ifa->ifa_netmask == NULL) { 2143 if (equal(addr, ifa->ifa_addr) || 2144 (ifa->ifa_dstaddr && 2145 equal(addr, ifa->ifa_dstaddr))) 2146 return ifa; 2147 continue; 2148 } 2149 cp = addr->sa_data; 2150 cp2 = ifa->ifa_addr->sa_data; 2151 cp3 = ifa->ifa_netmask->sa_data; 2152 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2153 for (; cp3 < cplim; cp3++) { 2154 if ((*cp++ ^ *cp2++) & *cp3) 2155 break; 2156 } 2157 if (cp3 == cplim) 2158 return ifa; 2159 } 2160 return ifa_maybe; 2161 } 2162 2163 struct ifaddr * 2164 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2165 struct psref *psref) 2166 { 2167 struct ifaddr *ifa; 2168 int s; 2169 2170 s = pserialize_read_enter(); 2171 ifa = ifaof_ifpforaddr(addr, ifp); 2172 if (ifa != NULL) 2173 ifa_acquire(ifa, psref); 2174 pserialize_read_exit(s); 2175 2176 return ifa; 2177 } 2178 2179 /* 2180 * Default action when installing a route with a Link Level gateway. 2181 * Lookup an appropriate real ifa to point to. 2182 * This should be moved to /sys/net/link.c eventually. 2183 */ 2184 void 2185 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2186 { 2187 struct ifaddr *ifa; 2188 const struct sockaddr *dst; 2189 struct ifnet *ifp; 2190 struct psref psref; 2191 2192 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2193 return; 2194 ifp = rt->rt_ifa->ifa_ifp; 2195 dst = rt_getkey(rt); 2196 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2197 rt_replace_ifa(rt, ifa); 2198 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2199 ifa->ifa_rtrequest(cmd, rt, info); 2200 ifa_release(ifa, &psref); 2201 } 2202 } 2203 2204 /* 2205 * bitmask macros to manage a densely packed link_state change queue. 2206 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2207 * LINK_STATE_UP(2) we need 2 bits for each state change. 2208 * As a state change to store is 0, treat all bits set as an unset item. 2209 */ 2210 #define LQ_ITEM_BITS 2 2211 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2212 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2213 #define LINK_STATE_UNSET LQ_ITEM_MASK 2214 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2215 #define LQ_STORE(q, i, v) \ 2216 do { \ 2217 (q) &= ~LQ_MASK((i)); \ 2218 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2219 } while (0 /* CONSTCOND */) 2220 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2221 #define LQ_POP(q, v) \ 2222 do { \ 2223 (v) = LQ_ITEM((q), 0); \ 2224 (q) >>= LQ_ITEM_BITS; \ 2225 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2226 } while (0 /* CONSTCOND */) 2227 #define LQ_PUSH(q, v) \ 2228 do { \ 2229 (q) >>= LQ_ITEM_BITS; \ 2230 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2231 } while (0 /* CONSTCOND */) 2232 #define LQ_FIND_UNSET(q, i) \ 2233 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2234 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2235 break; \ 2236 } 2237 2238 /* 2239 * Handle a change in the interface link state and 2240 * queue notifications. 2241 */ 2242 void 2243 if_link_state_change(struct ifnet *ifp, int link_state) 2244 { 2245 int idx; 2246 2247 /* Ensure change is to a valid state */ 2248 switch (link_state) { 2249 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2250 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2251 case LINK_STATE_UP: 2252 break; 2253 default: 2254 #ifdef DEBUG 2255 printf("%s: invalid link state %d\n", 2256 ifp->if_xname, link_state); 2257 #endif 2258 return; 2259 } 2260 2261 IF_LINK_STATE_CHANGE_LOCK(ifp); 2262 2263 /* Find the last unset event in the queue. */ 2264 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2265 2266 if (idx == 0) { 2267 /* 2268 * There is no queue of link state changes. 2269 * As we have the lock we can safely compare against the 2270 * current link state and return if the same. 2271 * Otherwise, if scheduled is true then the interface is being 2272 * detached and the queue is being drained so we need 2273 * to avoid queuing more work. 2274 */ 2275 if (ifp->if_link_state == link_state || ifp->if_link_scheduled) 2276 goto out; 2277 } else { 2278 /* Ensure link_state doesn't match the last queued state. */ 2279 if (LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state) 2280 goto out; 2281 } 2282 2283 /* Handle queue overflow. */ 2284 if (idx == LQ_MAX(ifp->if_link_queue)) { 2285 uint8_t lost; 2286 2287 /* 2288 * The DOWN state must be protected from being pushed off 2289 * the queue to ensure that userland will always be 2290 * in a sane state. 2291 * Because DOWN is protected, there is no need to protect 2292 * UNKNOWN. 2293 * It should be invalid to change from any other state to 2294 * UNKNOWN anyway ... 2295 */ 2296 lost = LQ_ITEM(ifp->if_link_queue, 0); 2297 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2298 if (lost == LINK_STATE_DOWN) { 2299 lost = LQ_ITEM(ifp->if_link_queue, 0); 2300 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2301 } 2302 printf("%s: lost link state change %s\n", 2303 ifp->if_xname, 2304 lost == LINK_STATE_UP ? "UP" : 2305 lost == LINK_STATE_DOWN ? "DOWN" : 2306 "UNKNOWN"); 2307 } else 2308 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2309 2310 if (ifp->if_link_scheduled) 2311 goto out; 2312 2313 ifp->if_link_scheduled = true; 2314 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL); 2315 2316 out: 2317 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2318 } 2319 2320 /* 2321 * Handle interface link state change notifications. 2322 */ 2323 static void 2324 if_link_state_change_process(struct ifnet *ifp, int link_state) 2325 { 2326 struct domain *dp; 2327 const int s = splnet(); 2328 bool notify; 2329 2330 KASSERT(!cpu_intr_p()); 2331 2332 IF_LINK_STATE_CHANGE_LOCK(ifp); 2333 2334 /* Ensure the change is still valid. */ 2335 if (ifp->if_link_state == link_state) { 2336 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2337 splx(s); 2338 return; 2339 } 2340 2341 #ifdef DEBUG 2342 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2343 link_state == LINK_STATE_UP ? "UP" : 2344 link_state == LINK_STATE_DOWN ? "DOWN" : 2345 "UNKNOWN", 2346 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2347 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2348 "UNKNOWN"); 2349 #endif 2350 2351 /* 2352 * When going from UNKNOWN to UP, we need to mark existing 2353 * addresses as tentative and restart DAD as we may have 2354 * erroneously not found a duplicate. 2355 * 2356 * This needs to happen before rt_ifmsg to avoid a race where 2357 * listeners would have an address and expect it to work right 2358 * away. 2359 */ 2360 notify = (link_state == LINK_STATE_UP && 2361 ifp->if_link_state == LINK_STATE_UNKNOWN); 2362 ifp->if_link_state = link_state; 2363 /* The following routines may sleep so release the spin mutex */ 2364 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2365 2366 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2367 if (notify) { 2368 DOMAIN_FOREACH(dp) { 2369 if (dp->dom_if_link_state_change != NULL) 2370 dp->dom_if_link_state_change(ifp, 2371 LINK_STATE_DOWN); 2372 } 2373 } 2374 2375 /* Notify that the link state has changed. */ 2376 rt_ifmsg(ifp); 2377 2378 simplehook_dohooks(ifp->if_linkstate_hooks); 2379 2380 DOMAIN_FOREACH(dp) { 2381 if (dp->dom_if_link_state_change != NULL) 2382 dp->dom_if_link_state_change(ifp, link_state); 2383 } 2384 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2385 splx(s); 2386 } 2387 2388 /* 2389 * Process the interface link state change queue. 2390 */ 2391 static void 2392 if_link_state_change_work(struct work *work, void *arg) 2393 { 2394 struct ifnet *ifp = container_of(work, struct ifnet, if_link_work); 2395 uint8_t state; 2396 2397 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2398 const int s = splnet(); 2399 2400 /* 2401 * Pop a link state change from the queue and process it. 2402 * If there is nothing to process then if_detach() has been called. 2403 * We keep if_link_scheduled = true so the queue can safely drain 2404 * without more work being queued. 2405 */ 2406 IF_LINK_STATE_CHANGE_LOCK(ifp); 2407 LQ_POP(ifp->if_link_queue, state); 2408 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2409 if (state == LINK_STATE_UNSET) 2410 goto out; 2411 2412 if_link_state_change_process(ifp, state); 2413 2414 /* If there is a link state change to come, schedule it. */ 2415 IF_LINK_STATE_CHANGE_LOCK(ifp); 2416 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) { 2417 ifp->if_link_scheduled = true; 2418 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL); 2419 } else 2420 ifp->if_link_scheduled = false; 2421 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2422 2423 out: 2424 splx(s); 2425 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2426 } 2427 2428 void * 2429 if_linkstate_change_establish(struct ifnet *ifp, void (*fn)(void *), void *arg) 2430 { 2431 khook_t *hk; 2432 2433 hk = simplehook_establish(ifp->if_linkstate_hooks, fn, arg); 2434 2435 return (void *)hk; 2436 } 2437 2438 void 2439 if_linkstate_change_disestablish(struct ifnet *ifp, void *vhook, kmutex_t *lock) 2440 { 2441 2442 simplehook_disestablish(ifp->if_linkstate_hooks, vhook, lock); 2443 } 2444 2445 /* 2446 * Used to mark addresses on an interface as DETATCHED or TENTATIVE 2447 * and thus start Duplicate Address Detection without changing the 2448 * real link state. 2449 */ 2450 void 2451 if_domain_link_state_change(struct ifnet *ifp, int link_state) 2452 { 2453 struct domain *dp; 2454 2455 const int s = splnet(); 2456 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2457 2458 DOMAIN_FOREACH(dp) { 2459 if (dp->dom_if_link_state_change != NULL) 2460 dp->dom_if_link_state_change(ifp, link_state); 2461 } 2462 2463 splx(s); 2464 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2465 } 2466 2467 /* 2468 * Default action when installing a local route on a point-to-point 2469 * interface. 2470 */ 2471 void 2472 p2p_rtrequest(int req, struct rtentry *rt, 2473 __unused const struct rt_addrinfo *info) 2474 { 2475 struct ifnet *ifp = rt->rt_ifp; 2476 struct ifaddr *ifa, *lo0ifa; 2477 int s = pserialize_read_enter(); 2478 2479 switch (req) { 2480 case RTM_ADD: 2481 if ((rt->rt_flags & RTF_LOCAL) == 0) 2482 break; 2483 2484 rt->rt_ifp = lo0ifp; 2485 2486 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2487 break; 2488 2489 IFADDR_READER_FOREACH(ifa, ifp) { 2490 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2491 break; 2492 } 2493 if (ifa == NULL) 2494 break; 2495 2496 /* 2497 * Ensure lo0 has an address of the same family. 2498 */ 2499 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2500 if (lo0ifa->ifa_addr->sa_family == 2501 ifa->ifa_addr->sa_family) 2502 break; 2503 } 2504 if (lo0ifa == NULL) 2505 break; 2506 2507 /* 2508 * Make sure to set rt->rt_ifa to the interface 2509 * address we are using, otherwise we will have trouble 2510 * with source address selection. 2511 */ 2512 if (ifa != rt->rt_ifa) 2513 rt_replace_ifa(rt, ifa); 2514 break; 2515 case RTM_DELETE: 2516 default: 2517 break; 2518 } 2519 pserialize_read_exit(s); 2520 } 2521 2522 static void 2523 _if_down(struct ifnet *ifp) 2524 { 2525 struct ifaddr *ifa; 2526 struct domain *dp; 2527 struct psref psref; 2528 2529 ifp->if_flags &= ~IFF_UP; 2530 nanotime(&ifp->if_lastchange); 2531 2532 const int bound = curlwp_bind(); 2533 int s = pserialize_read_enter(); 2534 IFADDR_READER_FOREACH(ifa, ifp) { 2535 ifa_acquire(ifa, &psref); 2536 pserialize_read_exit(s); 2537 2538 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2539 2540 s = pserialize_read_enter(); 2541 ifa_release(ifa, &psref); 2542 } 2543 pserialize_read_exit(s); 2544 curlwp_bindx(bound); 2545 2546 IFQ_PURGE(&ifp->if_snd); 2547 #if NCARP > 0 2548 if (ifp->if_carp) 2549 carp_carpdev_state(ifp); 2550 #endif 2551 rt_ifmsg(ifp); 2552 DOMAIN_FOREACH(dp) { 2553 if (dp->dom_if_down) 2554 dp->dom_if_down(ifp); 2555 } 2556 } 2557 2558 static void 2559 if_down_deactivated(struct ifnet *ifp) 2560 { 2561 2562 KASSERT(if_is_deactivated(ifp)); 2563 _if_down(ifp); 2564 } 2565 2566 void 2567 if_down_locked(struct ifnet *ifp) 2568 { 2569 2570 KASSERT(IFNET_LOCKED(ifp)); 2571 _if_down(ifp); 2572 } 2573 2574 /* 2575 * Mark an interface down and notify protocols of 2576 * the transition. 2577 * NOTE: must be called at splsoftnet or equivalent. 2578 */ 2579 void 2580 if_down(struct ifnet *ifp) 2581 { 2582 2583 IFNET_LOCK(ifp); 2584 if_down_locked(ifp); 2585 IFNET_UNLOCK(ifp); 2586 } 2587 2588 /* 2589 * Must be called with holding if_ioctl_lock. 2590 */ 2591 static void 2592 if_up_locked(struct ifnet *ifp) 2593 { 2594 #ifdef notyet 2595 struct ifaddr *ifa; 2596 #endif 2597 struct domain *dp; 2598 2599 KASSERT(IFNET_LOCKED(ifp)); 2600 2601 KASSERT(!if_is_deactivated(ifp)); 2602 ifp->if_flags |= IFF_UP; 2603 nanotime(&ifp->if_lastchange); 2604 #ifdef notyet 2605 /* this has no effect on IP, and will kill all ISO connections XXX */ 2606 IFADDR_READER_FOREACH(ifa, ifp) 2607 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2608 #endif 2609 #if NCARP > 0 2610 if (ifp->if_carp) 2611 carp_carpdev_state(ifp); 2612 #endif 2613 rt_ifmsg(ifp); 2614 DOMAIN_FOREACH(dp) { 2615 if (dp->dom_if_up) 2616 dp->dom_if_up(ifp); 2617 } 2618 } 2619 2620 /* 2621 * Handle interface slowtimo timer routine. Called 2622 * from softclock, we decrement timer (if set) and 2623 * call the appropriate interface routine on expiration. 2624 */ 2625 static bool 2626 if_slowtimo_countdown(struct ifnet *ifp) 2627 { 2628 bool fire = false; 2629 const int s = splnet(); 2630 KERNEL_LOCK(1, NULL); 2631 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2632 fire = true; 2633 KERNEL_UNLOCK_ONE(NULL); 2634 splx(s); 2635 2636 return fire; 2637 } 2638 2639 static void 2640 if_slowtimo_intr(void *arg) 2641 { 2642 struct ifnet *ifp = arg; 2643 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 2644 2645 mutex_enter(&isd->isd_lock); 2646 if (!isd->isd_dying) { 2647 if (isd->isd_trigger || if_slowtimo_countdown(ifp)) { 2648 if (!isd->isd_queued) { 2649 isd->isd_queued = true; 2650 workqueue_enqueue(if_slowtimo_wq, 2651 &isd->isd_work, NULL); 2652 } 2653 } else { 2654 callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ); 2655 } 2656 } 2657 mutex_exit(&isd->isd_lock); 2658 } 2659 2660 static void 2661 if_slowtimo_work(struct work *work, void *arg) 2662 { 2663 struct if_slowtimo_data *isd = 2664 container_of(work, struct if_slowtimo_data, isd_work); 2665 struct ifnet *ifp = isd->isd_ifp; 2666 const int s = splnet(); 2667 KERNEL_LOCK(1, NULL); 2668 (*ifp->if_slowtimo)(ifp); 2669 KERNEL_UNLOCK_ONE(NULL); 2670 splx(s); 2671 2672 mutex_enter(&isd->isd_lock); 2673 if (isd->isd_trigger) { 2674 isd->isd_trigger = false; 2675 printf("%s: watchdog triggered\n", ifp->if_xname); 2676 } 2677 isd->isd_queued = false; 2678 if (!isd->isd_dying) 2679 callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ); 2680 mutex_exit(&isd->isd_lock); 2681 } 2682 2683 static int 2684 sysctl_if_watchdog(SYSCTLFN_ARGS) 2685 { 2686 struct sysctlnode node = *rnode; 2687 struct ifnet *ifp = node.sysctl_data; 2688 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 2689 int arg = 0; 2690 int error; 2691 2692 node.sysctl_data = &arg; 2693 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2694 if (error || newp == NULL) 2695 return error; 2696 if (arg) { 2697 mutex_enter(&isd->isd_lock); 2698 KASSERT(!isd->isd_dying); 2699 isd->isd_trigger = true; 2700 callout_schedule(&isd->isd_ch, 0); 2701 mutex_exit(&isd->isd_lock); 2702 } 2703 2704 return 0; 2705 } 2706 2707 static void 2708 sysctl_watchdog_setup(struct ifnet *ifp) 2709 { 2710 struct sysctllog **clog = &ifp->if_sysctl_log; 2711 const struct sysctlnode *rnode; 2712 2713 if (sysctl_createv(clog, 0, NULL, &rnode, 2714 CTLFLAG_PERMANENT, CTLTYPE_NODE, "interfaces", 2715 SYSCTL_DESCR("Per-interface controls"), 2716 NULL, 0, NULL, 0, 2717 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 2718 goto bad; 2719 if (sysctl_createv(clog, 0, &rnode, &rnode, 2720 CTLFLAG_PERMANENT, CTLTYPE_NODE, ifp->if_xname, 2721 SYSCTL_DESCR("Interface controls"), 2722 NULL, 0, NULL, 0, 2723 CTL_CREATE, CTL_EOL) != 0) 2724 goto bad; 2725 if (sysctl_createv(clog, 0, &rnode, &rnode, 2726 CTLFLAG_PERMANENT, CTLTYPE_NODE, "watchdog", 2727 SYSCTL_DESCR("Interface watchdog controls"), 2728 NULL, 0, NULL, 0, 2729 CTL_CREATE, CTL_EOL) != 0) 2730 goto bad; 2731 if (sysctl_createv(clog, 0, &rnode, NULL, 2732 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "trigger", 2733 SYSCTL_DESCR("Trigger watchdog timeout"), 2734 sysctl_if_watchdog, 0, (int *)ifp, 0, 2735 CTL_CREATE, CTL_EOL) != 0) 2736 goto bad; 2737 2738 return; 2739 2740 bad: 2741 printf("%s: could not attach sysctl watchdog nodes\n", ifp->if_xname); 2742 } 2743 2744 /* 2745 * Mark an interface up and notify protocols of 2746 * the transition. 2747 * NOTE: must be called at splsoftnet or equivalent. 2748 */ 2749 void 2750 if_up(struct ifnet *ifp) 2751 { 2752 2753 IFNET_LOCK(ifp); 2754 if_up_locked(ifp); 2755 IFNET_UNLOCK(ifp); 2756 } 2757 2758 /* 2759 * Set/clear promiscuous mode on interface ifp based on the truth value 2760 * of pswitch. The calls are reference counted so that only the first 2761 * "on" request actually has an effect, as does the final "off" request. 2762 * Results are undefined if the "off" and "on" requests are not matched. 2763 */ 2764 int 2765 ifpromisc_locked(struct ifnet *ifp, int pswitch) 2766 { 2767 int pcount, ret = 0; 2768 u_short nflags; 2769 2770 KASSERT(IFNET_LOCKED(ifp)); 2771 2772 pcount = ifp->if_pcount; 2773 if (pswitch) { 2774 /* 2775 * Allow the device to be "placed" into promiscuous 2776 * mode even if it is not configured up. It will 2777 * consult IFF_PROMISC when it is brought up. 2778 */ 2779 if (ifp->if_pcount++ != 0) 2780 goto out; 2781 nflags = ifp->if_flags | IFF_PROMISC; 2782 } else { 2783 if (--ifp->if_pcount > 0) 2784 goto out; 2785 nflags = ifp->if_flags & ~IFF_PROMISC; 2786 } 2787 ret = if_flags_set(ifp, nflags); 2788 /* Restore interface state if not successful. */ 2789 if (ret != 0) { 2790 ifp->if_pcount = pcount; 2791 } 2792 out: 2793 return ret; 2794 } 2795 2796 int 2797 ifpromisc(struct ifnet *ifp, int pswitch) 2798 { 2799 int e; 2800 2801 IFNET_LOCK(ifp); 2802 e = ifpromisc_locked(ifp, pswitch); 2803 IFNET_UNLOCK(ifp); 2804 2805 return e; 2806 } 2807 2808 /* 2809 * if_ioctl(ifp, cmd, data) 2810 * 2811 * Apply an ioctl command to the interface. Returns 0 on success, 2812 * nonzero errno(3) number on failure. 2813 * 2814 * For SIOCADDMULTI/SIOCDELMULTI, caller need not hold locks -- it 2815 * is the driver's responsibility to take any internal locks. 2816 * (Kernel logic should generally invoke these only through 2817 * if_mcast_op.) 2818 * 2819 * For all other ioctls, caller must hold ifp->if_ioctl_lock, 2820 * a.k.a. IFNET_LOCK. May sleep. 2821 */ 2822 int 2823 if_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2824 { 2825 2826 switch (cmd) { 2827 case SIOCADDMULTI: 2828 case SIOCDELMULTI: 2829 break; 2830 default: 2831 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2832 } 2833 2834 return (*ifp->if_ioctl)(ifp, cmd, data); 2835 } 2836 2837 /* 2838 * if_init(ifp) 2839 * 2840 * Prepare the hardware underlying ifp to process packets 2841 * according to its current configuration. Returns 0 on success, 2842 * nonzero errno(3) number on failure. 2843 * 2844 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 2845 * IFNET_LOCK. 2846 */ 2847 int 2848 if_init(struct ifnet *ifp) 2849 { 2850 2851 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2852 2853 return (*ifp->if_init)(ifp); 2854 } 2855 2856 /* 2857 * if_stop(ifp, disable) 2858 * 2859 * Stop the hardware underlying ifp from processing packets. 2860 * 2861 * If disable is true, ... XXX(?) 2862 * 2863 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 2864 * IFNET_LOCK. 2865 */ 2866 void 2867 if_stop(struct ifnet *ifp, int disable) 2868 { 2869 2870 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2871 2872 (*ifp->if_stop)(ifp, disable); 2873 } 2874 2875 /* 2876 * Map interface name to 2877 * interface structure pointer. 2878 */ 2879 struct ifnet * 2880 ifunit(const char *name) 2881 { 2882 struct ifnet *ifp; 2883 const char *cp = name; 2884 u_int unit = 0; 2885 u_int i; 2886 2887 /* 2888 * If the entire name is a number, treat it as an ifindex. 2889 */ 2890 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2891 unit = unit * 10 + (*cp - '0'); 2892 } 2893 2894 /* 2895 * If the number took all of the name, then it's a valid ifindex. 2896 */ 2897 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2898 return if_byindex(unit); 2899 2900 ifp = NULL; 2901 const int s = pserialize_read_enter(); 2902 IFNET_READER_FOREACH(ifp) { 2903 if (if_is_deactivated(ifp)) 2904 continue; 2905 if (strcmp(ifp->if_xname, name) == 0) 2906 goto out; 2907 } 2908 out: 2909 pserialize_read_exit(s); 2910 return ifp; 2911 } 2912 2913 /* 2914 * Get a reference of an ifnet object by an interface name. 2915 * The returned reference is protected by psref(9). The caller 2916 * must release a returned reference by if_put after use. 2917 */ 2918 struct ifnet * 2919 if_get(const char *name, struct psref *psref) 2920 { 2921 struct ifnet *ifp; 2922 const char *cp = name; 2923 u_int unit = 0; 2924 u_int i; 2925 2926 /* 2927 * If the entire name is a number, treat it as an ifindex. 2928 */ 2929 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2930 unit = unit * 10 + (*cp - '0'); 2931 } 2932 2933 /* 2934 * If the number took all of the name, then it's a valid ifindex. 2935 */ 2936 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2937 return if_get_byindex(unit, psref); 2938 2939 ifp = NULL; 2940 const int s = pserialize_read_enter(); 2941 IFNET_READER_FOREACH(ifp) { 2942 if (if_is_deactivated(ifp)) 2943 continue; 2944 if (strcmp(ifp->if_xname, name) == 0) { 2945 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 2946 psref_acquire(psref, &ifp->if_psref, 2947 ifnet_psref_class); 2948 goto out; 2949 } 2950 } 2951 out: 2952 pserialize_read_exit(s); 2953 return ifp; 2954 } 2955 2956 /* 2957 * Release a reference of an ifnet object given by if_get, if_get_byindex 2958 * or if_get_bylla. 2959 */ 2960 void 2961 if_put(const struct ifnet *ifp, struct psref *psref) 2962 { 2963 2964 if (ifp == NULL) 2965 return; 2966 2967 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2968 } 2969 2970 /* 2971 * Return ifp having idx. Return NULL if not found. Normally if_byindex 2972 * should be used. 2973 */ 2974 ifnet_t * 2975 _if_byindex(u_int idx) 2976 { 2977 2978 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2979 } 2980 2981 /* 2982 * Return ifp having idx. Return NULL if not found or the found ifp is 2983 * already deactivated. 2984 */ 2985 ifnet_t * 2986 if_byindex(u_int idx) 2987 { 2988 ifnet_t *ifp; 2989 2990 ifp = _if_byindex(idx); 2991 if (ifp != NULL && if_is_deactivated(ifp)) 2992 ifp = NULL; 2993 return ifp; 2994 } 2995 2996 /* 2997 * Get a reference of an ifnet object by an interface index. 2998 * The returned reference is protected by psref(9). The caller 2999 * must release a returned reference by if_put after use. 3000 */ 3001 ifnet_t * 3002 if_get_byindex(u_int idx, struct psref *psref) 3003 { 3004 ifnet_t *ifp; 3005 3006 const int s = pserialize_read_enter(); 3007 ifp = if_byindex(idx); 3008 if (__predict_true(ifp != NULL)) { 3009 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 3010 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 3011 } 3012 pserialize_read_exit(s); 3013 3014 return ifp; 3015 } 3016 3017 ifnet_t * 3018 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref) 3019 { 3020 ifnet_t *ifp; 3021 3022 const int s = pserialize_read_enter(); 3023 IFNET_READER_FOREACH(ifp) { 3024 if (if_is_deactivated(ifp)) 3025 continue; 3026 if (ifp->if_addrlen != lla_len) 3027 continue; 3028 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) { 3029 psref_acquire(psref, &ifp->if_psref, 3030 ifnet_psref_class); 3031 break; 3032 } 3033 } 3034 pserialize_read_exit(s); 3035 3036 return ifp; 3037 } 3038 3039 /* 3040 * Note that it's safe only if the passed ifp is guaranteed to not be freed, 3041 * for example using pserialize or the ifp is already held or some other 3042 * object is held which guarantes the ifp to not be freed indirectly. 3043 */ 3044 void 3045 if_acquire(struct ifnet *ifp, struct psref *psref) 3046 { 3047 3048 KASSERT(ifp->if_index != 0); 3049 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 3050 } 3051 3052 bool 3053 if_held(struct ifnet *ifp) 3054 { 3055 3056 return psref_held(&ifp->if_psref, ifnet_psref_class); 3057 } 3058 3059 /* 3060 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4. 3061 * Check the tunnel nesting count. 3062 * Return > 0, if tunnel nesting count is more than limit. 3063 * Return 0, if tunnel nesting count is equal or less than limit. 3064 */ 3065 int 3066 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit) 3067 { 3068 struct m_tag *mtag; 3069 int *count; 3070 3071 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO); 3072 if (mtag != NULL) { 3073 count = (int *)(mtag + 1); 3074 if (++(*count) > limit) { 3075 log(LOG_NOTICE, 3076 "%s: recursively called too many times(%d)\n", 3077 ifp->if_xname, *count); 3078 return EIO; 3079 } 3080 } else { 3081 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count), 3082 M_NOWAIT); 3083 if (mtag != NULL) { 3084 m_tag_prepend(m, mtag); 3085 count = (int *)(mtag + 1); 3086 *count = 0; 3087 } else { 3088 log(LOG_DEBUG, 3089 "%s: m_tag_get() failed, recursion calls are not prevented.\n", 3090 ifp->if_xname); 3091 } 3092 } 3093 3094 return 0; 3095 } 3096 3097 static void 3098 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 3099 { 3100 struct tunnel_ro *tro = p; 3101 3102 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP); 3103 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 3104 } 3105 3106 static void 3107 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 3108 { 3109 struct tunnel_ro *tro = p; 3110 3111 rtcache_free(tro->tr_ro); 3112 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro)); 3113 3114 mutex_obj_free(tro->tr_lock); 3115 } 3116 3117 percpu_t * 3118 if_tunnel_alloc_ro_percpu(void) 3119 { 3120 3121 return percpu_create(sizeof(struct tunnel_ro), 3122 if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL); 3123 } 3124 3125 void 3126 if_tunnel_free_ro_percpu(percpu_t *ro_percpu) 3127 { 3128 3129 percpu_free(ro_percpu, sizeof(struct tunnel_ro)); 3130 } 3131 3132 3133 static void 3134 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 3135 { 3136 struct tunnel_ro *tro = p; 3137 3138 mutex_enter(tro->tr_lock); 3139 rtcache_free(tro->tr_ro); 3140 mutex_exit(tro->tr_lock); 3141 } 3142 3143 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu) 3144 { 3145 3146 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL); 3147 } 3148 3149 void 3150 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats) 3151 { 3152 3153 /* Collect the volatile stats first; this zeros *ifi. */ 3154 if_stats_to_if_data(ifp, ifi, zero_stats); 3155 3156 ifi->ifi_type = ifp->if_type; 3157 ifi->ifi_addrlen = ifp->if_addrlen; 3158 ifi->ifi_hdrlen = ifp->if_hdrlen; 3159 ifi->ifi_link_state = ifp->if_link_state; 3160 ifi->ifi_mtu = ifp->if_mtu; 3161 ifi->ifi_metric = ifp->if_metric; 3162 ifi->ifi_baudrate = ifp->if_baudrate; 3163 ifi->ifi_lastchange = ifp->if_lastchange; 3164 } 3165 3166 /* common */ 3167 int 3168 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 3169 { 3170 struct ifreq *ifr; 3171 struct ifcapreq *ifcr; 3172 struct ifdatareq *ifdr; 3173 unsigned short flags; 3174 char *descr; 3175 int error; 3176 3177 switch (cmd) { 3178 case SIOCSIFCAP: 3179 ifcr = data; 3180 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 3181 return EINVAL; 3182 3183 if (ifcr->ifcr_capenable == ifp->if_capenable) 3184 return 0; 3185 3186 ifp->if_capenable = ifcr->ifcr_capenable; 3187 3188 /* Pre-compute the checksum flags mask. */ 3189 ifp->if_csum_flags_tx = 0; 3190 ifp->if_csum_flags_rx = 0; 3191 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) 3192 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 3193 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 3194 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 3195 3196 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) 3197 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 3198 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) 3199 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 3200 3201 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) 3202 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 3203 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) 3204 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 3205 3206 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) 3207 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 3208 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) 3209 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 3210 3211 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) 3212 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 3213 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) 3214 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 3215 3216 if (ifp->if_capenable & IFCAP_TSOv4) 3217 ifp->if_csum_flags_tx |= M_CSUM_TSOv4; 3218 if (ifp->if_capenable & IFCAP_TSOv6) 3219 ifp->if_csum_flags_tx |= M_CSUM_TSOv6; 3220 3221 #if NBRIDGE > 0 3222 if (ifp->if_bridge != NULL) 3223 bridge_calc_csum_flags(ifp->if_bridge); 3224 #endif 3225 3226 if (ifp->if_flags & IFF_UP) 3227 return ENETRESET; 3228 return 0; 3229 case SIOCSIFFLAGS: 3230 ifr = data; 3231 /* 3232 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up 3233 * and if_down aren't MP-safe yet, so we must hold the lock. 3234 */ 3235 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3236 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 3237 const int s = splsoftnet(); 3238 if_down_locked(ifp); 3239 splx(s); 3240 } 3241 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 3242 const int s = splsoftnet(); 3243 if_up_locked(ifp); 3244 splx(s); 3245 } 3246 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3247 flags = (ifp->if_flags & IFF_CANTCHANGE) | 3248 (ifr->ifr_flags &~ IFF_CANTCHANGE); 3249 if (ifp->if_flags != flags) { 3250 ifp->if_flags = flags; 3251 /* Notify that the flags have changed. */ 3252 rt_ifmsg(ifp); 3253 } 3254 break; 3255 case SIOCGIFFLAGS: 3256 ifr = data; 3257 ifr->ifr_flags = ifp->if_flags; 3258 break; 3259 3260 case SIOCGIFMETRIC: 3261 ifr = data; 3262 ifr->ifr_metric = ifp->if_metric; 3263 break; 3264 3265 case SIOCGIFMTU: 3266 ifr = data; 3267 ifr->ifr_mtu = ifp->if_mtu; 3268 break; 3269 3270 case SIOCGIFDLT: 3271 ifr = data; 3272 ifr->ifr_dlt = ifp->if_dlt; 3273 break; 3274 3275 case SIOCGIFCAP: 3276 ifcr = data; 3277 ifcr->ifcr_capabilities = ifp->if_capabilities; 3278 ifcr->ifcr_capenable = ifp->if_capenable; 3279 break; 3280 3281 case SIOCSIFMETRIC: 3282 ifr = data; 3283 ifp->if_metric = ifr->ifr_metric; 3284 break; 3285 3286 case SIOCGIFDATA: 3287 ifdr = data; 3288 if_export_if_data(ifp, &ifdr->ifdr_data, false); 3289 break; 3290 3291 case SIOCGIFINDEX: 3292 ifr = data; 3293 ifr->ifr_index = ifp->if_index; 3294 break; 3295 3296 case SIOCZIFDATA: 3297 ifdr = data; 3298 if_export_if_data(ifp, &ifdr->ifdr_data, true); 3299 getnanotime(&ifp->if_lastchange); 3300 break; 3301 case SIOCSIFMTU: 3302 ifr = data; 3303 if (ifp->if_mtu == ifr->ifr_mtu) 3304 break; 3305 ifp->if_mtu = ifr->ifr_mtu; 3306 return ENETRESET; 3307 case SIOCSIFDESCR: 3308 error = kauth_authorize_network(kauth_cred_get(), 3309 KAUTH_NETWORK_INTERFACE, 3310 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3311 NULL); 3312 if (error) 3313 return error; 3314 3315 ifr = data; 3316 3317 if (ifr->ifr_buflen > IFDESCRSIZE) 3318 return ENAMETOOLONG; 3319 3320 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) { 3321 /* unset description */ 3322 descr = NULL; 3323 } else { 3324 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP); 3325 /* 3326 * copy (IFDESCRSIZE - 1) bytes to ensure 3327 * terminating nul 3328 */ 3329 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1); 3330 if (error) { 3331 kmem_free(descr, IFDESCRSIZE); 3332 return error; 3333 } 3334 } 3335 3336 if (ifp->if_description != NULL) 3337 kmem_free(ifp->if_description, IFDESCRSIZE); 3338 3339 ifp->if_description = descr; 3340 break; 3341 3342 case SIOCGIFDESCR: 3343 ifr = data; 3344 descr = ifp->if_description; 3345 3346 if (descr == NULL) 3347 return ENOMSG; 3348 3349 if (ifr->ifr_buflen < IFDESCRSIZE) 3350 return EINVAL; 3351 3352 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE); 3353 if (error) 3354 return error; 3355 break; 3356 3357 default: 3358 return ENOTTY; 3359 } 3360 return 0; 3361 } 3362 3363 int 3364 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 3365 { 3366 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 3367 struct ifaddr *ifa; 3368 const struct sockaddr *any, *sa; 3369 union { 3370 struct sockaddr sa; 3371 struct sockaddr_storage ss; 3372 } u, v; 3373 int s, error = 0; 3374 3375 switch (cmd) { 3376 case SIOCSIFADDRPREF: 3377 error = kauth_authorize_network(kauth_cred_get(), 3378 KAUTH_NETWORK_INTERFACE, 3379 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3380 NULL); 3381 if (error) 3382 return error; 3383 break; 3384 case SIOCGIFADDRPREF: 3385 break; 3386 default: 3387 return EOPNOTSUPP; 3388 } 3389 3390 /* sanity checks */ 3391 if (data == NULL || ifp == NULL) { 3392 panic("invalid argument to %s", __func__); 3393 /*NOTREACHED*/ 3394 } 3395 3396 /* address must be specified on ADD and DELETE */ 3397 sa = sstocsa(&ifap->ifap_addr); 3398 if (sa->sa_family != sofamily(so)) 3399 return EINVAL; 3400 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 3401 return EINVAL; 3402 3403 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 3404 3405 s = pserialize_read_enter(); 3406 IFADDR_READER_FOREACH(ifa, ifp) { 3407 if (ifa->ifa_addr->sa_family != sa->sa_family) 3408 continue; 3409 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 3410 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 3411 break; 3412 } 3413 if (ifa == NULL) { 3414 error = EADDRNOTAVAIL; 3415 goto out; 3416 } 3417 3418 switch (cmd) { 3419 case SIOCSIFADDRPREF: 3420 ifa->ifa_preference = ifap->ifap_preference; 3421 goto out; 3422 case SIOCGIFADDRPREF: 3423 /* fill in the if_laddrreq structure */ 3424 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 3425 sizeof(ifap->ifap_addr), ifa->ifa_addr); 3426 ifap->ifap_preference = ifa->ifa_preference; 3427 goto out; 3428 default: 3429 error = EOPNOTSUPP; 3430 } 3431 out: 3432 pserialize_read_exit(s); 3433 return error; 3434 } 3435 3436 /* 3437 * Interface ioctls. 3438 */ 3439 static int 3440 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 3441 { 3442 struct ifnet *ifp; 3443 struct ifreq *ifr; 3444 int error = 0; 3445 u_long ocmd = cmd; 3446 u_short oif_flags; 3447 struct ifreq ifrb; 3448 struct oifreq *oifr = NULL; 3449 int r; 3450 struct psref psref; 3451 bool do_if43_post = false; 3452 bool do_ifm80_post = false; 3453 3454 switch (cmd) { 3455 case SIOCGIFCONF: 3456 return ifconf(cmd, data); 3457 case SIOCINITIFADDR: 3458 return EPERM; 3459 default: 3460 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(), 3461 error); 3462 if (error != ENOSYS) 3463 return error; 3464 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data), 3465 enosys(), error); 3466 if (error != ENOSYS) 3467 return error; 3468 error = 0; 3469 break; 3470 } 3471 3472 ifr = data; 3473 /* Pre-conversion */ 3474 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error); 3475 if (cmd != ocmd) { 3476 oifr = data; 3477 data = ifr = &ifrb; 3478 IFREQO2N_43(oifr, ifr); 3479 do_if43_post = true; 3480 } 3481 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post), 3482 enosys(), error); 3483 3484 switch (cmd) { 3485 case SIOCIFCREATE: 3486 case SIOCIFDESTROY: { 3487 const int bound = curlwp_bind(); 3488 if (l != NULL) { 3489 ifp = if_get(ifr->ifr_name, &psref); 3490 error = kauth_authorize_network(l->l_cred, 3491 KAUTH_NETWORK_INTERFACE, 3492 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3493 KAUTH_ARG(cmd), NULL); 3494 if (ifp != NULL) 3495 if_put(ifp, &psref); 3496 if (error != 0) { 3497 curlwp_bindx(bound); 3498 return error; 3499 } 3500 } 3501 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3502 mutex_enter(&if_clone_mtx); 3503 r = (cmd == SIOCIFCREATE) ? 3504 if_clone_create(ifr->ifr_name) : 3505 if_clone_destroy(ifr->ifr_name); 3506 mutex_exit(&if_clone_mtx); 3507 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3508 curlwp_bindx(bound); 3509 return r; 3510 } 3511 case SIOCIFGCLONERS: { 3512 struct if_clonereq *req = (struct if_clonereq *)data; 3513 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 3514 &req->ifcr_total); 3515 } 3516 } 3517 3518 if ((cmd & IOC_IN) == 0 || IOCPARM_LEN(cmd) < sizeof(ifr->ifr_name)) 3519 return EINVAL; 3520 3521 const int bound = curlwp_bind(); 3522 ifp = if_get(ifr->ifr_name, &psref); 3523 if (ifp == NULL) { 3524 curlwp_bindx(bound); 3525 return ENXIO; 3526 } 3527 3528 switch (cmd) { 3529 case SIOCALIFADDR: 3530 case SIOCDLIFADDR: 3531 case SIOCSIFADDRPREF: 3532 case SIOCSIFFLAGS: 3533 case SIOCSIFCAP: 3534 case SIOCSIFMETRIC: 3535 case SIOCZIFDATA: 3536 case SIOCSIFMTU: 3537 case SIOCSIFPHYADDR: 3538 case SIOCDIFPHYADDR: 3539 #ifdef INET6 3540 case SIOCSIFPHYADDR_IN6: 3541 #endif 3542 case SIOCSLIFPHYADDR: 3543 case SIOCADDMULTI: 3544 case SIOCDELMULTI: 3545 case SIOCSETHERCAP: 3546 case SIOCSIFMEDIA: 3547 case SIOCSDRVSPEC: 3548 case SIOCG80211: 3549 case SIOCS80211: 3550 case SIOCS80211NWID: 3551 case SIOCS80211NWKEY: 3552 case SIOCS80211POWER: 3553 case SIOCS80211BSSID: 3554 case SIOCS80211CHANNEL: 3555 case SIOCSLINKSTR: 3556 if (l != NULL) { 3557 error = kauth_authorize_network(l->l_cred, 3558 KAUTH_NETWORK_INTERFACE, 3559 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3560 KAUTH_ARG(cmd), NULL); 3561 if (error != 0) 3562 goto out; 3563 } 3564 } 3565 3566 oif_flags = ifp->if_flags; 3567 3568 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); 3569 IFNET_LOCK(ifp); 3570 3571 error = if_ioctl(ifp, cmd, data); 3572 if (error != ENOTTY) 3573 ; 3574 else if (so->so_proto == NULL) 3575 error = EOPNOTSUPP; 3576 else { 3577 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3578 MODULE_HOOK_CALL(if_ifioctl_43_hook, 3579 (so, ocmd, cmd, data, l), enosys(), error); 3580 if (error == ENOSYS) 3581 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 3582 cmd, data, ifp); 3583 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3584 } 3585 3586 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 3587 if ((ifp->if_flags & IFF_UP) != 0) { 3588 const int s = splsoftnet(); 3589 if_up_locked(ifp); 3590 splx(s); 3591 } 3592 } 3593 3594 /* Post-conversion */ 3595 if (do_ifm80_post && (error == 0)) 3596 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd), 3597 enosys(), error); 3598 if (do_if43_post) 3599 IFREQN2O_43(oifr, ifr); 3600 3601 IFNET_UNLOCK(ifp); 3602 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); 3603 out: 3604 if_put(ifp, &psref); 3605 curlwp_bindx(bound); 3606 return error; 3607 } 3608 3609 /* 3610 * Return interface configuration 3611 * of system. List may be used 3612 * in later ioctl's (above) to get 3613 * other information. 3614 * 3615 * Each record is a struct ifreq. Before the addition of 3616 * sockaddr_storage, the API rule was that sockaddr flavors that did 3617 * not fit would extend beyond the struct ifreq, with the next struct 3618 * ifreq starting sa_len beyond the struct sockaddr. Because the 3619 * union in struct ifreq includes struct sockaddr_storage, every kind 3620 * of sockaddr must fit. Thus, there are no longer any overlength 3621 * records. 3622 * 3623 * Records are added to the user buffer if they fit, and ifc_len is 3624 * adjusted to the length that was written. Thus, the user is only 3625 * assured of getting the complete list if ifc_len on return is at 3626 * least sizeof(struct ifreq) less than it was on entry. 3627 * 3628 * If the user buffer pointer is NULL, this routine copies no data and 3629 * returns the amount of space that would be needed. 3630 * 3631 * Invariants: 3632 * ifrp points to the next part of the user's buffer to be used. If 3633 * ifrp != NULL, space holds the number of bytes remaining that we may 3634 * write at ifrp. Otherwise, space holds the number of bytes that 3635 * would have been written had there been adequate space. 3636 */ 3637 /*ARGSUSED*/ 3638 static int 3639 ifconf(u_long cmd, void *data) 3640 { 3641 struct ifconf *ifc = (struct ifconf *)data; 3642 struct ifnet *ifp; 3643 struct ifaddr *ifa; 3644 struct ifreq ifr, *ifrp = NULL; 3645 int space = 0, error = 0; 3646 const int sz = (int)sizeof(struct ifreq); 3647 const bool docopy = ifc->ifc_req != NULL; 3648 struct psref psref; 3649 3650 if (docopy) { 3651 if (ifc->ifc_len < 0) 3652 return EINVAL; 3653 3654 space = ifc->ifc_len; 3655 ifrp = ifc->ifc_req; 3656 } 3657 memset(&ifr, 0, sizeof(ifr)); 3658 3659 const int bound = curlwp_bind(); 3660 int s = pserialize_read_enter(); 3661 IFNET_READER_FOREACH(ifp) { 3662 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3663 pserialize_read_exit(s); 3664 3665 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3666 sizeof(ifr.ifr_name)); 3667 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3668 error = ENAMETOOLONG; 3669 goto release_exit; 3670 } 3671 if (IFADDR_READER_EMPTY(ifp)) { 3672 /* Interface with no addresses - send zero sockaddr. */ 3673 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3674 if (!docopy) { 3675 space += sz; 3676 goto next; 3677 } 3678 if (space >= sz) { 3679 error = copyout(&ifr, ifrp, sz); 3680 if (error != 0) 3681 goto release_exit; 3682 ifrp++; 3683 space -= sz; 3684 } 3685 } 3686 3687 s = pserialize_read_enter(); 3688 IFADDR_READER_FOREACH(ifa, ifp) { 3689 struct sockaddr *sa = ifa->ifa_addr; 3690 /* all sockaddrs must fit in sockaddr_storage */ 3691 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3692 3693 if (!docopy) { 3694 space += sz; 3695 continue; 3696 } 3697 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3698 pserialize_read_exit(s); 3699 3700 if (space >= sz) { 3701 error = copyout(&ifr, ifrp, sz); 3702 if (error != 0) 3703 goto release_exit; 3704 ifrp++; space -= sz; 3705 } 3706 s = pserialize_read_enter(); 3707 } 3708 pserialize_read_exit(s); 3709 3710 next: 3711 s = pserialize_read_enter(); 3712 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3713 } 3714 pserialize_read_exit(s); 3715 curlwp_bindx(bound); 3716 3717 if (docopy) { 3718 KASSERT(0 <= space && space <= ifc->ifc_len); 3719 ifc->ifc_len -= space; 3720 } else { 3721 KASSERT(space >= 0); 3722 ifc->ifc_len = space; 3723 } 3724 return (0); 3725 3726 release_exit: 3727 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3728 curlwp_bindx(bound); 3729 return error; 3730 } 3731 3732 int 3733 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3734 { 3735 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space); 3736 struct ifreq ifrb; 3737 struct oifreq *oifr = NULL; 3738 u_long ocmd = cmd; 3739 int hook; 3740 3741 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook); 3742 if (hook != ENOSYS) { 3743 if (cmd != ocmd) { 3744 oifr = (struct oifreq *)(void *)ifr; 3745 ifr = &ifrb; 3746 IFREQO2N_43(oifr, ifr); 3747 len = sizeof(oifr->ifr_addr); 3748 } 3749 } 3750 3751 if (len < sa->sa_len) 3752 return EFBIG; 3753 3754 memset(&ifr->ifr_addr, 0, len); 3755 sockaddr_copy(&ifr->ifr_addr, len, sa); 3756 3757 if (cmd != ocmd) 3758 IFREQN2O_43(oifr, ifr); 3759 return 0; 3760 } 3761 3762 /* 3763 * wrapper function for the drivers which doesn't have if_transmit(). 3764 */ 3765 static int 3766 if_transmit(struct ifnet *ifp, struct mbuf *m) 3767 { 3768 int error; 3769 size_t pktlen = m->m_pkthdr.len; 3770 bool mcast = (m->m_flags & M_MCAST) != 0; 3771 3772 const int s = splnet(); 3773 3774 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3775 if (error != 0) { 3776 /* mbuf is already freed */ 3777 goto out; 3778 } 3779 3780 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 3781 if_statadd_ref(nsr, if_obytes, pktlen); 3782 if (mcast) 3783 if_statinc_ref(nsr, if_omcasts); 3784 IF_STAT_PUTREF(ifp); 3785 3786 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3787 if_start_lock(ifp); 3788 out: 3789 splx(s); 3790 3791 return error; 3792 } 3793 3794 int 3795 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3796 { 3797 int error; 3798 3799 kmsan_check_mbuf(m); 3800 3801 #ifdef ALTQ 3802 KERNEL_LOCK(1, NULL); 3803 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3804 error = if_transmit(ifp, m); 3805 KERNEL_UNLOCK_ONE(NULL); 3806 } else { 3807 KERNEL_UNLOCK_ONE(NULL); 3808 error = (*ifp->if_transmit)(ifp, m); 3809 /* mbuf is already freed */ 3810 } 3811 #else /* !ALTQ */ 3812 error = (*ifp->if_transmit)(ifp, m); 3813 /* mbuf is already freed */ 3814 #endif /* !ALTQ */ 3815 3816 return error; 3817 } 3818 3819 /* 3820 * Queue message on interface, and start output if interface 3821 * not yet active. 3822 */ 3823 int 3824 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3825 { 3826 3827 return if_transmit_lock(ifp, m); 3828 } 3829 3830 /* 3831 * Queue message on interface, possibly using a second fast queue 3832 */ 3833 int 3834 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3835 { 3836 int error = 0; 3837 3838 if (ifq != NULL 3839 #ifdef ALTQ 3840 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3841 #endif 3842 ) { 3843 if (IF_QFULL(ifq)) { 3844 IF_DROP(&ifp->if_snd); 3845 m_freem(m); 3846 if (error == 0) 3847 error = ENOBUFS; 3848 } else 3849 IF_ENQUEUE(ifq, m); 3850 } else 3851 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3852 if (error != 0) { 3853 if_statinc(ifp, if_oerrors); 3854 return error; 3855 } 3856 return 0; 3857 } 3858 3859 int 3860 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3861 { 3862 int rc; 3863 3864 KASSERT(IFNET_LOCKED(ifp)); 3865 if (ifp->if_initaddr != NULL) 3866 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3867 else if (src || 3868 (rc = if_ioctl(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3869 rc = if_ioctl(ifp, SIOCINITIFADDR, ifa); 3870 3871 return rc; 3872 } 3873 3874 int 3875 if_do_dad(struct ifnet *ifp) 3876 { 3877 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3878 return 0; 3879 3880 switch (ifp->if_type) { 3881 case IFT_FAITH: 3882 /* 3883 * These interfaces do not have the IFF_LOOPBACK flag, 3884 * but loop packets back. We do not have to do DAD on such 3885 * interfaces. We should even omit it, because loop-backed 3886 * responses would confuse the DAD procedure. 3887 */ 3888 return 0; 3889 default: 3890 /* 3891 * Our DAD routine requires the interface up and running. 3892 * However, some interfaces can be up before the RUNNING 3893 * status. Additionally, users may try to assign addresses 3894 * before the interface becomes up (or running). 3895 * We simply skip DAD in such a case as a work around. 3896 * XXX: we should rather mark "tentative" on such addresses, 3897 * and do DAD after the interface becomes ready. 3898 */ 3899 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 3900 (IFF_UP | IFF_RUNNING)) 3901 return 0; 3902 3903 return 1; 3904 } 3905 } 3906 3907 /* 3908 * if_flags_set(ifp, flags) 3909 * 3910 * Ask ifp to change ifp->if_flags to flags, as if with the 3911 * SIOCSIFFLAGS ioctl command. 3912 * 3913 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 3914 * IFNET_LOCK. 3915 */ 3916 int 3917 if_flags_set(ifnet_t *ifp, const u_short flags) 3918 { 3919 int rc; 3920 3921 KASSERT(IFNET_LOCKED(ifp)); 3922 3923 if (ifp->if_setflags != NULL) 3924 rc = (*ifp->if_setflags)(ifp, flags); 3925 else { 3926 u_short cantflags, chgdflags; 3927 struct ifreq ifr; 3928 3929 chgdflags = ifp->if_flags ^ flags; 3930 cantflags = chgdflags & IFF_CANTCHANGE; 3931 3932 if (cantflags != 0) 3933 ifp->if_flags ^= cantflags; 3934 3935 /* 3936 * Traditionally, we do not call if_ioctl after 3937 * setting/clearing only IFF_PROMISC if the interface 3938 * isn't IFF_UP. Uphold that tradition. 3939 */ 3940 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3941 return 0; 3942 3943 memset(&ifr, 0, sizeof(ifr)); 3944 3945 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3946 rc = if_ioctl(ifp, SIOCSIFFLAGS, &ifr); 3947 3948 if (rc != 0 && cantflags != 0) 3949 ifp->if_flags ^= cantflags; 3950 } 3951 3952 return rc; 3953 } 3954 3955 /* 3956 * if_mcast_op(ifp, cmd, sa) 3957 * 3958 * Apply a multicast command, SIOCADDMULTI/SIOCDELMULTI, to the 3959 * interface. Returns 0 on success, nonzero errno(3) number on 3960 * failure. 3961 * 3962 * May sleep. 3963 * 3964 * Use this, not if_ioctl, for the multicast commands. 3965 */ 3966 int 3967 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3968 { 3969 int rc; 3970 struct ifreq ifr; 3971 3972 switch (cmd) { 3973 case SIOCADDMULTI: 3974 case SIOCDELMULTI: 3975 break; 3976 default: 3977 panic("invalid ifnet multicast command: 0x%lx", cmd); 3978 } 3979 3980 ifreq_setaddr(cmd, &ifr, sa); 3981 rc = if_ioctl(ifp, cmd, &ifr); 3982 3983 return rc; 3984 } 3985 3986 static void 3987 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3988 struct ifaltq *ifq) 3989 { 3990 const struct sysctlnode *cnode, *rnode; 3991 3992 if (sysctl_createv(clog, 0, NULL, &rnode, 3993 CTLFLAG_PERMANENT, 3994 CTLTYPE_NODE, "interfaces", 3995 SYSCTL_DESCR("Per-interface controls"), 3996 NULL, 0, NULL, 0, 3997 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 3998 goto bad; 3999 4000 if (sysctl_createv(clog, 0, &rnode, &rnode, 4001 CTLFLAG_PERMANENT, 4002 CTLTYPE_NODE, ifname, 4003 SYSCTL_DESCR("Interface controls"), 4004 NULL, 0, NULL, 0, 4005 CTL_CREATE, CTL_EOL) != 0) 4006 goto bad; 4007 4008 if (sysctl_createv(clog, 0, &rnode, &rnode, 4009 CTLFLAG_PERMANENT, 4010 CTLTYPE_NODE, "sndq", 4011 SYSCTL_DESCR("Interface output queue controls"), 4012 NULL, 0, NULL, 0, 4013 CTL_CREATE, CTL_EOL) != 0) 4014 goto bad; 4015 4016 if (sysctl_createv(clog, 0, &rnode, &cnode, 4017 CTLFLAG_PERMANENT, 4018 CTLTYPE_INT, "len", 4019 SYSCTL_DESCR("Current output queue length"), 4020 NULL, 0, &ifq->ifq_len, 0, 4021 CTL_CREATE, CTL_EOL) != 0) 4022 goto bad; 4023 4024 if (sysctl_createv(clog, 0, &rnode, &cnode, 4025 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 4026 CTLTYPE_INT, "maxlen", 4027 SYSCTL_DESCR("Maximum allowed output queue length"), 4028 NULL, 0, &ifq->ifq_maxlen, 0, 4029 CTL_CREATE, CTL_EOL) != 0) 4030 goto bad; 4031 4032 if (sysctl_createv(clog, 0, &rnode, &cnode, 4033 CTLFLAG_PERMANENT, 4034 CTLTYPE_INT, "drops", 4035 SYSCTL_DESCR("Packets dropped due to full output queue"), 4036 NULL, 0, &ifq->ifq_drops, 0, 4037 CTL_CREATE, CTL_EOL) != 0) 4038 goto bad; 4039 4040 return; 4041 bad: 4042 printf("%s: could not attach sysctl nodes\n", ifname); 4043 return; 4044 } 4045 4046 static int 4047 if_sdl_sysctl(SYSCTLFN_ARGS) 4048 { 4049 struct ifnet *ifp; 4050 const struct sockaddr_dl *sdl; 4051 struct psref psref; 4052 int error = 0; 4053 4054 if (namelen != 1) 4055 return EINVAL; 4056 4057 const int bound = curlwp_bind(); 4058 ifp = if_get_byindex(name[0], &psref); 4059 if (ifp == NULL) { 4060 error = ENODEV; 4061 goto out0; 4062 } 4063 4064 sdl = ifp->if_sadl; 4065 if (sdl == NULL) { 4066 *oldlenp = 0; 4067 goto out1; 4068 } 4069 4070 if (oldp == NULL) { 4071 *oldlenp = sdl->sdl_alen; 4072 goto out1; 4073 } 4074 4075 if (*oldlenp >= sdl->sdl_alen) 4076 *oldlenp = sdl->sdl_alen; 4077 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp); 4078 out1: 4079 if_put(ifp, &psref); 4080 out0: 4081 curlwp_bindx(bound); 4082 return error; 4083 } 4084 4085 static void 4086 if_sysctl_setup(struct sysctllog **clog) 4087 { 4088 const struct sysctlnode *rnode = NULL; 4089 4090 sysctl_createv(clog, 0, NULL, &rnode, 4091 CTLFLAG_PERMANENT, 4092 CTLTYPE_NODE, "sdl", 4093 SYSCTL_DESCR("Get active link-layer address"), 4094 if_sdl_sysctl, 0, NULL, 0, 4095 CTL_NET, CTL_CREATE, CTL_EOL); 4096 } 4097