1 /* $NetBSD: if.c,v 1.318 2015/08/31 08:02:44 ozaki-r Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.318 2015/08/31 08:02:44 ozaki-r Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 98 #include "opt_atalk.h" 99 #include "opt_natm.h" 100 #include "opt_wlan.h" 101 #include "opt_net_mpsafe.h" 102 #endif 103 104 #include <sys/param.h> 105 #include <sys/mbuf.h> 106 #include <sys/systm.h> 107 #include <sys/callout.h> 108 #include <sys/proc.h> 109 #include <sys/socket.h> 110 #include <sys/socketvar.h> 111 #include <sys/domain.h> 112 #include <sys/protosw.h> 113 #include <sys/kernel.h> 114 #include <sys/ioctl.h> 115 #include <sys/sysctl.h> 116 #include <sys/syslog.h> 117 #include <sys/kauth.h> 118 #include <sys/kmem.h> 119 #include <sys/xcall.h> 120 121 #include <net/if.h> 122 #include <net/if_dl.h> 123 #include <net/if_ether.h> 124 #include <net/if_media.h> 125 #include <net80211/ieee80211.h> 126 #include <net80211/ieee80211_ioctl.h> 127 #include <net/if_types.h> 128 #include <net/radix.h> 129 #include <net/route.h> 130 #include <net/netisr.h> 131 #include <sys/module.h> 132 #ifdef NETATALK 133 #include <netatalk/at_extern.h> 134 #include <netatalk/at.h> 135 #endif 136 #include <net/pfil.h> 137 #include <netinet/in.h> 138 #include <netinet/in_var.h> 139 140 #ifdef INET6 141 #include <netinet6/in6_var.h> 142 #include <netinet6/nd6.h> 143 #endif 144 145 #include "ether.h" 146 #include "fddi.h" 147 #include "token.h" 148 149 #include "carp.h" 150 #if NCARP > 0 151 #include <netinet/ip_carp.h> 152 #endif 153 154 #include <compat/sys/sockio.h> 155 #include <compat/sys/socket.h> 156 157 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 158 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 159 160 /* 161 * Global list of interfaces. 162 */ 163 struct ifnet_head ifnet_list; 164 static ifnet_t ** ifindex2ifnet = NULL; 165 166 static u_int if_index = 1; 167 static size_t if_indexlim = 0; 168 static uint64_t index_gen; 169 static kmutex_t index_gen_mtx; 170 static kmutex_t if_clone_mtx; 171 172 struct ifnet *lo0ifp; 173 int ifqmaxlen = IFQ_MAXLEN; 174 175 static int if_rt_walktree(struct rtentry *, void *); 176 177 static struct if_clone *if_clone_lookup(const char *, int *); 178 179 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 180 static int if_cloners_count; 181 182 /* Packet filtering hook for interfaces. */ 183 pfil_head_t * if_pfil; 184 185 static kauth_listener_t if_listener; 186 187 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 188 static int ifioctl_attach(struct ifnet *); 189 static void ifioctl_detach(struct ifnet *); 190 static void ifnet_lock_enter(struct ifnet_lock *); 191 static void ifnet_lock_exit(struct ifnet_lock *); 192 static void if_detach_queues(struct ifnet *, struct ifqueue *); 193 static void sysctl_sndq_setup(struct sysctllog **, const char *, 194 struct ifaltq *); 195 static void if_slowtimo(void *); 196 static void if_free_sadl(struct ifnet *); 197 static void if_attachdomain1(struct ifnet *); 198 static int ifconf(u_long, void *); 199 static int if_clone_create(const char *); 200 static int if_clone_destroy(const char *); 201 202 #if defined(INET) || defined(INET6) 203 static void sysctl_net_pktq_setup(struct sysctllog **, int); 204 #endif 205 206 static int 207 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 208 void *arg0, void *arg1, void *arg2, void *arg3) 209 { 210 int result; 211 enum kauth_network_req req; 212 213 result = KAUTH_RESULT_DEFER; 214 req = (enum kauth_network_req)arg1; 215 216 if (action != KAUTH_NETWORK_INTERFACE) 217 return result; 218 219 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 220 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 221 result = KAUTH_RESULT_ALLOW; 222 223 return result; 224 } 225 226 /* 227 * Network interface utility routines. 228 * 229 * Routines with ifa_ifwith* names take sockaddr *'s as 230 * parameters. 231 */ 232 void 233 ifinit(void) 234 { 235 #if defined(INET) 236 sysctl_net_pktq_setup(NULL, PF_INET); 237 #endif 238 #ifdef INET6 239 if (in6_present) 240 sysctl_net_pktq_setup(NULL, PF_INET6); 241 #endif 242 243 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 244 if_listener_cb, NULL); 245 246 /* interfaces are available, inform socket code */ 247 ifioctl = doifioctl; 248 } 249 250 /* 251 * XXX Initialization before configure(). 252 * XXX hack to get pfil_add_hook working in autoconf. 253 */ 254 void 255 ifinit1(void) 256 { 257 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE); 258 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 259 TAILQ_INIT(&ifnet_list); 260 if_indexlim = 8; 261 262 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 263 KASSERT(if_pfil != NULL); 264 265 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN) 266 etherinit(); 267 #endif 268 } 269 270 ifnet_t * 271 if_alloc(u_char type) 272 { 273 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 274 } 275 276 void 277 if_free(ifnet_t *ifp) 278 { 279 kmem_free(ifp, sizeof(ifnet_t)); 280 } 281 282 void 283 if_initname(struct ifnet *ifp, const char *name, int unit) 284 { 285 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 286 "%s%d", name, unit); 287 } 288 289 /* 290 * Null routines used while an interface is going away. These routines 291 * just return an error. 292 */ 293 294 int 295 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 296 const struct sockaddr *so, struct rtentry *rt) 297 { 298 299 return ENXIO; 300 } 301 302 void 303 if_nullinput(struct ifnet *ifp, struct mbuf *m) 304 { 305 306 /* Nothing. */ 307 } 308 309 void 310 if_nullstart(struct ifnet *ifp) 311 { 312 313 /* Nothing. */ 314 } 315 316 int 317 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 318 { 319 320 /* Wake ifioctl_detach(), who may wait for all threads to 321 * quit the critical section. 322 */ 323 cv_signal(&ifp->if_ioctl_lock->il_emptied); 324 return ENXIO; 325 } 326 327 int 328 if_nullinit(struct ifnet *ifp) 329 { 330 331 return ENXIO; 332 } 333 334 void 335 if_nullstop(struct ifnet *ifp, int disable) 336 { 337 338 /* Nothing. */ 339 } 340 341 void 342 if_nullslowtimo(struct ifnet *ifp) 343 { 344 345 /* Nothing. */ 346 } 347 348 void 349 if_nulldrain(struct ifnet *ifp) 350 { 351 352 /* Nothing. */ 353 } 354 355 void 356 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 357 { 358 struct ifaddr *ifa; 359 struct sockaddr_dl *sdl; 360 361 ifp->if_addrlen = addrlen; 362 if_alloc_sadl(ifp); 363 ifa = ifp->if_dl; 364 sdl = satosdl(ifa->ifa_addr); 365 366 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 367 if (factory) { 368 ifp->if_hwdl = ifp->if_dl; 369 ifaref(ifp->if_hwdl); 370 } 371 /* TBD routing socket */ 372 } 373 374 struct ifaddr * 375 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 376 { 377 unsigned socksize, ifasize; 378 int addrlen, namelen; 379 struct sockaddr_dl *mask, *sdl; 380 struct ifaddr *ifa; 381 382 namelen = strlen(ifp->if_xname); 383 addrlen = ifp->if_addrlen; 384 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 385 ifasize = sizeof(*ifa) + 2 * socksize; 386 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO); 387 388 sdl = (struct sockaddr_dl *)(ifa + 1); 389 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 390 391 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 392 ifp->if_xname, namelen, NULL, addrlen); 393 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 394 memset(&mask->sdl_data[0], 0xff, namelen); 395 ifa->ifa_rtrequest = link_rtrequest; 396 ifa->ifa_addr = (struct sockaddr *)sdl; 397 ifa->ifa_netmask = (struct sockaddr *)mask; 398 399 *sdlp = sdl; 400 401 return ifa; 402 } 403 404 static void 405 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 406 { 407 const struct sockaddr_dl *sdl; 408 409 ifp->if_dl = ifa; 410 ifaref(ifa); 411 sdl = satosdl(ifa->ifa_addr); 412 ifp->if_sadl = sdl; 413 } 414 415 /* 416 * Allocate the link level name for the specified interface. This 417 * is an attachment helper. It must be called after ifp->if_addrlen 418 * is initialized, which may not be the case when if_attach() is 419 * called. 420 */ 421 void 422 if_alloc_sadl(struct ifnet *ifp) 423 { 424 struct ifaddr *ifa; 425 const struct sockaddr_dl *sdl; 426 427 /* 428 * If the interface already has a link name, release it 429 * now. This is useful for interfaces that can change 430 * link types, and thus switch link names often. 431 */ 432 if (ifp->if_sadl != NULL) 433 if_free_sadl(ifp); 434 435 ifa = if_dl_create(ifp, &sdl); 436 437 ifa_insert(ifp, ifa); 438 if_sadl_setrefs(ifp, ifa); 439 } 440 441 static void 442 if_deactivate_sadl(struct ifnet *ifp) 443 { 444 struct ifaddr *ifa; 445 446 KASSERT(ifp->if_dl != NULL); 447 448 ifa = ifp->if_dl; 449 450 ifp->if_sadl = NULL; 451 452 ifp->if_dl = NULL; 453 ifafree(ifa); 454 } 455 456 void 457 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa, 458 const struct sockaddr_dl *sdl) 459 { 460 int s; 461 462 s = splnet(); 463 464 if_deactivate_sadl(ifp); 465 466 if_sadl_setrefs(ifp, ifa); 467 IFADDR_FOREACH(ifa, ifp) 468 rtinit(ifa, RTM_LLINFO_UPD, 0); 469 splx(s); 470 } 471 472 /* 473 * Free the link level name for the specified interface. This is 474 * a detach helper. This is called from if_detach(). 475 */ 476 static void 477 if_free_sadl(struct ifnet *ifp) 478 { 479 struct ifaddr *ifa; 480 int s; 481 482 ifa = ifp->if_dl; 483 if (ifa == NULL) { 484 KASSERT(ifp->if_sadl == NULL); 485 return; 486 } 487 488 KASSERT(ifp->if_sadl != NULL); 489 490 s = splnet(); 491 rtinit(ifa, RTM_DELETE, 0); 492 ifa_remove(ifp, ifa); 493 if_deactivate_sadl(ifp); 494 if (ifp->if_hwdl == ifa) { 495 ifafree(ifa); 496 ifp->if_hwdl = NULL; 497 } 498 splx(s); 499 } 500 501 static void 502 if_getindex(ifnet_t *ifp) 503 { 504 bool hitlimit = false; 505 506 mutex_enter(&index_gen_mtx); 507 ifp->if_index_gen = index_gen++; 508 mutex_exit(&index_gen_mtx); 509 510 ifp->if_index = if_index; 511 if (ifindex2ifnet == NULL) { 512 if_index++; 513 goto skip; 514 } 515 while (if_byindex(ifp->if_index)) { 516 /* 517 * If we hit USHRT_MAX, we skip back to 0 since 518 * there are a number of places where the value 519 * of if_index or if_index itself is compared 520 * to or stored in an unsigned short. By 521 * jumping back, we won't botch those assignments 522 * or comparisons. 523 */ 524 if (++if_index == 0) { 525 if_index = 1; 526 } else if (if_index == USHRT_MAX) { 527 /* 528 * However, if we have to jump back to 529 * zero *twice* without finding an empty 530 * slot in ifindex2ifnet[], then there 531 * there are too many (>65535) interfaces. 532 */ 533 if (hitlimit) { 534 panic("too many interfaces"); 535 } 536 hitlimit = true; 537 if_index = 1; 538 } 539 ifp->if_index = if_index; 540 } 541 skip: 542 /* 543 * ifindex2ifnet is indexed by if_index. Since if_index will 544 * grow dynamically, it should grow too. 545 */ 546 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 547 size_t m, n, oldlim; 548 void *q; 549 550 oldlim = if_indexlim; 551 while (ifp->if_index >= if_indexlim) 552 if_indexlim <<= 1; 553 554 /* grow ifindex2ifnet */ 555 m = oldlim * sizeof(struct ifnet *); 556 n = if_indexlim * sizeof(struct ifnet *); 557 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); 558 if (ifindex2ifnet != NULL) { 559 memcpy(q, ifindex2ifnet, m); 560 free(ifindex2ifnet, M_IFADDR); 561 } 562 ifindex2ifnet = (struct ifnet **)q; 563 } 564 ifindex2ifnet[ifp->if_index] = ifp; 565 } 566 567 /* 568 * Initialize an interface and assign an index for it. 569 * 570 * It must be called prior to a device specific attach routine 571 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 572 * and be followed by if_register: 573 * 574 * if_initialize(ifp); 575 * ether_ifattach(ifp, enaddr); 576 * if_register(ifp); 577 */ 578 void 579 if_initialize(ifnet_t *ifp) 580 { 581 KASSERT(if_indexlim > 0); 582 TAILQ_INIT(&ifp->if_addrlist); 583 584 /* 585 * Link level name is allocated later by a separate call to 586 * if_alloc_sadl(). 587 */ 588 589 if (ifp->if_snd.ifq_maxlen == 0) 590 ifp->if_snd.ifq_maxlen = ifqmaxlen; 591 592 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 593 594 ifp->if_link_state = LINK_STATE_UNKNOWN; 595 596 ifp->if_capenable = 0; 597 ifp->if_csum_flags_tx = 0; 598 ifp->if_csum_flags_rx = 0; 599 600 #ifdef ALTQ 601 ifp->if_snd.altq_type = 0; 602 ifp->if_snd.altq_disc = NULL; 603 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 604 ifp->if_snd.altq_tbr = NULL; 605 ifp->if_snd.altq_ifp = ifp; 606 #endif 607 608 #ifdef NET_MPSAFE 609 ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 610 #else 611 ifp->if_snd.ifq_lock = NULL; 612 #endif 613 614 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 615 (void)pfil_run_hooks(if_pfil, 616 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET); 617 618 IF_AFDATA_LOCK_INIT(ifp); 619 620 if_getindex(ifp); 621 } 622 623 /* 624 * Register an interface to the list of "active" interfaces. 625 */ 626 void 627 if_register(ifnet_t *ifp) 628 { 629 if (ifioctl_attach(ifp) != 0) 630 panic("%s: ifioctl_attach() failed", __func__); 631 632 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 633 634 if (!STAILQ_EMPTY(&domains)) 635 if_attachdomain1(ifp); 636 637 /* Announce the interface. */ 638 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 639 640 if (ifp->if_slowtimo != NULL) { 641 ifp->if_slowtimo_ch = 642 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP); 643 callout_init(ifp->if_slowtimo_ch, 0); 644 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp); 645 if_slowtimo(ifp); 646 } 647 648 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 649 } 650 651 /* 652 * Deprecated. Use if_initialize and if_register instead. 653 * See the above comment of if_initialize. 654 */ 655 void 656 if_attach(ifnet_t *ifp) 657 { 658 if_initialize(ifp); 659 if_register(ifp); 660 } 661 662 void 663 if_attachdomain(void) 664 { 665 struct ifnet *ifp; 666 int s; 667 668 s = splnet(); 669 IFNET_FOREACH(ifp) 670 if_attachdomain1(ifp); 671 splx(s); 672 } 673 674 static void 675 if_attachdomain1(struct ifnet *ifp) 676 { 677 struct domain *dp; 678 int s; 679 680 s = splnet(); 681 682 /* address family dependent data region */ 683 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 684 DOMAIN_FOREACH(dp) { 685 if (dp->dom_ifattach != NULL) 686 ifp->if_afdata[dp->dom_family] = 687 (*dp->dom_ifattach)(ifp); 688 } 689 690 splx(s); 691 } 692 693 /* 694 * Deactivate an interface. This points all of the procedure 695 * handles at error stubs. May be called from interrupt context. 696 */ 697 void 698 if_deactivate(struct ifnet *ifp) 699 { 700 int s; 701 702 s = splnet(); 703 704 ifp->if_output = if_nulloutput; 705 ifp->if_input = if_nullinput; 706 ifp->if_start = if_nullstart; 707 ifp->if_ioctl = if_nullioctl; 708 ifp->if_init = if_nullinit; 709 ifp->if_stop = if_nullstop; 710 ifp->if_slowtimo = if_nullslowtimo; 711 ifp->if_drain = if_nulldrain; 712 713 /* No more packets may be enqueued. */ 714 ifp->if_snd.ifq_maxlen = 0; 715 716 splx(s); 717 } 718 719 void 720 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 721 { 722 struct ifaddr *ifa, *nifa; 723 724 IFADDR_FOREACH_SAFE(ifa, ifp, nifa) { 725 if (ifa->ifa_addr->sa_family != family) 726 continue; 727 (*purgeaddr)(ifa); 728 } 729 } 730 731 /* 732 * Detach an interface from the list of "active" interfaces, 733 * freeing any resources as we go along. 734 * 735 * NOTE: This routine must be called with a valid thread context, 736 * as it may block. 737 */ 738 void 739 if_detach(struct ifnet *ifp) 740 { 741 struct socket so; 742 struct ifaddr *ifa; 743 #ifdef IFAREF_DEBUG 744 struct ifaddr *last_ifa = NULL; 745 #endif 746 struct domain *dp; 747 const struct protosw *pr; 748 int s, i, family, purged; 749 uint64_t xc; 750 751 /* 752 * XXX It's kind of lame that we have to have the 753 * XXX socket structure... 754 */ 755 memset(&so, 0, sizeof(so)); 756 757 s = splnet(); 758 759 if (ifp->if_slowtimo != NULL) { 760 ifp->if_slowtimo = NULL; 761 callout_halt(ifp->if_slowtimo_ch, NULL); 762 callout_destroy(ifp->if_slowtimo_ch); 763 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch)); 764 } 765 766 /* 767 * Do an if_down() to give protocols a chance to do something. 768 */ 769 if_down(ifp); 770 771 #ifdef ALTQ 772 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 773 altq_disable(&ifp->if_snd); 774 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 775 altq_detach(&ifp->if_snd); 776 #endif 777 778 if (ifp->if_snd.ifq_lock) 779 mutex_obj_free(ifp->if_snd.ifq_lock); 780 781 sysctl_teardown(&ifp->if_sysctl_log); 782 783 #if NCARP > 0 784 /* Remove the interface from any carp group it is a part of. */ 785 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 786 carp_ifdetach(ifp); 787 #endif 788 789 /* 790 * Rip all the addresses off the interface. This should make 791 * all of the routes go away. 792 * 793 * pr_usrreq calls can remove an arbitrary number of ifaddrs 794 * from the list, including our "cursor", ifa. For safety, 795 * and to honor the TAILQ abstraction, I just restart the 796 * loop after each removal. Note that the loop will exit 797 * when all of the remaining ifaddrs belong to the AF_LINK 798 * family. I am counting on the historical fact that at 799 * least one pr_usrreq in each address domain removes at 800 * least one ifaddr. 801 */ 802 again: 803 IFADDR_FOREACH(ifa, ifp) { 804 family = ifa->ifa_addr->sa_family; 805 #ifdef IFAREF_DEBUG 806 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 807 ifa, family, ifa->ifa_refcnt); 808 if (last_ifa != NULL && ifa == last_ifa) 809 panic("if_detach: loop detected"); 810 last_ifa = ifa; 811 #endif 812 if (family == AF_LINK) 813 continue; 814 dp = pffinddomain(family); 815 #ifdef DIAGNOSTIC 816 if (dp == NULL) 817 panic("if_detach: no domain for AF %d", 818 family); 819 #endif 820 /* 821 * XXX These PURGEIF calls are redundant with the 822 * purge-all-families calls below, but are left in for 823 * now both to make a smaller change, and to avoid 824 * unplanned interactions with clearing of 825 * ifp->if_addrlist. 826 */ 827 purged = 0; 828 for (pr = dp->dom_protosw; 829 pr < dp->dom_protoswNPROTOSW; pr++) { 830 so.so_proto = pr; 831 if (pr->pr_usrreqs) { 832 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 833 purged = 1; 834 } 835 } 836 if (purged == 0) { 837 /* 838 * XXX What's really the best thing to do 839 * XXX here? --thorpej@NetBSD.org 840 */ 841 printf("if_detach: WARNING: AF %d not purged\n", 842 family); 843 ifa_remove(ifp, ifa); 844 } 845 goto again; 846 } 847 848 if_free_sadl(ifp); 849 850 /* Walk the routing table looking for stragglers. */ 851 for (i = 0; i <= AF_MAX; i++) { 852 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART) 853 continue; 854 } 855 856 DOMAIN_FOREACH(dp) { 857 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 858 { 859 void *p = ifp->if_afdata[dp->dom_family]; 860 if (p) { 861 ifp->if_afdata[dp->dom_family] = NULL; 862 (*dp->dom_ifdetach)(ifp, p); 863 } 864 } 865 866 /* 867 * One would expect multicast memberships (INET and 868 * INET6) on UDP sockets to be purged by the PURGEIF 869 * calls above, but if all addresses were removed from 870 * the interface prior to destruction, the calls will 871 * not be made (e.g. ppp, for which pppd(8) generally 872 * removes addresses before destroying the interface). 873 * Because there is no invariant that multicast 874 * memberships only exist for interfaces with IPv4 875 * addresses, we must call PURGEIF regardless of 876 * addresses. (Protocols which might store ifnet 877 * pointers are marked with PR_PURGEIF.) 878 */ 879 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 880 so.so_proto = pr; 881 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 882 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 883 } 884 } 885 886 (void)pfil_run_hooks(if_pfil, 887 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET); 888 (void)pfil_head_destroy(ifp->if_pfil); 889 890 /* Announce that the interface is gone. */ 891 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 892 893 ifindex2ifnet[ifp->if_index] = NULL; 894 895 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 896 897 ifioctl_detach(ifp); 898 899 /* 900 * remove packets that came from ifp, from software interrupt queues. 901 */ 902 DOMAIN_FOREACH(dp) { 903 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { 904 struct ifqueue *iq = dp->dom_ifqueues[i]; 905 if (iq == NULL) 906 break; 907 dp->dom_ifqueues[i] = NULL; 908 if_detach_queues(ifp, iq); 909 } 910 } 911 912 /* 913 * IP queues have to be processed separately: net-queue barrier 914 * ensures that the packets are dequeued while a cross-call will 915 * ensure that the interrupts have completed. FIXME: not quite.. 916 */ 917 #ifdef INET 918 pktq_barrier(ip_pktq); 919 #endif 920 #ifdef INET6 921 if (in6_present) 922 pktq_barrier(ip6_pktq); 923 #endif 924 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 925 xc_wait(xc); 926 927 splx(s); 928 } 929 930 static void 931 if_detach_queues(struct ifnet *ifp, struct ifqueue *q) 932 { 933 struct mbuf *m, *prev, *next; 934 935 prev = NULL; 936 for (m = q->ifq_head; m != NULL; m = next) { 937 KASSERT((m->m_flags & M_PKTHDR) != 0); 938 939 next = m->m_nextpkt; 940 if (m->m_pkthdr.rcvif != ifp) { 941 prev = m; 942 continue; 943 } 944 945 if (prev != NULL) 946 prev->m_nextpkt = m->m_nextpkt; 947 else 948 q->ifq_head = m->m_nextpkt; 949 if (q->ifq_tail == m) 950 q->ifq_tail = prev; 951 q->ifq_len--; 952 953 m->m_nextpkt = NULL; 954 m_freem(m); 955 IF_DROP(q); 956 } 957 } 958 959 /* 960 * Callback for a radix tree walk to delete all references to an 961 * ifnet. 962 */ 963 static int 964 if_rt_walktree(struct rtentry *rt, void *v) 965 { 966 struct ifnet *ifp = (struct ifnet *)v; 967 int error; 968 struct rtentry *retrt; 969 970 if (rt->rt_ifp != ifp) 971 return 0; 972 973 /* Delete the entry. */ 974 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway, 975 rt_mask(rt), rt->rt_flags, &retrt); 976 if (error == 0) { 977 KASSERT(retrt == rt); 978 KASSERT((retrt->rt_flags & RTF_UP) == 0); 979 retrt->rt_ifp = NULL; 980 rtfree(retrt); 981 } else { 982 printf("%s: warning: unable to delete rtentry @ %p, " 983 "error = %d\n", ifp->if_xname, rt, error); 984 } 985 return ERESTART; 986 } 987 988 /* 989 * Create a clone network interface. 990 */ 991 static int 992 if_clone_create(const char *name) 993 { 994 struct if_clone *ifc; 995 int unit; 996 997 ifc = if_clone_lookup(name, &unit); 998 if (ifc == NULL) 999 return EINVAL; 1000 1001 if (ifunit(name) != NULL) 1002 return EEXIST; 1003 1004 return (*ifc->ifc_create)(ifc, unit); 1005 } 1006 1007 /* 1008 * Destroy a clone network interface. 1009 */ 1010 static int 1011 if_clone_destroy(const char *name) 1012 { 1013 struct if_clone *ifc; 1014 struct ifnet *ifp; 1015 1016 ifc = if_clone_lookup(name, NULL); 1017 if (ifc == NULL) 1018 return EINVAL; 1019 1020 ifp = ifunit(name); 1021 if (ifp == NULL) 1022 return ENXIO; 1023 1024 if (ifc->ifc_destroy == NULL) 1025 return EOPNOTSUPP; 1026 1027 return (*ifc->ifc_destroy)(ifp); 1028 } 1029 1030 /* 1031 * Look up a network interface cloner. 1032 */ 1033 static struct if_clone * 1034 if_clone_lookup(const char *name, int *unitp) 1035 { 1036 struct if_clone *ifc; 1037 const char *cp; 1038 char *dp, ifname[IFNAMSIZ + 3]; 1039 int unit; 1040 1041 strcpy(ifname, "if_"); 1042 /* separate interface name from unit */ 1043 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1044 *cp && (*cp < '0' || *cp > '9');) 1045 *dp++ = *cp++; 1046 1047 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1048 return NULL; /* No name or unit number */ 1049 *dp++ = '\0'; 1050 1051 again: 1052 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1053 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1054 break; 1055 } 1056 1057 if (ifc == NULL) { 1058 if (*ifname == '\0' || 1059 module_autoload(ifname, MODULE_CLASS_DRIVER)) 1060 return NULL; 1061 *ifname = '\0'; 1062 goto again; 1063 } 1064 1065 unit = 0; 1066 while (cp - name < IFNAMSIZ && *cp) { 1067 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1068 /* Bogus unit number. */ 1069 return NULL; 1070 } 1071 unit = (unit * 10) + (*cp++ - '0'); 1072 } 1073 1074 if (unitp != NULL) 1075 *unitp = unit; 1076 return ifc; 1077 } 1078 1079 /* 1080 * Register a network interface cloner. 1081 */ 1082 void 1083 if_clone_attach(struct if_clone *ifc) 1084 { 1085 1086 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1087 if_cloners_count++; 1088 } 1089 1090 /* 1091 * Unregister a network interface cloner. 1092 */ 1093 void 1094 if_clone_detach(struct if_clone *ifc) 1095 { 1096 1097 LIST_REMOVE(ifc, ifc_list); 1098 if_cloners_count--; 1099 } 1100 1101 /* 1102 * Provide list of interface cloners to userspace. 1103 */ 1104 int 1105 if_clone_list(int buf_count, char *buffer, int *total) 1106 { 1107 char outbuf[IFNAMSIZ], *dst; 1108 struct if_clone *ifc; 1109 int count, error = 0; 1110 1111 *total = if_cloners_count; 1112 if ((dst = buffer) == NULL) { 1113 /* Just asking how many there are. */ 1114 return 0; 1115 } 1116 1117 if (buf_count < 0) 1118 return EINVAL; 1119 1120 count = (if_cloners_count < buf_count) ? 1121 if_cloners_count : buf_count; 1122 1123 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1124 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1125 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1126 if (outbuf[sizeof(outbuf) - 1] != '\0') 1127 return ENAMETOOLONG; 1128 error = copyout(outbuf, dst, sizeof(outbuf)); 1129 if (error != 0) 1130 break; 1131 } 1132 1133 return error; 1134 } 1135 1136 void 1137 ifaref(struct ifaddr *ifa) 1138 { 1139 ifa->ifa_refcnt++; 1140 } 1141 1142 void 1143 ifafree(struct ifaddr *ifa) 1144 { 1145 KASSERT(ifa != NULL); 1146 KASSERT(ifa->ifa_refcnt > 0); 1147 1148 if (--ifa->ifa_refcnt == 0) { 1149 free(ifa, M_IFADDR); 1150 } 1151 } 1152 1153 void 1154 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1155 { 1156 ifa->ifa_ifp = ifp; 1157 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1158 ifaref(ifa); 1159 } 1160 1161 void 1162 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1163 { 1164 KASSERT(ifa->ifa_ifp == ifp); 1165 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1166 ifafree(ifa); 1167 } 1168 1169 static inline int 1170 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1171 { 1172 return sockaddr_cmp(sa1, sa2) == 0; 1173 } 1174 1175 /* 1176 * Locate an interface based on a complete address. 1177 */ 1178 /*ARGSUSED*/ 1179 struct ifaddr * 1180 ifa_ifwithaddr(const struct sockaddr *addr) 1181 { 1182 struct ifnet *ifp; 1183 struct ifaddr *ifa; 1184 1185 IFNET_FOREACH(ifp) { 1186 if (ifp->if_output == if_nulloutput) 1187 continue; 1188 IFADDR_FOREACH(ifa, ifp) { 1189 if (ifa->ifa_addr->sa_family != addr->sa_family) 1190 continue; 1191 if (equal(addr, ifa->ifa_addr)) 1192 return ifa; 1193 if ((ifp->if_flags & IFF_BROADCAST) && 1194 ifa->ifa_broadaddr && 1195 /* IP6 doesn't have broadcast */ 1196 ifa->ifa_broadaddr->sa_len != 0 && 1197 equal(ifa->ifa_broadaddr, addr)) 1198 return ifa; 1199 } 1200 } 1201 return NULL; 1202 } 1203 1204 /* 1205 * Locate the point to point interface with a given destination address. 1206 */ 1207 /*ARGSUSED*/ 1208 struct ifaddr * 1209 ifa_ifwithdstaddr(const struct sockaddr *addr) 1210 { 1211 struct ifnet *ifp; 1212 struct ifaddr *ifa; 1213 1214 IFNET_FOREACH(ifp) { 1215 if (ifp->if_output == if_nulloutput) 1216 continue; 1217 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1218 continue; 1219 IFADDR_FOREACH(ifa, ifp) { 1220 if (ifa->ifa_addr->sa_family != addr->sa_family || 1221 ifa->ifa_dstaddr == NULL) 1222 continue; 1223 if (equal(addr, ifa->ifa_dstaddr)) 1224 return ifa; 1225 } 1226 } 1227 return NULL; 1228 } 1229 1230 /* 1231 * Find an interface on a specific network. If many, choice 1232 * is most specific found. 1233 */ 1234 struct ifaddr * 1235 ifa_ifwithnet(const struct sockaddr *addr) 1236 { 1237 struct ifnet *ifp; 1238 struct ifaddr *ifa; 1239 const struct sockaddr_dl *sdl; 1240 struct ifaddr *ifa_maybe = 0; 1241 u_int af = addr->sa_family; 1242 const char *addr_data = addr->sa_data, *cplim; 1243 1244 if (af == AF_LINK) { 1245 sdl = satocsdl(addr); 1246 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1247 ifindex2ifnet[sdl->sdl_index] && 1248 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) { 1249 return ifindex2ifnet[sdl->sdl_index]->if_dl; 1250 } 1251 } 1252 #ifdef NETATALK 1253 if (af == AF_APPLETALK) { 1254 const struct sockaddr_at *sat, *sat2; 1255 sat = (const struct sockaddr_at *)addr; 1256 IFNET_FOREACH(ifp) { 1257 if (ifp->if_output == if_nulloutput) 1258 continue; 1259 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 1260 if (ifa == NULL) 1261 continue; 1262 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 1263 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 1264 return ifa; /* exact match */ 1265 if (ifa_maybe == NULL) { 1266 /* else keep the if with the right range */ 1267 ifa_maybe = ifa; 1268 } 1269 } 1270 return ifa_maybe; 1271 } 1272 #endif 1273 IFNET_FOREACH(ifp) { 1274 if (ifp->if_output == if_nulloutput) 1275 continue; 1276 IFADDR_FOREACH(ifa, ifp) { 1277 const char *cp, *cp2, *cp3; 1278 1279 if (ifa->ifa_addr->sa_family != af || 1280 ifa->ifa_netmask == NULL) 1281 next: continue; 1282 cp = addr_data; 1283 cp2 = ifa->ifa_addr->sa_data; 1284 cp3 = ifa->ifa_netmask->sa_data; 1285 cplim = (const char *)ifa->ifa_netmask + 1286 ifa->ifa_netmask->sa_len; 1287 while (cp3 < cplim) { 1288 if ((*cp++ ^ *cp2++) & *cp3++) { 1289 /* want to continue for() loop */ 1290 goto next; 1291 } 1292 } 1293 if (ifa_maybe == NULL || 1294 rn_refines((void *)ifa->ifa_netmask, 1295 (void *)ifa_maybe->ifa_netmask)) 1296 ifa_maybe = ifa; 1297 } 1298 } 1299 return ifa_maybe; 1300 } 1301 1302 /* 1303 * Find the interface of the addresss. 1304 */ 1305 struct ifaddr * 1306 ifa_ifwithladdr(const struct sockaddr *addr) 1307 { 1308 struct ifaddr *ia; 1309 1310 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 1311 (ia = ifa_ifwithnet(addr))) 1312 return ia; 1313 return NULL; 1314 } 1315 1316 /* 1317 * Find an interface using a specific address family 1318 */ 1319 struct ifaddr * 1320 ifa_ifwithaf(int af) 1321 { 1322 struct ifnet *ifp; 1323 struct ifaddr *ifa; 1324 1325 IFNET_FOREACH(ifp) { 1326 if (ifp->if_output == if_nulloutput) 1327 continue; 1328 IFADDR_FOREACH(ifa, ifp) { 1329 if (ifa->ifa_addr->sa_family == af) 1330 return ifa; 1331 } 1332 } 1333 return NULL; 1334 } 1335 1336 /* 1337 * Find an interface address specific to an interface best matching 1338 * a given address. 1339 */ 1340 struct ifaddr * 1341 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 1342 { 1343 struct ifaddr *ifa; 1344 const char *cp, *cp2, *cp3; 1345 const char *cplim; 1346 struct ifaddr *ifa_maybe = 0; 1347 u_int af = addr->sa_family; 1348 1349 if (ifp->if_output == if_nulloutput) 1350 return NULL; 1351 1352 if (af >= AF_MAX) 1353 return NULL; 1354 1355 IFADDR_FOREACH(ifa, ifp) { 1356 if (ifa->ifa_addr->sa_family != af) 1357 continue; 1358 ifa_maybe = ifa; 1359 if (ifa->ifa_netmask == NULL) { 1360 if (equal(addr, ifa->ifa_addr) || 1361 (ifa->ifa_dstaddr && 1362 equal(addr, ifa->ifa_dstaddr))) 1363 return ifa; 1364 continue; 1365 } 1366 cp = addr->sa_data; 1367 cp2 = ifa->ifa_addr->sa_data; 1368 cp3 = ifa->ifa_netmask->sa_data; 1369 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1370 for (; cp3 < cplim; cp3++) { 1371 if ((*cp++ ^ *cp2++) & *cp3) 1372 break; 1373 } 1374 if (cp3 == cplim) 1375 return ifa; 1376 } 1377 return ifa_maybe; 1378 } 1379 1380 /* 1381 * Default action when installing a route with a Link Level gateway. 1382 * Lookup an appropriate real ifa to point to. 1383 * This should be moved to /sys/net/link.c eventually. 1384 */ 1385 void 1386 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 1387 { 1388 struct ifaddr *ifa; 1389 const struct sockaddr *dst; 1390 struct ifnet *ifp; 1391 1392 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 1393 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL) 1394 return; 1395 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) { 1396 rt_replace_ifa(rt, ifa); 1397 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1398 ifa->ifa_rtrequest(cmd, rt, info); 1399 } 1400 } 1401 1402 /* 1403 * Handle a change in the interface link state. 1404 * XXX: We should listen to the routing socket in-kernel rather 1405 * than calling in6_if_link_* functions directly from here. 1406 */ 1407 void 1408 if_link_state_change(struct ifnet *ifp, int link_state) 1409 { 1410 int s; 1411 int old_link_state; 1412 struct domain *dp; 1413 1414 s = splnet(); 1415 if (ifp->if_link_state == link_state) { 1416 splx(s); 1417 return; 1418 } 1419 1420 old_link_state = ifp->if_link_state; 1421 ifp->if_link_state = link_state; 1422 #ifdef DEBUG 1423 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 1424 link_state == LINK_STATE_UP ? "UP" : 1425 link_state == LINK_STATE_DOWN ? "DOWN" : 1426 "UNKNOWN", 1427 old_link_state == LINK_STATE_UP ? "UP" : 1428 old_link_state == LINK_STATE_DOWN ? "DOWN" : 1429 "UNKNOWN"); 1430 #endif 1431 1432 /* 1433 * When going from UNKNOWN to UP, we need to mark existing 1434 * addresses as tentative and restart DAD as we may have 1435 * erroneously not found a duplicate. 1436 * 1437 * This needs to happen before rt_ifmsg to avoid a race where 1438 * listeners would have an address and expect it to work right 1439 * away. 1440 */ 1441 if (link_state == LINK_STATE_UP && 1442 old_link_state == LINK_STATE_UNKNOWN) 1443 { 1444 DOMAIN_FOREACH(dp) { 1445 if (dp->dom_if_link_state_change != NULL) 1446 dp->dom_if_link_state_change(ifp, 1447 LINK_STATE_DOWN); 1448 } 1449 } 1450 1451 /* Notify that the link state has changed. */ 1452 rt_ifmsg(ifp); 1453 1454 #if NCARP > 0 1455 if (ifp->if_carp) 1456 carp_carpdev_state(ifp); 1457 #endif 1458 1459 DOMAIN_FOREACH(dp) { 1460 if (dp->dom_if_link_state_change != NULL) 1461 dp->dom_if_link_state_change(ifp, link_state); 1462 } 1463 1464 splx(s); 1465 } 1466 1467 /* 1468 * Default action when installing a local route on a point-to-point 1469 * interface. 1470 */ 1471 void 1472 p2p_rtrequest(int req, struct rtentry *rt, 1473 __unused const struct rt_addrinfo *info) 1474 { 1475 struct ifnet *ifp = rt->rt_ifp; 1476 struct ifaddr *ifa, *lo0ifa; 1477 1478 switch (req) { 1479 case RTM_ADD: 1480 if ((rt->rt_flags & RTF_LOCAL) == 0) 1481 break; 1482 1483 IFADDR_FOREACH(ifa, ifp) { 1484 if (equal(rt_getkey(rt), ifa->ifa_addr)) 1485 break; 1486 } 1487 if (ifa == NULL) 1488 break; 1489 1490 /* 1491 * Ensure lo0 has an address of the same family. 1492 */ 1493 IFADDR_FOREACH(lo0ifa, lo0ifp) { 1494 if (lo0ifa->ifa_addr->sa_family == 1495 ifa->ifa_addr->sa_family) 1496 break; 1497 } 1498 if (lo0ifa == NULL) 1499 break; 1500 1501 rt->rt_ifp = lo0ifp; 1502 rt->rt_flags &= ~RTF_LLINFO; 1503 1504 /* 1505 * Make sure to set rt->rt_ifa to the interface 1506 * address we are using, otherwise we will have trouble 1507 * with source address selection. 1508 */ 1509 if (ifa != rt->rt_ifa) 1510 rt_replace_ifa(rt, ifa); 1511 break; 1512 case RTM_DELETE: 1513 case RTM_RESOLVE: 1514 default: 1515 break; 1516 } 1517 } 1518 1519 /* 1520 * Mark an interface down and notify protocols of 1521 * the transition. 1522 * NOTE: must be called at splsoftnet or equivalent. 1523 */ 1524 void 1525 if_down(struct ifnet *ifp) 1526 { 1527 struct ifaddr *ifa; 1528 struct domain *dp; 1529 1530 ifp->if_flags &= ~IFF_UP; 1531 nanotime(&ifp->if_lastchange); 1532 IFADDR_FOREACH(ifa, ifp) 1533 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 1534 IFQ_PURGE(&ifp->if_snd); 1535 #if NCARP > 0 1536 if (ifp->if_carp) 1537 carp_carpdev_state(ifp); 1538 #endif 1539 rt_ifmsg(ifp); 1540 DOMAIN_FOREACH(dp) { 1541 if (dp->dom_if_down) 1542 dp->dom_if_down(ifp); 1543 } 1544 } 1545 1546 /* 1547 * Mark an interface up and notify protocols of 1548 * the transition. 1549 * NOTE: must be called at splsoftnet or equivalent. 1550 */ 1551 void 1552 if_up(struct ifnet *ifp) 1553 { 1554 #ifdef notyet 1555 struct ifaddr *ifa; 1556 #endif 1557 struct domain *dp; 1558 1559 ifp->if_flags |= IFF_UP; 1560 nanotime(&ifp->if_lastchange); 1561 #ifdef notyet 1562 /* this has no effect on IP, and will kill all ISO connections XXX */ 1563 IFADDR_FOREACH(ifa, ifp) 1564 pfctlinput(PRC_IFUP, ifa->ifa_addr); 1565 #endif 1566 #if NCARP > 0 1567 if (ifp->if_carp) 1568 carp_carpdev_state(ifp); 1569 #endif 1570 rt_ifmsg(ifp); 1571 DOMAIN_FOREACH(dp) { 1572 if (dp->dom_if_up) 1573 dp->dom_if_up(ifp); 1574 } 1575 } 1576 1577 /* 1578 * Handle interface slowtimo timer routine. Called 1579 * from softclock, we decrement timer (if set) and 1580 * call the appropriate interface routine on expiration. 1581 */ 1582 static void 1583 if_slowtimo(void *arg) 1584 { 1585 void (*slowtimo)(struct ifnet *); 1586 struct ifnet *ifp = arg; 1587 int s; 1588 1589 slowtimo = ifp->if_slowtimo; 1590 if (__predict_false(slowtimo == NULL)) 1591 return; 1592 1593 s = splnet(); 1594 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 1595 (*slowtimo)(ifp); 1596 1597 splx(s); 1598 1599 if (__predict_true(ifp->if_slowtimo != NULL)) 1600 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ); 1601 } 1602 1603 /* 1604 * Set/clear promiscuous mode on interface ifp based on the truth value 1605 * of pswitch. The calls are reference counted so that only the first 1606 * "on" request actually has an effect, as does the final "off" request. 1607 * Results are undefined if the "off" and "on" requests are not matched. 1608 */ 1609 int 1610 ifpromisc(struct ifnet *ifp, int pswitch) 1611 { 1612 int pcount, ret; 1613 short nflags; 1614 1615 pcount = ifp->if_pcount; 1616 if (pswitch) { 1617 /* 1618 * Allow the device to be "placed" into promiscuous 1619 * mode even if it is not configured up. It will 1620 * consult IFF_PROMISC when it is brought up. 1621 */ 1622 if (ifp->if_pcount++ != 0) 1623 return 0; 1624 nflags = ifp->if_flags | IFF_PROMISC; 1625 } else { 1626 if (--ifp->if_pcount > 0) 1627 return 0; 1628 nflags = ifp->if_flags & ~IFF_PROMISC; 1629 } 1630 ret = if_flags_set(ifp, nflags); 1631 /* Restore interface state if not successful. */ 1632 if (ret != 0) { 1633 ifp->if_pcount = pcount; 1634 } 1635 return ret; 1636 } 1637 1638 /* 1639 * Map interface name to 1640 * interface structure pointer. 1641 */ 1642 struct ifnet * 1643 ifunit(const char *name) 1644 { 1645 struct ifnet *ifp; 1646 const char *cp = name; 1647 u_int unit = 0; 1648 u_int i; 1649 1650 /* 1651 * If the entire name is a number, treat it as an ifindex. 1652 */ 1653 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 1654 unit = unit * 10 + (*cp - '0'); 1655 } 1656 1657 /* 1658 * If the number took all of the name, then it's a valid ifindex. 1659 */ 1660 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) { 1661 if (unit >= if_indexlim) 1662 return NULL; 1663 ifp = ifindex2ifnet[unit]; 1664 if (ifp == NULL || ifp->if_output == if_nulloutput) 1665 return NULL; 1666 return ifp; 1667 } 1668 1669 IFNET_FOREACH(ifp) { 1670 if (ifp->if_output == if_nulloutput) 1671 continue; 1672 if (strcmp(ifp->if_xname, name) == 0) 1673 return ifp; 1674 } 1675 return NULL; 1676 } 1677 1678 ifnet_t * 1679 if_byindex(u_int idx) 1680 { 1681 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL; 1682 } 1683 1684 /* common */ 1685 int 1686 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 1687 { 1688 int s; 1689 struct ifreq *ifr; 1690 struct ifcapreq *ifcr; 1691 struct ifdatareq *ifdr; 1692 1693 switch (cmd) { 1694 case SIOCSIFCAP: 1695 ifcr = data; 1696 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 1697 return EINVAL; 1698 1699 if (ifcr->ifcr_capenable == ifp->if_capenable) 1700 return 0; 1701 1702 ifp->if_capenable = ifcr->ifcr_capenable; 1703 1704 /* Pre-compute the checksum flags mask. */ 1705 ifp->if_csum_flags_tx = 0; 1706 ifp->if_csum_flags_rx = 0; 1707 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) { 1708 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 1709 } 1710 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { 1711 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 1712 } 1713 1714 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) { 1715 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 1716 } 1717 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) { 1718 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 1719 } 1720 1721 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) { 1722 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 1723 } 1724 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) { 1725 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 1726 } 1727 1728 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) { 1729 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 1730 } 1731 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) { 1732 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 1733 } 1734 1735 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) { 1736 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 1737 } 1738 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) { 1739 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 1740 } 1741 if (ifp->if_flags & IFF_UP) 1742 return ENETRESET; 1743 return 0; 1744 case SIOCSIFFLAGS: 1745 ifr = data; 1746 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 1747 s = splnet(); 1748 if_down(ifp); 1749 splx(s); 1750 } 1751 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 1752 s = splnet(); 1753 if_up(ifp); 1754 splx(s); 1755 } 1756 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 1757 (ifr->ifr_flags &~ IFF_CANTCHANGE); 1758 break; 1759 case SIOCGIFFLAGS: 1760 ifr = data; 1761 ifr->ifr_flags = ifp->if_flags; 1762 break; 1763 1764 case SIOCGIFMETRIC: 1765 ifr = data; 1766 ifr->ifr_metric = ifp->if_metric; 1767 break; 1768 1769 case SIOCGIFMTU: 1770 ifr = data; 1771 ifr->ifr_mtu = ifp->if_mtu; 1772 break; 1773 1774 case SIOCGIFDLT: 1775 ifr = data; 1776 ifr->ifr_dlt = ifp->if_dlt; 1777 break; 1778 1779 case SIOCGIFCAP: 1780 ifcr = data; 1781 ifcr->ifcr_capabilities = ifp->if_capabilities; 1782 ifcr->ifcr_capenable = ifp->if_capenable; 1783 break; 1784 1785 case SIOCSIFMETRIC: 1786 ifr = data; 1787 ifp->if_metric = ifr->ifr_metric; 1788 break; 1789 1790 case SIOCGIFDATA: 1791 ifdr = data; 1792 ifdr->ifdr_data = ifp->if_data; 1793 break; 1794 1795 case SIOCGIFINDEX: 1796 ifr = data; 1797 ifr->ifr_index = ifp->if_index; 1798 break; 1799 1800 case SIOCZIFDATA: 1801 ifdr = data; 1802 ifdr->ifdr_data = ifp->if_data; 1803 /* 1804 * Assumes that the volatile counters that can be 1805 * zero'ed are at the end of if_data. 1806 */ 1807 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) - 1808 offsetof(struct if_data, ifi_ipackets)); 1809 /* 1810 * The memset() clears to the bottm of if_data. In the area, 1811 * if_lastchange is included. Please be careful if new entry 1812 * will be added into if_data or rewite this. 1813 * 1814 * And also, update if_lastchnage. 1815 */ 1816 getnanotime(&ifp->if_lastchange); 1817 break; 1818 case SIOCSIFMTU: 1819 ifr = data; 1820 if (ifp->if_mtu == ifr->ifr_mtu) 1821 break; 1822 ifp->if_mtu = ifr->ifr_mtu; 1823 /* 1824 * If the link MTU changed, do network layer specific procedure. 1825 */ 1826 #ifdef INET6 1827 if (in6_present) 1828 nd6_setmtu(ifp); 1829 #endif 1830 return ENETRESET; 1831 default: 1832 return ENOTTY; 1833 } 1834 return 0; 1835 } 1836 1837 int 1838 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 1839 { 1840 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 1841 struct ifaddr *ifa; 1842 const struct sockaddr *any, *sa; 1843 union { 1844 struct sockaddr sa; 1845 struct sockaddr_storage ss; 1846 } u, v; 1847 1848 switch (cmd) { 1849 case SIOCSIFADDRPREF: 1850 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, 1851 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 1852 NULL) != 0) 1853 return EPERM; 1854 case SIOCGIFADDRPREF: 1855 break; 1856 default: 1857 return EOPNOTSUPP; 1858 } 1859 1860 /* sanity checks */ 1861 if (data == NULL || ifp == NULL) { 1862 panic("invalid argument to %s", __func__); 1863 /*NOTREACHED*/ 1864 } 1865 1866 /* address must be specified on ADD and DELETE */ 1867 sa = sstocsa(&ifap->ifap_addr); 1868 if (sa->sa_family != sofamily(so)) 1869 return EINVAL; 1870 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 1871 return EINVAL; 1872 1873 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 1874 1875 IFADDR_FOREACH(ifa, ifp) { 1876 if (ifa->ifa_addr->sa_family != sa->sa_family) 1877 continue; 1878 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 1879 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 1880 break; 1881 } 1882 if (ifa == NULL) 1883 return EADDRNOTAVAIL; 1884 1885 switch (cmd) { 1886 case SIOCSIFADDRPREF: 1887 ifa->ifa_preference = ifap->ifap_preference; 1888 return 0; 1889 case SIOCGIFADDRPREF: 1890 /* fill in the if_laddrreq structure */ 1891 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 1892 sizeof(ifap->ifap_addr), ifa->ifa_addr); 1893 ifap->ifap_preference = ifa->ifa_preference; 1894 return 0; 1895 default: 1896 return EOPNOTSUPP; 1897 } 1898 } 1899 1900 static void 1901 ifnet_lock_enter(struct ifnet_lock *il) 1902 { 1903 uint64_t *nenter; 1904 1905 /* Before trying to acquire the mutex, increase the count of threads 1906 * who have entered or who wait to enter the critical section. 1907 * Avoid one costly locked memory transaction by keeping a count for 1908 * each CPU. 1909 */ 1910 nenter = percpu_getref(il->il_nenter); 1911 (*nenter)++; 1912 percpu_putref(il->il_nenter); 1913 mutex_enter(&il->il_lock); 1914 } 1915 1916 static void 1917 ifnet_lock_exit(struct ifnet_lock *il) 1918 { 1919 /* Increase the count of threads who have exited the critical 1920 * section. Increase while we still hold the lock. 1921 */ 1922 il->il_nexit++; 1923 mutex_exit(&il->il_lock); 1924 } 1925 1926 /* 1927 * Interface ioctls. 1928 */ 1929 static int 1930 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 1931 { 1932 struct ifnet *ifp; 1933 struct ifreq *ifr; 1934 int error = 0; 1935 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ) 1936 u_long ocmd = cmd; 1937 #endif 1938 short oif_flags; 1939 #ifdef COMPAT_OIFREQ 1940 struct ifreq ifrb; 1941 struct oifreq *oifr = NULL; 1942 #endif 1943 int r; 1944 1945 switch (cmd) { 1946 #ifdef COMPAT_OIFREQ 1947 case OSIOCGIFCONF: 1948 case OOSIOCGIFCONF: 1949 return compat_ifconf(cmd, data); 1950 #endif 1951 #ifdef COMPAT_OIFDATA 1952 case OSIOCGIFDATA: 1953 case OSIOCZIFDATA: 1954 return compat_ifdatareq(l, cmd, data); 1955 #endif 1956 case SIOCGIFCONF: 1957 return ifconf(cmd, data); 1958 case SIOCINITIFADDR: 1959 return EPERM; 1960 } 1961 1962 #ifdef COMPAT_OIFREQ 1963 cmd = compat_cvtcmd(cmd); 1964 if (cmd != ocmd) { 1965 oifr = data; 1966 data = ifr = &ifrb; 1967 ifreqo2n(oifr, ifr); 1968 } else 1969 #endif 1970 ifr = data; 1971 1972 ifp = ifunit(ifr->ifr_name); 1973 1974 switch (cmd) { 1975 case SIOCIFCREATE: 1976 case SIOCIFDESTROY: 1977 if (l != NULL) { 1978 error = kauth_authorize_network(l->l_cred, 1979 KAUTH_NETWORK_INTERFACE, 1980 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 1981 (void *)cmd, NULL); 1982 if (error != 0) 1983 return error; 1984 } 1985 mutex_enter(&if_clone_mtx); 1986 r = (cmd == SIOCIFCREATE) ? 1987 if_clone_create(ifr->ifr_name) : 1988 if_clone_destroy(ifr->ifr_name); 1989 mutex_exit(&if_clone_mtx); 1990 return r; 1991 1992 case SIOCIFGCLONERS: 1993 { 1994 struct if_clonereq *req = (struct if_clonereq *)data; 1995 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 1996 &req->ifcr_total); 1997 } 1998 } 1999 2000 if (ifp == NULL) 2001 return ENXIO; 2002 2003 switch (cmd) { 2004 case SIOCALIFADDR: 2005 case SIOCDLIFADDR: 2006 case SIOCSIFADDRPREF: 2007 case SIOCSIFFLAGS: 2008 case SIOCSIFCAP: 2009 case SIOCSIFMETRIC: 2010 case SIOCZIFDATA: 2011 case SIOCSIFMTU: 2012 case SIOCSIFPHYADDR: 2013 case SIOCDIFPHYADDR: 2014 #ifdef INET6 2015 case SIOCSIFPHYADDR_IN6: 2016 #endif 2017 case SIOCSLIFPHYADDR: 2018 case SIOCADDMULTI: 2019 case SIOCDELMULTI: 2020 case SIOCSIFMEDIA: 2021 case SIOCSDRVSPEC: 2022 case SIOCG80211: 2023 case SIOCS80211: 2024 case SIOCS80211NWID: 2025 case SIOCS80211NWKEY: 2026 case SIOCS80211POWER: 2027 case SIOCS80211BSSID: 2028 case SIOCS80211CHANNEL: 2029 case SIOCSLINKSTR: 2030 if (l != NULL) { 2031 error = kauth_authorize_network(l->l_cred, 2032 KAUTH_NETWORK_INTERFACE, 2033 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 2034 (void *)cmd, NULL); 2035 if (error != 0) 2036 return error; 2037 } 2038 } 2039 2040 oif_flags = ifp->if_flags; 2041 2042 ifnet_lock_enter(ifp->if_ioctl_lock); 2043 error = (*ifp->if_ioctl)(ifp, cmd, data); 2044 if (error != ENOTTY) 2045 ; 2046 else if (so->so_proto == NULL) 2047 error = EOPNOTSUPP; 2048 else { 2049 #ifdef COMPAT_OSOCK 2050 error = compat_ifioctl(so, ocmd, cmd, data, l); 2051 #else 2052 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 2053 cmd, data, ifp); 2054 #endif 2055 } 2056 2057 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 2058 if ((ifp->if_flags & IFF_UP) != 0) { 2059 int s = splnet(); 2060 if_up(ifp); 2061 splx(s); 2062 } 2063 } 2064 #ifdef COMPAT_OIFREQ 2065 if (cmd != ocmd) 2066 ifreqn2o(oifr, ifr); 2067 #endif 2068 2069 ifnet_lock_exit(ifp->if_ioctl_lock); 2070 return error; 2071 } 2072 2073 /* This callback adds to the sum in `arg' the number of 2074 * threads on `ci' who have entered or who wait to enter the 2075 * critical section. 2076 */ 2077 static void 2078 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci) 2079 { 2080 uint64_t *sum = arg, *nenter = p; 2081 2082 *sum += *nenter; 2083 } 2084 2085 /* Return the number of threads who have entered or who wait 2086 * to enter the critical section on all CPUs. 2087 */ 2088 static uint64_t 2089 ifnet_lock_entrances(struct ifnet_lock *il) 2090 { 2091 uint64_t sum = 0; 2092 2093 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum); 2094 2095 return sum; 2096 } 2097 2098 static int 2099 ifioctl_attach(struct ifnet *ifp) 2100 { 2101 struct ifnet_lock *il; 2102 2103 /* If the driver has not supplied its own if_ioctl, then 2104 * supply the default. 2105 */ 2106 if (ifp->if_ioctl == NULL) 2107 ifp->if_ioctl = ifioctl_common; 2108 2109 /* Create an ifnet_lock for synchronizing ifioctls. */ 2110 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL) 2111 return ENOMEM; 2112 2113 il->il_nenter = percpu_alloc(sizeof(uint64_t)); 2114 if (il->il_nenter == NULL) { 2115 kmem_free(il, sizeof(*il)); 2116 return ENOMEM; 2117 } 2118 2119 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE); 2120 cv_init(&il->il_emptied, ifp->if_xname); 2121 2122 ifp->if_ioctl_lock = il; 2123 2124 return 0; 2125 } 2126 2127 /* 2128 * This must not be called until after `ifp' has been withdrawn from the 2129 * ifnet tables so that ifioctl() cannot get a handle on it by calling 2130 * ifunit(). 2131 */ 2132 static void 2133 ifioctl_detach(struct ifnet *ifp) 2134 { 2135 struct ifnet_lock *il; 2136 2137 il = ifp->if_ioctl_lock; 2138 mutex_enter(&il->il_lock); 2139 /* Install if_nullioctl to make sure that any thread that 2140 * subsequently enters the critical section will quit it 2141 * immediately and signal the condition variable that we 2142 * wait on, below. 2143 */ 2144 ifp->if_ioctl = if_nullioctl; 2145 /* Sleep while threads are still in the critical section or 2146 * wait to enter it. 2147 */ 2148 while (ifnet_lock_entrances(il) != il->il_nexit) 2149 cv_wait(&il->il_emptied, &il->il_lock); 2150 /* At this point, we are the only thread still in the critical 2151 * section, and no new thread can get a handle on the ifioctl 2152 * lock, so it is safe to free its memory. 2153 */ 2154 mutex_exit(&il->il_lock); 2155 ifp->if_ioctl_lock = NULL; 2156 percpu_free(il->il_nenter, sizeof(uint64_t)); 2157 il->il_nenter = NULL; 2158 cv_destroy(&il->il_emptied); 2159 mutex_destroy(&il->il_lock); 2160 kmem_free(il, sizeof(*il)); 2161 } 2162 2163 /* 2164 * Return interface configuration 2165 * of system. List may be used 2166 * in later ioctl's (above) to get 2167 * other information. 2168 * 2169 * Each record is a struct ifreq. Before the addition of 2170 * sockaddr_storage, the API rule was that sockaddr flavors that did 2171 * not fit would extend beyond the struct ifreq, with the next struct 2172 * ifreq starting sa_len beyond the struct sockaddr. Because the 2173 * union in struct ifreq includes struct sockaddr_storage, every kind 2174 * of sockaddr must fit. Thus, there are no longer any overlength 2175 * records. 2176 * 2177 * Records are added to the user buffer if they fit, and ifc_len is 2178 * adjusted to the length that was written. Thus, the user is only 2179 * assured of getting the complete list if ifc_len on return is at 2180 * least sizeof(struct ifreq) less than it was on entry. 2181 * 2182 * If the user buffer pointer is NULL, this routine copies no data and 2183 * returns the amount of space that would be needed. 2184 * 2185 * Invariants: 2186 * ifrp points to the next part of the user's buffer to be used. If 2187 * ifrp != NULL, space holds the number of bytes remaining that we may 2188 * write at ifrp. Otherwise, space holds the number of bytes that 2189 * would have been written had there been adequate space. 2190 */ 2191 /*ARGSUSED*/ 2192 static int 2193 ifconf(u_long cmd, void *data) 2194 { 2195 struct ifconf *ifc = (struct ifconf *)data; 2196 struct ifnet *ifp; 2197 struct ifaddr *ifa; 2198 struct ifreq ifr, *ifrp = NULL; 2199 int space = 0, error = 0; 2200 const int sz = (int)sizeof(struct ifreq); 2201 const bool docopy = ifc->ifc_req != NULL; 2202 2203 if (docopy) { 2204 space = ifc->ifc_len; 2205 ifrp = ifc->ifc_req; 2206 } 2207 2208 IFNET_FOREACH(ifp) { 2209 (void)strncpy(ifr.ifr_name, ifp->if_xname, 2210 sizeof(ifr.ifr_name)); 2211 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') 2212 return ENAMETOOLONG; 2213 if (IFADDR_EMPTY(ifp)) { 2214 /* Interface with no addresses - send zero sockaddr. */ 2215 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 2216 if (!docopy) { 2217 space += sz; 2218 continue; 2219 } 2220 if (space >= sz) { 2221 error = copyout(&ifr, ifrp, sz); 2222 if (error != 0) 2223 return error; 2224 ifrp++; 2225 space -= sz; 2226 } 2227 } 2228 2229 IFADDR_FOREACH(ifa, ifp) { 2230 struct sockaddr *sa = ifa->ifa_addr; 2231 /* all sockaddrs must fit in sockaddr_storage */ 2232 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 2233 2234 if (!docopy) { 2235 space += sz; 2236 continue; 2237 } 2238 memcpy(&ifr.ifr_space, sa, sa->sa_len); 2239 if (space >= sz) { 2240 error = copyout(&ifr, ifrp, sz); 2241 if (error != 0) 2242 return (error); 2243 ifrp++; space -= sz; 2244 } 2245 } 2246 } 2247 if (docopy) { 2248 KASSERT(0 <= space && space <= ifc->ifc_len); 2249 ifc->ifc_len -= space; 2250 } else { 2251 KASSERT(space >= 0); 2252 ifc->ifc_len = space; 2253 } 2254 return (0); 2255 } 2256 2257 int 2258 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 2259 { 2260 uint8_t len; 2261 #ifdef COMPAT_OIFREQ 2262 struct ifreq ifrb; 2263 struct oifreq *oifr = NULL; 2264 u_long ocmd = cmd; 2265 cmd = compat_cvtcmd(cmd); 2266 if (cmd != ocmd) { 2267 oifr = (struct oifreq *)(void *)ifr; 2268 ifr = &ifrb; 2269 ifreqo2n(oifr, ifr); 2270 len = sizeof(oifr->ifr_addr); 2271 } else 2272 #endif 2273 len = sizeof(ifr->ifr_ifru.ifru_space); 2274 2275 if (len < sa->sa_len) 2276 return EFBIG; 2277 2278 memset(&ifr->ifr_addr, 0, len); 2279 sockaddr_copy(&ifr->ifr_addr, len, sa); 2280 2281 #ifdef COMPAT_OIFREQ 2282 if (cmd != ocmd) 2283 ifreqn2o(oifr, ifr); 2284 #endif 2285 return 0; 2286 } 2287 2288 /* 2289 * Queue message on interface, and start output if interface 2290 * not yet active. 2291 */ 2292 int 2293 ifq_enqueue(struct ifnet *ifp, struct mbuf *m 2294 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr)) 2295 { 2296 int len = m->m_pkthdr.len; 2297 int mflags = m->m_flags; 2298 int s = splnet(); 2299 int error; 2300 2301 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error); 2302 if (error != 0) 2303 goto out; 2304 ifp->if_obytes += len; 2305 if (mflags & M_MCAST) 2306 ifp->if_omcasts++; 2307 if ((ifp->if_flags & IFF_OACTIVE) == 0) 2308 (*ifp->if_start)(ifp); 2309 out: 2310 splx(s); 2311 return error; 2312 } 2313 2314 /* 2315 * Queue message on interface, possibly using a second fast queue 2316 */ 2317 int 2318 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m 2319 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr)) 2320 { 2321 int error = 0; 2322 2323 if (ifq != NULL 2324 #ifdef ALTQ 2325 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 2326 #endif 2327 ) { 2328 if (IF_QFULL(ifq)) { 2329 IF_DROP(&ifp->if_snd); 2330 m_freem(m); 2331 if (error == 0) 2332 error = ENOBUFS; 2333 } else 2334 IF_ENQUEUE(ifq, m); 2335 } else 2336 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error); 2337 if (error != 0) { 2338 ++ifp->if_oerrors; 2339 return error; 2340 } 2341 return 0; 2342 } 2343 2344 int 2345 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 2346 { 2347 int rc; 2348 2349 if (ifp->if_initaddr != NULL) 2350 rc = (*ifp->if_initaddr)(ifp, ifa, src); 2351 else if (src || 2352 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 2353 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); 2354 2355 return rc; 2356 } 2357 2358 int 2359 if_do_dad(struct ifnet *ifp) 2360 { 2361 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2362 return 0; 2363 2364 switch (ifp->if_type) { 2365 case IFT_FAITH: 2366 /* 2367 * These interfaces do not have the IFF_LOOPBACK flag, 2368 * but loop packets back. We do not have to do DAD on such 2369 * interfaces. We should even omit it, because loop-backed 2370 * responses would confuse the DAD procedure. 2371 */ 2372 return 0; 2373 default: 2374 /* 2375 * Our DAD routine requires the interface up and running. 2376 * However, some interfaces can be up before the RUNNING 2377 * status. Additionaly, users may try to assign addresses 2378 * before the interface becomes up (or running). 2379 * We simply skip DAD in such a case as a work around. 2380 * XXX: we should rather mark "tentative" on such addresses, 2381 * and do DAD after the interface becomes ready. 2382 */ 2383 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 2384 (IFF_UP|IFF_RUNNING)) 2385 return 0; 2386 2387 return 1; 2388 } 2389 } 2390 2391 int 2392 if_flags_set(ifnet_t *ifp, const short flags) 2393 { 2394 int rc; 2395 2396 if (ifp->if_setflags != NULL) 2397 rc = (*ifp->if_setflags)(ifp, flags); 2398 else { 2399 short cantflags, chgdflags; 2400 struct ifreq ifr; 2401 2402 chgdflags = ifp->if_flags ^ flags; 2403 cantflags = chgdflags & IFF_CANTCHANGE; 2404 2405 if (cantflags != 0) 2406 ifp->if_flags ^= cantflags; 2407 2408 /* Traditionally, we do not call if_ioctl after 2409 * setting/clearing only IFF_PROMISC if the interface 2410 * isn't IFF_UP. Uphold that tradition. 2411 */ 2412 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 2413 return 0; 2414 2415 memset(&ifr, 0, sizeof(ifr)); 2416 2417 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 2418 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); 2419 2420 if (rc != 0 && cantflags != 0) 2421 ifp->if_flags ^= cantflags; 2422 } 2423 2424 return rc; 2425 } 2426 2427 int 2428 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 2429 { 2430 int rc; 2431 struct ifreq ifr; 2432 2433 if (ifp->if_mcastop != NULL) 2434 rc = (*ifp->if_mcastop)(ifp, cmd, sa); 2435 else { 2436 ifreq_setaddr(cmd, &ifr, sa); 2437 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); 2438 } 2439 2440 return rc; 2441 } 2442 2443 static void 2444 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 2445 struct ifaltq *ifq) 2446 { 2447 const struct sysctlnode *cnode, *rnode; 2448 2449 if (sysctl_createv(clog, 0, NULL, &rnode, 2450 CTLFLAG_PERMANENT, 2451 CTLTYPE_NODE, "interfaces", 2452 SYSCTL_DESCR("Per-interface controls"), 2453 NULL, 0, NULL, 0, 2454 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 2455 goto bad; 2456 2457 if (sysctl_createv(clog, 0, &rnode, &rnode, 2458 CTLFLAG_PERMANENT, 2459 CTLTYPE_NODE, ifname, 2460 SYSCTL_DESCR("Interface controls"), 2461 NULL, 0, NULL, 0, 2462 CTL_CREATE, CTL_EOL) != 0) 2463 goto bad; 2464 2465 if (sysctl_createv(clog, 0, &rnode, &rnode, 2466 CTLFLAG_PERMANENT, 2467 CTLTYPE_NODE, "sndq", 2468 SYSCTL_DESCR("Interface output queue controls"), 2469 NULL, 0, NULL, 0, 2470 CTL_CREATE, CTL_EOL) != 0) 2471 goto bad; 2472 2473 if (sysctl_createv(clog, 0, &rnode, &cnode, 2474 CTLFLAG_PERMANENT, 2475 CTLTYPE_INT, "len", 2476 SYSCTL_DESCR("Current output queue length"), 2477 NULL, 0, &ifq->ifq_len, 0, 2478 CTL_CREATE, CTL_EOL) != 0) 2479 goto bad; 2480 2481 if (sysctl_createv(clog, 0, &rnode, &cnode, 2482 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2483 CTLTYPE_INT, "maxlen", 2484 SYSCTL_DESCR("Maximum allowed output queue length"), 2485 NULL, 0, &ifq->ifq_maxlen, 0, 2486 CTL_CREATE, CTL_EOL) != 0) 2487 goto bad; 2488 2489 if (sysctl_createv(clog, 0, &rnode, &cnode, 2490 CTLFLAG_PERMANENT, 2491 CTLTYPE_INT, "drops", 2492 SYSCTL_DESCR("Packets dropped due to full output queue"), 2493 NULL, 0, &ifq->ifq_drops, 0, 2494 CTL_CREATE, CTL_EOL) != 0) 2495 goto bad; 2496 2497 return; 2498 bad: 2499 printf("%s: could not attach sysctl nodes\n", ifname); 2500 return; 2501 } 2502 2503 #if defined(INET) || defined(INET6) 2504 2505 #define SYSCTL_NET_PKTQ(q, cn, c) \ 2506 static int \ 2507 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \ 2508 { \ 2509 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \ 2510 } 2511 2512 #if defined(INET) 2513 static int 2514 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS) 2515 { 2516 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq); 2517 } 2518 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS) 2519 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS) 2520 #endif 2521 2522 #if defined(INET6) 2523 static int 2524 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS) 2525 { 2526 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq); 2527 } 2528 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS) 2529 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS) 2530 #endif 2531 2532 static void 2533 sysctl_net_pktq_setup(struct sysctllog **clog, int pf) 2534 { 2535 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL; 2536 const char *pfname = NULL, *ipname = NULL; 2537 int ipn = 0, qid = 0; 2538 2539 switch (pf) { 2540 #if defined(INET) 2541 case PF_INET: 2542 len_func = sysctl_net_ip_pktq_items; 2543 maxlen_func = sysctl_net_ip_pktq_maxlen; 2544 drops_func = sysctl_net_ip_pktq_drops; 2545 pfname = "inet", ipn = IPPROTO_IP; 2546 ipname = "ip", qid = IPCTL_IFQ; 2547 break; 2548 #endif 2549 #if defined(INET6) 2550 case PF_INET6: 2551 len_func = sysctl_net_ip6_pktq_items; 2552 maxlen_func = sysctl_net_ip6_pktq_maxlen; 2553 drops_func = sysctl_net_ip6_pktq_drops; 2554 pfname = "inet6", ipn = IPPROTO_IPV6; 2555 ipname = "ip6", qid = IPV6CTL_IFQ; 2556 break; 2557 #endif 2558 default: 2559 KASSERT(false); 2560 } 2561 2562 sysctl_createv(clog, 0, NULL, NULL, 2563 CTLFLAG_PERMANENT, 2564 CTLTYPE_NODE, pfname, NULL, 2565 NULL, 0, NULL, 0, 2566 CTL_NET, pf, CTL_EOL); 2567 sysctl_createv(clog, 0, NULL, NULL, 2568 CTLFLAG_PERMANENT, 2569 CTLTYPE_NODE, ipname, NULL, 2570 NULL, 0, NULL, 0, 2571 CTL_NET, pf, ipn, CTL_EOL); 2572 sysctl_createv(clog, 0, NULL, NULL, 2573 CTLFLAG_PERMANENT, 2574 CTLTYPE_NODE, "ifq", 2575 SYSCTL_DESCR("Protocol input queue controls"), 2576 NULL, 0, NULL, 0, 2577 CTL_NET, pf, ipn, qid, CTL_EOL); 2578 2579 sysctl_createv(clog, 0, NULL, NULL, 2580 CTLFLAG_PERMANENT, 2581 CTLTYPE_INT, "len", 2582 SYSCTL_DESCR("Current input queue length"), 2583 len_func, 0, NULL, 0, 2584 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); 2585 sysctl_createv(clog, 0, NULL, NULL, 2586 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2587 CTLTYPE_INT, "maxlen", 2588 SYSCTL_DESCR("Maximum allowed input queue length"), 2589 maxlen_func, 0, NULL, 0, 2590 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); 2591 sysctl_createv(clog, 0, NULL, NULL, 2592 CTLFLAG_PERMANENT, 2593 CTLTYPE_INT, "drops", 2594 SYSCTL_DESCR("Packets dropped due to full input queue"), 2595 drops_func, 0, NULL, 0, 2596 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); 2597 } 2598 #endif /* INET || INET6 */ 2599 2600 static int 2601 if_sdl_sysctl(SYSCTLFN_ARGS) 2602 { 2603 struct ifnet *ifp; 2604 const struct sockaddr_dl *sdl; 2605 2606 if (namelen != 1) 2607 return EINVAL; 2608 2609 ifp = if_byindex(name[0]); 2610 if (ifp == NULL) 2611 return ENODEV; 2612 2613 sdl = ifp->if_sadl; 2614 if (sdl == NULL) { 2615 *oldlenp = 0; 2616 return 0; 2617 } 2618 2619 if (oldp == NULL) { 2620 *oldlenp = sdl->sdl_alen; 2621 return 0; 2622 } 2623 2624 if (*oldlenp >= sdl->sdl_alen) 2625 *oldlenp = sdl->sdl_alen; 2626 return sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp); 2627 } 2628 2629 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup") 2630 { 2631 const struct sysctlnode *rnode = NULL; 2632 2633 sysctl_createv(clog, 0, NULL, &rnode, 2634 CTLFLAG_PERMANENT, 2635 CTLTYPE_NODE, "sdl", 2636 SYSCTL_DESCR("Get active link-layer address"), 2637 if_sdl_sysctl, 0, NULL, 0, 2638 CTL_NET, CTL_CREATE, CTL_EOL); 2639 } 2640