xref: /netbsd-src/sys/net/if.c (revision a4ddc2c8fb9af816efe3b1c375a5530aef0e89e9)
1 /*	$NetBSD: if.c,v 1.262 2013/03/10 19:46:12 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by William Studenmund and Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the project nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  */
60 
61 /*
62  * Copyright (c) 1980, 1986, 1993
63  *	The Regents of the University of California.  All rights reserved.
64  *
65  * Redistribution and use in source and binary forms, with or without
66  * modification, are permitted provided that the following conditions
67  * are met:
68  * 1. Redistributions of source code must retain the above copyright
69  *    notice, this list of conditions and the following disclaimer.
70  * 2. Redistributions in binary form must reproduce the above copyright
71  *    notice, this list of conditions and the following disclaimer in the
72  *    documentation and/or other materials provided with the distribution.
73  * 3. Neither the name of the University nor the names of its contributors
74  *    may be used to endorse or promote products derived from this software
75  *    without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87  * SUCH DAMAGE.
88  *
89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
90  */
91 
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.262 2013/03/10 19:46:12 christos Exp $");
94 
95 #include "opt_inet.h"
96 
97 #include "opt_atalk.h"
98 #include "opt_natm.h"
99 #include "opt_pfil_hooks.h"
100 
101 #include <sys/param.h>
102 #include <sys/mbuf.h>
103 #include <sys/systm.h>
104 #include <sys/callout.h>
105 #include <sys/proc.h>
106 #include <sys/socket.h>
107 #include <sys/socketvar.h>
108 #include <sys/domain.h>
109 #include <sys/protosw.h>
110 #include <sys/kernel.h>
111 #include <sys/ioctl.h>
112 #include <sys/sysctl.h>
113 #include <sys/syslog.h>
114 #include <sys/kauth.h>
115 #include <sys/kmem.h>
116 
117 #include <net/if.h>
118 #include <net/if_dl.h>
119 #include <net/if_ether.h>
120 #include <net/if_media.h>
121 #include <net80211/ieee80211.h>
122 #include <net80211/ieee80211_ioctl.h>
123 #include <net/if_types.h>
124 #include <net/radix.h>
125 #include <net/route.h>
126 #include <net/netisr.h>
127 #include <sys/module.h>
128 #ifdef NETATALK
129 #include <netatalk/at_extern.h>
130 #include <netatalk/at.h>
131 #endif
132 #include <net/pfil.h>
133 
134 #ifdef INET6
135 #include <netinet/in.h>
136 #include <netinet6/in6_var.h>
137 #include <netinet6/nd6.h>
138 #endif
139 
140 #include "carp.h"
141 #if NCARP > 0
142 #include <netinet/ip_carp.h>
143 #endif
144 
145 #include <compat/sys/sockio.h>
146 #include <compat/sys/socket.h>
147 
148 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
149 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
150 
151 int	ifqmaxlen = IFQ_MAXLEN;
152 callout_t if_slowtimo_ch;
153 
154 int netisr;			/* scheduling bits for network */
155 
156 static int	if_rt_walktree(struct rtentry *, void *);
157 
158 static struct if_clone *if_clone_lookup(const char *, int *);
159 static int	if_clone_list(struct if_clonereq *);
160 
161 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
162 static int if_cloners_count;
163 
164 static uint64_t index_gen;
165 static kmutex_t index_gen_mtx;
166 
167 #ifdef PFIL_HOOKS
168 struct pfil_head if_pfil;	/* packet filtering hook for interfaces */
169 #endif
170 
171 static kauth_listener_t if_listener;
172 
173 static int ifioctl_attach(struct ifnet *);
174 static void ifioctl_detach(struct ifnet *);
175 static void ifnet_lock_enter(struct ifnet_lock *);
176 static void ifnet_lock_exit(struct ifnet_lock *);
177 static void if_detach_queues(struct ifnet *, struct ifqueue *);
178 static void sysctl_sndq_setup(struct sysctllog **, const char *,
179     struct ifaltq *);
180 
181 #if defined(INET) || defined(INET6)
182 static void sysctl_net_ifq_setup(struct sysctllog **, int, const char *,
183 				 int, const char *, int, struct ifqueue *);
184 #endif
185 
186 static int
187 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
188     void *arg0, void *arg1, void *arg2, void *arg3)
189 {
190 	int result;
191 	enum kauth_network_req req;
192 
193 	result = KAUTH_RESULT_DEFER;
194 	req = (enum kauth_network_req)arg1;
195 
196 	if (action != KAUTH_NETWORK_INTERFACE)
197 		return result;
198 
199 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
200 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
201 		result = KAUTH_RESULT_ALLOW;
202 
203 	return result;
204 }
205 
206 /*
207  * Network interface utility routines.
208  *
209  * Routines with ifa_ifwith* names take sockaddr *'s as
210  * parameters.
211  */
212 void
213 ifinit(void)
214 {
215 #ifdef INET
216 	{extern struct ifqueue ipintrq;
217 	sysctl_net_ifq_setup(NULL, PF_INET, "inet", IPPROTO_IP, "ip",
218 			     IPCTL_IFQ, &ipintrq);}
219 #endif /* INET */
220 #ifdef INET6
221 	{extern struct ifqueue ip6intrq;
222 	sysctl_net_ifq_setup(NULL, PF_INET6, "inet6", IPPROTO_IPV6, "ip6",
223 			     IPV6CTL_IFQ, &ip6intrq);}
224 #endif /* INET6 */
225 
226 	callout_init(&if_slowtimo_ch, 0);
227 	if_slowtimo(NULL);
228 
229 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
230 	    if_listener_cb, NULL);
231 }
232 
233 /*
234  * XXX Initialization before configure().
235  * XXX hack to get pfil_add_hook working in autoconf.
236  */
237 void
238 ifinit1(void)
239 {
240 
241 	mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE);
242 
243 #ifdef PFIL_HOOKS
244 	if_pfil.ph_type = PFIL_TYPE_IFNET;
245 	if_pfil.ph_ifnet = NULL;
246 	if (pfil_head_register(&if_pfil) != 0)
247 		printf("WARNING: unable to register pfil hook\n");
248 #endif
249 }
250 
251 struct ifnet *
252 if_alloc(u_char type)
253 {
254 	return malloc(sizeof(struct ifnet), M_DEVBUF, M_WAITOK|M_ZERO);
255 }
256 
257 void
258 if_free(struct ifnet *ifp)
259 {
260 	free(ifp, M_DEVBUF);
261 }
262 
263 void
264 if_initname(struct ifnet *ifp, const char *name, int unit)
265 {
266 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
267 	    "%s%d", name, unit);
268 }
269 
270 /*
271  * Null routines used while an interface is going away.  These routines
272  * just return an error.
273  */
274 
275 int
276 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
277     const struct sockaddr *so, struct rtentry *rt)
278 {
279 
280 	return ENXIO;
281 }
282 
283 void
284 if_nullinput(struct ifnet *ifp, struct mbuf *m)
285 {
286 
287 	/* Nothing. */
288 }
289 
290 void
291 if_nullstart(struct ifnet *ifp)
292 {
293 
294 	/* Nothing. */
295 }
296 
297 int
298 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
299 {
300 
301 	/* Wake ifioctl_detach(), who may wait for all threads to
302 	 * quit the critical section.
303 	 */
304 	cv_signal(&ifp->if_ioctl_lock->il_emptied);
305 	return ENXIO;
306 }
307 
308 int
309 if_nullinit(struct ifnet *ifp)
310 {
311 
312 	return ENXIO;
313 }
314 
315 void
316 if_nullstop(struct ifnet *ifp, int disable)
317 {
318 
319 	/* Nothing. */
320 }
321 
322 void
323 if_nullwatchdog(struct ifnet *ifp)
324 {
325 
326 	/* Nothing. */
327 }
328 
329 void
330 if_nulldrain(struct ifnet *ifp)
331 {
332 
333 	/* Nothing. */
334 }
335 
336 static u_int if_index = 1;
337 struct ifnet_head ifnet;
338 size_t if_indexlim = 0;
339 struct ifaddr **ifnet_addrs = NULL;
340 struct ifnet **ifindex2ifnet = NULL;
341 struct ifnet *lo0ifp;
342 
343 void
344 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
345 {
346 	struct ifaddr *ifa;
347 	struct sockaddr_dl *sdl;
348 
349 	ifp->if_addrlen = addrlen;
350 	if_alloc_sadl(ifp);
351 	ifa = ifp->if_dl;
352 	sdl = satosdl(ifa->ifa_addr);
353 
354 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
355 	if (factory) {
356 		ifp->if_hwdl = ifp->if_dl;
357 		IFAREF(ifp->if_hwdl);
358 	}
359 	/* TBD routing socket */
360 }
361 
362 struct ifaddr *
363 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
364 {
365 	unsigned socksize, ifasize;
366 	int addrlen, namelen;
367 	struct sockaddr_dl *mask, *sdl;
368 	struct ifaddr *ifa;
369 
370 	namelen = strlen(ifp->if_xname);
371 	addrlen = ifp->if_addrlen;
372 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
373 	ifasize = sizeof(*ifa) + 2 * socksize;
374 	ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
375 
376 	sdl = (struct sockaddr_dl *)(ifa + 1);
377 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
378 
379 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
380 	    ifp->if_xname, namelen, NULL, addrlen);
381 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
382 	memset(&mask->sdl_data[0], 0xff, namelen);
383 	ifa->ifa_rtrequest = link_rtrequest;
384 	ifa->ifa_addr = (struct sockaddr *)sdl;
385 	ifa->ifa_netmask = (struct sockaddr *)mask;
386 
387 	*sdlp = sdl;
388 
389 	return ifa;
390 }
391 
392 static void
393 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
394 {
395 	const struct sockaddr_dl *sdl;
396 	ifnet_addrs[ifp->if_index] = ifa;
397 	IFAREF(ifa);
398 	ifp->if_dl = ifa;
399 	IFAREF(ifa);
400 	sdl = satosdl(ifa->ifa_addr);
401 	ifp->if_sadl = sdl;
402 }
403 
404 /*
405  * Allocate the link level name for the specified interface.  This
406  * is an attachment helper.  It must be called after ifp->if_addrlen
407  * is initialized, which may not be the case when if_attach() is
408  * called.
409  */
410 void
411 if_alloc_sadl(struct ifnet *ifp)
412 {
413 	struct ifaddr *ifa;
414 	const struct sockaddr_dl *sdl;
415 
416 	/*
417 	 * If the interface already has a link name, release it
418 	 * now.  This is useful for interfaces that can change
419 	 * link types, and thus switch link names often.
420 	 */
421 	if (ifp->if_sadl != NULL)
422 		if_free_sadl(ifp);
423 
424 	ifa = if_dl_create(ifp, &sdl);
425 
426 	ifa_insert(ifp, ifa);
427 	if_sadl_setrefs(ifp, ifa);
428 }
429 
430 static void
431 if_deactivate_sadl(struct ifnet *ifp)
432 {
433 	struct ifaddr *ifa;
434 
435 	KASSERT(ifp->if_dl != NULL);
436 
437 	ifa = ifp->if_dl;
438 
439 	ifp->if_sadl = NULL;
440 
441 	ifnet_addrs[ifp->if_index] = NULL;
442 	IFAFREE(ifa);
443 	ifp->if_dl = NULL;
444 	IFAFREE(ifa);
445 }
446 
447 void
448 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
449     const struct sockaddr_dl *sdl)
450 {
451 	int s;
452 
453 	s = splnet();
454 
455 	if_deactivate_sadl(ifp);
456 
457 	if_sadl_setrefs(ifp, ifa);
458 	IFADDR_FOREACH(ifa, ifp)
459 		rtinit(ifa, RTM_LLINFO_UPD, 0);
460 	splx(s);
461 }
462 
463 /*
464  * Free the link level name for the specified interface.  This is
465  * a detach helper.  This is called from if_detach() or from
466  * link layer type specific detach functions.
467  */
468 void
469 if_free_sadl(struct ifnet *ifp)
470 {
471 	struct ifaddr *ifa;
472 	int s;
473 
474 	ifa = ifnet_addrs[ifp->if_index];
475 	if (ifa == NULL) {
476 		KASSERT(ifp->if_sadl == NULL);
477 		KASSERT(ifp->if_dl == NULL);
478 		return;
479 	}
480 
481 	KASSERT(ifp->if_sadl != NULL);
482 	KASSERT(ifp->if_dl != NULL);
483 
484 	s = splnet();
485 	rtinit(ifa, RTM_DELETE, 0);
486 	ifa_remove(ifp, ifa);
487 	if_deactivate_sadl(ifp);
488 	if (ifp->if_hwdl == ifa) {
489 		IFAFREE(ifa);
490 		ifp->if_hwdl = NULL;
491 	}
492 	splx(s);
493 }
494 
495 /*
496  * Attach an interface to the
497  * list of "active" interfaces.
498  */
499 void
500 if_attach(struct ifnet *ifp)
501 {
502 	int indexlim = 0;
503 
504 	if (if_indexlim == 0) {
505 		TAILQ_INIT(&ifnet);
506 		if_indexlim = 8;
507 	}
508 	TAILQ_INIT(&ifp->if_addrlist);
509 	TAILQ_INSERT_TAIL(&ifnet, ifp, if_list);
510 
511 	if (ifioctl_attach(ifp) != 0)
512 		panic("%s: ifioctl_attach() failed", __func__);
513 
514 	mutex_enter(&index_gen_mtx);
515 	ifp->if_index_gen = index_gen++;
516 	mutex_exit(&index_gen_mtx);
517 
518 	ifp->if_index = if_index;
519 	if (ifindex2ifnet == NULL)
520 		if_index++;
521 	else
522 		while (ifp->if_index < if_indexlim &&
523 		    ifindex2ifnet[ifp->if_index] != NULL) {
524 			++if_index;
525 			if (if_index == 0)
526 				if_index = 1;
527 			/*
528 			 * If we hit USHRT_MAX, we skip back to 0 since
529 			 * there are a number of places where the value
530 			 * of if_index or if_index itself is compared
531 			 * to or stored in an unsigned short.  By
532 			 * jumping back, we won't botch those assignments
533 			 * or comparisons.
534 			 */
535 			else if (if_index == USHRT_MAX) {
536 				/*
537 				 * However, if we have to jump back to
538 				 * zero *twice* without finding an empty
539 				 * slot in ifindex2ifnet[], then there
540 				 * there are too many (>65535) interfaces.
541 				 */
542 				if (indexlim++)
543 					panic("too many interfaces");
544 				else
545 					if_index = 1;
546 			}
547 			ifp->if_index = if_index;
548 		}
549 
550 	/*
551 	 * We have some arrays that should be indexed by if_index.
552 	 * since if_index will grow dynamically, they should grow too.
553 	 *	struct ifadd **ifnet_addrs
554 	 *	struct ifnet **ifindex2ifnet
555 	 */
556 	if (ifnet_addrs == NULL || ifindex2ifnet == NULL ||
557 	    ifp->if_index >= if_indexlim) {
558 		size_t m, n, oldlim;
559 		void *q;
560 
561 		oldlim = if_indexlim;
562 		while (ifp->if_index >= if_indexlim)
563 			if_indexlim <<= 1;
564 
565 		/* grow ifnet_addrs */
566 		m = oldlim * sizeof(struct ifaddr *);
567 		n = if_indexlim * sizeof(struct ifaddr *);
568 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
569 		if (ifnet_addrs != NULL) {
570 			memcpy(q, ifnet_addrs, m);
571 			free(ifnet_addrs, M_IFADDR);
572 		}
573 		ifnet_addrs = (struct ifaddr **)q;
574 
575 		/* grow ifindex2ifnet */
576 		m = oldlim * sizeof(struct ifnet *);
577 		n = if_indexlim * sizeof(struct ifnet *);
578 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
579 		if (ifindex2ifnet != NULL) {
580 			memcpy(q, ifindex2ifnet, m);
581 			free(ifindex2ifnet, M_IFADDR);
582 		}
583 		ifindex2ifnet = (struct ifnet **)q;
584 	}
585 
586 	ifindex2ifnet[ifp->if_index] = ifp;
587 
588 	/*
589 	 * Link level name is allocated later by a separate call to
590 	 * if_alloc_sadl().
591 	 */
592 
593 	if (ifp->if_snd.ifq_maxlen == 0)
594 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
595 
596 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
597 
598 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
599 
600 	ifp->if_link_state = LINK_STATE_UNKNOWN;
601 
602 	ifp->if_capenable = 0;
603 	ifp->if_csum_flags_tx = 0;
604 	ifp->if_csum_flags_rx = 0;
605 
606 #ifdef ALTQ
607 	ifp->if_snd.altq_type = 0;
608 	ifp->if_snd.altq_disc = NULL;
609 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
610 	ifp->if_snd.altq_tbr  = NULL;
611 	ifp->if_snd.altq_ifp  = ifp;
612 #endif
613 
614 #ifdef PFIL_HOOKS
615 	ifp->if_pfil.ph_type = PFIL_TYPE_IFNET;
616 	ifp->if_pfil.ph_ifnet = ifp;
617 	if (pfil_head_register(&ifp->if_pfil) != 0)
618 		printf("%s: WARNING: unable to register pfil hook\n",
619 		    ifp->if_xname);
620 	(void)pfil_run_hooks(&if_pfil,
621 	    (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
622 #endif
623 
624 	if (!STAILQ_EMPTY(&domains))
625 		if_attachdomain1(ifp);
626 
627 	/* Announce the interface. */
628 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
629 }
630 
631 void
632 if_attachdomain(void)
633 {
634 	struct ifnet *ifp;
635 	int s;
636 
637 	s = splnet();
638 	IFNET_FOREACH(ifp)
639 		if_attachdomain1(ifp);
640 	splx(s);
641 }
642 
643 void
644 if_attachdomain1(struct ifnet *ifp)
645 {
646 	struct domain *dp;
647 	int s;
648 
649 	s = splnet();
650 
651 	/* address family dependent data region */
652 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
653 	DOMAIN_FOREACH(dp) {
654 		if (dp->dom_ifattach != NULL)
655 			ifp->if_afdata[dp->dom_family] =
656 			    (*dp->dom_ifattach)(ifp);
657 	}
658 
659 	splx(s);
660 }
661 
662 /*
663  * Deactivate an interface.  This points all of the procedure
664  * handles at error stubs.  May be called from interrupt context.
665  */
666 void
667 if_deactivate(struct ifnet *ifp)
668 {
669 	int s;
670 
671 	s = splnet();
672 
673 	ifp->if_output	 = if_nulloutput;
674 	ifp->if_input	 = if_nullinput;
675 	ifp->if_start	 = if_nullstart;
676 	ifp->if_ioctl	 = if_nullioctl;
677 	ifp->if_init	 = if_nullinit;
678 	ifp->if_stop	 = if_nullstop;
679 	ifp->if_watchdog = if_nullwatchdog;
680 	ifp->if_drain	 = if_nulldrain;
681 
682 	/* No more packets may be enqueued. */
683 	ifp->if_snd.ifq_maxlen = 0;
684 
685 	splx(s);
686 }
687 
688 void
689 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
690 {
691 	struct ifaddr *ifa, *nifa;
692 
693 	for (ifa = IFADDR_FIRST(ifp); ifa != NULL; ifa = nifa) {
694 		nifa = IFADDR_NEXT(ifa);
695 		if (ifa->ifa_addr->sa_family != family)
696 			continue;
697 		(*purgeaddr)(ifa);
698 	}
699 }
700 
701 /*
702  * Detach an interface from the list of "active" interfaces,
703  * freeing any resources as we go along.
704  *
705  * NOTE: This routine must be called with a valid thread context,
706  * as it may block.
707  */
708 void
709 if_detach(struct ifnet *ifp)
710 {
711 	struct socket so;
712 	struct ifaddr *ifa;
713 #ifdef IFAREF_DEBUG
714 	struct ifaddr *last_ifa = NULL;
715 #endif
716 	struct domain *dp;
717 	const struct protosw *pr;
718 	int s, i, family, purged;
719 
720 	/*
721 	 * XXX It's kind of lame that we have to have the
722 	 * XXX socket structure...
723 	 */
724 	memset(&so, 0, sizeof(so));
725 
726 	s = splnet();
727 
728 	/*
729 	 * Do an if_down() to give protocols a chance to do something.
730 	 */
731 	if_down(ifp);
732 
733 #ifdef ALTQ
734 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
735 		altq_disable(&ifp->if_snd);
736 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
737 		altq_detach(&ifp->if_snd);
738 #endif
739 
740 	sysctl_teardown(&ifp->if_sysctl_log);
741 
742 #if NCARP > 0
743 	/* Remove the interface from any carp group it is a part of.  */
744 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
745 		carp_ifdetach(ifp);
746 #endif
747 
748 	/*
749 	 * Rip all the addresses off the interface.  This should make
750 	 * all of the routes go away.
751 	 *
752 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
753 	 * from the list, including our "cursor", ifa.  For safety,
754 	 * and to honor the TAILQ abstraction, I just restart the
755 	 * loop after each removal.  Note that the loop will exit
756 	 * when all of the remaining ifaddrs belong to the AF_LINK
757 	 * family.  I am counting on the historical fact that at
758 	 * least one pr_usrreq in each address domain removes at
759 	 * least one ifaddr.
760 	 */
761 again:
762 	IFADDR_FOREACH(ifa, ifp) {
763 		family = ifa->ifa_addr->sa_family;
764 #ifdef IFAREF_DEBUG
765 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
766 		    ifa, family, ifa->ifa_refcnt);
767 		if (last_ifa != NULL && ifa == last_ifa)
768 			panic("if_detach: loop detected");
769 		last_ifa = ifa;
770 #endif
771 		if (family == AF_LINK)
772 			continue;
773 		dp = pffinddomain(family);
774 #ifdef DIAGNOSTIC
775 		if (dp == NULL)
776 			panic("if_detach: no domain for AF %d",
777 			    family);
778 #endif
779 		/*
780 		 * XXX These PURGEIF calls are redundant with the
781 		 * purge-all-families calls below, but are left in for
782 		 * now both to make a smaller change, and to avoid
783 		 * unplanned interactions with clearing of
784 		 * ifp->if_addrlist.
785 		 */
786 		purged = 0;
787 		for (pr = dp->dom_protosw;
788 		     pr < dp->dom_protoswNPROTOSW; pr++) {
789 			so.so_proto = pr;
790 			if (pr->pr_usrreq != NULL) {
791 				(void) (*pr->pr_usrreq)(&so,
792 				    PRU_PURGEIF, NULL, NULL,
793 				    (struct mbuf *) ifp, curlwp);
794 				purged = 1;
795 			}
796 		}
797 		if (purged == 0) {
798 			/*
799 			 * XXX What's really the best thing to do
800 			 * XXX here?  --thorpej@NetBSD.org
801 			 */
802 			printf("if_detach: WARNING: AF %d not purged\n",
803 			    family);
804 			ifa_remove(ifp, ifa);
805 		}
806 		goto again;
807 	}
808 
809 	if_free_sadl(ifp);
810 
811 	/* Walk the routing table looking for stragglers. */
812 	for (i = 0; i <= AF_MAX; i++) {
813 		while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
814 			continue;
815 	}
816 
817 	DOMAIN_FOREACH(dp) {
818 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
819 		{
820 			void *p = ifp->if_afdata[dp->dom_family];
821 			if (p) {
822 				ifp->if_afdata[dp->dom_family] = NULL;
823 				(*dp->dom_ifdetach)(ifp, p);
824 			}
825 		}
826 
827 		/*
828 		 * One would expect multicast memberships (INET and
829 		 * INET6) on UDP sockets to be purged by the PURGEIF
830 		 * calls above, but if all addresses were removed from
831 		 * the interface prior to destruction, the calls will
832 		 * not be made (e.g. ppp, for which pppd(8) generally
833 		 * removes addresses before destroying the interface).
834 		 * Because there is no invariant that multicast
835 		 * memberships only exist for interfaces with IPv4
836 		 * addresses, we must call PURGEIF regardless of
837 		 * addresses.  (Protocols which might store ifnet
838 		 * pointers are marked with PR_PURGEIF.)
839 		 */
840 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
841 			so.so_proto = pr;
842 			if (pr->pr_usrreq != NULL && pr->pr_flags & PR_PURGEIF)
843 				(void)(*pr->pr_usrreq)(&so, PRU_PURGEIF, NULL,
844 				    NULL, (struct mbuf *)ifp, curlwp);
845 		}
846 	}
847 
848 #ifdef PFIL_HOOKS
849 	(void)pfil_run_hooks(&if_pfil,
850 	    (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
851 	(void)pfil_head_unregister(&ifp->if_pfil);
852 #endif
853 
854 	/* Announce that the interface is gone. */
855 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
856 
857 	ifindex2ifnet[ifp->if_index] = NULL;
858 
859 	TAILQ_REMOVE(&ifnet, ifp, if_list);
860 
861 	ifioctl_detach(ifp);
862 
863 	/*
864 	 * remove packets that came from ifp, from software interrupt queues.
865 	 */
866 	DOMAIN_FOREACH(dp) {
867 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
868 			struct ifqueue *iq = dp->dom_ifqueues[i];
869 			if (iq == NULL)
870 				break;
871 			dp->dom_ifqueues[i] = NULL;
872 			if_detach_queues(ifp, iq);
873 		}
874 	}
875 
876 	splx(s);
877 }
878 
879 static void
880 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
881 {
882 	struct mbuf *m, *prev, *next;
883 
884 	prev = NULL;
885 	for (m = q->ifq_head; m != NULL; m = next) {
886 		next = m->m_nextpkt;
887 #ifdef DIAGNOSTIC
888 		if ((m->m_flags & M_PKTHDR) == 0) {
889 			prev = m;
890 			continue;
891 		}
892 #endif
893 		if (m->m_pkthdr.rcvif != ifp) {
894 			prev = m;
895 			continue;
896 		}
897 
898 		if (prev != NULL)
899 			prev->m_nextpkt = m->m_nextpkt;
900 		else
901 			q->ifq_head = m->m_nextpkt;
902 		if (q->ifq_tail == m)
903 			q->ifq_tail = prev;
904 		q->ifq_len--;
905 
906 		m->m_nextpkt = NULL;
907 		m_freem(m);
908 		IF_DROP(q);
909 	}
910 }
911 
912 /*
913  * Callback for a radix tree walk to delete all references to an
914  * ifnet.
915  */
916 static int
917 if_rt_walktree(struct rtentry *rt, void *v)
918 {
919 	struct ifnet *ifp = (struct ifnet *)v;
920 	int error;
921 
922 	if (rt->rt_ifp != ifp)
923 		return 0;
924 
925 	/* Delete the entry. */
926 	++rt->rt_refcnt;
927 	error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
928 	    rt_mask(rt), rt->rt_flags, NULL);
929 	KASSERT((rt->rt_flags & RTF_UP) == 0);
930 	rt->rt_ifp = NULL;
931 	RTFREE(rt);
932 	if (error != 0)
933 		printf("%s: warning: unable to delete rtentry @ %p, "
934 		    "error = %d\n", ifp->if_xname, rt, error);
935 	return ERESTART;
936 }
937 
938 /*
939  * Create a clone network interface.
940  */
941 int
942 if_clone_create(const char *name)
943 {
944 	struct if_clone *ifc;
945 	int unit;
946 
947 	ifc = if_clone_lookup(name, &unit);
948 	if (ifc == NULL)
949 		return EINVAL;
950 
951 	if (ifunit(name) != NULL)
952 		return EEXIST;
953 
954 	return (*ifc->ifc_create)(ifc, unit);
955 }
956 
957 /*
958  * Destroy a clone network interface.
959  */
960 int
961 if_clone_destroy(const char *name)
962 {
963 	struct if_clone *ifc;
964 	struct ifnet *ifp;
965 
966 	ifc = if_clone_lookup(name, NULL);
967 	if (ifc == NULL)
968 		return EINVAL;
969 
970 	ifp = ifunit(name);
971 	if (ifp == NULL)
972 		return ENXIO;
973 
974 	if (ifc->ifc_destroy == NULL)
975 		return EOPNOTSUPP;
976 
977 	return (*ifc->ifc_destroy)(ifp);
978 }
979 
980 /*
981  * Look up a network interface cloner.
982  */
983 static struct if_clone *
984 if_clone_lookup(const char *name, int *unitp)
985 {
986 	struct if_clone *ifc;
987 	const char *cp;
988 	char *dp, ifname[IFNAMSIZ + 3];
989 	int unit;
990 
991 	strcpy(ifname, "if_");
992 	/* separate interface name from unit */
993 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
994 	    *cp && (*cp < '0' || *cp > '9');)
995 		*dp++ = *cp++;
996 
997 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
998 		return NULL;	/* No name or unit number */
999 	*dp++ = '\0';
1000 
1001 again:
1002 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1003 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1004 			break;
1005 	}
1006 
1007 	if (ifc == NULL) {
1008 		if (*ifname == '\0' ||
1009 		    module_autoload(ifname, MODULE_CLASS_DRIVER))
1010 			return NULL;
1011 		*ifname = '\0';
1012 		goto again;
1013 	}
1014 
1015 	unit = 0;
1016 	while (cp - name < IFNAMSIZ && *cp) {
1017 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1018 			/* Bogus unit number. */
1019 			return NULL;
1020 		}
1021 		unit = (unit * 10) + (*cp++ - '0');
1022 	}
1023 
1024 	if (unitp != NULL)
1025 		*unitp = unit;
1026 	return ifc;
1027 }
1028 
1029 /*
1030  * Register a network interface cloner.
1031  */
1032 void
1033 if_clone_attach(struct if_clone *ifc)
1034 {
1035 
1036 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1037 	if_cloners_count++;
1038 }
1039 
1040 /*
1041  * Unregister a network interface cloner.
1042  */
1043 void
1044 if_clone_detach(struct if_clone *ifc)
1045 {
1046 
1047 	LIST_REMOVE(ifc, ifc_list);
1048 	if_cloners_count--;
1049 }
1050 
1051 /*
1052  * Provide list of interface cloners to userspace.
1053  */
1054 static int
1055 if_clone_list(struct if_clonereq *ifcr)
1056 {
1057 	char outbuf[IFNAMSIZ], *dst;
1058 	struct if_clone *ifc;
1059 	int count, error = 0;
1060 
1061 	ifcr->ifcr_total = if_cloners_count;
1062 	if ((dst = ifcr->ifcr_buffer) == NULL) {
1063 		/* Just asking how many there are. */
1064 		return 0;
1065 	}
1066 
1067 	if (ifcr->ifcr_count < 0)
1068 		return EINVAL;
1069 
1070 	count = (if_cloners_count < ifcr->ifcr_count) ?
1071 	    if_cloners_count : ifcr->ifcr_count;
1072 
1073 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1074 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1075 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1076 		if (outbuf[sizeof(outbuf) - 1] != '\0')
1077 			return ENAMETOOLONG;
1078 		error = copyout(outbuf, dst, sizeof(outbuf));
1079 		if (error != 0)
1080 			break;
1081 	}
1082 
1083 	return error;
1084 }
1085 
1086 void
1087 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1088 {
1089 	ifa->ifa_ifp = ifp;
1090 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1091 	IFAREF(ifa);
1092 }
1093 
1094 void
1095 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1096 {
1097 	KASSERT(ifa->ifa_ifp == ifp);
1098 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1099 	IFAFREE(ifa);
1100 }
1101 
1102 static inline int
1103 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1104 {
1105 	return sockaddr_cmp(sa1, sa2) == 0;
1106 }
1107 
1108 /*
1109  * Locate an interface based on a complete address.
1110  */
1111 /*ARGSUSED*/
1112 struct ifaddr *
1113 ifa_ifwithaddr(const struct sockaddr *addr)
1114 {
1115 	struct ifnet *ifp;
1116 	struct ifaddr *ifa;
1117 
1118 	IFNET_FOREACH(ifp) {
1119 		if (ifp->if_output == if_nulloutput)
1120 			continue;
1121 		IFADDR_FOREACH(ifa, ifp) {
1122 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1123 				continue;
1124 			if (equal(addr, ifa->ifa_addr))
1125 				return ifa;
1126 			if ((ifp->if_flags & IFF_BROADCAST) &&
1127 			    ifa->ifa_broadaddr &&
1128 			    /* IP6 doesn't have broadcast */
1129 			    ifa->ifa_broadaddr->sa_len != 0 &&
1130 			    equal(ifa->ifa_broadaddr, addr))
1131 				return ifa;
1132 		}
1133 	}
1134 	return NULL;
1135 }
1136 
1137 /*
1138  * Locate the point to point interface with a given destination address.
1139  */
1140 /*ARGSUSED*/
1141 struct ifaddr *
1142 ifa_ifwithdstaddr(const struct sockaddr *addr)
1143 {
1144 	struct ifnet *ifp;
1145 	struct ifaddr *ifa;
1146 
1147 	IFNET_FOREACH(ifp) {
1148 		if (ifp->if_output == if_nulloutput)
1149 			continue;
1150 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1151 			continue;
1152 		IFADDR_FOREACH(ifa, ifp) {
1153 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
1154 			    ifa->ifa_dstaddr == NULL)
1155 				continue;
1156 			if (equal(addr, ifa->ifa_dstaddr))
1157 				return ifa;
1158 		}
1159 	}
1160 	return NULL;
1161 }
1162 
1163 /*
1164  * Find an interface on a specific network.  If many, choice
1165  * is most specific found.
1166  */
1167 struct ifaddr *
1168 ifa_ifwithnet(const struct sockaddr *addr)
1169 {
1170 	struct ifnet *ifp;
1171 	struct ifaddr *ifa;
1172 	const struct sockaddr_dl *sdl;
1173 	struct ifaddr *ifa_maybe = 0;
1174 	u_int af = addr->sa_family;
1175 	const char *addr_data = addr->sa_data, *cplim;
1176 
1177 	if (af == AF_LINK) {
1178 		sdl = satocsdl(addr);
1179 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1180 		    ifindex2ifnet[sdl->sdl_index] &&
1181 		    ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput)
1182 			return ifnet_addrs[sdl->sdl_index];
1183 	}
1184 #ifdef NETATALK
1185 	if (af == AF_APPLETALK) {
1186 		const struct sockaddr_at *sat, *sat2;
1187 		sat = (const struct sockaddr_at *)addr;
1188 		IFNET_FOREACH(ifp) {
1189 			if (ifp->if_output == if_nulloutput)
1190 				continue;
1191 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1192 			if (ifa == NULL)
1193 				continue;
1194 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1195 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1196 				return ifa; /* exact match */
1197 			if (ifa_maybe == NULL) {
1198 				/* else keep the if with the right range */
1199 				ifa_maybe = ifa;
1200 			}
1201 		}
1202 		return ifa_maybe;
1203 	}
1204 #endif
1205 	IFNET_FOREACH(ifp) {
1206 		if (ifp->if_output == if_nulloutput)
1207 			continue;
1208 		IFADDR_FOREACH(ifa, ifp) {
1209 			const char *cp, *cp2, *cp3;
1210 
1211 			if (ifa->ifa_addr->sa_family != af ||
1212 			    ifa->ifa_netmask == NULL)
1213  next:				continue;
1214 			cp = addr_data;
1215 			cp2 = ifa->ifa_addr->sa_data;
1216 			cp3 = ifa->ifa_netmask->sa_data;
1217 			cplim = (const char *)ifa->ifa_netmask +
1218 			    ifa->ifa_netmask->sa_len;
1219 			while (cp3 < cplim) {
1220 				if ((*cp++ ^ *cp2++) & *cp3++) {
1221 					/* want to continue for() loop */
1222 					goto next;
1223 				}
1224 			}
1225 			if (ifa_maybe == NULL ||
1226 			    rn_refines((void *)ifa->ifa_netmask,
1227 			    (void *)ifa_maybe->ifa_netmask))
1228 				ifa_maybe = ifa;
1229 		}
1230 	}
1231 	return ifa_maybe;
1232 }
1233 
1234 /*
1235  * Find the interface of the addresss.
1236  */
1237 struct ifaddr *
1238 ifa_ifwithladdr(const struct sockaddr *addr)
1239 {
1240 	struct ifaddr *ia;
1241 
1242 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1243 	    (ia = ifa_ifwithnet(addr)))
1244 		return ia;
1245 	return NULL;
1246 }
1247 
1248 /*
1249  * Find an interface using a specific address family
1250  */
1251 struct ifaddr *
1252 ifa_ifwithaf(int af)
1253 {
1254 	struct ifnet *ifp;
1255 	struct ifaddr *ifa;
1256 
1257 	IFNET_FOREACH(ifp) {
1258 		if (ifp->if_output == if_nulloutput)
1259 			continue;
1260 		IFADDR_FOREACH(ifa, ifp) {
1261 			if (ifa->ifa_addr->sa_family == af)
1262 				return ifa;
1263 		}
1264 	}
1265 	return NULL;
1266 }
1267 
1268 /*
1269  * Find an interface address specific to an interface best matching
1270  * a given address.
1271  */
1272 struct ifaddr *
1273 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1274 {
1275 	struct ifaddr *ifa;
1276 	const char *cp, *cp2, *cp3;
1277 	const char *cplim;
1278 	struct ifaddr *ifa_maybe = 0;
1279 	u_int af = addr->sa_family;
1280 
1281 	if (ifp->if_output == if_nulloutput)
1282 		return NULL;
1283 
1284 	if (af >= AF_MAX)
1285 		return NULL;
1286 
1287 	IFADDR_FOREACH(ifa, ifp) {
1288 		if (ifa->ifa_addr->sa_family != af)
1289 			continue;
1290 		ifa_maybe = ifa;
1291 		if (ifa->ifa_netmask == NULL) {
1292 			if (equal(addr, ifa->ifa_addr) ||
1293 			    (ifa->ifa_dstaddr &&
1294 			     equal(addr, ifa->ifa_dstaddr)))
1295 				return ifa;
1296 			continue;
1297 		}
1298 		cp = addr->sa_data;
1299 		cp2 = ifa->ifa_addr->sa_data;
1300 		cp3 = ifa->ifa_netmask->sa_data;
1301 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1302 		for (; cp3 < cplim; cp3++) {
1303 			if ((*cp++ ^ *cp2++) & *cp3)
1304 				break;
1305 		}
1306 		if (cp3 == cplim)
1307 			return ifa;
1308 	}
1309 	return ifa_maybe;
1310 }
1311 
1312 /*
1313  * Default action when installing a route with a Link Level gateway.
1314  * Lookup an appropriate real ifa to point to.
1315  * This should be moved to /sys/net/link.c eventually.
1316  */
1317 void
1318 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1319 {
1320 	struct ifaddr *ifa;
1321 	const struct sockaddr *dst;
1322 	struct ifnet *ifp;
1323 
1324 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1325 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1326 		return;
1327 	if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1328 		rt_replace_ifa(rt, ifa);
1329 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1330 			ifa->ifa_rtrequest(cmd, rt, info);
1331 	}
1332 }
1333 
1334 /*
1335  * Handle a change in the interface link state.
1336  */
1337 void
1338 if_link_state_change(struct ifnet *ifp, int link_state)
1339 {
1340 	if (ifp->if_link_state == link_state)
1341 		return;
1342 	ifp->if_link_state = link_state;
1343 	/* Notify that the link state has changed. */
1344 	rt_ifmsg(ifp);
1345 #if NCARP > 0
1346 	if (ifp->if_carp)
1347 		carp_carpdev_state(ifp);
1348 #endif
1349 }
1350 
1351 /*
1352  * Mark an interface down and notify protocols of
1353  * the transition.
1354  * NOTE: must be called at splsoftnet or equivalent.
1355  */
1356 void
1357 if_down(struct ifnet *ifp)
1358 {
1359 	struct ifaddr *ifa;
1360 
1361 	ifp->if_flags &= ~IFF_UP;
1362 	nanotime(&ifp->if_lastchange);
1363 	IFADDR_FOREACH(ifa, ifp)
1364 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1365 	IFQ_PURGE(&ifp->if_snd);
1366 #if NCARP > 0
1367 	if (ifp->if_carp)
1368 		carp_carpdev_state(ifp);
1369 #endif
1370 	rt_ifmsg(ifp);
1371 }
1372 
1373 /*
1374  * Mark an interface up and notify protocols of
1375  * the transition.
1376  * NOTE: must be called at splsoftnet or equivalent.
1377  */
1378 void
1379 if_up(struct ifnet *ifp)
1380 {
1381 #ifdef notyet
1382 	struct ifaddr *ifa;
1383 #endif
1384 
1385 	ifp->if_flags |= IFF_UP;
1386 	nanotime(&ifp->if_lastchange);
1387 #ifdef notyet
1388 	/* this has no effect on IP, and will kill all ISO connections XXX */
1389 	IFADDR_FOREACH(ifa, ifp)
1390 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
1391 #endif
1392 #if NCARP > 0
1393 	if (ifp->if_carp)
1394 		carp_carpdev_state(ifp);
1395 #endif
1396 	rt_ifmsg(ifp);
1397 #ifdef INET6
1398 	in6_if_up(ifp);
1399 #endif
1400 }
1401 
1402 /*
1403  * Handle interface watchdog timer routines.  Called
1404  * from softclock, we decrement timers (if set) and
1405  * call the appropriate interface routine on expiration.
1406  */
1407 void
1408 if_slowtimo(void *arg)
1409 {
1410 	struct ifnet *ifp;
1411 	int s = splnet();
1412 
1413 	IFNET_FOREACH(ifp) {
1414 		if (ifp->if_timer == 0 || --ifp->if_timer)
1415 			continue;
1416 		if (ifp->if_watchdog != NULL)
1417 			(*ifp->if_watchdog)(ifp);
1418 	}
1419 	splx(s);
1420 	callout_reset(&if_slowtimo_ch, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1421 }
1422 
1423 /*
1424  * Set/clear promiscuous mode on interface ifp based on the truth value
1425  * of pswitch.  The calls are reference counted so that only the first
1426  * "on" request actually has an effect, as does the final "off" request.
1427  * Results are undefined if the "off" and "on" requests are not matched.
1428  */
1429 int
1430 ifpromisc(struct ifnet *ifp, int pswitch)
1431 {
1432 	int pcount, ret;
1433 	short nflags;
1434 
1435 	pcount = ifp->if_pcount;
1436 	if (pswitch) {
1437 		/*
1438 		 * Allow the device to be "placed" into promiscuous
1439 		 * mode even if it is not configured up.  It will
1440 		 * consult IFF_PROMISC when it is brought up.
1441 		 */
1442 		if (ifp->if_pcount++ != 0)
1443 			return 0;
1444 		nflags = ifp->if_flags | IFF_PROMISC;
1445 	} else {
1446 		if (--ifp->if_pcount > 0)
1447 			return 0;
1448 		nflags = ifp->if_flags & ~IFF_PROMISC;
1449 	}
1450 	ret = if_flags_set(ifp, nflags);
1451 	/* Restore interface state if not successful. */
1452 	if (ret != 0) {
1453 		ifp->if_pcount = pcount;
1454 	}
1455 	return ret;
1456 }
1457 
1458 /*
1459  * Map interface name to
1460  * interface structure pointer.
1461  */
1462 struct ifnet *
1463 ifunit(const char *name)
1464 {
1465 	struct ifnet *ifp;
1466 	const char *cp = name;
1467 	u_int unit = 0;
1468 	u_int i;
1469 
1470 	/*
1471 	 * If the entire name is a number, treat it as an ifindex.
1472 	 */
1473 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
1474 		unit = unit * 10 + (*cp - '0');
1475 	}
1476 
1477 	/*
1478 	 * If the number took all of the name, then it's a valid ifindex.
1479 	 */
1480 	if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
1481 		if (unit >= if_indexlim)
1482 			return NULL;
1483 		ifp = ifindex2ifnet[unit];
1484 		if (ifp == NULL || ifp->if_output == if_nulloutput)
1485 			return NULL;
1486 		return ifp;
1487 	}
1488 
1489 	IFNET_FOREACH(ifp) {
1490 		if (ifp->if_output == if_nulloutput)
1491 			continue;
1492 	 	if (strcmp(ifp->if_xname, name) == 0)
1493 			return ifp;
1494 	}
1495 	return NULL;
1496 }
1497 
1498 ifnet_t *
1499 if_byindex(u_int idx)
1500 {
1501 
1502 	return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
1503 }
1504 
1505 /* common */
1506 int
1507 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
1508 {
1509 	int s;
1510 	struct ifreq *ifr;
1511 	struct ifcapreq *ifcr;
1512 	struct ifdatareq *ifdr;
1513 
1514 	switch (cmd) {
1515 	case SIOCSIFCAP:
1516 		ifcr = data;
1517 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
1518 			return EINVAL;
1519 
1520 		if (ifcr->ifcr_capenable == ifp->if_capenable)
1521 			return 0;
1522 
1523 		ifp->if_capenable = ifcr->ifcr_capenable;
1524 
1525 		/* Pre-compute the checksum flags mask. */
1526 		ifp->if_csum_flags_tx = 0;
1527 		ifp->if_csum_flags_rx = 0;
1528 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
1529 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
1530 		}
1531 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1532 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
1533 		}
1534 
1535 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
1536 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
1537 		}
1538 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
1539 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
1540 		}
1541 
1542 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
1543 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
1544 		}
1545 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
1546 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
1547 		}
1548 
1549 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
1550 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
1551 		}
1552 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
1553 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
1554 		}
1555 
1556 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
1557 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
1558 		}
1559 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
1560 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
1561 		}
1562 		if (ifp->if_flags & IFF_UP)
1563 			return ENETRESET;
1564 		return 0;
1565 	case SIOCSIFFLAGS:
1566 		ifr = data;
1567 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
1568 			s = splnet();
1569 			if_down(ifp);
1570 			splx(s);
1571 		}
1572 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
1573 			s = splnet();
1574 			if_up(ifp);
1575 			splx(s);
1576 		}
1577 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1578 			(ifr->ifr_flags &~ IFF_CANTCHANGE);
1579 		break;
1580 	case SIOCGIFFLAGS:
1581 		ifr = data;
1582 		ifr->ifr_flags = ifp->if_flags;
1583 		break;
1584 
1585 	case SIOCGIFMETRIC:
1586 		ifr = data;
1587 		ifr->ifr_metric = ifp->if_metric;
1588 		break;
1589 
1590 	case SIOCGIFMTU:
1591 		ifr = data;
1592 		ifr->ifr_mtu = ifp->if_mtu;
1593 		break;
1594 
1595 	case SIOCGIFDLT:
1596 		ifr = data;
1597 		ifr->ifr_dlt = ifp->if_dlt;
1598 		break;
1599 
1600 	case SIOCGIFCAP:
1601 		ifcr = data;
1602 		ifcr->ifcr_capabilities = ifp->if_capabilities;
1603 		ifcr->ifcr_capenable = ifp->if_capenable;
1604 		break;
1605 
1606 	case SIOCSIFMETRIC:
1607 		ifr = data;
1608 		ifp->if_metric = ifr->ifr_metric;
1609 		break;
1610 
1611 	case SIOCGIFDATA:
1612 		ifdr = data;
1613 		ifdr->ifdr_data = ifp->if_data;
1614 		break;
1615 
1616 	case SIOCZIFDATA:
1617 		ifdr = data;
1618 		ifdr->ifdr_data = ifp->if_data;
1619 		/*
1620 		 * Assumes that the volatile counters that can be
1621 		 * zero'ed are at the end of if_data.
1622 		 */
1623 		memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
1624 		    offsetof(struct if_data, ifi_ipackets));
1625 		/*
1626 		 * The memset() clears to the bottm of if_data. In the area,
1627 		 * if_lastchange is included. Please be careful if new entry
1628 		 * will be added into if_data or rewite this.
1629 		 *
1630 		 * And also, update if_lastchnage.
1631 		 */
1632 		getnanotime(&ifp->if_lastchange);
1633 		break;
1634 	case SIOCSIFMTU:
1635 		ifr = data;
1636 		if (ifp->if_mtu == ifr->ifr_mtu)
1637 			break;
1638 		ifp->if_mtu = ifr->ifr_mtu;
1639 		/*
1640 		 * If the link MTU changed, do network layer specific procedure.
1641 		 */
1642 #ifdef INET6
1643 		nd6_setmtu(ifp);
1644 #endif
1645 		return ENETRESET;
1646 	default:
1647 		return ENOTTY;
1648 	}
1649 	return 0;
1650 }
1651 
1652 int
1653 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp,
1654     lwp_t *l)
1655 {
1656 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
1657 	struct ifaddr *ifa;
1658 	const struct sockaddr *any, *sa;
1659 	union {
1660 		struct sockaddr sa;
1661 		struct sockaddr_storage ss;
1662 	} u, v;
1663 
1664 	switch (cmd) {
1665 	case SIOCSIFADDRPREF:
1666 		if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
1667 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
1668 		    NULL) != 0)
1669 			return EPERM;
1670 	case SIOCGIFADDRPREF:
1671 		break;
1672 	default:
1673 		return EOPNOTSUPP;
1674 	}
1675 
1676 	/* sanity checks */
1677 	if (data == NULL || ifp == NULL) {
1678 		panic("invalid argument to %s", __func__);
1679 		/*NOTREACHED*/
1680 	}
1681 
1682 	/* address must be specified on ADD and DELETE */
1683 	sa = sstocsa(&ifap->ifap_addr);
1684 	if (sa->sa_family != sofamily(so))
1685 		return EINVAL;
1686 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
1687 		return EINVAL;
1688 
1689 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
1690 
1691 	IFADDR_FOREACH(ifa, ifp) {
1692 		if (ifa->ifa_addr->sa_family != sa->sa_family)
1693 			continue;
1694 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
1695 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
1696 			break;
1697 	}
1698 	if (ifa == NULL)
1699 		return EADDRNOTAVAIL;
1700 
1701 	switch (cmd) {
1702 	case SIOCSIFADDRPREF:
1703 		ifa->ifa_preference = ifap->ifap_preference;
1704 		return 0;
1705 	case SIOCGIFADDRPREF:
1706 		/* fill in the if_laddrreq structure */
1707 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
1708 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
1709 		ifap->ifap_preference = ifa->ifa_preference;
1710 		return 0;
1711 	default:
1712 		return EOPNOTSUPP;
1713 	}
1714 }
1715 
1716 static void
1717 ifnet_lock_enter(struct ifnet_lock *il)
1718 {
1719 	uint64_t *nenter;
1720 
1721 	/* Before trying to acquire the mutex, increase the count of threads
1722 	 * who have entered or who wait to enter the critical section.
1723 	 * Avoid one costly locked memory transaction by keeping a count for
1724 	 * each CPU.
1725 	 */
1726 	nenter = percpu_getref(il->il_nenter);
1727 	(*nenter)++;
1728 	percpu_putref(il->il_nenter);
1729 	mutex_enter(&il->il_lock);
1730 }
1731 
1732 static void
1733 ifnet_lock_exit(struct ifnet_lock *il)
1734 {
1735 	/* Increase the count of threads who have exited the critical
1736 	 * section.  Increase while we still hold the lock.
1737 	 */
1738 	il->il_nexit++;
1739 	mutex_exit(&il->il_lock);
1740 }
1741 
1742 /*
1743  * Interface ioctls.
1744  */
1745 int
1746 ifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
1747 {
1748 	struct ifnet *ifp;
1749 	struct ifreq *ifr;
1750 	int error = 0;
1751 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
1752 	u_long ocmd = cmd;
1753 #endif
1754 	short oif_flags;
1755 #ifdef COMPAT_OIFREQ
1756 	struct ifreq ifrb;
1757 	struct oifreq *oifr = NULL;
1758 #endif
1759 
1760 	switch (cmd) {
1761 #ifdef COMPAT_OIFREQ
1762 	case OSIOCGIFCONF:
1763 	case OOSIOCGIFCONF:
1764 		return compat_ifconf(cmd, data);
1765 #endif
1766 #ifdef COMPAT_OIFDATA
1767 	case OSIOCGIFDATA:
1768 	case OSIOCZIFDATA:
1769 		return compat_ifdatareq(l, cmd, data);
1770 #endif
1771 	case SIOCGIFCONF:
1772 		return ifconf(cmd, data);
1773 	case SIOCINITIFADDR:
1774 		return EPERM;
1775 	}
1776 
1777 #ifdef COMPAT_OIFREQ
1778 	cmd = compat_cvtcmd(cmd);
1779 	if (cmd != ocmd) {
1780 		oifr = data;
1781 		data = ifr = &ifrb;
1782 		ifreqo2n(oifr, ifr);
1783 	} else
1784 #endif
1785 		ifr = data;
1786 
1787 	ifp = ifunit(ifr->ifr_name);
1788 
1789 	switch (cmd) {
1790 	case SIOCIFCREATE:
1791 	case SIOCIFDESTROY:
1792 		if (l != NULL) {
1793 			error = kauth_authorize_network(l->l_cred,
1794 			    KAUTH_NETWORK_INTERFACE,
1795 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1796 			    (void *)cmd, NULL);
1797 			if (error != 0)
1798 				return error;
1799 		}
1800 		return (cmd == SIOCIFCREATE) ?
1801 			if_clone_create(ifr->ifr_name) :
1802 			if_clone_destroy(ifr->ifr_name);
1803 
1804 	case SIOCIFGCLONERS:
1805 		return if_clone_list((struct if_clonereq *)data);
1806 	}
1807 
1808 	if (ifp == NULL)
1809 		return ENXIO;
1810 
1811 	switch (cmd) {
1812 	case SIOCALIFADDR:
1813 	case SIOCDLIFADDR:
1814 	case SIOCSIFADDRPREF:
1815 	case SIOCSIFFLAGS:
1816 	case SIOCSIFCAP:
1817 	case SIOCSIFMETRIC:
1818 	case SIOCZIFDATA:
1819 	case SIOCSIFMTU:
1820 	case SIOCSIFPHYADDR:
1821 	case SIOCDIFPHYADDR:
1822 #ifdef INET6
1823 	case SIOCSIFPHYADDR_IN6:
1824 #endif
1825 	case SIOCSLIFPHYADDR:
1826 	case SIOCADDMULTI:
1827 	case SIOCDELMULTI:
1828 	case SIOCSIFMEDIA:
1829 	case SIOCSDRVSPEC:
1830 	case SIOCG80211:
1831 	case SIOCS80211:
1832 	case SIOCS80211NWID:
1833 	case SIOCS80211NWKEY:
1834 	case SIOCS80211POWER:
1835 	case SIOCS80211BSSID:
1836 	case SIOCS80211CHANNEL:
1837 	case SIOCSLINKSTR:
1838 		if (l != NULL) {
1839 			error = kauth_authorize_network(l->l_cred,
1840 			    KAUTH_NETWORK_INTERFACE,
1841 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
1842 			    (void *)cmd, NULL);
1843 			if (error != 0)
1844 				return error;
1845 		}
1846 	}
1847 
1848 	oif_flags = ifp->if_flags;
1849 
1850 	ifnet_lock_enter(ifp->if_ioctl_lock);
1851 	error = (*ifp->if_ioctl)(ifp, cmd, data);
1852 	if (error != ENOTTY)
1853 		;
1854 	else if (so->so_proto == NULL)
1855 		error = EOPNOTSUPP;
1856 	else {
1857 #ifdef COMPAT_OSOCK
1858 		error = compat_ifioctl(so, ocmd, cmd, data, l);
1859 #else
1860 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONTROL,
1861 		    (struct mbuf *)cmd, (struct mbuf *)data,
1862 		    (struct mbuf *)ifp, l);
1863 #endif
1864 	}
1865 
1866 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
1867 #ifdef INET6
1868 		if ((ifp->if_flags & IFF_UP) != 0) {
1869 			int s = splnet();
1870 			in6_if_up(ifp);
1871 			splx(s);
1872 		}
1873 #endif
1874 	}
1875 #ifdef COMPAT_OIFREQ
1876 	if (cmd != ocmd)
1877 		ifreqn2o(oifr, ifr);
1878 #endif
1879 
1880 	ifnet_lock_exit(ifp->if_ioctl_lock);
1881 	return error;
1882 }
1883 
1884 /* This callback adds to the sum in `arg' the number of
1885  * threads on `ci' who have entered or who wait to enter the
1886  * critical section.
1887  */
1888 static void
1889 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci)
1890 {
1891 	uint64_t *sum = arg, *nenter = p;
1892 
1893 	*sum += *nenter;
1894 }
1895 
1896 /* Return the number of threads who have entered or who wait
1897  * to enter the critical section on all CPUs.
1898  */
1899 static uint64_t
1900 ifnet_lock_entrances(struct ifnet_lock *il)
1901 {
1902 	uint64_t sum = 0;
1903 
1904 	percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum);
1905 
1906 	return sum;
1907 }
1908 
1909 static int
1910 ifioctl_attach(struct ifnet *ifp)
1911 {
1912 	struct ifnet_lock *il;
1913 
1914 	/* If the driver has not supplied its own if_ioctl, then
1915 	 * supply the default.
1916 	 */
1917 	if (ifp->if_ioctl == NULL)
1918 		ifp->if_ioctl = ifioctl_common;
1919 
1920 	/* Create an ifnet_lock for synchronizing ifioctls. */
1921 	if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL)
1922 		return ENOMEM;
1923 
1924 	il->il_nenter = percpu_alloc(sizeof(uint64_t));
1925 	if (il->il_nenter == NULL) {
1926 		kmem_free(il, sizeof(*il));
1927 		return ENOMEM;
1928 	}
1929 
1930 	mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE);
1931 	cv_init(&il->il_emptied, ifp->if_xname);
1932 
1933 	ifp->if_ioctl_lock = il;
1934 
1935 	return 0;
1936 }
1937 
1938 /*
1939  * This must not be called until after `ifp' has been withdrawn from the
1940  * ifnet tables so that ifioctl() cannot get a handle on it by calling
1941  * ifunit().
1942  */
1943 static void
1944 ifioctl_detach(struct ifnet *ifp)
1945 {
1946 	struct ifnet_lock *il;
1947 
1948 	il = ifp->if_ioctl_lock;
1949 	mutex_enter(&il->il_lock);
1950 	/* Install if_nullioctl to make sure that any thread that
1951 	 * subsequently enters the critical section will quit it
1952 	 * immediately and signal the condition variable that we
1953 	 * wait on, below.
1954 	 */
1955 	ifp->if_ioctl = if_nullioctl;
1956 	/* Sleep while threads are still in the critical section or
1957 	 * wait to enter it.
1958 	 */
1959 	while (ifnet_lock_entrances(il) != il->il_nexit)
1960 		cv_wait(&il->il_emptied, &il->il_lock);
1961 	/* At this point, we are the only thread still in the critical
1962 	 * section, and no new thread can get a handle on the ifioctl
1963 	 * lock, so it is safe to free its memory.
1964 	 */
1965 	mutex_exit(&il->il_lock);
1966 	ifp->if_ioctl_lock = NULL;
1967 	percpu_free(il->il_nenter, sizeof(uint64_t));
1968 	il->il_nenter = NULL;
1969 	cv_destroy(&il->il_emptied);
1970 	mutex_destroy(&il->il_lock);
1971 	kmem_free(il, sizeof(*il));
1972 }
1973 
1974 /*
1975  * Return interface configuration
1976  * of system.  List may be used
1977  * in later ioctl's (above) to get
1978  * other information.
1979  *
1980  * Each record is a struct ifreq.  Before the addition of
1981  * sockaddr_storage, the API rule was that sockaddr flavors that did
1982  * not fit would extend beyond the struct ifreq, with the next struct
1983  * ifreq starting sa_len beyond the struct sockaddr.  Because the
1984  * union in struct ifreq includes struct sockaddr_storage, every kind
1985  * of sockaddr must fit.  Thus, there are no longer any overlength
1986  * records.
1987  *
1988  * Records are added to the user buffer if they fit, and ifc_len is
1989  * adjusted to the length that was written.  Thus, the user is only
1990  * assured of getting the complete list if ifc_len on return is at
1991  * least sizeof(struct ifreq) less than it was on entry.
1992  *
1993  * If the user buffer pointer is NULL, this routine copies no data and
1994  * returns the amount of space that would be needed.
1995  *
1996  * Invariants:
1997  * ifrp points to the next part of the user's buffer to be used.  If
1998  * ifrp != NULL, space holds the number of bytes remaining that we may
1999  * write at ifrp.  Otherwise, space holds the number of bytes that
2000  * would have been written had there been adequate space.
2001  */
2002 /*ARGSUSED*/
2003 int
2004 ifconf(u_long cmd, void *data)
2005 {
2006 	struct ifconf *ifc = (struct ifconf *)data;
2007 	struct ifnet *ifp;
2008 	struct ifaddr *ifa;
2009 	struct ifreq ifr, *ifrp;
2010 	int space, error = 0;
2011 	const int sz = (int)sizeof(struct ifreq);
2012 
2013 	if ((ifrp = ifc->ifc_req) == NULL)
2014 		space = 0;
2015 	else
2016 		space = ifc->ifc_len;
2017 	IFNET_FOREACH(ifp) {
2018 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
2019 		    sizeof(ifr.ifr_name));
2020 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0')
2021 			return ENAMETOOLONG;
2022 		if (IFADDR_EMPTY(ifp)) {
2023 			/* Interface with no addresses - send zero sockaddr. */
2024 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2025 			if (ifrp == NULL) {
2026 				space += sz;
2027 				continue;
2028 			}
2029 			if (space >= sz) {
2030 				error = copyout(&ifr, ifrp, sz);
2031 				if (error != 0)
2032 					return error;
2033 				ifrp++;
2034 				space -= sz;
2035 			}
2036 		}
2037 
2038 		IFADDR_FOREACH(ifa, ifp) {
2039 			struct sockaddr *sa = ifa->ifa_addr;
2040 			/* all sockaddrs must fit in sockaddr_storage */
2041 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2042 
2043 			if (ifrp == NULL) {
2044 				space += sz;
2045 				continue;
2046 			}
2047 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
2048 			if (space >= sz) {
2049 				error = copyout(&ifr, ifrp, sz);
2050 				if (error != 0)
2051 					return (error);
2052 				ifrp++; space -= sz;
2053 			}
2054 		}
2055 	}
2056 	if (ifrp != NULL) {
2057 		KASSERT(0 <= space && space <= ifc->ifc_len);
2058 		ifc->ifc_len -= space;
2059 	} else {
2060 		KASSERT(space >= 0);
2061 		ifc->ifc_len = space;
2062 	}
2063 	return (0);
2064 }
2065 
2066 int
2067 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2068 {
2069 	uint8_t len;
2070 #ifdef COMPAT_OIFREQ
2071 	struct ifreq ifrb;
2072 	struct oifreq *oifr = NULL;
2073 	u_long ocmd = cmd;
2074 	cmd = compat_cvtcmd(cmd);
2075 	if (cmd != ocmd) {
2076 		oifr = (struct oifreq *)(void *)ifr;
2077 		ifr = &ifrb;
2078 		ifreqo2n(oifr, ifr);
2079 		len = sizeof(oifr->ifr_addr);
2080 	} else
2081 #endif
2082 		len = sizeof(ifr->ifr_ifru.ifru_space);
2083 
2084 	if (len < sa->sa_len)
2085 		return EFBIG;
2086 
2087 	memset(&ifr->ifr_addr, 0, len);
2088 	sockaddr_copy(&ifr->ifr_addr, len, sa);
2089 
2090 #ifdef COMPAT_OIFREQ
2091 	if (cmd != ocmd)
2092 		ifreqn2o(oifr, ifr);
2093 #endif
2094 	return 0;
2095 }
2096 
2097 /*
2098  * Queue message on interface, and start output if interface
2099  * not yet active.
2100  */
2101 int
2102 ifq_enqueue(struct ifnet *ifp, struct mbuf *m
2103     ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2104 {
2105 	int len = m->m_pkthdr.len;
2106 	int mflags = m->m_flags;
2107 	int s = splnet();
2108 	int error;
2109 
2110 	IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2111 	if (error != 0)
2112 		goto out;
2113 	ifp->if_obytes += len;
2114 	if (mflags & M_MCAST)
2115 		ifp->if_omcasts++;
2116 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
2117 		(*ifp->if_start)(ifp);
2118 out:
2119 	splx(s);
2120 	return error;
2121 }
2122 
2123 /*
2124  * Queue message on interface, possibly using a second fast queue
2125  */
2126 int
2127 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m
2128     ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr))
2129 {
2130 	int error = 0;
2131 
2132 	if (ifq != NULL
2133 #ifdef ALTQ
2134 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2135 #endif
2136 	    ) {
2137 		if (IF_QFULL(ifq)) {
2138 			IF_DROP(&ifp->if_snd);
2139 			m_freem(m);
2140 			if (error == 0)
2141 				error = ENOBUFS;
2142 		} else
2143 			IF_ENQUEUE(ifq, m);
2144 	} else
2145 		IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error);
2146 	if (error != 0) {
2147 		++ifp->if_oerrors;
2148 		return error;
2149 	}
2150 	return 0;
2151 }
2152 
2153 int
2154 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2155 {
2156 	int rc;
2157 
2158 	if (ifp->if_initaddr != NULL)
2159 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
2160 	else if (src ||
2161 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2162 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2163 
2164 	return rc;
2165 }
2166 
2167 int
2168 if_flags_set(ifnet_t *ifp, const short flags)
2169 {
2170 	int rc;
2171 
2172 	if (ifp->if_setflags != NULL)
2173 		rc = (*ifp->if_setflags)(ifp, flags);
2174 	else {
2175 		short cantflags, chgdflags;
2176 		struct ifreq ifr;
2177 
2178 		chgdflags = ifp->if_flags ^ flags;
2179 		cantflags = chgdflags & IFF_CANTCHANGE;
2180 
2181 		if (cantflags != 0)
2182 			ifp->if_flags ^= cantflags;
2183 
2184                 /* Traditionally, we do not call if_ioctl after
2185                  * setting/clearing only IFF_PROMISC if the interface
2186                  * isn't IFF_UP.  Uphold that tradition.
2187 		 */
2188 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
2189 			return 0;
2190 
2191 		memset(&ifr, 0, sizeof(ifr));
2192 
2193 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
2194 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
2195 
2196 		if (rc != 0 && cantflags != 0)
2197 			ifp->if_flags ^= cantflags;
2198 	}
2199 
2200 	return rc;
2201 }
2202 
2203 int
2204 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
2205 {
2206 	int rc;
2207 	struct ifreq ifr;
2208 
2209 	if (ifp->if_mcastop != NULL)
2210 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
2211 	else {
2212 		ifreq_setaddr(cmd, &ifr, sa);
2213 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
2214 	}
2215 
2216 	return rc;
2217 }
2218 
2219 static void
2220 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
2221     struct ifaltq *ifq)
2222 {
2223 	const struct sysctlnode *cnode, *rnode;
2224 
2225 	if (sysctl_createv(clog, 0, NULL, &rnode,
2226 		       CTLFLAG_PERMANENT,
2227 		       CTLTYPE_NODE, "net", NULL,
2228 		       NULL, 0, NULL, 0,
2229 		       CTL_NET, CTL_EOL) != 0)
2230 		goto bad;
2231 
2232 	if (sysctl_createv(clog, 0, &rnode, &rnode,
2233 		       CTLFLAG_PERMANENT,
2234 		       CTLTYPE_NODE, "interfaces",
2235 		       SYSCTL_DESCR("Per-interface controls"),
2236 		       NULL, 0, NULL, 0,
2237 		       CTL_CREATE, CTL_EOL) != 0)
2238 		goto bad;
2239 
2240 	if (sysctl_createv(clog, 0, &rnode, &rnode,
2241 		       CTLFLAG_PERMANENT,
2242 		       CTLTYPE_NODE, ifname,
2243 		       SYSCTL_DESCR("Interface controls"),
2244 		       NULL, 0, NULL, 0,
2245 		       CTL_CREATE, CTL_EOL) != 0)
2246 		goto bad;
2247 
2248 	if (sysctl_createv(clog, 0, &rnode, &rnode,
2249 		       CTLFLAG_PERMANENT,
2250 		       CTLTYPE_NODE, "sndq",
2251 		       SYSCTL_DESCR("Interface output queue controls"),
2252 		       NULL, 0, NULL, 0,
2253 		       CTL_CREATE, CTL_EOL) != 0)
2254 		goto bad;
2255 
2256 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2257 		       CTLFLAG_PERMANENT,
2258 		       CTLTYPE_INT, "len",
2259 		       SYSCTL_DESCR("Current output queue length"),
2260 		       NULL, 0, &ifq->ifq_len, 0,
2261 		       CTL_CREATE, CTL_EOL) != 0)
2262 		goto bad;
2263 
2264 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2265 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2266 		       CTLTYPE_INT, "maxlen",
2267 		       SYSCTL_DESCR("Maximum allowed output queue length"),
2268 		       NULL, 0, &ifq->ifq_maxlen, 0,
2269 		       CTL_CREATE, CTL_EOL) != 0)
2270 		goto bad;
2271 
2272 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2273 		       CTLFLAG_PERMANENT,
2274 		       CTLTYPE_INT, "drops",
2275 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
2276 		       NULL, 0, &ifq->ifq_drops, 0,
2277 		       CTL_CREATE, CTL_EOL) != 0)
2278 		goto bad;
2279 
2280 	return;
2281 bad:
2282 	printf("%s: could not attach sysctl nodes\n", ifname);
2283 	return;
2284 }
2285 
2286 #if defined(INET) || defined(INET6)
2287 static void
2288 sysctl_net_ifq_setup(struct sysctllog **clog,
2289 		     int pf, const char *pfname,
2290 		     int ipn, const char *ipname,
2291 		     int qid, struct ifqueue *ifq)
2292 {
2293 
2294 	sysctl_createv(clog, 0, NULL, NULL,
2295 		       CTLFLAG_PERMANENT,
2296 		       CTLTYPE_NODE, "net", NULL,
2297 		       NULL, 0, NULL, 0,
2298 		       CTL_NET, CTL_EOL);
2299 	sysctl_createv(clog, 0, NULL, NULL,
2300 		       CTLFLAG_PERMANENT,
2301 		       CTLTYPE_NODE, pfname, NULL,
2302 		       NULL, 0, NULL, 0,
2303 		       CTL_NET, pf, CTL_EOL);
2304 	sysctl_createv(clog, 0, NULL, NULL,
2305 		       CTLFLAG_PERMANENT,
2306 		       CTLTYPE_NODE, ipname, NULL,
2307 		       NULL, 0, NULL, 0,
2308 		       CTL_NET, pf, ipn, CTL_EOL);
2309 	sysctl_createv(clog, 0, NULL, NULL,
2310 		       CTLFLAG_PERMANENT,
2311 		       CTLTYPE_NODE, "ifq",
2312 		       SYSCTL_DESCR("Protocol input queue controls"),
2313 		       NULL, 0, NULL, 0,
2314 		       CTL_NET, pf, ipn, qid, CTL_EOL);
2315 
2316 	sysctl_createv(clog, 0, NULL, NULL,
2317 		       CTLFLAG_PERMANENT,
2318 		       CTLTYPE_INT, "len",
2319 		       SYSCTL_DESCR("Current input queue length"),
2320 		       NULL, 0, &ifq->ifq_len, 0,
2321 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
2322 	sysctl_createv(clog, 0, NULL, NULL,
2323 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2324 		       CTLTYPE_INT, "maxlen",
2325 		       SYSCTL_DESCR("Maximum allowed input queue length"),
2326 		       NULL, 0, &ifq->ifq_maxlen, 0,
2327 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
2328 #ifdef notyet
2329 	sysctl_createv(clog, 0, NULL, NULL,
2330 		       CTLFLAG_PERMANENT,
2331 		       CTLTYPE_INT, "peak",
2332 		       SYSCTL_DESCR("Highest input queue length"),
2333 		       NULL, 0, &ifq->ifq_peak, 0,
2334 		       CTL_NET, pf, ipn, qid, IFQCTL_PEAK, CTL_EOL);
2335 #endif
2336 	sysctl_createv(clog, 0, NULL, NULL,
2337 		       CTLFLAG_PERMANENT,
2338 		       CTLTYPE_INT, "drops",
2339 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
2340 		       NULL, 0, &ifq->ifq_drops, 0,
2341 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
2342 }
2343 #endif /* INET || INET6 */
2344