1 /* $NetBSD: if.c,v 1.265 2013/06/29 21:06:58 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.265 2013/06/29 21:06:58 rmind Exp $"); 94 95 #include "opt_inet.h" 96 97 #include "opt_atalk.h" 98 #include "opt_natm.h" 99 100 #include <sys/param.h> 101 #include <sys/mbuf.h> 102 #include <sys/systm.h> 103 #include <sys/callout.h> 104 #include <sys/proc.h> 105 #include <sys/socket.h> 106 #include <sys/socketvar.h> 107 #include <sys/domain.h> 108 #include <sys/protosw.h> 109 #include <sys/kernel.h> 110 #include <sys/ioctl.h> 111 #include <sys/sysctl.h> 112 #include <sys/syslog.h> 113 #include <sys/kauth.h> 114 #include <sys/kmem.h> 115 116 #include <net/if.h> 117 #include <net/if_dl.h> 118 #include <net/if_ether.h> 119 #include <net/if_media.h> 120 #include <net80211/ieee80211.h> 121 #include <net80211/ieee80211_ioctl.h> 122 #include <net/if_types.h> 123 #include <net/radix.h> 124 #include <net/route.h> 125 #include <net/netisr.h> 126 #include <sys/module.h> 127 #ifdef NETATALK 128 #include <netatalk/at_extern.h> 129 #include <netatalk/at.h> 130 #endif 131 #include <net/pfil.h> 132 133 #ifdef INET6 134 #include <netinet/in.h> 135 #include <netinet6/in6_var.h> 136 #include <netinet6/nd6.h> 137 #endif 138 139 #include "carp.h" 140 #if NCARP > 0 141 #include <netinet/ip_carp.h> 142 #endif 143 144 #include <compat/sys/sockio.h> 145 #include <compat/sys/socket.h> 146 147 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 148 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 149 150 int ifqmaxlen = IFQ_MAXLEN; 151 callout_t if_slowtimo_ch; 152 153 int netisr; /* scheduling bits for network */ 154 155 static int if_rt_walktree(struct rtentry *, void *); 156 157 static struct if_clone *if_clone_lookup(const char *, int *); 158 static int if_clone_list(struct if_clonereq *); 159 160 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 161 static int if_cloners_count; 162 163 static uint64_t index_gen; 164 static kmutex_t index_gen_mtx; 165 166 /* Packet filtering hook for interfaces. */ 167 pfil_head_t * if_pfil; 168 169 static kauth_listener_t if_listener; 170 171 static int ifioctl_attach(struct ifnet *); 172 static void ifioctl_detach(struct ifnet *); 173 static void ifnet_lock_enter(struct ifnet_lock *); 174 static void ifnet_lock_exit(struct ifnet_lock *); 175 static void if_detach_queues(struct ifnet *, struct ifqueue *); 176 static void sysctl_sndq_setup(struct sysctllog **, const char *, 177 struct ifaltq *); 178 179 #if defined(INET) || defined(INET6) 180 static void sysctl_net_ifq_setup(struct sysctllog **, int, const char *, 181 int, const char *, int, struct ifqueue *); 182 #endif 183 184 static int 185 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 186 void *arg0, void *arg1, void *arg2, void *arg3) 187 { 188 int result; 189 enum kauth_network_req req; 190 191 result = KAUTH_RESULT_DEFER; 192 req = (enum kauth_network_req)arg1; 193 194 if (action != KAUTH_NETWORK_INTERFACE) 195 return result; 196 197 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 198 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 199 result = KAUTH_RESULT_ALLOW; 200 201 return result; 202 } 203 204 /* 205 * Network interface utility routines. 206 * 207 * Routines with ifa_ifwith* names take sockaddr *'s as 208 * parameters. 209 */ 210 void 211 ifinit(void) 212 { 213 #ifdef INET 214 {extern struct ifqueue ipintrq; 215 sysctl_net_ifq_setup(NULL, PF_INET, "inet", IPPROTO_IP, "ip", 216 IPCTL_IFQ, &ipintrq);} 217 #endif /* INET */ 218 #ifdef INET6 219 {extern struct ifqueue ip6intrq; 220 sysctl_net_ifq_setup(NULL, PF_INET6, "inet6", IPPROTO_IPV6, "ip6", 221 IPV6CTL_IFQ, &ip6intrq);} 222 #endif /* INET6 */ 223 224 callout_init(&if_slowtimo_ch, 0); 225 if_slowtimo(NULL); 226 227 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 228 if_listener_cb, NULL); 229 } 230 231 /* 232 * XXX Initialization before configure(). 233 * XXX hack to get pfil_add_hook working in autoconf. 234 */ 235 void 236 ifinit1(void) 237 { 238 mutex_init(&index_gen_mtx, MUTEX_DEFAULT, IPL_NONE); 239 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 240 KASSERT(if_pfil != NULL); 241 } 242 243 struct ifnet * 244 if_alloc(u_char type) 245 { 246 return malloc(sizeof(struct ifnet), M_DEVBUF, M_WAITOK|M_ZERO); 247 } 248 249 void 250 if_free(struct ifnet *ifp) 251 { 252 free(ifp, M_DEVBUF); 253 } 254 255 void 256 if_initname(struct ifnet *ifp, const char *name, int unit) 257 { 258 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 259 "%s%d", name, unit); 260 } 261 262 /* 263 * Null routines used while an interface is going away. These routines 264 * just return an error. 265 */ 266 267 int 268 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 269 const struct sockaddr *so, struct rtentry *rt) 270 { 271 272 return ENXIO; 273 } 274 275 void 276 if_nullinput(struct ifnet *ifp, struct mbuf *m) 277 { 278 279 /* Nothing. */ 280 } 281 282 void 283 if_nullstart(struct ifnet *ifp) 284 { 285 286 /* Nothing. */ 287 } 288 289 int 290 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 291 { 292 293 /* Wake ifioctl_detach(), who may wait for all threads to 294 * quit the critical section. 295 */ 296 cv_signal(&ifp->if_ioctl_lock->il_emptied); 297 return ENXIO; 298 } 299 300 int 301 if_nullinit(struct ifnet *ifp) 302 { 303 304 return ENXIO; 305 } 306 307 void 308 if_nullstop(struct ifnet *ifp, int disable) 309 { 310 311 /* Nothing. */ 312 } 313 314 void 315 if_nullwatchdog(struct ifnet *ifp) 316 { 317 318 /* Nothing. */ 319 } 320 321 void 322 if_nulldrain(struct ifnet *ifp) 323 { 324 325 /* Nothing. */ 326 } 327 328 static u_int if_index = 1; 329 struct ifnet_head ifnet; 330 size_t if_indexlim = 0; 331 struct ifaddr **ifnet_addrs = NULL; 332 struct ifnet **ifindex2ifnet = NULL; 333 struct ifnet *lo0ifp; 334 335 void 336 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 337 { 338 struct ifaddr *ifa; 339 struct sockaddr_dl *sdl; 340 341 ifp->if_addrlen = addrlen; 342 if_alloc_sadl(ifp); 343 ifa = ifp->if_dl; 344 sdl = satosdl(ifa->ifa_addr); 345 346 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 347 if (factory) { 348 ifp->if_hwdl = ifp->if_dl; 349 IFAREF(ifp->if_hwdl); 350 } 351 /* TBD routing socket */ 352 } 353 354 struct ifaddr * 355 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 356 { 357 unsigned socksize, ifasize; 358 int addrlen, namelen; 359 struct sockaddr_dl *mask, *sdl; 360 struct ifaddr *ifa; 361 362 namelen = strlen(ifp->if_xname); 363 addrlen = ifp->if_addrlen; 364 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 365 ifasize = sizeof(*ifa) + 2 * socksize; 366 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO); 367 368 sdl = (struct sockaddr_dl *)(ifa + 1); 369 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 370 371 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 372 ifp->if_xname, namelen, NULL, addrlen); 373 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 374 memset(&mask->sdl_data[0], 0xff, namelen); 375 ifa->ifa_rtrequest = link_rtrequest; 376 ifa->ifa_addr = (struct sockaddr *)sdl; 377 ifa->ifa_netmask = (struct sockaddr *)mask; 378 379 *sdlp = sdl; 380 381 return ifa; 382 } 383 384 static void 385 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 386 { 387 const struct sockaddr_dl *sdl; 388 ifnet_addrs[ifp->if_index] = ifa; 389 IFAREF(ifa); 390 ifp->if_dl = ifa; 391 IFAREF(ifa); 392 sdl = satosdl(ifa->ifa_addr); 393 ifp->if_sadl = sdl; 394 } 395 396 /* 397 * Allocate the link level name for the specified interface. This 398 * is an attachment helper. It must be called after ifp->if_addrlen 399 * is initialized, which may not be the case when if_attach() is 400 * called. 401 */ 402 void 403 if_alloc_sadl(struct ifnet *ifp) 404 { 405 struct ifaddr *ifa; 406 const struct sockaddr_dl *sdl; 407 408 /* 409 * If the interface already has a link name, release it 410 * now. This is useful for interfaces that can change 411 * link types, and thus switch link names often. 412 */ 413 if (ifp->if_sadl != NULL) 414 if_free_sadl(ifp); 415 416 ifa = if_dl_create(ifp, &sdl); 417 418 ifa_insert(ifp, ifa); 419 if_sadl_setrefs(ifp, ifa); 420 } 421 422 static void 423 if_deactivate_sadl(struct ifnet *ifp) 424 { 425 struct ifaddr *ifa; 426 427 KASSERT(ifp->if_dl != NULL); 428 429 ifa = ifp->if_dl; 430 431 ifp->if_sadl = NULL; 432 433 ifnet_addrs[ifp->if_index] = NULL; 434 IFAFREE(ifa); 435 ifp->if_dl = NULL; 436 IFAFREE(ifa); 437 } 438 439 void 440 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa, 441 const struct sockaddr_dl *sdl) 442 { 443 int s; 444 445 s = splnet(); 446 447 if_deactivate_sadl(ifp); 448 449 if_sadl_setrefs(ifp, ifa); 450 IFADDR_FOREACH(ifa, ifp) 451 rtinit(ifa, RTM_LLINFO_UPD, 0); 452 splx(s); 453 } 454 455 /* 456 * Free the link level name for the specified interface. This is 457 * a detach helper. This is called from if_detach() or from 458 * link layer type specific detach functions. 459 */ 460 void 461 if_free_sadl(struct ifnet *ifp) 462 { 463 struct ifaddr *ifa; 464 int s; 465 466 ifa = ifnet_addrs[ifp->if_index]; 467 if (ifa == NULL) { 468 KASSERT(ifp->if_sadl == NULL); 469 KASSERT(ifp->if_dl == NULL); 470 return; 471 } 472 473 KASSERT(ifp->if_sadl != NULL); 474 KASSERT(ifp->if_dl != NULL); 475 476 s = splnet(); 477 rtinit(ifa, RTM_DELETE, 0); 478 ifa_remove(ifp, ifa); 479 if_deactivate_sadl(ifp); 480 if (ifp->if_hwdl == ifa) { 481 IFAFREE(ifa); 482 ifp->if_hwdl = NULL; 483 } 484 splx(s); 485 } 486 487 /* 488 * Attach an interface to the 489 * list of "active" interfaces. 490 */ 491 void 492 if_attach(struct ifnet *ifp) 493 { 494 int indexlim = 0; 495 496 if (if_indexlim == 0) { 497 TAILQ_INIT(&ifnet); 498 if_indexlim = 8; 499 } 500 TAILQ_INIT(&ifp->if_addrlist); 501 TAILQ_INSERT_TAIL(&ifnet, ifp, if_list); 502 503 if (ifioctl_attach(ifp) != 0) 504 panic("%s: ifioctl_attach() failed", __func__); 505 506 mutex_enter(&index_gen_mtx); 507 ifp->if_index_gen = index_gen++; 508 mutex_exit(&index_gen_mtx); 509 510 ifp->if_index = if_index; 511 if (ifindex2ifnet == NULL) 512 if_index++; 513 else 514 while (ifp->if_index < if_indexlim && 515 ifindex2ifnet[ifp->if_index] != NULL) { 516 ++if_index; 517 if (if_index == 0) 518 if_index = 1; 519 /* 520 * If we hit USHRT_MAX, we skip back to 0 since 521 * there are a number of places where the value 522 * of if_index or if_index itself is compared 523 * to or stored in an unsigned short. By 524 * jumping back, we won't botch those assignments 525 * or comparisons. 526 */ 527 else if (if_index == USHRT_MAX) { 528 /* 529 * However, if we have to jump back to 530 * zero *twice* without finding an empty 531 * slot in ifindex2ifnet[], then there 532 * there are too many (>65535) interfaces. 533 */ 534 if (indexlim++) 535 panic("too many interfaces"); 536 else 537 if_index = 1; 538 } 539 ifp->if_index = if_index; 540 } 541 542 /* 543 * We have some arrays that should be indexed by if_index. 544 * since if_index will grow dynamically, they should grow too. 545 * struct ifadd **ifnet_addrs 546 * struct ifnet **ifindex2ifnet 547 */ 548 if (ifnet_addrs == NULL || ifindex2ifnet == NULL || 549 ifp->if_index >= if_indexlim) { 550 size_t m, n, oldlim; 551 void *q; 552 553 oldlim = if_indexlim; 554 while (ifp->if_index >= if_indexlim) 555 if_indexlim <<= 1; 556 557 /* grow ifnet_addrs */ 558 m = oldlim * sizeof(struct ifaddr *); 559 n = if_indexlim * sizeof(struct ifaddr *); 560 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); 561 if (ifnet_addrs != NULL) { 562 memcpy(q, ifnet_addrs, m); 563 free(ifnet_addrs, M_IFADDR); 564 } 565 ifnet_addrs = (struct ifaddr **)q; 566 567 /* grow ifindex2ifnet */ 568 m = oldlim * sizeof(struct ifnet *); 569 n = if_indexlim * sizeof(struct ifnet *); 570 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); 571 if (ifindex2ifnet != NULL) { 572 memcpy(q, ifindex2ifnet, m); 573 free(ifindex2ifnet, M_IFADDR); 574 } 575 ifindex2ifnet = (struct ifnet **)q; 576 } 577 578 ifindex2ifnet[ifp->if_index] = ifp; 579 580 /* 581 * Link level name is allocated later by a separate call to 582 * if_alloc_sadl(). 583 */ 584 585 if (ifp->if_snd.ifq_maxlen == 0) 586 ifp->if_snd.ifq_maxlen = ifqmaxlen; 587 588 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 589 590 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 591 592 ifp->if_link_state = LINK_STATE_UNKNOWN; 593 594 ifp->if_capenable = 0; 595 ifp->if_csum_flags_tx = 0; 596 ifp->if_csum_flags_rx = 0; 597 598 #ifdef ALTQ 599 ifp->if_snd.altq_type = 0; 600 ifp->if_snd.altq_disc = NULL; 601 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 602 ifp->if_snd.altq_tbr = NULL; 603 ifp->if_snd.altq_ifp = ifp; 604 #endif 605 606 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 607 (void)pfil_run_hooks(if_pfil, 608 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET); 609 610 if (!STAILQ_EMPTY(&domains)) 611 if_attachdomain1(ifp); 612 613 /* Announce the interface. */ 614 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 615 } 616 617 void 618 if_attachdomain(void) 619 { 620 struct ifnet *ifp; 621 int s; 622 623 s = splnet(); 624 IFNET_FOREACH(ifp) 625 if_attachdomain1(ifp); 626 splx(s); 627 } 628 629 void 630 if_attachdomain1(struct ifnet *ifp) 631 { 632 struct domain *dp; 633 int s; 634 635 s = splnet(); 636 637 /* address family dependent data region */ 638 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 639 DOMAIN_FOREACH(dp) { 640 if (dp->dom_ifattach != NULL) 641 ifp->if_afdata[dp->dom_family] = 642 (*dp->dom_ifattach)(ifp); 643 } 644 645 splx(s); 646 } 647 648 /* 649 * Deactivate an interface. This points all of the procedure 650 * handles at error stubs. May be called from interrupt context. 651 */ 652 void 653 if_deactivate(struct ifnet *ifp) 654 { 655 int s; 656 657 s = splnet(); 658 659 ifp->if_output = if_nulloutput; 660 ifp->if_input = if_nullinput; 661 ifp->if_start = if_nullstart; 662 ifp->if_ioctl = if_nullioctl; 663 ifp->if_init = if_nullinit; 664 ifp->if_stop = if_nullstop; 665 ifp->if_watchdog = if_nullwatchdog; 666 ifp->if_drain = if_nulldrain; 667 668 /* No more packets may be enqueued. */ 669 ifp->if_snd.ifq_maxlen = 0; 670 671 splx(s); 672 } 673 674 void 675 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 676 { 677 struct ifaddr *ifa, *nifa; 678 679 for (ifa = IFADDR_FIRST(ifp); ifa != NULL; ifa = nifa) { 680 nifa = IFADDR_NEXT(ifa); 681 if (ifa->ifa_addr->sa_family != family) 682 continue; 683 (*purgeaddr)(ifa); 684 } 685 } 686 687 /* 688 * Detach an interface from the list of "active" interfaces, 689 * freeing any resources as we go along. 690 * 691 * NOTE: This routine must be called with a valid thread context, 692 * as it may block. 693 */ 694 void 695 if_detach(struct ifnet *ifp) 696 { 697 struct socket so; 698 struct ifaddr *ifa; 699 #ifdef IFAREF_DEBUG 700 struct ifaddr *last_ifa = NULL; 701 #endif 702 struct domain *dp; 703 const struct protosw *pr; 704 int s, i, family, purged; 705 706 /* 707 * XXX It's kind of lame that we have to have the 708 * XXX socket structure... 709 */ 710 memset(&so, 0, sizeof(so)); 711 712 s = splnet(); 713 714 /* 715 * Do an if_down() to give protocols a chance to do something. 716 */ 717 if_down(ifp); 718 719 #ifdef ALTQ 720 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 721 altq_disable(&ifp->if_snd); 722 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 723 altq_detach(&ifp->if_snd); 724 #endif 725 726 sysctl_teardown(&ifp->if_sysctl_log); 727 728 #if NCARP > 0 729 /* Remove the interface from any carp group it is a part of. */ 730 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 731 carp_ifdetach(ifp); 732 #endif 733 734 /* 735 * Rip all the addresses off the interface. This should make 736 * all of the routes go away. 737 * 738 * pr_usrreq calls can remove an arbitrary number of ifaddrs 739 * from the list, including our "cursor", ifa. For safety, 740 * and to honor the TAILQ abstraction, I just restart the 741 * loop after each removal. Note that the loop will exit 742 * when all of the remaining ifaddrs belong to the AF_LINK 743 * family. I am counting on the historical fact that at 744 * least one pr_usrreq in each address domain removes at 745 * least one ifaddr. 746 */ 747 again: 748 IFADDR_FOREACH(ifa, ifp) { 749 family = ifa->ifa_addr->sa_family; 750 #ifdef IFAREF_DEBUG 751 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 752 ifa, family, ifa->ifa_refcnt); 753 if (last_ifa != NULL && ifa == last_ifa) 754 panic("if_detach: loop detected"); 755 last_ifa = ifa; 756 #endif 757 if (family == AF_LINK) 758 continue; 759 dp = pffinddomain(family); 760 #ifdef DIAGNOSTIC 761 if (dp == NULL) 762 panic("if_detach: no domain for AF %d", 763 family); 764 #endif 765 /* 766 * XXX These PURGEIF calls are redundant with the 767 * purge-all-families calls below, but are left in for 768 * now both to make a smaller change, and to avoid 769 * unplanned interactions with clearing of 770 * ifp->if_addrlist. 771 */ 772 purged = 0; 773 for (pr = dp->dom_protosw; 774 pr < dp->dom_protoswNPROTOSW; pr++) { 775 so.so_proto = pr; 776 if (pr->pr_usrreq != NULL) { 777 (void) (*pr->pr_usrreq)(&so, 778 PRU_PURGEIF, NULL, NULL, 779 (struct mbuf *) ifp, curlwp); 780 purged = 1; 781 } 782 } 783 if (purged == 0) { 784 /* 785 * XXX What's really the best thing to do 786 * XXX here? --thorpej@NetBSD.org 787 */ 788 printf("if_detach: WARNING: AF %d not purged\n", 789 family); 790 ifa_remove(ifp, ifa); 791 } 792 goto again; 793 } 794 795 if_free_sadl(ifp); 796 797 /* Walk the routing table looking for stragglers. */ 798 for (i = 0; i <= AF_MAX; i++) { 799 while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART) 800 continue; 801 } 802 803 DOMAIN_FOREACH(dp) { 804 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 805 { 806 void *p = ifp->if_afdata[dp->dom_family]; 807 if (p) { 808 ifp->if_afdata[dp->dom_family] = NULL; 809 (*dp->dom_ifdetach)(ifp, p); 810 } 811 } 812 813 /* 814 * One would expect multicast memberships (INET and 815 * INET6) on UDP sockets to be purged by the PURGEIF 816 * calls above, but if all addresses were removed from 817 * the interface prior to destruction, the calls will 818 * not be made (e.g. ppp, for which pppd(8) generally 819 * removes addresses before destroying the interface). 820 * Because there is no invariant that multicast 821 * memberships only exist for interfaces with IPv4 822 * addresses, we must call PURGEIF regardless of 823 * addresses. (Protocols which might store ifnet 824 * pointers are marked with PR_PURGEIF.) 825 */ 826 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 827 so.so_proto = pr; 828 if (pr->pr_usrreq != NULL && pr->pr_flags & PR_PURGEIF) 829 (void)(*pr->pr_usrreq)(&so, PRU_PURGEIF, NULL, 830 NULL, (struct mbuf *)ifp, curlwp); 831 } 832 } 833 834 (void)pfil_run_hooks(if_pfil, 835 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET); 836 (void)pfil_head_destroy(ifp->if_pfil); 837 838 /* Announce that the interface is gone. */ 839 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 840 841 ifindex2ifnet[ifp->if_index] = NULL; 842 843 TAILQ_REMOVE(&ifnet, ifp, if_list); 844 845 ifioctl_detach(ifp); 846 847 /* 848 * remove packets that came from ifp, from software interrupt queues. 849 */ 850 DOMAIN_FOREACH(dp) { 851 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { 852 struct ifqueue *iq = dp->dom_ifqueues[i]; 853 if (iq == NULL) 854 break; 855 dp->dom_ifqueues[i] = NULL; 856 if_detach_queues(ifp, iq); 857 } 858 } 859 860 splx(s); 861 } 862 863 static void 864 if_detach_queues(struct ifnet *ifp, struct ifqueue *q) 865 { 866 struct mbuf *m, *prev, *next; 867 868 prev = NULL; 869 for (m = q->ifq_head; m != NULL; m = next) { 870 next = m->m_nextpkt; 871 #ifdef DIAGNOSTIC 872 if ((m->m_flags & M_PKTHDR) == 0) { 873 prev = m; 874 continue; 875 } 876 #endif 877 if (m->m_pkthdr.rcvif != ifp) { 878 prev = m; 879 continue; 880 } 881 882 if (prev != NULL) 883 prev->m_nextpkt = m->m_nextpkt; 884 else 885 q->ifq_head = m->m_nextpkt; 886 if (q->ifq_tail == m) 887 q->ifq_tail = prev; 888 q->ifq_len--; 889 890 m->m_nextpkt = NULL; 891 m_freem(m); 892 IF_DROP(q); 893 } 894 } 895 896 /* 897 * Callback for a radix tree walk to delete all references to an 898 * ifnet. 899 */ 900 static int 901 if_rt_walktree(struct rtentry *rt, void *v) 902 { 903 struct ifnet *ifp = (struct ifnet *)v; 904 int error; 905 906 if (rt->rt_ifp != ifp) 907 return 0; 908 909 /* Delete the entry. */ 910 ++rt->rt_refcnt; 911 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway, 912 rt_mask(rt), rt->rt_flags, NULL); 913 KASSERT((rt->rt_flags & RTF_UP) == 0); 914 rt->rt_ifp = NULL; 915 RTFREE(rt); 916 if (error != 0) 917 printf("%s: warning: unable to delete rtentry @ %p, " 918 "error = %d\n", ifp->if_xname, rt, error); 919 return ERESTART; 920 } 921 922 /* 923 * Create a clone network interface. 924 */ 925 int 926 if_clone_create(const char *name) 927 { 928 struct if_clone *ifc; 929 int unit; 930 931 ifc = if_clone_lookup(name, &unit); 932 if (ifc == NULL) 933 return EINVAL; 934 935 if (ifunit(name) != NULL) 936 return EEXIST; 937 938 return (*ifc->ifc_create)(ifc, unit); 939 } 940 941 /* 942 * Destroy a clone network interface. 943 */ 944 int 945 if_clone_destroy(const char *name) 946 { 947 struct if_clone *ifc; 948 struct ifnet *ifp; 949 950 ifc = if_clone_lookup(name, NULL); 951 if (ifc == NULL) 952 return EINVAL; 953 954 ifp = ifunit(name); 955 if (ifp == NULL) 956 return ENXIO; 957 958 if (ifc->ifc_destroy == NULL) 959 return EOPNOTSUPP; 960 961 return (*ifc->ifc_destroy)(ifp); 962 } 963 964 /* 965 * Look up a network interface cloner. 966 */ 967 static struct if_clone * 968 if_clone_lookup(const char *name, int *unitp) 969 { 970 struct if_clone *ifc; 971 const char *cp; 972 char *dp, ifname[IFNAMSIZ + 3]; 973 int unit; 974 975 strcpy(ifname, "if_"); 976 /* separate interface name from unit */ 977 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 978 *cp && (*cp < '0' || *cp > '9');) 979 *dp++ = *cp++; 980 981 if (cp == name || cp - name == IFNAMSIZ || !*cp) 982 return NULL; /* No name or unit number */ 983 *dp++ = '\0'; 984 985 again: 986 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 987 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 988 break; 989 } 990 991 if (ifc == NULL) { 992 if (*ifname == '\0' || 993 module_autoload(ifname, MODULE_CLASS_DRIVER)) 994 return NULL; 995 *ifname = '\0'; 996 goto again; 997 } 998 999 unit = 0; 1000 while (cp - name < IFNAMSIZ && *cp) { 1001 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1002 /* Bogus unit number. */ 1003 return NULL; 1004 } 1005 unit = (unit * 10) + (*cp++ - '0'); 1006 } 1007 1008 if (unitp != NULL) 1009 *unitp = unit; 1010 return ifc; 1011 } 1012 1013 /* 1014 * Register a network interface cloner. 1015 */ 1016 void 1017 if_clone_attach(struct if_clone *ifc) 1018 { 1019 1020 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1021 if_cloners_count++; 1022 } 1023 1024 /* 1025 * Unregister a network interface cloner. 1026 */ 1027 void 1028 if_clone_detach(struct if_clone *ifc) 1029 { 1030 1031 LIST_REMOVE(ifc, ifc_list); 1032 if_cloners_count--; 1033 } 1034 1035 /* 1036 * Provide list of interface cloners to userspace. 1037 */ 1038 static int 1039 if_clone_list(struct if_clonereq *ifcr) 1040 { 1041 char outbuf[IFNAMSIZ], *dst; 1042 struct if_clone *ifc; 1043 int count, error = 0; 1044 1045 ifcr->ifcr_total = if_cloners_count; 1046 if ((dst = ifcr->ifcr_buffer) == NULL) { 1047 /* Just asking how many there are. */ 1048 return 0; 1049 } 1050 1051 if (ifcr->ifcr_count < 0) 1052 return EINVAL; 1053 1054 count = (if_cloners_count < ifcr->ifcr_count) ? 1055 if_cloners_count : ifcr->ifcr_count; 1056 1057 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1058 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1059 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1060 if (outbuf[sizeof(outbuf) - 1] != '\0') 1061 return ENAMETOOLONG; 1062 error = copyout(outbuf, dst, sizeof(outbuf)); 1063 if (error != 0) 1064 break; 1065 } 1066 1067 return error; 1068 } 1069 1070 void 1071 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1072 { 1073 ifa->ifa_ifp = ifp; 1074 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1075 IFAREF(ifa); 1076 } 1077 1078 void 1079 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1080 { 1081 KASSERT(ifa->ifa_ifp == ifp); 1082 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1083 IFAFREE(ifa); 1084 } 1085 1086 static inline int 1087 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1088 { 1089 return sockaddr_cmp(sa1, sa2) == 0; 1090 } 1091 1092 /* 1093 * Locate an interface based on a complete address. 1094 */ 1095 /*ARGSUSED*/ 1096 struct ifaddr * 1097 ifa_ifwithaddr(const struct sockaddr *addr) 1098 { 1099 struct ifnet *ifp; 1100 struct ifaddr *ifa; 1101 1102 IFNET_FOREACH(ifp) { 1103 if (ifp->if_output == if_nulloutput) 1104 continue; 1105 IFADDR_FOREACH(ifa, ifp) { 1106 if (ifa->ifa_addr->sa_family != addr->sa_family) 1107 continue; 1108 if (equal(addr, ifa->ifa_addr)) 1109 return ifa; 1110 if ((ifp->if_flags & IFF_BROADCAST) && 1111 ifa->ifa_broadaddr && 1112 /* IP6 doesn't have broadcast */ 1113 ifa->ifa_broadaddr->sa_len != 0 && 1114 equal(ifa->ifa_broadaddr, addr)) 1115 return ifa; 1116 } 1117 } 1118 return NULL; 1119 } 1120 1121 /* 1122 * Locate the point to point interface with a given destination address. 1123 */ 1124 /*ARGSUSED*/ 1125 struct ifaddr * 1126 ifa_ifwithdstaddr(const struct sockaddr *addr) 1127 { 1128 struct ifnet *ifp; 1129 struct ifaddr *ifa; 1130 1131 IFNET_FOREACH(ifp) { 1132 if (ifp->if_output == if_nulloutput) 1133 continue; 1134 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1135 continue; 1136 IFADDR_FOREACH(ifa, ifp) { 1137 if (ifa->ifa_addr->sa_family != addr->sa_family || 1138 ifa->ifa_dstaddr == NULL) 1139 continue; 1140 if (equal(addr, ifa->ifa_dstaddr)) 1141 return ifa; 1142 } 1143 } 1144 return NULL; 1145 } 1146 1147 /* 1148 * Find an interface on a specific network. If many, choice 1149 * is most specific found. 1150 */ 1151 struct ifaddr * 1152 ifa_ifwithnet(const struct sockaddr *addr) 1153 { 1154 struct ifnet *ifp; 1155 struct ifaddr *ifa; 1156 const struct sockaddr_dl *sdl; 1157 struct ifaddr *ifa_maybe = 0; 1158 u_int af = addr->sa_family; 1159 const char *addr_data = addr->sa_data, *cplim; 1160 1161 if (af == AF_LINK) { 1162 sdl = satocsdl(addr); 1163 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1164 ifindex2ifnet[sdl->sdl_index] && 1165 ifindex2ifnet[sdl->sdl_index]->if_output != if_nulloutput) 1166 return ifnet_addrs[sdl->sdl_index]; 1167 } 1168 #ifdef NETATALK 1169 if (af == AF_APPLETALK) { 1170 const struct sockaddr_at *sat, *sat2; 1171 sat = (const struct sockaddr_at *)addr; 1172 IFNET_FOREACH(ifp) { 1173 if (ifp->if_output == if_nulloutput) 1174 continue; 1175 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 1176 if (ifa == NULL) 1177 continue; 1178 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 1179 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 1180 return ifa; /* exact match */ 1181 if (ifa_maybe == NULL) { 1182 /* else keep the if with the right range */ 1183 ifa_maybe = ifa; 1184 } 1185 } 1186 return ifa_maybe; 1187 } 1188 #endif 1189 IFNET_FOREACH(ifp) { 1190 if (ifp->if_output == if_nulloutput) 1191 continue; 1192 IFADDR_FOREACH(ifa, ifp) { 1193 const char *cp, *cp2, *cp3; 1194 1195 if (ifa->ifa_addr->sa_family != af || 1196 ifa->ifa_netmask == NULL) 1197 next: continue; 1198 cp = addr_data; 1199 cp2 = ifa->ifa_addr->sa_data; 1200 cp3 = ifa->ifa_netmask->sa_data; 1201 cplim = (const char *)ifa->ifa_netmask + 1202 ifa->ifa_netmask->sa_len; 1203 while (cp3 < cplim) { 1204 if ((*cp++ ^ *cp2++) & *cp3++) { 1205 /* want to continue for() loop */ 1206 goto next; 1207 } 1208 } 1209 if (ifa_maybe == NULL || 1210 rn_refines((void *)ifa->ifa_netmask, 1211 (void *)ifa_maybe->ifa_netmask)) 1212 ifa_maybe = ifa; 1213 } 1214 } 1215 return ifa_maybe; 1216 } 1217 1218 /* 1219 * Find the interface of the addresss. 1220 */ 1221 struct ifaddr * 1222 ifa_ifwithladdr(const struct sockaddr *addr) 1223 { 1224 struct ifaddr *ia; 1225 1226 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 1227 (ia = ifa_ifwithnet(addr))) 1228 return ia; 1229 return NULL; 1230 } 1231 1232 /* 1233 * Find an interface using a specific address family 1234 */ 1235 struct ifaddr * 1236 ifa_ifwithaf(int af) 1237 { 1238 struct ifnet *ifp; 1239 struct ifaddr *ifa; 1240 1241 IFNET_FOREACH(ifp) { 1242 if (ifp->if_output == if_nulloutput) 1243 continue; 1244 IFADDR_FOREACH(ifa, ifp) { 1245 if (ifa->ifa_addr->sa_family == af) 1246 return ifa; 1247 } 1248 } 1249 return NULL; 1250 } 1251 1252 /* 1253 * Find an interface address specific to an interface best matching 1254 * a given address. 1255 */ 1256 struct ifaddr * 1257 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 1258 { 1259 struct ifaddr *ifa; 1260 const char *cp, *cp2, *cp3; 1261 const char *cplim; 1262 struct ifaddr *ifa_maybe = 0; 1263 u_int af = addr->sa_family; 1264 1265 if (ifp->if_output == if_nulloutput) 1266 return NULL; 1267 1268 if (af >= AF_MAX) 1269 return NULL; 1270 1271 IFADDR_FOREACH(ifa, ifp) { 1272 if (ifa->ifa_addr->sa_family != af) 1273 continue; 1274 ifa_maybe = ifa; 1275 if (ifa->ifa_netmask == NULL) { 1276 if (equal(addr, ifa->ifa_addr) || 1277 (ifa->ifa_dstaddr && 1278 equal(addr, ifa->ifa_dstaddr))) 1279 return ifa; 1280 continue; 1281 } 1282 cp = addr->sa_data; 1283 cp2 = ifa->ifa_addr->sa_data; 1284 cp3 = ifa->ifa_netmask->sa_data; 1285 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 1286 for (; cp3 < cplim; cp3++) { 1287 if ((*cp++ ^ *cp2++) & *cp3) 1288 break; 1289 } 1290 if (cp3 == cplim) 1291 return ifa; 1292 } 1293 return ifa_maybe; 1294 } 1295 1296 /* 1297 * Default action when installing a route with a Link Level gateway. 1298 * Lookup an appropriate real ifa to point to. 1299 * This should be moved to /sys/net/link.c eventually. 1300 */ 1301 void 1302 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 1303 { 1304 struct ifaddr *ifa; 1305 const struct sockaddr *dst; 1306 struct ifnet *ifp; 1307 1308 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 1309 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL) 1310 return; 1311 if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) { 1312 rt_replace_ifa(rt, ifa); 1313 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 1314 ifa->ifa_rtrequest(cmd, rt, info); 1315 } 1316 } 1317 1318 /* 1319 * Handle a change in the interface link state. 1320 * XXX: We should listen to the routing socket in-kernel rather 1321 * than calling in6_if_link_* functions directly from here. 1322 */ 1323 void 1324 if_link_state_change(struct ifnet *ifp, int link_state) 1325 { 1326 int old_link_state, s; 1327 1328 s = splnet(); 1329 if (ifp->if_link_state == link_state) { 1330 splx(s); 1331 return; 1332 } 1333 1334 old_link_state = ifp->if_link_state; 1335 ifp->if_link_state = link_state; 1336 #ifdef DEBUG 1337 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 1338 link_state == LINK_STATE_UP ? "UP" : 1339 link_state == LINK_STATE_DOWN ? "DOWN" : 1340 "UNKNOWN", 1341 old_link_state == LINK_STATE_UP ? "UP" : 1342 old_link_state == LINK_STATE_DOWN ? "DOWN" : 1343 "UNKNOWN"); 1344 #endif 1345 1346 #ifdef INET6 1347 /* 1348 * When going from UNKNOWN to UP, we need to mark existing 1349 * IPv6 addresses as tentative and restart DAD as we may have 1350 * erroneously not found a duplicate. 1351 * 1352 * This needs to happen before rt_ifmsg to avoid a race where 1353 * listeners would have an address and expect it to work right 1354 * away. 1355 */ 1356 if (link_state == LINK_STATE_UP && 1357 old_link_state == LINK_STATE_UNKNOWN) 1358 in6_if_link_down(ifp); 1359 #endif 1360 1361 /* Notify that the link state has changed. */ 1362 rt_ifmsg(ifp); 1363 1364 #if NCARP > 0 1365 if (ifp->if_carp) 1366 carp_carpdev_state(ifp); 1367 #endif 1368 1369 #ifdef INET6 1370 if (link_state == LINK_STATE_DOWN) 1371 in6_if_link_down(ifp); 1372 else if (link_state == LINK_STATE_UP) 1373 in6_if_link_up(ifp); 1374 #endif 1375 1376 splx(s); 1377 } 1378 1379 /* 1380 * Mark an interface down and notify protocols of 1381 * the transition. 1382 * NOTE: must be called at splsoftnet or equivalent. 1383 */ 1384 void 1385 if_down(struct ifnet *ifp) 1386 { 1387 struct ifaddr *ifa; 1388 1389 ifp->if_flags &= ~IFF_UP; 1390 nanotime(&ifp->if_lastchange); 1391 IFADDR_FOREACH(ifa, ifp) 1392 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 1393 IFQ_PURGE(&ifp->if_snd); 1394 #if NCARP > 0 1395 if (ifp->if_carp) 1396 carp_carpdev_state(ifp); 1397 #endif 1398 rt_ifmsg(ifp); 1399 #ifdef INET6 1400 in6_if_down(ifp); 1401 #endif 1402 } 1403 1404 /* 1405 * Mark an interface up and notify protocols of 1406 * the transition. 1407 * NOTE: must be called at splsoftnet or equivalent. 1408 */ 1409 void 1410 if_up(struct ifnet *ifp) 1411 { 1412 #ifdef notyet 1413 struct ifaddr *ifa; 1414 #endif 1415 1416 ifp->if_flags |= IFF_UP; 1417 nanotime(&ifp->if_lastchange); 1418 #ifdef notyet 1419 /* this has no effect on IP, and will kill all ISO connections XXX */ 1420 IFADDR_FOREACH(ifa, ifp) 1421 pfctlinput(PRC_IFUP, ifa->ifa_addr); 1422 #endif 1423 #if NCARP > 0 1424 if (ifp->if_carp) 1425 carp_carpdev_state(ifp); 1426 #endif 1427 rt_ifmsg(ifp); 1428 #ifdef INET6 1429 in6_if_up(ifp); 1430 #endif 1431 } 1432 1433 /* 1434 * Handle interface watchdog timer routines. Called 1435 * from softclock, we decrement timers (if set) and 1436 * call the appropriate interface routine on expiration. 1437 */ 1438 void 1439 if_slowtimo(void *arg) 1440 { 1441 struct ifnet *ifp; 1442 int s = splnet(); 1443 1444 IFNET_FOREACH(ifp) { 1445 if (ifp->if_timer == 0 || --ifp->if_timer) 1446 continue; 1447 if (ifp->if_watchdog != NULL) 1448 (*ifp->if_watchdog)(ifp); 1449 } 1450 splx(s); 1451 callout_reset(&if_slowtimo_ch, hz / IFNET_SLOWHZ, if_slowtimo, NULL); 1452 } 1453 1454 /* 1455 * Set/clear promiscuous mode on interface ifp based on the truth value 1456 * of pswitch. The calls are reference counted so that only the first 1457 * "on" request actually has an effect, as does the final "off" request. 1458 * Results are undefined if the "off" and "on" requests are not matched. 1459 */ 1460 int 1461 ifpromisc(struct ifnet *ifp, int pswitch) 1462 { 1463 int pcount, ret; 1464 short nflags; 1465 1466 pcount = ifp->if_pcount; 1467 if (pswitch) { 1468 /* 1469 * Allow the device to be "placed" into promiscuous 1470 * mode even if it is not configured up. It will 1471 * consult IFF_PROMISC when it is brought up. 1472 */ 1473 if (ifp->if_pcount++ != 0) 1474 return 0; 1475 nflags = ifp->if_flags | IFF_PROMISC; 1476 } else { 1477 if (--ifp->if_pcount > 0) 1478 return 0; 1479 nflags = ifp->if_flags & ~IFF_PROMISC; 1480 } 1481 ret = if_flags_set(ifp, nflags); 1482 /* Restore interface state if not successful. */ 1483 if (ret != 0) { 1484 ifp->if_pcount = pcount; 1485 } 1486 return ret; 1487 } 1488 1489 /* 1490 * Map interface name to 1491 * interface structure pointer. 1492 */ 1493 struct ifnet * 1494 ifunit(const char *name) 1495 { 1496 struct ifnet *ifp; 1497 const char *cp = name; 1498 u_int unit = 0; 1499 u_int i; 1500 1501 /* 1502 * If the entire name is a number, treat it as an ifindex. 1503 */ 1504 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 1505 unit = unit * 10 + (*cp - '0'); 1506 } 1507 1508 /* 1509 * If the number took all of the name, then it's a valid ifindex. 1510 */ 1511 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) { 1512 if (unit >= if_indexlim) 1513 return NULL; 1514 ifp = ifindex2ifnet[unit]; 1515 if (ifp == NULL || ifp->if_output == if_nulloutput) 1516 return NULL; 1517 return ifp; 1518 } 1519 1520 IFNET_FOREACH(ifp) { 1521 if (ifp->if_output == if_nulloutput) 1522 continue; 1523 if (strcmp(ifp->if_xname, name) == 0) 1524 return ifp; 1525 } 1526 return NULL; 1527 } 1528 1529 ifnet_t * 1530 if_byindex(u_int idx) 1531 { 1532 1533 return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL; 1534 } 1535 1536 /* common */ 1537 int 1538 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 1539 { 1540 int s; 1541 struct ifreq *ifr; 1542 struct ifcapreq *ifcr; 1543 struct ifdatareq *ifdr; 1544 1545 switch (cmd) { 1546 case SIOCSIFCAP: 1547 ifcr = data; 1548 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 1549 return EINVAL; 1550 1551 if (ifcr->ifcr_capenable == ifp->if_capenable) 1552 return 0; 1553 1554 ifp->if_capenable = ifcr->ifcr_capenable; 1555 1556 /* Pre-compute the checksum flags mask. */ 1557 ifp->if_csum_flags_tx = 0; 1558 ifp->if_csum_flags_rx = 0; 1559 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) { 1560 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 1561 } 1562 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { 1563 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 1564 } 1565 1566 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) { 1567 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 1568 } 1569 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) { 1570 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 1571 } 1572 1573 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) { 1574 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 1575 } 1576 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) { 1577 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 1578 } 1579 1580 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) { 1581 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 1582 } 1583 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) { 1584 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 1585 } 1586 1587 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) { 1588 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 1589 } 1590 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) { 1591 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 1592 } 1593 if (ifp->if_flags & IFF_UP) 1594 return ENETRESET; 1595 return 0; 1596 case SIOCSIFFLAGS: 1597 ifr = data; 1598 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 1599 s = splnet(); 1600 if_down(ifp); 1601 splx(s); 1602 } 1603 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 1604 s = splnet(); 1605 if_up(ifp); 1606 splx(s); 1607 } 1608 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 1609 (ifr->ifr_flags &~ IFF_CANTCHANGE); 1610 break; 1611 case SIOCGIFFLAGS: 1612 ifr = data; 1613 ifr->ifr_flags = ifp->if_flags; 1614 break; 1615 1616 case SIOCGIFMETRIC: 1617 ifr = data; 1618 ifr->ifr_metric = ifp->if_metric; 1619 break; 1620 1621 case SIOCGIFMTU: 1622 ifr = data; 1623 ifr->ifr_mtu = ifp->if_mtu; 1624 break; 1625 1626 case SIOCGIFDLT: 1627 ifr = data; 1628 ifr->ifr_dlt = ifp->if_dlt; 1629 break; 1630 1631 case SIOCGIFCAP: 1632 ifcr = data; 1633 ifcr->ifcr_capabilities = ifp->if_capabilities; 1634 ifcr->ifcr_capenable = ifp->if_capenable; 1635 break; 1636 1637 case SIOCSIFMETRIC: 1638 ifr = data; 1639 ifp->if_metric = ifr->ifr_metric; 1640 break; 1641 1642 case SIOCGIFDATA: 1643 ifdr = data; 1644 ifdr->ifdr_data = ifp->if_data; 1645 break; 1646 1647 case SIOCZIFDATA: 1648 ifdr = data; 1649 ifdr->ifdr_data = ifp->if_data; 1650 /* 1651 * Assumes that the volatile counters that can be 1652 * zero'ed are at the end of if_data. 1653 */ 1654 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) - 1655 offsetof(struct if_data, ifi_ipackets)); 1656 /* 1657 * The memset() clears to the bottm of if_data. In the area, 1658 * if_lastchange is included. Please be careful if new entry 1659 * will be added into if_data or rewite this. 1660 * 1661 * And also, update if_lastchnage. 1662 */ 1663 getnanotime(&ifp->if_lastchange); 1664 break; 1665 case SIOCSIFMTU: 1666 ifr = data; 1667 if (ifp->if_mtu == ifr->ifr_mtu) 1668 break; 1669 ifp->if_mtu = ifr->ifr_mtu; 1670 /* 1671 * If the link MTU changed, do network layer specific procedure. 1672 */ 1673 #ifdef INET6 1674 nd6_setmtu(ifp); 1675 #endif 1676 return ENETRESET; 1677 default: 1678 return ENOTTY; 1679 } 1680 return 0; 1681 } 1682 1683 int 1684 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp, 1685 lwp_t *l) 1686 { 1687 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 1688 struct ifaddr *ifa; 1689 const struct sockaddr *any, *sa; 1690 union { 1691 struct sockaddr sa; 1692 struct sockaddr_storage ss; 1693 } u, v; 1694 1695 switch (cmd) { 1696 case SIOCSIFADDRPREF: 1697 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE, 1698 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 1699 NULL) != 0) 1700 return EPERM; 1701 case SIOCGIFADDRPREF: 1702 break; 1703 default: 1704 return EOPNOTSUPP; 1705 } 1706 1707 /* sanity checks */ 1708 if (data == NULL || ifp == NULL) { 1709 panic("invalid argument to %s", __func__); 1710 /*NOTREACHED*/ 1711 } 1712 1713 /* address must be specified on ADD and DELETE */ 1714 sa = sstocsa(&ifap->ifap_addr); 1715 if (sa->sa_family != sofamily(so)) 1716 return EINVAL; 1717 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 1718 return EINVAL; 1719 1720 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 1721 1722 IFADDR_FOREACH(ifa, ifp) { 1723 if (ifa->ifa_addr->sa_family != sa->sa_family) 1724 continue; 1725 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 1726 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 1727 break; 1728 } 1729 if (ifa == NULL) 1730 return EADDRNOTAVAIL; 1731 1732 switch (cmd) { 1733 case SIOCSIFADDRPREF: 1734 ifa->ifa_preference = ifap->ifap_preference; 1735 return 0; 1736 case SIOCGIFADDRPREF: 1737 /* fill in the if_laddrreq structure */ 1738 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 1739 sizeof(ifap->ifap_addr), ifa->ifa_addr); 1740 ifap->ifap_preference = ifa->ifa_preference; 1741 return 0; 1742 default: 1743 return EOPNOTSUPP; 1744 } 1745 } 1746 1747 static void 1748 ifnet_lock_enter(struct ifnet_lock *il) 1749 { 1750 uint64_t *nenter; 1751 1752 /* Before trying to acquire the mutex, increase the count of threads 1753 * who have entered or who wait to enter the critical section. 1754 * Avoid one costly locked memory transaction by keeping a count for 1755 * each CPU. 1756 */ 1757 nenter = percpu_getref(il->il_nenter); 1758 (*nenter)++; 1759 percpu_putref(il->il_nenter); 1760 mutex_enter(&il->il_lock); 1761 } 1762 1763 static void 1764 ifnet_lock_exit(struct ifnet_lock *il) 1765 { 1766 /* Increase the count of threads who have exited the critical 1767 * section. Increase while we still hold the lock. 1768 */ 1769 il->il_nexit++; 1770 mutex_exit(&il->il_lock); 1771 } 1772 1773 /* 1774 * Interface ioctls. 1775 */ 1776 int 1777 ifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 1778 { 1779 struct ifnet *ifp; 1780 struct ifreq *ifr; 1781 int error = 0; 1782 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ) 1783 u_long ocmd = cmd; 1784 #endif 1785 short oif_flags; 1786 #ifdef COMPAT_OIFREQ 1787 struct ifreq ifrb; 1788 struct oifreq *oifr = NULL; 1789 #endif 1790 1791 switch (cmd) { 1792 #ifdef COMPAT_OIFREQ 1793 case OSIOCGIFCONF: 1794 case OOSIOCGIFCONF: 1795 return compat_ifconf(cmd, data); 1796 #endif 1797 #ifdef COMPAT_OIFDATA 1798 case OSIOCGIFDATA: 1799 case OSIOCZIFDATA: 1800 return compat_ifdatareq(l, cmd, data); 1801 #endif 1802 case SIOCGIFCONF: 1803 return ifconf(cmd, data); 1804 case SIOCINITIFADDR: 1805 return EPERM; 1806 } 1807 1808 #ifdef COMPAT_OIFREQ 1809 cmd = compat_cvtcmd(cmd); 1810 if (cmd != ocmd) { 1811 oifr = data; 1812 data = ifr = &ifrb; 1813 ifreqo2n(oifr, ifr); 1814 } else 1815 #endif 1816 ifr = data; 1817 1818 ifp = ifunit(ifr->ifr_name); 1819 1820 switch (cmd) { 1821 case SIOCIFCREATE: 1822 case SIOCIFDESTROY: 1823 if (l != NULL) { 1824 error = kauth_authorize_network(l->l_cred, 1825 KAUTH_NETWORK_INTERFACE, 1826 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 1827 (void *)cmd, NULL); 1828 if (error != 0) 1829 return error; 1830 } 1831 return (cmd == SIOCIFCREATE) ? 1832 if_clone_create(ifr->ifr_name) : 1833 if_clone_destroy(ifr->ifr_name); 1834 1835 case SIOCIFGCLONERS: 1836 return if_clone_list((struct if_clonereq *)data); 1837 } 1838 1839 if (ifp == NULL) 1840 return ENXIO; 1841 1842 switch (cmd) { 1843 case SIOCALIFADDR: 1844 case SIOCDLIFADDR: 1845 case SIOCSIFADDRPREF: 1846 case SIOCSIFFLAGS: 1847 case SIOCSIFCAP: 1848 case SIOCSIFMETRIC: 1849 case SIOCZIFDATA: 1850 case SIOCSIFMTU: 1851 case SIOCSIFPHYADDR: 1852 case SIOCDIFPHYADDR: 1853 #ifdef INET6 1854 case SIOCSIFPHYADDR_IN6: 1855 #endif 1856 case SIOCSLIFPHYADDR: 1857 case SIOCADDMULTI: 1858 case SIOCDELMULTI: 1859 case SIOCSIFMEDIA: 1860 case SIOCSDRVSPEC: 1861 case SIOCG80211: 1862 case SIOCS80211: 1863 case SIOCS80211NWID: 1864 case SIOCS80211NWKEY: 1865 case SIOCS80211POWER: 1866 case SIOCS80211BSSID: 1867 case SIOCS80211CHANNEL: 1868 case SIOCSLINKSTR: 1869 if (l != NULL) { 1870 error = kauth_authorize_network(l->l_cred, 1871 KAUTH_NETWORK_INTERFACE, 1872 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 1873 (void *)cmd, NULL); 1874 if (error != 0) 1875 return error; 1876 } 1877 } 1878 1879 oif_flags = ifp->if_flags; 1880 1881 ifnet_lock_enter(ifp->if_ioctl_lock); 1882 error = (*ifp->if_ioctl)(ifp, cmd, data); 1883 if (error != ENOTTY) 1884 ; 1885 else if (so->so_proto == NULL) 1886 error = EOPNOTSUPP; 1887 else { 1888 #ifdef COMPAT_OSOCK 1889 error = compat_ifioctl(so, ocmd, cmd, data, l); 1890 #else 1891 error = (*so->so_proto->pr_usrreq)(so, PRU_CONTROL, 1892 (struct mbuf *)cmd, (struct mbuf *)data, 1893 (struct mbuf *)ifp, l); 1894 #endif 1895 } 1896 1897 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 1898 #ifdef INET6 1899 if ((ifp->if_flags & IFF_UP) != 0) { 1900 int s = splnet(); 1901 in6_if_up(ifp); 1902 splx(s); 1903 } 1904 #endif 1905 } 1906 #ifdef COMPAT_OIFREQ 1907 if (cmd != ocmd) 1908 ifreqn2o(oifr, ifr); 1909 #endif 1910 1911 ifnet_lock_exit(ifp->if_ioctl_lock); 1912 return error; 1913 } 1914 1915 /* This callback adds to the sum in `arg' the number of 1916 * threads on `ci' who have entered or who wait to enter the 1917 * critical section. 1918 */ 1919 static void 1920 ifnet_lock_sum(void *p, void *arg, struct cpu_info *ci) 1921 { 1922 uint64_t *sum = arg, *nenter = p; 1923 1924 *sum += *nenter; 1925 } 1926 1927 /* Return the number of threads who have entered or who wait 1928 * to enter the critical section on all CPUs. 1929 */ 1930 static uint64_t 1931 ifnet_lock_entrances(struct ifnet_lock *il) 1932 { 1933 uint64_t sum = 0; 1934 1935 percpu_foreach(il->il_nenter, ifnet_lock_sum, &sum); 1936 1937 return sum; 1938 } 1939 1940 static int 1941 ifioctl_attach(struct ifnet *ifp) 1942 { 1943 struct ifnet_lock *il; 1944 1945 /* If the driver has not supplied its own if_ioctl, then 1946 * supply the default. 1947 */ 1948 if (ifp->if_ioctl == NULL) 1949 ifp->if_ioctl = ifioctl_common; 1950 1951 /* Create an ifnet_lock for synchronizing ifioctls. */ 1952 if ((il = kmem_zalloc(sizeof(*il), KM_SLEEP)) == NULL) 1953 return ENOMEM; 1954 1955 il->il_nenter = percpu_alloc(sizeof(uint64_t)); 1956 if (il->il_nenter == NULL) { 1957 kmem_free(il, sizeof(*il)); 1958 return ENOMEM; 1959 } 1960 1961 mutex_init(&il->il_lock, MUTEX_DEFAULT, IPL_NONE); 1962 cv_init(&il->il_emptied, ifp->if_xname); 1963 1964 ifp->if_ioctl_lock = il; 1965 1966 return 0; 1967 } 1968 1969 /* 1970 * This must not be called until after `ifp' has been withdrawn from the 1971 * ifnet tables so that ifioctl() cannot get a handle on it by calling 1972 * ifunit(). 1973 */ 1974 static void 1975 ifioctl_detach(struct ifnet *ifp) 1976 { 1977 struct ifnet_lock *il; 1978 1979 il = ifp->if_ioctl_lock; 1980 mutex_enter(&il->il_lock); 1981 /* Install if_nullioctl to make sure that any thread that 1982 * subsequently enters the critical section will quit it 1983 * immediately and signal the condition variable that we 1984 * wait on, below. 1985 */ 1986 ifp->if_ioctl = if_nullioctl; 1987 /* Sleep while threads are still in the critical section or 1988 * wait to enter it. 1989 */ 1990 while (ifnet_lock_entrances(il) != il->il_nexit) 1991 cv_wait(&il->il_emptied, &il->il_lock); 1992 /* At this point, we are the only thread still in the critical 1993 * section, and no new thread can get a handle on the ifioctl 1994 * lock, so it is safe to free its memory. 1995 */ 1996 mutex_exit(&il->il_lock); 1997 ifp->if_ioctl_lock = NULL; 1998 percpu_free(il->il_nenter, sizeof(uint64_t)); 1999 il->il_nenter = NULL; 2000 cv_destroy(&il->il_emptied); 2001 mutex_destroy(&il->il_lock); 2002 kmem_free(il, sizeof(*il)); 2003 } 2004 2005 /* 2006 * Return interface configuration 2007 * of system. List may be used 2008 * in later ioctl's (above) to get 2009 * other information. 2010 * 2011 * Each record is a struct ifreq. Before the addition of 2012 * sockaddr_storage, the API rule was that sockaddr flavors that did 2013 * not fit would extend beyond the struct ifreq, with the next struct 2014 * ifreq starting sa_len beyond the struct sockaddr. Because the 2015 * union in struct ifreq includes struct sockaddr_storage, every kind 2016 * of sockaddr must fit. Thus, there are no longer any overlength 2017 * records. 2018 * 2019 * Records are added to the user buffer if they fit, and ifc_len is 2020 * adjusted to the length that was written. Thus, the user is only 2021 * assured of getting the complete list if ifc_len on return is at 2022 * least sizeof(struct ifreq) less than it was on entry. 2023 * 2024 * If the user buffer pointer is NULL, this routine copies no data and 2025 * returns the amount of space that would be needed. 2026 * 2027 * Invariants: 2028 * ifrp points to the next part of the user's buffer to be used. If 2029 * ifrp != NULL, space holds the number of bytes remaining that we may 2030 * write at ifrp. Otherwise, space holds the number of bytes that 2031 * would have been written had there been adequate space. 2032 */ 2033 /*ARGSUSED*/ 2034 int 2035 ifconf(u_long cmd, void *data) 2036 { 2037 struct ifconf *ifc = (struct ifconf *)data; 2038 struct ifnet *ifp; 2039 struct ifaddr *ifa; 2040 struct ifreq ifr, *ifrp; 2041 int space, error = 0; 2042 const int sz = (int)sizeof(struct ifreq); 2043 2044 if ((ifrp = ifc->ifc_req) == NULL) 2045 space = 0; 2046 else 2047 space = ifc->ifc_len; 2048 IFNET_FOREACH(ifp) { 2049 (void)strncpy(ifr.ifr_name, ifp->if_xname, 2050 sizeof(ifr.ifr_name)); 2051 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') 2052 return ENAMETOOLONG; 2053 if (IFADDR_EMPTY(ifp)) { 2054 /* Interface with no addresses - send zero sockaddr. */ 2055 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 2056 if (ifrp == NULL) { 2057 space += sz; 2058 continue; 2059 } 2060 if (space >= sz) { 2061 error = copyout(&ifr, ifrp, sz); 2062 if (error != 0) 2063 return error; 2064 ifrp++; 2065 space -= sz; 2066 } 2067 } 2068 2069 IFADDR_FOREACH(ifa, ifp) { 2070 struct sockaddr *sa = ifa->ifa_addr; 2071 /* all sockaddrs must fit in sockaddr_storage */ 2072 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 2073 2074 if (ifrp == NULL) { 2075 space += sz; 2076 continue; 2077 } 2078 memcpy(&ifr.ifr_space, sa, sa->sa_len); 2079 if (space >= sz) { 2080 error = copyout(&ifr, ifrp, sz); 2081 if (error != 0) 2082 return (error); 2083 ifrp++; space -= sz; 2084 } 2085 } 2086 } 2087 if (ifrp != NULL) { 2088 KASSERT(0 <= space && space <= ifc->ifc_len); 2089 ifc->ifc_len -= space; 2090 } else { 2091 KASSERT(space >= 0); 2092 ifc->ifc_len = space; 2093 } 2094 return (0); 2095 } 2096 2097 int 2098 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 2099 { 2100 uint8_t len; 2101 #ifdef COMPAT_OIFREQ 2102 struct ifreq ifrb; 2103 struct oifreq *oifr = NULL; 2104 u_long ocmd = cmd; 2105 cmd = compat_cvtcmd(cmd); 2106 if (cmd != ocmd) { 2107 oifr = (struct oifreq *)(void *)ifr; 2108 ifr = &ifrb; 2109 ifreqo2n(oifr, ifr); 2110 len = sizeof(oifr->ifr_addr); 2111 } else 2112 #endif 2113 len = sizeof(ifr->ifr_ifru.ifru_space); 2114 2115 if (len < sa->sa_len) 2116 return EFBIG; 2117 2118 memset(&ifr->ifr_addr, 0, len); 2119 sockaddr_copy(&ifr->ifr_addr, len, sa); 2120 2121 #ifdef COMPAT_OIFREQ 2122 if (cmd != ocmd) 2123 ifreqn2o(oifr, ifr); 2124 #endif 2125 return 0; 2126 } 2127 2128 /* 2129 * Queue message on interface, and start output if interface 2130 * not yet active. 2131 */ 2132 int 2133 ifq_enqueue(struct ifnet *ifp, struct mbuf *m 2134 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr)) 2135 { 2136 int len = m->m_pkthdr.len; 2137 int mflags = m->m_flags; 2138 int s = splnet(); 2139 int error; 2140 2141 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error); 2142 if (error != 0) 2143 goto out; 2144 ifp->if_obytes += len; 2145 if (mflags & M_MCAST) 2146 ifp->if_omcasts++; 2147 if ((ifp->if_flags & IFF_OACTIVE) == 0) 2148 (*ifp->if_start)(ifp); 2149 out: 2150 splx(s); 2151 return error; 2152 } 2153 2154 /* 2155 * Queue message on interface, possibly using a second fast queue 2156 */ 2157 int 2158 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m 2159 ALTQ_COMMA ALTQ_DECL(struct altq_pktattr *pktattr)) 2160 { 2161 int error = 0; 2162 2163 if (ifq != NULL 2164 #ifdef ALTQ 2165 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 2166 #endif 2167 ) { 2168 if (IF_QFULL(ifq)) { 2169 IF_DROP(&ifp->if_snd); 2170 m_freem(m); 2171 if (error == 0) 2172 error = ENOBUFS; 2173 } else 2174 IF_ENQUEUE(ifq, m); 2175 } else 2176 IFQ_ENQUEUE(&ifp->if_snd, m, pktattr, error); 2177 if (error != 0) { 2178 ++ifp->if_oerrors; 2179 return error; 2180 } 2181 return 0; 2182 } 2183 2184 int 2185 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 2186 { 2187 int rc; 2188 2189 if (ifp->if_initaddr != NULL) 2190 rc = (*ifp->if_initaddr)(ifp, ifa, src); 2191 else if (src || 2192 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 2193 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); 2194 2195 return rc; 2196 } 2197 2198 int 2199 if_flags_set(ifnet_t *ifp, const short flags) 2200 { 2201 int rc; 2202 2203 if (ifp->if_setflags != NULL) 2204 rc = (*ifp->if_setflags)(ifp, flags); 2205 else { 2206 short cantflags, chgdflags; 2207 struct ifreq ifr; 2208 2209 chgdflags = ifp->if_flags ^ flags; 2210 cantflags = chgdflags & IFF_CANTCHANGE; 2211 2212 if (cantflags != 0) 2213 ifp->if_flags ^= cantflags; 2214 2215 /* Traditionally, we do not call if_ioctl after 2216 * setting/clearing only IFF_PROMISC if the interface 2217 * isn't IFF_UP. Uphold that tradition. 2218 */ 2219 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 2220 return 0; 2221 2222 memset(&ifr, 0, sizeof(ifr)); 2223 2224 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 2225 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); 2226 2227 if (rc != 0 && cantflags != 0) 2228 ifp->if_flags ^= cantflags; 2229 } 2230 2231 return rc; 2232 } 2233 2234 int 2235 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 2236 { 2237 int rc; 2238 struct ifreq ifr; 2239 2240 if (ifp->if_mcastop != NULL) 2241 rc = (*ifp->if_mcastop)(ifp, cmd, sa); 2242 else { 2243 ifreq_setaddr(cmd, &ifr, sa); 2244 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); 2245 } 2246 2247 return rc; 2248 } 2249 2250 static void 2251 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 2252 struct ifaltq *ifq) 2253 { 2254 const struct sysctlnode *cnode, *rnode; 2255 2256 if (sysctl_createv(clog, 0, NULL, &rnode, 2257 CTLFLAG_PERMANENT, 2258 CTLTYPE_NODE, "net", NULL, 2259 NULL, 0, NULL, 0, 2260 CTL_NET, CTL_EOL) != 0) 2261 goto bad; 2262 2263 if (sysctl_createv(clog, 0, &rnode, &rnode, 2264 CTLFLAG_PERMANENT, 2265 CTLTYPE_NODE, "interfaces", 2266 SYSCTL_DESCR("Per-interface controls"), 2267 NULL, 0, NULL, 0, 2268 CTL_CREATE, CTL_EOL) != 0) 2269 goto bad; 2270 2271 if (sysctl_createv(clog, 0, &rnode, &rnode, 2272 CTLFLAG_PERMANENT, 2273 CTLTYPE_NODE, ifname, 2274 SYSCTL_DESCR("Interface controls"), 2275 NULL, 0, NULL, 0, 2276 CTL_CREATE, CTL_EOL) != 0) 2277 goto bad; 2278 2279 if (sysctl_createv(clog, 0, &rnode, &rnode, 2280 CTLFLAG_PERMANENT, 2281 CTLTYPE_NODE, "sndq", 2282 SYSCTL_DESCR("Interface output queue controls"), 2283 NULL, 0, NULL, 0, 2284 CTL_CREATE, CTL_EOL) != 0) 2285 goto bad; 2286 2287 if (sysctl_createv(clog, 0, &rnode, &cnode, 2288 CTLFLAG_PERMANENT, 2289 CTLTYPE_INT, "len", 2290 SYSCTL_DESCR("Current output queue length"), 2291 NULL, 0, &ifq->ifq_len, 0, 2292 CTL_CREATE, CTL_EOL) != 0) 2293 goto bad; 2294 2295 if (sysctl_createv(clog, 0, &rnode, &cnode, 2296 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2297 CTLTYPE_INT, "maxlen", 2298 SYSCTL_DESCR("Maximum allowed output queue length"), 2299 NULL, 0, &ifq->ifq_maxlen, 0, 2300 CTL_CREATE, CTL_EOL) != 0) 2301 goto bad; 2302 2303 if (sysctl_createv(clog, 0, &rnode, &cnode, 2304 CTLFLAG_PERMANENT, 2305 CTLTYPE_INT, "drops", 2306 SYSCTL_DESCR("Packets dropped due to full output queue"), 2307 NULL, 0, &ifq->ifq_drops, 0, 2308 CTL_CREATE, CTL_EOL) != 0) 2309 goto bad; 2310 2311 return; 2312 bad: 2313 printf("%s: could not attach sysctl nodes\n", ifname); 2314 return; 2315 } 2316 2317 #if defined(INET) || defined(INET6) 2318 static void 2319 sysctl_net_ifq_setup(struct sysctllog **clog, 2320 int pf, const char *pfname, 2321 int ipn, const char *ipname, 2322 int qid, struct ifqueue *ifq) 2323 { 2324 2325 sysctl_createv(clog, 0, NULL, NULL, 2326 CTLFLAG_PERMANENT, 2327 CTLTYPE_NODE, "net", NULL, 2328 NULL, 0, NULL, 0, 2329 CTL_NET, CTL_EOL); 2330 sysctl_createv(clog, 0, NULL, NULL, 2331 CTLFLAG_PERMANENT, 2332 CTLTYPE_NODE, pfname, NULL, 2333 NULL, 0, NULL, 0, 2334 CTL_NET, pf, CTL_EOL); 2335 sysctl_createv(clog, 0, NULL, NULL, 2336 CTLFLAG_PERMANENT, 2337 CTLTYPE_NODE, ipname, NULL, 2338 NULL, 0, NULL, 0, 2339 CTL_NET, pf, ipn, CTL_EOL); 2340 sysctl_createv(clog, 0, NULL, NULL, 2341 CTLFLAG_PERMANENT, 2342 CTLTYPE_NODE, "ifq", 2343 SYSCTL_DESCR("Protocol input queue controls"), 2344 NULL, 0, NULL, 0, 2345 CTL_NET, pf, ipn, qid, CTL_EOL); 2346 2347 sysctl_createv(clog, 0, NULL, NULL, 2348 CTLFLAG_PERMANENT, 2349 CTLTYPE_INT, "len", 2350 SYSCTL_DESCR("Current input queue length"), 2351 NULL, 0, &ifq->ifq_len, 0, 2352 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); 2353 sysctl_createv(clog, 0, NULL, NULL, 2354 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2355 CTLTYPE_INT, "maxlen", 2356 SYSCTL_DESCR("Maximum allowed input queue length"), 2357 NULL, 0, &ifq->ifq_maxlen, 0, 2358 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); 2359 #ifdef notyet 2360 sysctl_createv(clog, 0, NULL, NULL, 2361 CTLFLAG_PERMANENT, 2362 CTLTYPE_INT, "peak", 2363 SYSCTL_DESCR("Highest input queue length"), 2364 NULL, 0, &ifq->ifq_peak, 0, 2365 CTL_NET, pf, ipn, qid, IFQCTL_PEAK, CTL_EOL); 2366 #endif 2367 sysctl_createv(clog, 0, NULL, NULL, 2368 CTLFLAG_PERMANENT, 2369 CTLTYPE_INT, "drops", 2370 SYSCTL_DESCR("Packets dropped due to full input queue"), 2371 NULL, 0, &ifq->ifq_drops, 0, 2372 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); 2373 } 2374 #endif /* INET || INET6 */ 2375