1 /* $NetBSD: if.c,v 1.528 2022/11/25 06:18:42 msaitoh Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.528 2022/11/25 06:18:42 msaitoh Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 #include "opt_atalk.h" 99 #include "opt_wlan.h" 100 #include "opt_net_mpsafe.h" 101 #include "opt_mrouting.h" 102 #endif 103 104 #include <sys/param.h> 105 #include <sys/mbuf.h> 106 #include <sys/systm.h> 107 #include <sys/callout.h> 108 #include <sys/proc.h> 109 #include <sys/socket.h> 110 #include <sys/socketvar.h> 111 #include <sys/domain.h> 112 #include <sys/protosw.h> 113 #include <sys/kernel.h> 114 #include <sys/ioctl.h> 115 #include <sys/sysctl.h> 116 #include <sys/syslog.h> 117 #include <sys/kauth.h> 118 #include <sys/kmem.h> 119 #include <sys/xcall.h> 120 #include <sys/cpu.h> 121 #include <sys/intr.h> 122 #include <sys/module_hook.h> 123 #include <sys/compat_stub.h> 124 #include <sys/msan.h> 125 #include <sys/hook.h> 126 127 #include <net/if.h> 128 #include <net/if_dl.h> 129 #include <net/if_ether.h> 130 #include <net/if_media.h> 131 #include <net80211/ieee80211.h> 132 #include <net80211/ieee80211_ioctl.h> 133 #include <net/if_types.h> 134 #include <net/route.h> 135 #include <sys/module.h> 136 #ifdef NETATALK 137 #include <netatalk/at_extern.h> 138 #include <netatalk/at.h> 139 #endif 140 #include <net/pfil.h> 141 #include <netinet/in.h> 142 #include <netinet/in_var.h> 143 #include <netinet/ip_encap.h> 144 #include <net/bpf.h> 145 146 #ifdef INET6 147 #include <netinet6/in6_var.h> 148 #include <netinet6/nd6.h> 149 #endif 150 151 #include "ether.h" 152 153 #include "bridge.h" 154 #if NBRIDGE > 0 155 #include <net/if_bridgevar.h> 156 #endif 157 158 #include "carp.h" 159 #if NCARP > 0 160 #include <netinet/ip_carp.h> 161 #endif 162 163 #include <compat/sys/sockio.h> 164 165 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 166 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 167 168 /* 169 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex 170 * for each ifnet. It doesn't matter because: 171 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on 172 * ifq_lock don't happen 173 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock 174 * because if_snd, if_link_state_change and if_link_state_change_process 175 * are all called with KERNEL_LOCK 176 */ 177 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \ 178 mutex_enter((ifp)->if_snd.ifq_lock) 179 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \ 180 mutex_exit((ifp)->if_snd.ifq_lock) 181 182 /* 183 * Global list of interfaces. 184 */ 185 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 186 struct ifnet_head ifnet_list; 187 188 struct pslist_head ifnet_pslist; 189 static ifnet_t ** ifindex2ifnet = NULL; 190 static u_int if_index = 1; 191 static size_t if_indexlim = 0; 192 static uint64_t index_gen; 193 /* Mutex to protect the above objects. */ 194 kmutex_t ifnet_mtx __cacheline_aligned; 195 static struct psref_class *ifnet_psref_class __read_mostly; 196 static pserialize_t ifnet_psz; 197 static struct workqueue *ifnet_link_state_wq __read_mostly; 198 199 static struct workqueue *if_slowtimo_wq __read_mostly; 200 201 static kmutex_t if_clone_mtx; 202 203 struct ifnet *lo0ifp; 204 int ifqmaxlen = IFQ_MAXLEN; 205 206 struct psref_class *ifa_psref_class __read_mostly; 207 208 static int if_delroute_matcher(struct rtentry *, void *); 209 210 static bool if_is_unit(const char *); 211 static struct if_clone *if_clone_lookup(const char *, int *); 212 213 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 214 static int if_cloners_count; 215 216 /* Packet filtering hook for interfaces. */ 217 pfil_head_t * if_pfil __read_mostly; 218 219 static kauth_listener_t if_listener; 220 221 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 222 static void sysctl_sndq_setup(struct sysctllog **, const char *, 223 struct ifaltq *); 224 static void if_slowtimo_intr(void *); 225 static void if_slowtimo_work(struct work *, void *); 226 static int sysctl_if_watchdog(SYSCTLFN_PROTO); 227 static void sysctl_watchdog_setup(struct ifnet *); 228 static void if_attachdomain1(struct ifnet *); 229 static int ifconf(u_long, void *); 230 static int if_transmit(struct ifnet *, struct mbuf *); 231 static int if_clone_create(const char *); 232 static int if_clone_destroy(const char *); 233 static void if_link_state_change_work(struct work *, void *); 234 static void if_up_locked(struct ifnet *); 235 static void _if_down(struct ifnet *); 236 static void if_down_deactivated(struct ifnet *); 237 238 struct if_percpuq { 239 struct ifnet *ipq_ifp; 240 void *ipq_si; 241 struct percpu *ipq_ifqs; /* struct ifqueue */ 242 }; 243 244 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 245 246 static void if_percpuq_drops(void *, void *, struct cpu_info *); 247 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 248 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 249 struct if_percpuq *); 250 251 struct if_deferred_start { 252 struct ifnet *ids_ifp; 253 void (*ids_if_start)(struct ifnet *); 254 void *ids_si; 255 }; 256 257 static void if_deferred_start_softint(void *); 258 static void if_deferred_start_common(struct ifnet *); 259 static void if_deferred_start_destroy(struct ifnet *); 260 261 struct if_slowtimo_data { 262 kmutex_t isd_lock; 263 struct callout isd_ch; 264 struct work isd_work; 265 struct ifnet *isd_ifp; 266 bool isd_queued; 267 bool isd_dying; 268 bool isd_trigger; 269 }; 270 271 /* 272 * Hook for if_vlan - needed by if_agr 273 */ 274 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook; 275 276 static void if_sysctl_setup(struct sysctllog **); 277 278 static int 279 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 280 void *arg0, void *arg1, void *arg2, void *arg3) 281 { 282 int result; 283 enum kauth_network_req req; 284 285 result = KAUTH_RESULT_DEFER; 286 req = (enum kauth_network_req)(uintptr_t)arg1; 287 288 if (action != KAUTH_NETWORK_INTERFACE) 289 return result; 290 291 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 292 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 293 result = KAUTH_RESULT_ALLOW; 294 295 return result; 296 } 297 298 /* 299 * Network interface utility routines. 300 * 301 * Routines with ifa_ifwith* names take sockaddr *'s as 302 * parameters. 303 */ 304 void 305 ifinit(void) 306 { 307 308 #if (defined(INET) || defined(INET6)) 309 encapinit(); 310 #endif 311 312 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 313 if_listener_cb, NULL); 314 315 /* interfaces are available, inform socket code */ 316 ifioctl = doifioctl; 317 } 318 319 /* 320 * XXX Initialization before configure(). 321 * XXX hack to get pfil_add_hook working in autoconf. 322 */ 323 void 324 ifinit1(void) 325 { 326 int error __diagused; 327 328 #ifdef NET_MPSAFE 329 printf("NET_MPSAFE enabled\n"); 330 #endif 331 332 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 333 334 TAILQ_INIT(&ifnet_list); 335 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 336 ifnet_psz = pserialize_create(); 337 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 338 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 339 error = workqueue_create(&ifnet_link_state_wq, "iflnkst", 340 if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET, 341 WQ_MPSAFE); 342 KASSERT(error == 0); 343 PSLIST_INIT(&ifnet_pslist); 344 345 error = workqueue_create(&if_slowtimo_wq, "ifwdog", 346 if_slowtimo_work, NULL, PRI_SOFTNET, IPL_SOFTCLOCK, WQ_MPSAFE); 347 KASSERTMSG(error == 0, "error=%d", error); 348 349 if_indexlim = 8; 350 351 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 352 KASSERT(if_pfil != NULL); 353 354 #if NETHER > 0 || defined(NETATALK) || defined(WLAN) 355 etherinit(); 356 #endif 357 } 358 359 /* XXX must be after domaininit() */ 360 void 361 ifinit_post(void) 362 { 363 364 if_sysctl_setup(NULL); 365 } 366 367 ifnet_t * 368 if_alloc(u_char type) 369 { 370 371 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 372 } 373 374 void 375 if_free(ifnet_t *ifp) 376 { 377 378 kmem_free(ifp, sizeof(ifnet_t)); 379 } 380 381 void 382 if_initname(struct ifnet *ifp, const char *name, int unit) 383 { 384 385 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 386 "%s%d", name, unit); 387 } 388 389 /* 390 * Null routines used while an interface is going away. These routines 391 * just return an error. 392 */ 393 394 int 395 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 396 const struct sockaddr *so, const struct rtentry *rt) 397 { 398 399 return ENXIO; 400 } 401 402 void 403 if_nullinput(struct ifnet *ifp, struct mbuf *m) 404 { 405 406 /* Nothing. */ 407 } 408 409 void 410 if_nullstart(struct ifnet *ifp) 411 { 412 413 /* Nothing. */ 414 } 415 416 int 417 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 418 { 419 420 m_freem(m); 421 return ENXIO; 422 } 423 424 int 425 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 426 { 427 428 return ENXIO; 429 } 430 431 int 432 if_nullinit(struct ifnet *ifp) 433 { 434 435 return ENXIO; 436 } 437 438 void 439 if_nullstop(struct ifnet *ifp, int disable) 440 { 441 442 /* Nothing. */ 443 } 444 445 void 446 if_nullslowtimo(struct ifnet *ifp) 447 { 448 449 /* Nothing. */ 450 } 451 452 void 453 if_nulldrain(struct ifnet *ifp) 454 { 455 456 /* Nothing. */ 457 } 458 459 void 460 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 461 { 462 struct ifaddr *ifa; 463 struct sockaddr_dl *sdl; 464 465 ifp->if_addrlen = addrlen; 466 if_alloc_sadl(ifp); 467 ifa = ifp->if_dl; 468 sdl = satosdl(ifa->ifa_addr); 469 470 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 471 if (factory) { 472 KASSERT(ifp->if_hwdl == NULL); 473 ifp->if_hwdl = ifp->if_dl; 474 ifaref(ifp->if_hwdl); 475 } 476 /* TBD routing socket */ 477 } 478 479 struct ifaddr * 480 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 481 { 482 unsigned socksize, ifasize; 483 int addrlen, namelen; 484 struct sockaddr_dl *mask, *sdl; 485 struct ifaddr *ifa; 486 487 namelen = strlen(ifp->if_xname); 488 addrlen = ifp->if_addrlen; 489 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), 490 sizeof(long)); 491 ifasize = sizeof(*ifa) + 2 * socksize; 492 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO); 493 494 sdl = (struct sockaddr_dl *)(ifa + 1); 495 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 496 497 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 498 ifp->if_xname, namelen, NULL, addrlen); 499 mask->sdl_family = AF_LINK; 500 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 501 memset(&mask->sdl_data[0], 0xff, namelen); 502 ifa->ifa_rtrequest = link_rtrequest; 503 ifa->ifa_addr = (struct sockaddr *)sdl; 504 ifa->ifa_netmask = (struct sockaddr *)mask; 505 ifa_psref_init(ifa); 506 507 *sdlp = sdl; 508 509 return ifa; 510 } 511 512 static void 513 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 514 { 515 const struct sockaddr_dl *sdl; 516 517 ifp->if_dl = ifa; 518 ifaref(ifa); 519 sdl = satosdl(ifa->ifa_addr); 520 ifp->if_sadl = sdl; 521 } 522 523 /* 524 * Allocate the link level name for the specified interface. This 525 * is an attachment helper. It must be called after ifp->if_addrlen 526 * is initialized, which may not be the case when if_attach() is 527 * called. 528 */ 529 void 530 if_alloc_sadl(struct ifnet *ifp) 531 { 532 struct ifaddr *ifa; 533 const struct sockaddr_dl *sdl; 534 535 /* 536 * If the interface already has a link name, release it 537 * now. This is useful for interfaces that can change 538 * link types, and thus switch link names often. 539 */ 540 if (ifp->if_sadl != NULL) 541 if_free_sadl(ifp, 0); 542 543 ifa = if_dl_create(ifp, &sdl); 544 545 ifa_insert(ifp, ifa); 546 if_sadl_setrefs(ifp, ifa); 547 } 548 549 static void 550 if_deactivate_sadl(struct ifnet *ifp) 551 { 552 struct ifaddr *ifa; 553 554 KASSERT(ifp->if_dl != NULL); 555 556 ifa = ifp->if_dl; 557 558 ifp->if_sadl = NULL; 559 560 ifp->if_dl = NULL; 561 ifafree(ifa); 562 } 563 564 static void 565 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa) 566 { 567 struct ifaddr *old; 568 569 KASSERT(ifp->if_dl != NULL); 570 571 old = ifp->if_dl; 572 573 ifaref(ifa); 574 /* XXX Update if_dl and if_sadl atomically */ 575 ifp->if_dl = ifa; 576 ifp->if_sadl = satosdl(ifa->ifa_addr); 577 578 ifafree(old); 579 } 580 581 void 582 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 583 const struct sockaddr_dl *sdl) 584 { 585 struct ifaddr *ifa; 586 const int bound = curlwp_bind(); 587 588 KASSERT(ifa_held(ifa0)); 589 590 const int s = splsoftnet(); 591 592 if_replace_sadl(ifp, ifa0); 593 594 int ss = pserialize_read_enter(); 595 IFADDR_READER_FOREACH(ifa, ifp) { 596 struct psref psref; 597 ifa_acquire(ifa, &psref); 598 pserialize_read_exit(ss); 599 600 rtinit(ifa, RTM_LLINFO_UPD, 0); 601 602 ss = pserialize_read_enter(); 603 ifa_release(ifa, &psref); 604 } 605 pserialize_read_exit(ss); 606 607 splx(s); 608 curlwp_bindx(bound); 609 } 610 611 /* 612 * Free the link level name for the specified interface. This is 613 * a detach helper. This is called from if_detach(). 614 */ 615 void 616 if_free_sadl(struct ifnet *ifp, int factory) 617 { 618 struct ifaddr *ifa; 619 620 if (factory && ifp->if_hwdl != NULL) { 621 ifa = ifp->if_hwdl; 622 ifp->if_hwdl = NULL; 623 ifafree(ifa); 624 } 625 626 ifa = ifp->if_dl; 627 if (ifa == NULL) { 628 KASSERT(ifp->if_sadl == NULL); 629 return; 630 } 631 632 KASSERT(ifp->if_sadl != NULL); 633 634 const int s = splsoftnet(); 635 KASSERT(ifa->ifa_addr->sa_family == AF_LINK); 636 ifa_remove(ifp, ifa); 637 if_deactivate_sadl(ifp); 638 splx(s); 639 } 640 641 static void 642 if_getindex(ifnet_t *ifp) 643 { 644 bool hitlimit = false; 645 char xnamebuf[HOOKNAMSIZ]; 646 647 ifp->if_index_gen = index_gen++; 648 snprintf(xnamebuf, sizeof(xnamebuf), "%s-lshk", ifp->if_xname); 649 ifp->if_linkstate_hooks = simplehook_create(IPL_NET, 650 xnamebuf); 651 652 ifp->if_index = if_index; 653 if (ifindex2ifnet == NULL) { 654 if_index++; 655 goto skip; 656 } 657 while (if_byindex(ifp->if_index)) { 658 /* 659 * If we hit USHRT_MAX, we skip back to 0 since 660 * there are a number of places where the value 661 * of if_index or if_index itself is compared 662 * to or stored in an unsigned short. By 663 * jumping back, we won't botch those assignments 664 * or comparisons. 665 */ 666 if (++if_index == 0) { 667 if_index = 1; 668 } else if (if_index == USHRT_MAX) { 669 /* 670 * However, if we have to jump back to 671 * zero *twice* without finding an empty 672 * slot in ifindex2ifnet[], then there 673 * there are too many (>65535) interfaces. 674 */ 675 if (hitlimit) 676 panic("too many interfaces"); 677 hitlimit = true; 678 if_index = 1; 679 } 680 ifp->if_index = if_index; 681 } 682 skip: 683 /* 684 * ifindex2ifnet is indexed by if_index. Since if_index will 685 * grow dynamically, it should grow too. 686 */ 687 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 688 size_t m, n, oldlim; 689 void *q; 690 691 oldlim = if_indexlim; 692 while (ifp->if_index >= if_indexlim) 693 if_indexlim <<= 1; 694 695 /* grow ifindex2ifnet */ 696 m = oldlim * sizeof(struct ifnet *); 697 n = if_indexlim * sizeof(struct ifnet *); 698 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO); 699 if (ifindex2ifnet != NULL) { 700 memcpy(q, ifindex2ifnet, m); 701 free(ifindex2ifnet, M_IFADDR); 702 } 703 ifindex2ifnet = (struct ifnet **)q; 704 } 705 ifindex2ifnet[ifp->if_index] = ifp; 706 } 707 708 /* 709 * Initialize an interface and assign an index for it. 710 * 711 * It must be called prior to a device specific attach routine 712 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 713 * and be followed by if_register: 714 * 715 * if_initialize(ifp); 716 * ether_ifattach(ifp, enaddr); 717 * if_register(ifp); 718 */ 719 void 720 if_initialize(ifnet_t *ifp) 721 { 722 723 KASSERT(if_indexlim > 0); 724 TAILQ_INIT(&ifp->if_addrlist); 725 726 /* 727 * Link level name is allocated later by a separate call to 728 * if_alloc_sadl(). 729 */ 730 731 if (ifp->if_snd.ifq_maxlen == 0) 732 ifp->if_snd.ifq_maxlen = ifqmaxlen; 733 734 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 735 736 ifp->if_link_state = LINK_STATE_UNKNOWN; 737 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 738 ifp->if_link_scheduled = false; 739 740 ifp->if_capenable = 0; 741 ifp->if_csum_flags_tx = 0; 742 ifp->if_csum_flags_rx = 0; 743 744 #ifdef ALTQ 745 ifp->if_snd.altq_type = 0; 746 ifp->if_snd.altq_disc = NULL; 747 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 748 ifp->if_snd.altq_tbr = NULL; 749 ifp->if_snd.altq_ifp = ifp; 750 #endif 751 752 IFQ_LOCK_INIT(&ifp->if_snd); 753 754 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 755 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); 756 757 IF_AFDATA_LOCK_INIT(ifp); 758 759 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 760 PSLIST_INIT(&ifp->if_addr_pslist); 761 psref_target_init(&ifp->if_psref, ifnet_psref_class); 762 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 763 LIST_INIT(&ifp->if_multiaddrs); 764 if_stats_init(ifp); 765 766 IFNET_GLOBAL_LOCK(); 767 if_getindex(ifp); 768 IFNET_GLOBAL_UNLOCK(); 769 } 770 771 /* 772 * Register an interface to the list of "active" interfaces. 773 */ 774 void 775 if_register(ifnet_t *ifp) 776 { 777 /* 778 * If the driver has not supplied its own if_ioctl or if_stop, 779 * then supply the default. 780 */ 781 if (ifp->if_ioctl == NULL) 782 ifp->if_ioctl = ifioctl_common; 783 if (ifp->if_stop == NULL) 784 ifp->if_stop = if_nullstop; 785 786 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 787 788 if (!STAILQ_EMPTY(&domains)) 789 if_attachdomain1(ifp); 790 791 /* Announce the interface. */ 792 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 793 794 if (ifp->if_slowtimo != NULL) { 795 struct if_slowtimo_data *isd; 796 797 isd = kmem_zalloc(sizeof(*isd), KM_SLEEP); 798 mutex_init(&isd->isd_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK); 799 callout_init(&isd->isd_ch, CALLOUT_MPSAFE); 800 callout_setfunc(&isd->isd_ch, if_slowtimo_intr, ifp); 801 isd->isd_ifp = ifp; 802 803 ifp->if_slowtimo_data = isd; 804 805 if_slowtimo_intr(ifp); 806 807 sysctl_watchdog_setup(ifp); 808 } 809 810 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 811 ifp->if_transmit = if_transmit; 812 813 IFNET_GLOBAL_LOCK(); 814 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 815 IFNET_WRITER_INSERT_TAIL(ifp); 816 IFNET_GLOBAL_UNLOCK(); 817 } 818 819 /* 820 * The if_percpuq framework 821 * 822 * It allows network device drivers to execute the network stack 823 * in softint (so called softint-based if_input). It utilizes 824 * softint and percpu ifqueue. It doesn't distribute any packets 825 * between CPUs, unlike pktqueue(9). 826 * 827 * Currently we support two options for device drivers to apply the framework: 828 * - Use it implicitly with less changes 829 * - If you use if_attach in driver's _attach function and if_input in 830 * driver's Rx interrupt handler, a packet is queued and a softint handles 831 * the packet implicitly 832 * - Use it explicitly in each driver (recommended) 833 * - You can use if_percpuq_* directly in your driver 834 * - In this case, you need to allocate struct if_percpuq in driver's softc 835 * - See wm(4) as a reference implementation 836 */ 837 838 static void 839 if_percpuq_softint(void *arg) 840 { 841 struct if_percpuq *ipq = arg; 842 struct ifnet *ifp = ipq->ipq_ifp; 843 struct mbuf *m; 844 845 while ((m = if_percpuq_dequeue(ipq)) != NULL) { 846 if_statinc(ifp, if_ipackets); 847 bpf_mtap(ifp, m, BPF_D_IN); 848 849 ifp->_if_input(ifp, m); 850 } 851 } 852 853 static void 854 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 855 { 856 struct ifqueue *const ifq = p; 857 858 memset(ifq, 0, sizeof(*ifq)); 859 ifq->ifq_maxlen = IFQ_MAXLEN; 860 } 861 862 struct if_percpuq * 863 if_percpuq_create(struct ifnet *ifp) 864 { 865 struct if_percpuq *ipq; 866 u_int flags = SOFTINT_NET; 867 868 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 869 870 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 871 ipq->ipq_ifp = ifp; 872 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq); 873 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 874 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 875 876 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 877 878 return ipq; 879 } 880 881 static struct mbuf * 882 if_percpuq_dequeue(struct if_percpuq *ipq) 883 { 884 struct mbuf *m; 885 struct ifqueue *ifq; 886 887 const int s = splnet(); 888 ifq = percpu_getref(ipq->ipq_ifqs); 889 IF_DEQUEUE(ifq, m); 890 percpu_putref(ipq->ipq_ifqs); 891 splx(s); 892 893 return m; 894 } 895 896 static void 897 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 898 { 899 struct ifqueue *const ifq = p; 900 901 IF_PURGE(ifq); 902 } 903 904 void 905 if_percpuq_destroy(struct if_percpuq *ipq) 906 { 907 908 /* if_detach may already destroy it */ 909 if (ipq == NULL) 910 return; 911 912 softint_disestablish(ipq->ipq_si); 913 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 914 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 915 kmem_free(ipq, sizeof(*ipq)); 916 } 917 918 void 919 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 920 { 921 struct ifqueue *ifq; 922 923 KASSERT(ipq != NULL); 924 925 const int s = splnet(); 926 ifq = percpu_getref(ipq->ipq_ifqs); 927 if (IF_QFULL(ifq)) { 928 IF_DROP(ifq); 929 percpu_putref(ipq->ipq_ifqs); 930 m_freem(m); 931 goto out; 932 } 933 IF_ENQUEUE(ifq, m); 934 percpu_putref(ipq->ipq_ifqs); 935 936 softint_schedule(ipq->ipq_si); 937 out: 938 splx(s); 939 } 940 941 static void 942 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 943 { 944 struct ifqueue *const ifq = p; 945 uint64_t *sum = arg; 946 947 *sum += ifq->ifq_drops; 948 } 949 950 static int 951 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 952 { 953 struct sysctlnode node; 954 struct if_percpuq *ipq; 955 uint64_t sum = 0; 956 int error; 957 958 node = *rnode; 959 ipq = node.sysctl_data; 960 961 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 962 963 node.sysctl_data = ∑ 964 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 965 if (error != 0 || newp == NULL) 966 return error; 967 968 return 0; 969 } 970 971 static void 972 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 973 struct if_percpuq *ipq) 974 { 975 const struct sysctlnode *cnode, *rnode; 976 977 if (sysctl_createv(clog, 0, NULL, &rnode, 978 CTLFLAG_PERMANENT, 979 CTLTYPE_NODE, "interfaces", 980 SYSCTL_DESCR("Per-interface controls"), 981 NULL, 0, NULL, 0, 982 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 983 goto bad; 984 985 if (sysctl_createv(clog, 0, &rnode, &rnode, 986 CTLFLAG_PERMANENT, 987 CTLTYPE_NODE, ifname, 988 SYSCTL_DESCR("Interface controls"), 989 NULL, 0, NULL, 0, 990 CTL_CREATE, CTL_EOL) != 0) 991 goto bad; 992 993 if (sysctl_createv(clog, 0, &rnode, &rnode, 994 CTLFLAG_PERMANENT, 995 CTLTYPE_NODE, "rcvq", 996 SYSCTL_DESCR("Interface input queue controls"), 997 NULL, 0, NULL, 0, 998 CTL_CREATE, CTL_EOL) != 0) 999 goto bad; 1000 1001 #ifdef NOTYET 1002 /* XXX Should show each per-CPU queue length? */ 1003 if (sysctl_createv(clog, 0, &rnode, &rnode, 1004 CTLFLAG_PERMANENT, 1005 CTLTYPE_INT, "len", 1006 SYSCTL_DESCR("Current input queue length"), 1007 sysctl_percpuq_len, 0, NULL, 0, 1008 CTL_CREATE, CTL_EOL) != 0) 1009 goto bad; 1010 1011 if (sysctl_createv(clog, 0, &rnode, &cnode, 1012 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1013 CTLTYPE_INT, "maxlen", 1014 SYSCTL_DESCR("Maximum allowed input queue length"), 1015 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 1016 CTL_CREATE, CTL_EOL) != 0) 1017 goto bad; 1018 #endif 1019 1020 if (sysctl_createv(clog, 0, &rnode, &cnode, 1021 CTLFLAG_PERMANENT, 1022 CTLTYPE_QUAD, "drops", 1023 SYSCTL_DESCR("Total packets dropped due to full input queue"), 1024 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 1025 CTL_CREATE, CTL_EOL) != 0) 1026 goto bad; 1027 1028 return; 1029 bad: 1030 printf("%s: could not attach sysctl nodes\n", ifname); 1031 return; 1032 } 1033 1034 /* 1035 * The deferred if_start framework 1036 * 1037 * The common APIs to defer if_start to softint when if_start is requested 1038 * from a device driver running in hardware interrupt context. 1039 */ 1040 /* 1041 * Call ifp->if_start (or equivalent) in a dedicated softint for 1042 * deferred if_start. 1043 */ 1044 static void 1045 if_deferred_start_softint(void *arg) 1046 { 1047 struct if_deferred_start *ids = arg; 1048 struct ifnet *ifp = ids->ids_ifp; 1049 1050 ids->ids_if_start(ifp); 1051 } 1052 1053 /* 1054 * The default callback function for deferred if_start. 1055 */ 1056 static void 1057 if_deferred_start_common(struct ifnet *ifp) 1058 { 1059 const int s = splnet(); 1060 if_start_lock(ifp); 1061 splx(s); 1062 } 1063 1064 static inline bool 1065 if_snd_is_used(struct ifnet *ifp) 1066 { 1067 1068 return ALTQ_IS_ENABLED(&ifp->if_snd) || 1069 ifp->if_transmit == if_transmit || 1070 ifp->if_transmit == NULL || 1071 ifp->if_transmit == if_nulltransmit; 1072 } 1073 1074 /* 1075 * Schedule deferred if_start. 1076 */ 1077 void 1078 if_schedule_deferred_start(struct ifnet *ifp) 1079 { 1080 1081 KASSERT(ifp->if_deferred_start != NULL); 1082 1083 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1084 return; 1085 1086 softint_schedule(ifp->if_deferred_start->ids_si); 1087 } 1088 1089 /* 1090 * Create an instance of deferred if_start. A driver should call the function 1091 * only if the driver needs deferred if_start. Drivers can setup their own 1092 * deferred if_start function via 2nd argument. 1093 */ 1094 void 1095 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1096 { 1097 struct if_deferred_start *ids; 1098 u_int flags = SOFTINT_NET; 1099 1100 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 1101 1102 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1103 ids->ids_ifp = ifp; 1104 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids); 1105 if (func != NULL) 1106 ids->ids_if_start = func; 1107 else 1108 ids->ids_if_start = if_deferred_start_common; 1109 1110 ifp->if_deferred_start = ids; 1111 } 1112 1113 static void 1114 if_deferred_start_destroy(struct ifnet *ifp) 1115 { 1116 1117 if (ifp->if_deferred_start == NULL) 1118 return; 1119 1120 softint_disestablish(ifp->if_deferred_start->ids_si); 1121 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1122 ifp->if_deferred_start = NULL; 1123 } 1124 1125 /* 1126 * The common interface input routine that is called by device drivers, 1127 * which should be used only when the driver's rx handler already runs 1128 * in softint. 1129 */ 1130 void 1131 if_input(struct ifnet *ifp, struct mbuf *m) 1132 { 1133 1134 KASSERT(ifp->if_percpuq == NULL); 1135 KASSERT(!cpu_intr_p()); 1136 1137 if_statinc(ifp, if_ipackets); 1138 bpf_mtap(ifp, m, BPF_D_IN); 1139 1140 ifp->_if_input(ifp, m); 1141 } 1142 1143 /* 1144 * DEPRECATED. Use if_initialize and if_register instead. 1145 * See the above comment of if_initialize. 1146 * 1147 * Note that it implicitly enables if_percpuq to make drivers easy to 1148 * migrate softint-based if_input without much changes. If you don't 1149 * want to enable it, use if_initialize instead. 1150 */ 1151 void 1152 if_attach(ifnet_t *ifp) 1153 { 1154 1155 if_initialize(ifp); 1156 ifp->if_percpuq = if_percpuq_create(ifp); 1157 if_register(ifp); 1158 } 1159 1160 void 1161 if_attachdomain(void) 1162 { 1163 struct ifnet *ifp; 1164 const int bound = curlwp_bind(); 1165 1166 int s = pserialize_read_enter(); 1167 IFNET_READER_FOREACH(ifp) { 1168 struct psref psref; 1169 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1170 pserialize_read_exit(s); 1171 if_attachdomain1(ifp); 1172 s = pserialize_read_enter(); 1173 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1174 } 1175 pserialize_read_exit(s); 1176 curlwp_bindx(bound); 1177 } 1178 1179 static void 1180 if_attachdomain1(struct ifnet *ifp) 1181 { 1182 struct domain *dp; 1183 const int s = splsoftnet(); 1184 1185 /* address family dependent data region */ 1186 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1187 DOMAIN_FOREACH(dp) { 1188 if (dp->dom_ifattach != NULL) 1189 ifp->if_afdata[dp->dom_family] = 1190 (*dp->dom_ifattach)(ifp); 1191 } 1192 1193 splx(s); 1194 } 1195 1196 /* 1197 * Deactivate an interface. This points all of the procedure 1198 * handles at error stubs. May be called from interrupt context. 1199 */ 1200 void 1201 if_deactivate(struct ifnet *ifp) 1202 { 1203 const int s = splsoftnet(); 1204 1205 ifp->if_output = if_nulloutput; 1206 ifp->_if_input = if_nullinput; 1207 ifp->if_start = if_nullstart; 1208 ifp->if_transmit = if_nulltransmit; 1209 ifp->if_ioctl = if_nullioctl; 1210 ifp->if_init = if_nullinit; 1211 ifp->if_stop = if_nullstop; 1212 if (ifp->if_slowtimo) 1213 ifp->if_slowtimo = if_nullslowtimo; 1214 ifp->if_drain = if_nulldrain; 1215 1216 /* No more packets may be enqueued. */ 1217 ifp->if_snd.ifq_maxlen = 0; 1218 1219 splx(s); 1220 } 1221 1222 bool 1223 if_is_deactivated(const struct ifnet *ifp) 1224 { 1225 1226 return ifp->if_output == if_nulloutput; 1227 } 1228 1229 void 1230 if_purgeaddrs(struct ifnet *ifp, int family, 1231 void (*purgeaddr)(struct ifaddr *)) 1232 { 1233 struct ifaddr *ifa, *nifa; 1234 int s; 1235 1236 s = pserialize_read_enter(); 1237 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1238 nifa = IFADDR_READER_NEXT(ifa); 1239 if (ifa->ifa_addr->sa_family != family) 1240 continue; 1241 pserialize_read_exit(s); 1242 1243 (*purgeaddr)(ifa); 1244 1245 s = pserialize_read_enter(); 1246 } 1247 pserialize_read_exit(s); 1248 } 1249 1250 #ifdef IFAREF_DEBUG 1251 static struct ifaddr **ifa_list; 1252 static int ifa_list_size; 1253 1254 /* Depends on only one if_attach runs at once */ 1255 static void 1256 if_build_ifa_list(struct ifnet *ifp) 1257 { 1258 struct ifaddr *ifa; 1259 int i; 1260 1261 KASSERT(ifa_list == NULL); 1262 KASSERT(ifa_list_size == 0); 1263 1264 IFADDR_READER_FOREACH(ifa, ifp) 1265 ifa_list_size++; 1266 1267 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1268 i = 0; 1269 IFADDR_READER_FOREACH(ifa, ifp) { 1270 ifa_list[i++] = ifa; 1271 ifaref(ifa); 1272 } 1273 } 1274 1275 static void 1276 if_check_and_free_ifa_list(struct ifnet *ifp) 1277 { 1278 int i; 1279 struct ifaddr *ifa; 1280 1281 if (ifa_list == NULL) 1282 return; 1283 1284 for (i = 0; i < ifa_list_size; i++) { 1285 char buf[64]; 1286 1287 ifa = ifa_list[i]; 1288 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1289 if (ifa->ifa_refcnt > 1) { 1290 log(LOG_WARNING, 1291 "ifa(%s) still referenced (refcnt=%d)\n", 1292 buf, ifa->ifa_refcnt - 1); 1293 } else 1294 log(LOG_DEBUG, 1295 "ifa(%s) not referenced (refcnt=%d)\n", 1296 buf, ifa->ifa_refcnt - 1); 1297 ifafree(ifa); 1298 } 1299 1300 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1301 ifa_list = NULL; 1302 ifa_list_size = 0; 1303 } 1304 #endif 1305 1306 /* 1307 * Detach an interface from the list of "active" interfaces, 1308 * freeing any resources as we go along. 1309 * 1310 * NOTE: This routine must be called with a valid thread context, 1311 * as it may block. 1312 */ 1313 void 1314 if_detach(struct ifnet *ifp) 1315 { 1316 struct socket so; 1317 struct ifaddr *ifa; 1318 #ifdef IFAREF_DEBUG 1319 struct ifaddr *last_ifa = NULL; 1320 #endif 1321 struct domain *dp; 1322 const struct protosw *pr; 1323 int i, family, purged; 1324 1325 #ifdef IFAREF_DEBUG 1326 if_build_ifa_list(ifp); 1327 #endif 1328 /* 1329 * XXX It's kind of lame that we have to have the 1330 * XXX socket structure... 1331 */ 1332 memset(&so, 0, sizeof(so)); 1333 1334 const int s = splnet(); 1335 1336 sysctl_teardown(&ifp->if_sysctl_log); 1337 1338 IFNET_LOCK(ifp); 1339 1340 /* 1341 * Unset all queued link states and pretend a 1342 * link state change is scheduled. 1343 * This stops any more link state changes occurring for this 1344 * interface while it's being detached so it's safe 1345 * to drain the workqueue. 1346 */ 1347 IF_LINK_STATE_CHANGE_LOCK(ifp); 1348 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 1349 ifp->if_link_scheduled = true; 1350 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 1351 workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work); 1352 1353 if_deactivate(ifp); 1354 IFNET_UNLOCK(ifp); 1355 1356 /* 1357 * Unlink from the list and wait for all readers to leave 1358 * from pserialize read sections. Note that we can't do 1359 * psref_target_destroy here. See below. 1360 */ 1361 IFNET_GLOBAL_LOCK(); 1362 ifindex2ifnet[ifp->if_index] = NULL; 1363 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1364 IFNET_WRITER_REMOVE(ifp); 1365 pserialize_perform(ifnet_psz); 1366 IFNET_GLOBAL_UNLOCK(); 1367 1368 if (ifp->if_slowtimo != NULL) { 1369 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 1370 1371 mutex_enter(&isd->isd_lock); 1372 isd->isd_dying = true; 1373 mutex_exit(&isd->isd_lock); 1374 callout_halt(&isd->isd_ch, NULL); 1375 workqueue_wait(if_slowtimo_wq, &isd->isd_work); 1376 callout_destroy(&isd->isd_ch); 1377 mutex_destroy(&isd->isd_lock); 1378 kmem_free(isd, sizeof(*isd)); 1379 1380 ifp->if_slowtimo_data = NULL; /* paraonia */ 1381 ifp->if_slowtimo = NULL; /* paranoia */ 1382 } 1383 if_deferred_start_destroy(ifp); 1384 1385 /* 1386 * Do an if_down() to give protocols a chance to do something. 1387 */ 1388 if_down_deactivated(ifp); 1389 1390 #ifdef ALTQ 1391 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1392 altq_disable(&ifp->if_snd); 1393 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1394 altq_detach(&ifp->if_snd); 1395 #endif 1396 1397 #if NCARP > 0 1398 /* Remove the interface from any carp group it is a part of. */ 1399 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1400 carp_ifdetach(ifp); 1401 #endif 1402 1403 /* 1404 * Ensure that all packets on protocol input pktqueues have been 1405 * processed, or, at least, removed from the queues. 1406 * 1407 * A cross-call will ensure that the interrupts have completed. 1408 * FIXME: not quite.. 1409 */ 1410 pktq_ifdetach(); 1411 xc_barrier(0); 1412 1413 /* 1414 * Rip all the addresses off the interface. This should make 1415 * all of the routes go away. 1416 * 1417 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1418 * from the list, including our "cursor", ifa. For safety, 1419 * and to honor the TAILQ abstraction, I just restart the 1420 * loop after each removal. Note that the loop will exit 1421 * when all of the remaining ifaddrs belong to the AF_LINK 1422 * family. I am counting on the historical fact that at 1423 * least one pr_usrreq in each address domain removes at 1424 * least one ifaddr. 1425 */ 1426 again: 1427 /* 1428 * At this point, no other one tries to remove ifa in the list, 1429 * so we don't need to take a lock or psref. Avoid using 1430 * IFADDR_READER_FOREACH to pass over an inspection of contract 1431 * violations of pserialize. 1432 */ 1433 IFADDR_WRITER_FOREACH(ifa, ifp) { 1434 family = ifa->ifa_addr->sa_family; 1435 #ifdef IFAREF_DEBUG 1436 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1437 ifa, family, ifa->ifa_refcnt); 1438 if (last_ifa != NULL && ifa == last_ifa) 1439 panic("if_detach: loop detected"); 1440 last_ifa = ifa; 1441 #endif 1442 if (family == AF_LINK) 1443 continue; 1444 dp = pffinddomain(family); 1445 KASSERTMSG(dp != NULL, "no domain for AF %d", family); 1446 /* 1447 * XXX These PURGEIF calls are redundant with the 1448 * purge-all-families calls below, but are left in for 1449 * now both to make a smaller change, and to avoid 1450 * unplanned interactions with clearing of 1451 * ifp->if_addrlist. 1452 */ 1453 purged = 0; 1454 for (pr = dp->dom_protosw; 1455 pr < dp->dom_protoswNPROTOSW; pr++) { 1456 so.so_proto = pr; 1457 if (pr->pr_usrreqs) { 1458 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1459 purged = 1; 1460 } 1461 } 1462 if (purged == 0) { 1463 /* 1464 * XXX What's really the best thing to do 1465 * XXX here? --thorpej@NetBSD.org 1466 */ 1467 printf("if_detach: WARNING: AF %d not purged\n", 1468 family); 1469 ifa_remove(ifp, ifa); 1470 } 1471 goto again; 1472 } 1473 1474 if_free_sadl(ifp, 1); 1475 1476 restart: 1477 IFADDR_WRITER_FOREACH(ifa, ifp) { 1478 family = ifa->ifa_addr->sa_family; 1479 KASSERT(family == AF_LINK); 1480 ifa_remove(ifp, ifa); 1481 goto restart; 1482 } 1483 1484 /* Delete stray routes from the routing table. */ 1485 for (i = 0; i <= AF_MAX; i++) 1486 rt_delete_matched_entries(i, if_delroute_matcher, ifp, false); 1487 1488 DOMAIN_FOREACH(dp) { 1489 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1490 { 1491 void *p = ifp->if_afdata[dp->dom_family]; 1492 if (p) { 1493 ifp->if_afdata[dp->dom_family] = NULL; 1494 (*dp->dom_ifdetach)(ifp, p); 1495 } 1496 } 1497 1498 /* 1499 * One would expect multicast memberships (INET and 1500 * INET6) on UDP sockets to be purged by the PURGEIF 1501 * calls above, but if all addresses were removed from 1502 * the interface prior to destruction, the calls will 1503 * not be made (e.g. ppp, for which pppd(8) generally 1504 * removes addresses before destroying the interface). 1505 * Because there is no invariant that multicast 1506 * memberships only exist for interfaces with IPv4 1507 * addresses, we must call PURGEIF regardless of 1508 * addresses. (Protocols which might store ifnet 1509 * pointers are marked with PR_PURGEIF.) 1510 */ 1511 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) 1512 { 1513 so.so_proto = pr; 1514 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1515 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1516 } 1517 } 1518 1519 /* 1520 * Must be done after the above pr_purgeif because if_psref may be 1521 * still used in pr_purgeif. 1522 */ 1523 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1524 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1525 1526 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 1527 (void)pfil_head_destroy(ifp->if_pfil); 1528 1529 /* Announce that the interface is gone. */ 1530 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1531 1532 IF_AFDATA_LOCK_DESTROY(ifp); 1533 1534 if (ifp->if_percpuq != NULL) { 1535 if_percpuq_destroy(ifp->if_percpuq); 1536 ifp->if_percpuq = NULL; 1537 } 1538 1539 mutex_obj_free(ifp->if_ioctl_lock); 1540 ifp->if_ioctl_lock = NULL; 1541 mutex_obj_free(ifp->if_snd.ifq_lock); 1542 if_stats_fini(ifp); 1543 KASSERT(!simplehook_has_hooks(ifp->if_linkstate_hooks)); 1544 simplehook_destroy(ifp->if_linkstate_hooks); 1545 1546 splx(s); 1547 1548 #ifdef IFAREF_DEBUG 1549 if_check_and_free_ifa_list(ifp); 1550 #endif 1551 } 1552 1553 /* 1554 * Callback for a radix tree walk to delete all references to an 1555 * ifnet. 1556 */ 1557 static int 1558 if_delroute_matcher(struct rtentry *rt, void *v) 1559 { 1560 struct ifnet *ifp = (struct ifnet *)v; 1561 1562 if (rt->rt_ifp == ifp) 1563 return 1; 1564 else 1565 return 0; 1566 } 1567 1568 /* 1569 * Create a clone network interface. 1570 */ 1571 static int 1572 if_clone_create(const char *name) 1573 { 1574 struct if_clone *ifc; 1575 struct ifnet *ifp; 1576 struct psref psref; 1577 int unit; 1578 1579 KASSERT(mutex_owned(&if_clone_mtx)); 1580 1581 ifc = if_clone_lookup(name, &unit); 1582 if (ifc == NULL) 1583 return EINVAL; 1584 1585 ifp = if_get(name, &psref); 1586 if (ifp != NULL) { 1587 if_put(ifp, &psref); 1588 return EEXIST; 1589 } 1590 1591 return (*ifc->ifc_create)(ifc, unit); 1592 } 1593 1594 /* 1595 * Destroy a clone network interface. 1596 */ 1597 static int 1598 if_clone_destroy(const char *name) 1599 { 1600 struct if_clone *ifc; 1601 struct ifnet *ifp; 1602 struct psref psref; 1603 int error; 1604 int (*if_ioctlfn)(struct ifnet *, u_long, void *); 1605 1606 KASSERT(mutex_owned(&if_clone_mtx)); 1607 1608 ifc = if_clone_lookup(name, NULL); 1609 if (ifc == NULL) 1610 return EINVAL; 1611 1612 if (ifc->ifc_destroy == NULL) 1613 return EOPNOTSUPP; 1614 1615 ifp = if_get(name, &psref); 1616 if (ifp == NULL) 1617 return ENXIO; 1618 1619 /* We have to disable ioctls here */ 1620 IFNET_LOCK(ifp); 1621 if_ioctlfn = ifp->if_ioctl; 1622 ifp->if_ioctl = if_nullioctl; 1623 IFNET_UNLOCK(ifp); 1624 1625 /* 1626 * We cannot call ifc_destroy with holding ifp. 1627 * Releasing ifp here is safe thanks to if_clone_mtx. 1628 */ 1629 if_put(ifp, &psref); 1630 1631 error = (*ifc->ifc_destroy)(ifp); 1632 1633 if (error != 0) { 1634 /* We have to restore if_ioctl on error */ 1635 IFNET_LOCK(ifp); 1636 ifp->if_ioctl = if_ioctlfn; 1637 IFNET_UNLOCK(ifp); 1638 } 1639 1640 return error; 1641 } 1642 1643 static bool 1644 if_is_unit(const char *name) 1645 { 1646 1647 while (*name != '\0') { 1648 if (*name < '0' || *name > '9') 1649 return false; 1650 name++; 1651 } 1652 1653 return true; 1654 } 1655 1656 /* 1657 * Look up a network interface cloner. 1658 */ 1659 static struct if_clone * 1660 if_clone_lookup(const char *name, int *unitp) 1661 { 1662 struct if_clone *ifc; 1663 const char *cp; 1664 char *dp, ifname[IFNAMSIZ + 3]; 1665 int unit; 1666 1667 KASSERT(mutex_owned(&if_clone_mtx)); 1668 1669 strcpy(ifname, "if_"); 1670 /* separate interface name from unit */ 1671 /* TODO: search unit number from backward */ 1672 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1673 *cp && !if_is_unit(cp);) 1674 *dp++ = *cp++; 1675 1676 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1677 return NULL; /* No name or unit number */ 1678 *dp++ = '\0'; 1679 1680 again: 1681 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1682 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1683 break; 1684 } 1685 1686 if (ifc == NULL) { 1687 int error; 1688 if (*ifname == '\0') 1689 return NULL; 1690 mutex_exit(&if_clone_mtx); 1691 error = module_autoload(ifname, MODULE_CLASS_DRIVER); 1692 mutex_enter(&if_clone_mtx); 1693 if (error) 1694 return NULL; 1695 *ifname = '\0'; 1696 goto again; 1697 } 1698 1699 unit = 0; 1700 while (cp - name < IFNAMSIZ && *cp) { 1701 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1702 /* Bogus unit number. */ 1703 return NULL; 1704 } 1705 unit = (unit * 10) + (*cp++ - '0'); 1706 } 1707 1708 if (unitp != NULL) 1709 *unitp = unit; 1710 return ifc; 1711 } 1712 1713 /* 1714 * Register a network interface cloner. 1715 */ 1716 void 1717 if_clone_attach(struct if_clone *ifc) 1718 { 1719 1720 mutex_enter(&if_clone_mtx); 1721 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1722 if_cloners_count++; 1723 mutex_exit(&if_clone_mtx); 1724 } 1725 1726 /* 1727 * Unregister a network interface cloner. 1728 */ 1729 void 1730 if_clone_detach(struct if_clone *ifc) 1731 { 1732 1733 mutex_enter(&if_clone_mtx); 1734 LIST_REMOVE(ifc, ifc_list); 1735 if_cloners_count--; 1736 mutex_exit(&if_clone_mtx); 1737 } 1738 1739 /* 1740 * Provide list of interface cloners to userspace. 1741 */ 1742 int 1743 if_clone_list(int buf_count, char *buffer, int *total) 1744 { 1745 char outbuf[IFNAMSIZ], *dst; 1746 struct if_clone *ifc; 1747 int count, error = 0; 1748 1749 mutex_enter(&if_clone_mtx); 1750 *total = if_cloners_count; 1751 if ((dst = buffer) == NULL) { 1752 /* Just asking how many there are. */ 1753 goto out; 1754 } 1755 1756 if (buf_count < 0) { 1757 error = EINVAL; 1758 goto out; 1759 } 1760 1761 count = (if_cloners_count < buf_count) ? if_cloners_count : buf_count; 1762 1763 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1764 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1765 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1766 if (outbuf[sizeof(outbuf) - 1] != '\0') { 1767 error = ENAMETOOLONG; 1768 goto out; 1769 } 1770 error = copyout(outbuf, dst, sizeof(outbuf)); 1771 if (error != 0) 1772 break; 1773 } 1774 1775 out: 1776 mutex_exit(&if_clone_mtx); 1777 return error; 1778 } 1779 1780 void 1781 ifa_psref_init(struct ifaddr *ifa) 1782 { 1783 1784 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1785 } 1786 1787 void 1788 ifaref(struct ifaddr *ifa) 1789 { 1790 1791 atomic_inc_uint(&ifa->ifa_refcnt); 1792 } 1793 1794 void 1795 ifafree(struct ifaddr *ifa) 1796 { 1797 KASSERT(ifa != NULL); 1798 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt); 1799 1800 #ifndef __HAVE_ATOMIC_AS_MEMBAR 1801 membar_release(); 1802 #endif 1803 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) != 0) 1804 return; 1805 #ifndef __HAVE_ATOMIC_AS_MEMBAR 1806 membar_acquire(); 1807 #endif 1808 free(ifa, M_IFADDR); 1809 } 1810 1811 bool 1812 ifa_is_destroying(struct ifaddr *ifa) 1813 { 1814 1815 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1816 } 1817 1818 void 1819 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1820 { 1821 1822 ifa->ifa_ifp = ifp; 1823 1824 /* 1825 * Check MP-safety for IFEF_MPSAFE drivers. 1826 * Check !IFF_RUNNING for initialization routines that normally don't 1827 * take IFNET_LOCK but it's safe because there is no competitor. 1828 * XXX there are false positive cases because IFF_RUNNING can be off on 1829 * if_stop. 1830 */ 1831 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) || 1832 IFNET_LOCKED(ifp)); 1833 1834 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1835 IFADDR_ENTRY_INIT(ifa); 1836 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1837 1838 ifaref(ifa); 1839 } 1840 1841 void 1842 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1843 { 1844 1845 KASSERT(ifa->ifa_ifp == ifp); 1846 /* 1847 * Check MP-safety for IFEF_MPSAFE drivers. 1848 * if_is_deactivated indicates ifa_remove is called from if_detach 1849 * where it is safe even if IFNET_LOCK isn't held. 1850 */ 1851 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || 1852 IFNET_LOCKED(ifp)); 1853 1854 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1855 IFADDR_WRITER_REMOVE(ifa); 1856 #ifdef NET_MPSAFE 1857 IFNET_GLOBAL_LOCK(); 1858 pserialize_perform(ifnet_psz); 1859 IFNET_GLOBAL_UNLOCK(); 1860 #endif 1861 1862 #ifdef NET_MPSAFE 1863 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1864 #endif 1865 IFADDR_ENTRY_DESTROY(ifa); 1866 ifafree(ifa); 1867 } 1868 1869 void 1870 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1871 { 1872 1873 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 1874 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1875 } 1876 1877 void 1878 ifa_release(struct ifaddr *ifa, struct psref *psref) 1879 { 1880 1881 if (ifa == NULL) 1882 return; 1883 1884 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1885 } 1886 1887 bool 1888 ifa_held(struct ifaddr *ifa) 1889 { 1890 1891 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1892 } 1893 1894 static inline int 1895 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1896 { 1897 1898 return sockaddr_cmp(sa1, sa2) == 0; 1899 } 1900 1901 /* 1902 * Locate an interface based on a complete address. 1903 */ 1904 /*ARGSUSED*/ 1905 struct ifaddr * 1906 ifa_ifwithaddr(const struct sockaddr *addr) 1907 { 1908 struct ifnet *ifp; 1909 struct ifaddr *ifa; 1910 1911 IFNET_READER_FOREACH(ifp) { 1912 if (if_is_deactivated(ifp)) 1913 continue; 1914 IFADDR_READER_FOREACH(ifa, ifp) { 1915 if (ifa->ifa_addr->sa_family != addr->sa_family) 1916 continue; 1917 if (equal(addr, ifa->ifa_addr)) 1918 return ifa; 1919 if ((ifp->if_flags & IFF_BROADCAST) && 1920 ifa->ifa_broadaddr && 1921 /* IP6 doesn't have broadcast */ 1922 ifa->ifa_broadaddr->sa_len != 0 && 1923 equal(ifa->ifa_broadaddr, addr)) 1924 return ifa; 1925 } 1926 } 1927 return NULL; 1928 } 1929 1930 struct ifaddr * 1931 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1932 { 1933 struct ifaddr *ifa; 1934 int s = pserialize_read_enter(); 1935 1936 ifa = ifa_ifwithaddr(addr); 1937 if (ifa != NULL) 1938 ifa_acquire(ifa, psref); 1939 pserialize_read_exit(s); 1940 1941 return ifa; 1942 } 1943 1944 /* 1945 * Locate the point to point interface with a given destination address. 1946 */ 1947 /*ARGSUSED*/ 1948 struct ifaddr * 1949 ifa_ifwithdstaddr(const struct sockaddr *addr) 1950 { 1951 struct ifnet *ifp; 1952 struct ifaddr *ifa; 1953 1954 IFNET_READER_FOREACH(ifp) { 1955 if (if_is_deactivated(ifp)) 1956 continue; 1957 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1958 continue; 1959 IFADDR_READER_FOREACH(ifa, ifp) { 1960 if (ifa->ifa_addr->sa_family != addr->sa_family || 1961 ifa->ifa_dstaddr == NULL) 1962 continue; 1963 if (equal(addr, ifa->ifa_dstaddr)) 1964 return ifa; 1965 } 1966 } 1967 1968 return NULL; 1969 } 1970 1971 struct ifaddr * 1972 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 1973 { 1974 struct ifaddr *ifa; 1975 int s; 1976 1977 s = pserialize_read_enter(); 1978 ifa = ifa_ifwithdstaddr(addr); 1979 if (ifa != NULL) 1980 ifa_acquire(ifa, psref); 1981 pserialize_read_exit(s); 1982 1983 return ifa; 1984 } 1985 1986 /* 1987 * Find an interface on a specific network. If many, choice 1988 * is most specific found. 1989 */ 1990 struct ifaddr * 1991 ifa_ifwithnet(const struct sockaddr *addr) 1992 { 1993 struct ifnet *ifp; 1994 struct ifaddr *ifa, *ifa_maybe = NULL; 1995 const struct sockaddr_dl *sdl; 1996 u_int af = addr->sa_family; 1997 const char *addr_data = addr->sa_data, *cplim; 1998 1999 if (af == AF_LINK) { 2000 sdl = satocsdl(addr); 2001 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 2002 ifindex2ifnet[sdl->sdl_index] && 2003 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 2004 return ifindex2ifnet[sdl->sdl_index]->if_dl; 2005 } 2006 } 2007 #ifdef NETATALK 2008 if (af == AF_APPLETALK) { 2009 const struct sockaddr_at *sat, *sat2; 2010 sat = (const struct sockaddr_at *)addr; 2011 IFNET_READER_FOREACH(ifp) { 2012 if (if_is_deactivated(ifp)) 2013 continue; 2014 ifa = at_ifawithnet((const struct sockaddr_at *)addr, 2015 ifp); 2016 if (ifa == NULL) 2017 continue; 2018 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 2019 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 2020 return ifa; /* exact match */ 2021 if (ifa_maybe == NULL) { 2022 /* else keep the if with the right range */ 2023 ifa_maybe = ifa; 2024 } 2025 } 2026 return ifa_maybe; 2027 } 2028 #endif 2029 IFNET_READER_FOREACH(ifp) { 2030 if (if_is_deactivated(ifp)) 2031 continue; 2032 IFADDR_READER_FOREACH(ifa, ifp) { 2033 const char *cp, *cp2, *cp3; 2034 2035 if (ifa->ifa_addr->sa_family != af || 2036 ifa->ifa_netmask == NULL) 2037 next: continue; 2038 cp = addr_data; 2039 cp2 = ifa->ifa_addr->sa_data; 2040 cp3 = ifa->ifa_netmask->sa_data; 2041 cplim = (const char *)ifa->ifa_netmask + 2042 ifa->ifa_netmask->sa_len; 2043 while (cp3 < cplim) { 2044 if ((*cp++ ^ *cp2++) & *cp3++) { 2045 /* want to continue for() loop */ 2046 goto next; 2047 } 2048 } 2049 if (ifa_maybe == NULL || 2050 rt_refines(ifa->ifa_netmask, 2051 ifa_maybe->ifa_netmask)) 2052 ifa_maybe = ifa; 2053 } 2054 } 2055 return ifa_maybe; 2056 } 2057 2058 struct ifaddr * 2059 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 2060 { 2061 struct ifaddr *ifa; 2062 int s; 2063 2064 s = pserialize_read_enter(); 2065 ifa = ifa_ifwithnet(addr); 2066 if (ifa != NULL) 2067 ifa_acquire(ifa, psref); 2068 pserialize_read_exit(s); 2069 2070 return ifa; 2071 } 2072 2073 /* 2074 * Find the interface of the address. 2075 */ 2076 struct ifaddr * 2077 ifa_ifwithladdr(const struct sockaddr *addr) 2078 { 2079 struct ifaddr *ia; 2080 2081 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 2082 (ia = ifa_ifwithnet(addr))) 2083 return ia; 2084 return NULL; 2085 } 2086 2087 struct ifaddr * 2088 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 2089 { 2090 struct ifaddr *ifa; 2091 int s; 2092 2093 s = pserialize_read_enter(); 2094 ifa = ifa_ifwithladdr(addr); 2095 if (ifa != NULL) 2096 ifa_acquire(ifa, psref); 2097 pserialize_read_exit(s); 2098 2099 return ifa; 2100 } 2101 2102 /* 2103 * Find an interface using a specific address family 2104 */ 2105 struct ifaddr * 2106 ifa_ifwithaf(int af) 2107 { 2108 struct ifnet *ifp; 2109 struct ifaddr *ifa = NULL; 2110 int s; 2111 2112 s = pserialize_read_enter(); 2113 IFNET_READER_FOREACH(ifp) { 2114 if (if_is_deactivated(ifp)) 2115 continue; 2116 IFADDR_READER_FOREACH(ifa, ifp) { 2117 if (ifa->ifa_addr->sa_family == af) 2118 goto out; 2119 } 2120 } 2121 out: 2122 pserialize_read_exit(s); 2123 return ifa; 2124 } 2125 2126 /* 2127 * Find an interface address specific to an interface best matching 2128 * a given address. 2129 */ 2130 struct ifaddr * 2131 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2132 { 2133 struct ifaddr *ifa; 2134 const char *cp, *cp2, *cp3; 2135 const char *cplim; 2136 struct ifaddr *ifa_maybe = 0; 2137 u_int af = addr->sa_family; 2138 2139 if (if_is_deactivated(ifp)) 2140 return NULL; 2141 2142 if (af >= AF_MAX) 2143 return NULL; 2144 2145 IFADDR_READER_FOREACH(ifa, ifp) { 2146 if (ifa->ifa_addr->sa_family != af) 2147 continue; 2148 ifa_maybe = ifa; 2149 if (ifa->ifa_netmask == NULL) { 2150 if (equal(addr, ifa->ifa_addr) || 2151 (ifa->ifa_dstaddr && 2152 equal(addr, ifa->ifa_dstaddr))) 2153 return ifa; 2154 continue; 2155 } 2156 cp = addr->sa_data; 2157 cp2 = ifa->ifa_addr->sa_data; 2158 cp3 = ifa->ifa_netmask->sa_data; 2159 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2160 for (; cp3 < cplim; cp3++) { 2161 if ((*cp++ ^ *cp2++) & *cp3) 2162 break; 2163 } 2164 if (cp3 == cplim) 2165 return ifa; 2166 } 2167 return ifa_maybe; 2168 } 2169 2170 struct ifaddr * 2171 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2172 struct psref *psref) 2173 { 2174 struct ifaddr *ifa; 2175 int s; 2176 2177 s = pserialize_read_enter(); 2178 ifa = ifaof_ifpforaddr(addr, ifp); 2179 if (ifa != NULL) 2180 ifa_acquire(ifa, psref); 2181 pserialize_read_exit(s); 2182 2183 return ifa; 2184 } 2185 2186 /* 2187 * Default action when installing a route with a Link Level gateway. 2188 * Lookup an appropriate real ifa to point to. 2189 * This should be moved to /sys/net/link.c eventually. 2190 */ 2191 void 2192 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2193 { 2194 struct ifaddr *ifa; 2195 const struct sockaddr *dst; 2196 struct ifnet *ifp; 2197 struct psref psref; 2198 2199 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2200 return; 2201 ifp = rt->rt_ifa->ifa_ifp; 2202 dst = rt_getkey(rt); 2203 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2204 rt_replace_ifa(rt, ifa); 2205 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2206 ifa->ifa_rtrequest(cmd, rt, info); 2207 ifa_release(ifa, &psref); 2208 } 2209 } 2210 2211 /* 2212 * bitmask macros to manage a densely packed link_state change queue. 2213 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2214 * LINK_STATE_UP(2) we need 2 bits for each state change. 2215 * As a state change to store is 0, treat all bits set as an unset item. 2216 */ 2217 #define LQ_ITEM_BITS 2 2218 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2219 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2220 #define LINK_STATE_UNSET LQ_ITEM_MASK 2221 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2222 #define LQ_STORE(q, i, v) \ 2223 do { \ 2224 (q) &= ~LQ_MASK((i)); \ 2225 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2226 } while (0 /* CONSTCOND */) 2227 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2228 #define LQ_POP(q, v) \ 2229 do { \ 2230 (v) = LQ_ITEM((q), 0); \ 2231 (q) >>= LQ_ITEM_BITS; \ 2232 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2233 } while (0 /* CONSTCOND */) 2234 #define LQ_PUSH(q, v) \ 2235 do { \ 2236 (q) >>= LQ_ITEM_BITS; \ 2237 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2238 } while (0 /* CONSTCOND */) 2239 #define LQ_FIND_UNSET(q, i) \ 2240 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2241 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2242 break; \ 2243 } 2244 2245 /* 2246 * Handle a change in the interface link state and 2247 * queue notifications. 2248 */ 2249 void 2250 if_link_state_change(struct ifnet *ifp, int link_state) 2251 { 2252 int idx; 2253 2254 /* Ensure change is to a valid state */ 2255 switch (link_state) { 2256 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2257 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2258 case LINK_STATE_UP: 2259 break; 2260 default: 2261 #ifdef DEBUG 2262 printf("%s: invalid link state %d\n", 2263 ifp->if_xname, link_state); 2264 #endif 2265 return; 2266 } 2267 2268 IF_LINK_STATE_CHANGE_LOCK(ifp); 2269 2270 /* Find the last unset event in the queue. */ 2271 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2272 2273 if (idx == 0) { 2274 /* 2275 * There is no queue of link state changes. 2276 * As we have the lock we can safely compare against the 2277 * current link state and return if the same. 2278 * Otherwise, if scheduled is true then the interface is being 2279 * detached and the queue is being drained so we need 2280 * to avoid queuing more work. 2281 */ 2282 if (ifp->if_link_state == link_state || 2283 ifp->if_link_scheduled) 2284 goto out; 2285 } else { 2286 /* Ensure link_state doesn't match the last queued state. */ 2287 if (LQ_ITEM(ifp->if_link_queue, idx - 1) 2288 == (uint8_t)link_state) 2289 goto out; 2290 } 2291 2292 /* Handle queue overflow. */ 2293 if (idx == LQ_MAX(ifp->if_link_queue)) { 2294 uint8_t lost; 2295 2296 /* 2297 * The DOWN state must be protected from being pushed off 2298 * the queue to ensure that userland will always be 2299 * in a sane state. 2300 * Because DOWN is protected, there is no need to protect 2301 * UNKNOWN. 2302 * It should be invalid to change from any other state to 2303 * UNKNOWN anyway ... 2304 */ 2305 lost = LQ_ITEM(ifp->if_link_queue, 0); 2306 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2307 if (lost == LINK_STATE_DOWN) { 2308 lost = LQ_ITEM(ifp->if_link_queue, 0); 2309 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2310 } 2311 printf("%s: lost link state change %s\n", 2312 ifp->if_xname, 2313 lost == LINK_STATE_UP ? "UP" : 2314 lost == LINK_STATE_DOWN ? "DOWN" : 2315 "UNKNOWN"); 2316 } else 2317 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2318 2319 if (ifp->if_link_scheduled) 2320 goto out; 2321 2322 ifp->if_link_scheduled = true; 2323 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL); 2324 2325 out: 2326 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2327 } 2328 2329 /* 2330 * Handle interface link state change notifications. 2331 */ 2332 static void 2333 if_link_state_change_process(struct ifnet *ifp, int link_state) 2334 { 2335 struct domain *dp; 2336 const int s = splnet(); 2337 bool notify; 2338 2339 KASSERT(!cpu_intr_p()); 2340 2341 IF_LINK_STATE_CHANGE_LOCK(ifp); 2342 2343 /* Ensure the change is still valid. */ 2344 if (ifp->if_link_state == link_state) { 2345 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2346 splx(s); 2347 return; 2348 } 2349 2350 #ifdef DEBUG 2351 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2352 link_state == LINK_STATE_UP ? "UP" : 2353 link_state == LINK_STATE_DOWN ? "DOWN" : 2354 "UNKNOWN", 2355 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2356 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2357 "UNKNOWN"); 2358 #endif 2359 2360 /* 2361 * When going from UNKNOWN to UP, we need to mark existing 2362 * addresses as tentative and restart DAD as we may have 2363 * erroneously not found a duplicate. 2364 * 2365 * This needs to happen before rt_ifmsg to avoid a race where 2366 * listeners would have an address and expect it to work right 2367 * away. 2368 */ 2369 notify = (link_state == LINK_STATE_UP && 2370 ifp->if_link_state == LINK_STATE_UNKNOWN); 2371 ifp->if_link_state = link_state; 2372 /* The following routines may sleep so release the spin mutex */ 2373 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2374 2375 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2376 if (notify) { 2377 DOMAIN_FOREACH(dp) { 2378 if (dp->dom_if_link_state_change != NULL) 2379 dp->dom_if_link_state_change(ifp, 2380 LINK_STATE_DOWN); 2381 } 2382 } 2383 2384 /* Notify that the link state has changed. */ 2385 rt_ifmsg(ifp); 2386 2387 simplehook_dohooks(ifp->if_linkstate_hooks); 2388 2389 DOMAIN_FOREACH(dp) { 2390 if (dp->dom_if_link_state_change != NULL) 2391 dp->dom_if_link_state_change(ifp, link_state); 2392 } 2393 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2394 splx(s); 2395 } 2396 2397 /* 2398 * Process the interface link state change queue. 2399 */ 2400 static void 2401 if_link_state_change_work(struct work *work, void *arg) 2402 { 2403 struct ifnet *ifp = container_of(work, struct ifnet, if_link_work); 2404 uint8_t state; 2405 2406 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2407 const int s = splnet(); 2408 2409 /* 2410 * Pop a link state change from the queue and process it. 2411 * If there is nothing to process then if_detach() has been called. 2412 * We keep if_link_scheduled = true so the queue can safely drain 2413 * without more work being queued. 2414 */ 2415 IF_LINK_STATE_CHANGE_LOCK(ifp); 2416 LQ_POP(ifp->if_link_queue, state); 2417 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2418 if (state == LINK_STATE_UNSET) 2419 goto out; 2420 2421 if_link_state_change_process(ifp, state); 2422 2423 /* If there is a link state change to come, schedule it. */ 2424 IF_LINK_STATE_CHANGE_LOCK(ifp); 2425 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) { 2426 ifp->if_link_scheduled = true; 2427 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, 2428 NULL); 2429 } else 2430 ifp->if_link_scheduled = false; 2431 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2432 2433 out: 2434 splx(s); 2435 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2436 } 2437 2438 void * 2439 if_linkstate_change_establish(struct ifnet *ifp, void (*fn)(void *), void *arg) 2440 { 2441 khook_t *hk; 2442 2443 hk = simplehook_establish(ifp->if_linkstate_hooks, fn, arg); 2444 2445 return (void *)hk; 2446 } 2447 2448 void 2449 if_linkstate_change_disestablish(struct ifnet *ifp, void *vhook, 2450 kmutex_t *lock) 2451 { 2452 2453 simplehook_disestablish(ifp->if_linkstate_hooks, vhook, lock); 2454 } 2455 2456 /* 2457 * Used to mark addresses on an interface as DETATCHED or TENTATIVE 2458 * and thus start Duplicate Address Detection without changing the 2459 * real link state. 2460 */ 2461 void 2462 if_domain_link_state_change(struct ifnet *ifp, int link_state) 2463 { 2464 struct domain *dp; 2465 2466 const int s = splnet(); 2467 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2468 2469 DOMAIN_FOREACH(dp) { 2470 if (dp->dom_if_link_state_change != NULL) 2471 dp->dom_if_link_state_change(ifp, link_state); 2472 } 2473 2474 splx(s); 2475 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2476 } 2477 2478 /* 2479 * Default action when installing a local route on a point-to-point 2480 * interface. 2481 */ 2482 void 2483 p2p_rtrequest(int req, struct rtentry *rt, 2484 __unused const struct rt_addrinfo *info) 2485 { 2486 struct ifnet *ifp = rt->rt_ifp; 2487 struct ifaddr *ifa, *lo0ifa; 2488 int s = pserialize_read_enter(); 2489 2490 switch (req) { 2491 case RTM_ADD: 2492 if ((rt->rt_flags & RTF_LOCAL) == 0) 2493 break; 2494 2495 rt->rt_ifp = lo0ifp; 2496 2497 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2498 break; 2499 2500 IFADDR_READER_FOREACH(ifa, ifp) { 2501 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2502 break; 2503 } 2504 if (ifa == NULL) 2505 break; 2506 2507 /* 2508 * Ensure lo0 has an address of the same family. 2509 */ 2510 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2511 if (lo0ifa->ifa_addr->sa_family == 2512 ifa->ifa_addr->sa_family) 2513 break; 2514 } 2515 if (lo0ifa == NULL) 2516 break; 2517 2518 /* 2519 * Make sure to set rt->rt_ifa to the interface 2520 * address we are using, otherwise we will have trouble 2521 * with source address selection. 2522 */ 2523 if (ifa != rt->rt_ifa) 2524 rt_replace_ifa(rt, ifa); 2525 break; 2526 case RTM_DELETE: 2527 default: 2528 break; 2529 } 2530 pserialize_read_exit(s); 2531 } 2532 2533 static void 2534 _if_down(struct ifnet *ifp) 2535 { 2536 struct ifaddr *ifa; 2537 struct domain *dp; 2538 struct psref psref; 2539 2540 ifp->if_flags &= ~IFF_UP; 2541 nanotime(&ifp->if_lastchange); 2542 2543 const int bound = curlwp_bind(); 2544 int s = pserialize_read_enter(); 2545 IFADDR_READER_FOREACH(ifa, ifp) { 2546 ifa_acquire(ifa, &psref); 2547 pserialize_read_exit(s); 2548 2549 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2550 2551 s = pserialize_read_enter(); 2552 ifa_release(ifa, &psref); 2553 } 2554 pserialize_read_exit(s); 2555 curlwp_bindx(bound); 2556 2557 IFQ_PURGE(&ifp->if_snd); 2558 #if NCARP > 0 2559 if (ifp->if_carp) 2560 carp_carpdev_state(ifp); 2561 #endif 2562 rt_ifmsg(ifp); 2563 DOMAIN_FOREACH(dp) { 2564 if (dp->dom_if_down) 2565 dp->dom_if_down(ifp); 2566 } 2567 } 2568 2569 static void 2570 if_down_deactivated(struct ifnet *ifp) 2571 { 2572 2573 KASSERT(if_is_deactivated(ifp)); 2574 _if_down(ifp); 2575 } 2576 2577 void 2578 if_down_locked(struct ifnet *ifp) 2579 { 2580 2581 KASSERT(IFNET_LOCKED(ifp)); 2582 _if_down(ifp); 2583 } 2584 2585 /* 2586 * Mark an interface down and notify protocols of 2587 * the transition. 2588 * NOTE: must be called at splsoftnet or equivalent. 2589 */ 2590 void 2591 if_down(struct ifnet *ifp) 2592 { 2593 2594 IFNET_LOCK(ifp); 2595 if_down_locked(ifp); 2596 IFNET_UNLOCK(ifp); 2597 } 2598 2599 /* 2600 * Must be called with holding if_ioctl_lock. 2601 */ 2602 static void 2603 if_up_locked(struct ifnet *ifp) 2604 { 2605 #ifdef notyet 2606 struct ifaddr *ifa; 2607 #endif 2608 struct domain *dp; 2609 2610 KASSERT(IFNET_LOCKED(ifp)); 2611 2612 KASSERT(!if_is_deactivated(ifp)); 2613 ifp->if_flags |= IFF_UP; 2614 nanotime(&ifp->if_lastchange); 2615 #ifdef notyet 2616 /* this has no effect on IP, and will kill all ISO connections XXX */ 2617 IFADDR_READER_FOREACH(ifa, ifp) 2618 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2619 #endif 2620 #if NCARP > 0 2621 if (ifp->if_carp) 2622 carp_carpdev_state(ifp); 2623 #endif 2624 rt_ifmsg(ifp); 2625 DOMAIN_FOREACH(dp) { 2626 if (dp->dom_if_up) 2627 dp->dom_if_up(ifp); 2628 } 2629 } 2630 2631 /* 2632 * Handle interface slowtimo timer routine. Called 2633 * from softclock, we decrement timer (if set) and 2634 * call the appropriate interface routine on expiration. 2635 */ 2636 static bool 2637 if_slowtimo_countdown(struct ifnet *ifp) 2638 { 2639 bool fire = false; 2640 const int s = splnet(); 2641 2642 KERNEL_LOCK(1, NULL); 2643 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2644 fire = true; 2645 KERNEL_UNLOCK_ONE(NULL); 2646 splx(s); 2647 2648 return fire; 2649 } 2650 2651 static void 2652 if_slowtimo_intr(void *arg) 2653 { 2654 struct ifnet *ifp = arg; 2655 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 2656 2657 mutex_enter(&isd->isd_lock); 2658 if (!isd->isd_dying) { 2659 if (isd->isd_trigger || if_slowtimo_countdown(ifp)) { 2660 if (!isd->isd_queued) { 2661 isd->isd_queued = true; 2662 workqueue_enqueue(if_slowtimo_wq, 2663 &isd->isd_work, NULL); 2664 } 2665 } else 2666 callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ); 2667 } 2668 mutex_exit(&isd->isd_lock); 2669 } 2670 2671 static void 2672 if_slowtimo_work(struct work *work, void *arg) 2673 { 2674 struct if_slowtimo_data *isd = 2675 container_of(work, struct if_slowtimo_data, isd_work); 2676 struct ifnet *ifp = isd->isd_ifp; 2677 const int s = splnet(); 2678 2679 KERNEL_LOCK(1, NULL); 2680 (*ifp->if_slowtimo)(ifp); 2681 KERNEL_UNLOCK_ONE(NULL); 2682 splx(s); 2683 2684 mutex_enter(&isd->isd_lock); 2685 if (isd->isd_trigger) { 2686 isd->isd_trigger = false; 2687 printf("%s: watchdog triggered\n", ifp->if_xname); 2688 } 2689 isd->isd_queued = false; 2690 if (!isd->isd_dying) 2691 callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ); 2692 mutex_exit(&isd->isd_lock); 2693 } 2694 2695 static int 2696 sysctl_if_watchdog(SYSCTLFN_ARGS) 2697 { 2698 struct sysctlnode node = *rnode; 2699 struct ifnet *ifp = node.sysctl_data; 2700 struct if_slowtimo_data *isd = ifp->if_slowtimo_data; 2701 int arg = 0; 2702 int error; 2703 2704 node.sysctl_data = &arg; 2705 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2706 if (error || newp == NULL) 2707 return error; 2708 if (arg) { 2709 mutex_enter(&isd->isd_lock); 2710 KASSERT(!isd->isd_dying); 2711 isd->isd_trigger = true; 2712 callout_schedule(&isd->isd_ch, 0); 2713 mutex_exit(&isd->isd_lock); 2714 } 2715 2716 return 0; 2717 } 2718 2719 static void 2720 sysctl_watchdog_setup(struct ifnet *ifp) 2721 { 2722 struct sysctllog **clog = &ifp->if_sysctl_log; 2723 const struct sysctlnode *rnode; 2724 2725 if (sysctl_createv(clog, 0, NULL, &rnode, 2726 CTLFLAG_PERMANENT, CTLTYPE_NODE, "interfaces", 2727 SYSCTL_DESCR("Per-interface controls"), 2728 NULL, 0, NULL, 0, 2729 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 2730 goto bad; 2731 if (sysctl_createv(clog, 0, &rnode, &rnode, 2732 CTLFLAG_PERMANENT, CTLTYPE_NODE, ifp->if_xname, 2733 SYSCTL_DESCR("Interface controls"), 2734 NULL, 0, NULL, 0, 2735 CTL_CREATE, CTL_EOL) != 0) 2736 goto bad; 2737 if (sysctl_createv(clog, 0, &rnode, &rnode, 2738 CTLFLAG_PERMANENT, CTLTYPE_NODE, "watchdog", 2739 SYSCTL_DESCR("Interface watchdog controls"), 2740 NULL, 0, NULL, 0, 2741 CTL_CREATE, CTL_EOL) != 0) 2742 goto bad; 2743 if (sysctl_createv(clog, 0, &rnode, NULL, 2744 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "trigger", 2745 SYSCTL_DESCR("Trigger watchdog timeout"), 2746 sysctl_if_watchdog, 0, (int *)ifp, 0, 2747 CTL_CREATE, CTL_EOL) != 0) 2748 goto bad; 2749 2750 return; 2751 2752 bad: 2753 printf("%s: could not attach sysctl watchdog nodes\n", ifp->if_xname); 2754 } 2755 2756 /* 2757 * Mark an interface up and notify protocols of 2758 * the transition. 2759 * NOTE: must be called at splsoftnet or equivalent. 2760 */ 2761 void 2762 if_up(struct ifnet *ifp) 2763 { 2764 2765 IFNET_LOCK(ifp); 2766 if_up_locked(ifp); 2767 IFNET_UNLOCK(ifp); 2768 } 2769 2770 /* 2771 * Set/clear promiscuous mode on interface ifp based on the truth value 2772 * of pswitch. The calls are reference counted so that only the first 2773 * "on" request actually has an effect, as does the final "off" request. 2774 * Results are undefined if the "off" and "on" requests are not matched. 2775 */ 2776 int 2777 ifpromisc_locked(struct ifnet *ifp, int pswitch) 2778 { 2779 int pcount, ret = 0; 2780 u_short nflags; 2781 2782 KASSERT(IFNET_LOCKED(ifp)); 2783 2784 pcount = ifp->if_pcount; 2785 if (pswitch) { 2786 /* 2787 * Allow the device to be "placed" into promiscuous 2788 * mode even if it is not configured up. It will 2789 * consult IFF_PROMISC when it is brought up. 2790 */ 2791 if (ifp->if_pcount++ != 0) 2792 goto out; 2793 nflags = ifp->if_flags | IFF_PROMISC; 2794 } else { 2795 if (--ifp->if_pcount > 0) 2796 goto out; 2797 nflags = ifp->if_flags & ~IFF_PROMISC; 2798 } 2799 ret = if_flags_set(ifp, nflags); 2800 /* Restore interface state if not successful. */ 2801 if (ret != 0) 2802 ifp->if_pcount = pcount; 2803 2804 out: 2805 return ret; 2806 } 2807 2808 int 2809 ifpromisc(struct ifnet *ifp, int pswitch) 2810 { 2811 int e; 2812 2813 IFNET_LOCK(ifp); 2814 e = ifpromisc_locked(ifp, pswitch); 2815 IFNET_UNLOCK(ifp); 2816 2817 return e; 2818 } 2819 2820 /* 2821 * if_ioctl(ifp, cmd, data) 2822 * 2823 * Apply an ioctl command to the interface. Returns 0 on success, 2824 * nonzero errno(3) number on failure. 2825 * 2826 * For SIOCADDMULTI/SIOCDELMULTI, caller need not hold locks -- it 2827 * is the driver's responsibility to take any internal locks. 2828 * (Kernel logic should generally invoke these only through 2829 * if_mcast_op.) 2830 * 2831 * For all other ioctls, caller must hold ifp->if_ioctl_lock, 2832 * a.k.a. IFNET_LOCK. May sleep. 2833 */ 2834 int 2835 if_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2836 { 2837 2838 switch (cmd) { 2839 case SIOCADDMULTI: 2840 case SIOCDELMULTI: 2841 break; 2842 default: 2843 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2844 } 2845 2846 return (*ifp->if_ioctl)(ifp, cmd, data); 2847 } 2848 2849 /* 2850 * if_init(ifp) 2851 * 2852 * Prepare the hardware underlying ifp to process packets 2853 * according to its current configuration. Returns 0 on success, 2854 * nonzero errno(3) number on failure. 2855 * 2856 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 2857 * IFNET_LOCK. 2858 */ 2859 int 2860 if_init(struct ifnet *ifp) 2861 { 2862 2863 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2864 2865 return (*ifp->if_init)(ifp); 2866 } 2867 2868 /* 2869 * if_stop(ifp, disable) 2870 * 2871 * Stop the hardware underlying ifp from processing packets. 2872 * 2873 * If disable is true, ... XXX(?) 2874 * 2875 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 2876 * IFNET_LOCK. 2877 */ 2878 void 2879 if_stop(struct ifnet *ifp, int disable) 2880 { 2881 2882 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname); 2883 2884 (*ifp->if_stop)(ifp, disable); 2885 } 2886 2887 /* 2888 * Map interface name to 2889 * interface structure pointer. 2890 */ 2891 struct ifnet * 2892 ifunit(const char *name) 2893 { 2894 struct ifnet *ifp; 2895 const char *cp = name; 2896 u_int unit = 0; 2897 u_int i; 2898 2899 /* 2900 * If the entire name is a number, treat it as an ifindex. 2901 */ 2902 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) 2903 unit = unit * 10 + (*cp - '0'); 2904 2905 /* 2906 * If the number took all of the name, then it's a valid ifindex. 2907 */ 2908 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2909 return if_byindex(unit); 2910 2911 ifp = NULL; 2912 const int s = pserialize_read_enter(); 2913 IFNET_READER_FOREACH(ifp) { 2914 if (if_is_deactivated(ifp)) 2915 continue; 2916 if (strcmp(ifp->if_xname, name) == 0) 2917 goto out; 2918 } 2919 out: 2920 pserialize_read_exit(s); 2921 return ifp; 2922 } 2923 2924 /* 2925 * Get a reference of an ifnet object by an interface name. 2926 * The returned reference is protected by psref(9). The caller 2927 * must release a returned reference by if_put after use. 2928 */ 2929 struct ifnet * 2930 if_get(const char *name, struct psref *psref) 2931 { 2932 struct ifnet *ifp; 2933 const char *cp = name; 2934 u_int unit = 0; 2935 u_int i; 2936 2937 /* 2938 * If the entire name is a number, treat it as an ifindex. 2939 */ 2940 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) 2941 unit = unit * 10 + (*cp - '0'); 2942 2943 /* 2944 * If the number took all of the name, then it's a valid ifindex. 2945 */ 2946 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2947 return if_get_byindex(unit, psref); 2948 2949 ifp = NULL; 2950 const int s = pserialize_read_enter(); 2951 IFNET_READER_FOREACH(ifp) { 2952 if (if_is_deactivated(ifp)) 2953 continue; 2954 if (strcmp(ifp->if_xname, name) == 0) { 2955 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 2956 psref_acquire(psref, &ifp->if_psref, 2957 ifnet_psref_class); 2958 goto out; 2959 } 2960 } 2961 out: 2962 pserialize_read_exit(s); 2963 return ifp; 2964 } 2965 2966 /* 2967 * Release a reference of an ifnet object given by if_get, if_get_byindex 2968 * or if_get_bylla. 2969 */ 2970 void 2971 if_put(const struct ifnet *ifp, struct psref *psref) 2972 { 2973 2974 if (ifp == NULL) 2975 return; 2976 2977 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2978 } 2979 2980 /* 2981 * Return ifp having idx. Return NULL if not found. Normally if_byindex 2982 * should be used. 2983 */ 2984 ifnet_t * 2985 _if_byindex(u_int idx) 2986 { 2987 2988 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2989 } 2990 2991 /* 2992 * Return ifp having idx. Return NULL if not found or the found ifp is 2993 * already deactivated. 2994 */ 2995 ifnet_t * 2996 if_byindex(u_int idx) 2997 { 2998 ifnet_t *ifp; 2999 3000 ifp = _if_byindex(idx); 3001 if (ifp != NULL && if_is_deactivated(ifp)) 3002 ifp = NULL; 3003 return ifp; 3004 } 3005 3006 /* 3007 * Get a reference of an ifnet object by an interface index. 3008 * The returned reference is protected by psref(9). The caller 3009 * must release a returned reference by if_put after use. 3010 */ 3011 ifnet_t * 3012 if_get_byindex(u_int idx, struct psref *psref) 3013 { 3014 ifnet_t *ifp; 3015 3016 const int s = pserialize_read_enter(); 3017 ifp = if_byindex(idx); 3018 if (__predict_true(ifp != NULL)) { 3019 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 3020 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 3021 } 3022 pserialize_read_exit(s); 3023 3024 return ifp; 3025 } 3026 3027 ifnet_t * 3028 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref) 3029 { 3030 ifnet_t *ifp; 3031 3032 const int s = pserialize_read_enter(); 3033 IFNET_READER_FOREACH(ifp) { 3034 if (if_is_deactivated(ifp)) 3035 continue; 3036 if (ifp->if_addrlen != lla_len) 3037 continue; 3038 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) { 3039 psref_acquire(psref, &ifp->if_psref, 3040 ifnet_psref_class); 3041 break; 3042 } 3043 } 3044 pserialize_read_exit(s); 3045 3046 return ifp; 3047 } 3048 3049 /* 3050 * Note that it's safe only if the passed ifp is guaranteed to not be freed, 3051 * for example using pserialize or the ifp is already held or some other 3052 * object is held which guarantes the ifp to not be freed indirectly. 3053 */ 3054 void 3055 if_acquire(struct ifnet *ifp, struct psref *psref) 3056 { 3057 3058 KASSERT(ifp->if_index != 0); 3059 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 3060 } 3061 3062 bool 3063 if_held(struct ifnet *ifp) 3064 { 3065 3066 return psref_held(&ifp->if_psref, ifnet_psref_class); 3067 } 3068 3069 /* 3070 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over 3071 * IPv4. Check the tunnel nesting count. 3072 * Return > 0, if tunnel nesting count is more than limit. 3073 * Return 0, if tunnel nesting count is equal or less than limit. 3074 */ 3075 int 3076 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit) 3077 { 3078 struct m_tag *mtag; 3079 int *count; 3080 3081 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO); 3082 if (mtag != NULL) { 3083 count = (int *)(mtag + 1); 3084 if (++(*count) > limit) { 3085 log(LOG_NOTICE, 3086 "%s: recursively called too many times(%d)\n", 3087 ifp->if_xname, *count); 3088 return EIO; 3089 } 3090 } else { 3091 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count), 3092 M_NOWAIT); 3093 if (mtag != NULL) { 3094 m_tag_prepend(m, mtag); 3095 count = (int *)(mtag + 1); 3096 *count = 0; 3097 } else { 3098 log(LOG_DEBUG, "%s: m_tag_get() failed, " 3099 "recursion calls are not prevented.\n", 3100 ifp->if_xname); 3101 } 3102 } 3103 3104 return 0; 3105 } 3106 3107 static void 3108 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 3109 { 3110 struct tunnel_ro *tro = p; 3111 3112 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP); 3113 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 3114 } 3115 3116 static void 3117 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 3118 { 3119 struct tunnel_ro *tro = p; 3120 3121 rtcache_free(tro->tr_ro); 3122 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro)); 3123 3124 mutex_obj_free(tro->tr_lock); 3125 } 3126 3127 percpu_t * 3128 if_tunnel_alloc_ro_percpu(void) 3129 { 3130 3131 return percpu_create(sizeof(struct tunnel_ro), 3132 if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL); 3133 } 3134 3135 void 3136 if_tunnel_free_ro_percpu(percpu_t *ro_percpu) 3137 { 3138 3139 percpu_free(ro_percpu, sizeof(struct tunnel_ro)); 3140 } 3141 3142 3143 static void 3144 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, 3145 struct cpu_info *ci __unused) 3146 { 3147 struct tunnel_ro *tro = p; 3148 3149 mutex_enter(tro->tr_lock); 3150 rtcache_free(tro->tr_ro); 3151 mutex_exit(tro->tr_lock); 3152 } 3153 3154 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu) 3155 { 3156 3157 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL); 3158 } 3159 3160 void 3161 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats) 3162 { 3163 3164 /* Collect the volatile stats first; this zeros *ifi. */ 3165 if_stats_to_if_data(ifp, ifi, zero_stats); 3166 3167 ifi->ifi_type = ifp->if_type; 3168 ifi->ifi_addrlen = ifp->if_addrlen; 3169 ifi->ifi_hdrlen = ifp->if_hdrlen; 3170 ifi->ifi_link_state = ifp->if_link_state; 3171 ifi->ifi_mtu = ifp->if_mtu; 3172 ifi->ifi_metric = ifp->if_metric; 3173 ifi->ifi_baudrate = ifp->if_baudrate; 3174 ifi->ifi_lastchange = ifp->if_lastchange; 3175 } 3176 3177 /* common */ 3178 int 3179 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 3180 { 3181 struct ifreq *ifr; 3182 struct ifcapreq *ifcr; 3183 struct ifdatareq *ifdr; 3184 unsigned short flags; 3185 char *descr; 3186 int error; 3187 3188 switch (cmd) { 3189 case SIOCSIFCAP: 3190 ifcr = data; 3191 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 3192 return EINVAL; 3193 3194 if (ifcr->ifcr_capenable == ifp->if_capenable) 3195 return 0; 3196 3197 ifp->if_capenable = ifcr->ifcr_capenable; 3198 3199 /* Pre-compute the checksum flags mask. */ 3200 ifp->if_csum_flags_tx = 0; 3201 ifp->if_csum_flags_rx = 0; 3202 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) 3203 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 3204 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 3205 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 3206 3207 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) 3208 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 3209 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) 3210 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 3211 3212 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) 3213 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 3214 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) 3215 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 3216 3217 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) 3218 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 3219 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) 3220 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 3221 3222 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) 3223 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 3224 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) 3225 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 3226 3227 if (ifp->if_capenable & IFCAP_TSOv4) 3228 ifp->if_csum_flags_tx |= M_CSUM_TSOv4; 3229 if (ifp->if_capenable & IFCAP_TSOv6) 3230 ifp->if_csum_flags_tx |= M_CSUM_TSOv6; 3231 3232 #if NBRIDGE > 0 3233 if (ifp->if_bridge != NULL) 3234 bridge_calc_csum_flags(ifp->if_bridge); 3235 #endif 3236 3237 if (ifp->if_flags & IFF_UP) 3238 return ENETRESET; 3239 return 0; 3240 case SIOCSIFFLAGS: 3241 ifr = data; 3242 /* 3243 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up 3244 * and if_down aren't MP-safe yet, so we must hold the lock. 3245 */ 3246 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3247 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 3248 const int s = splsoftnet(); 3249 if_down_locked(ifp); 3250 splx(s); 3251 } 3252 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 3253 const int s = splsoftnet(); 3254 if_up_locked(ifp); 3255 splx(s); 3256 } 3257 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3258 flags = (ifp->if_flags & IFF_CANTCHANGE) | 3259 (ifr->ifr_flags &~ IFF_CANTCHANGE); 3260 if (ifp->if_flags != flags) { 3261 ifp->if_flags = flags; 3262 /* Notify that the flags have changed. */ 3263 rt_ifmsg(ifp); 3264 } 3265 break; 3266 case SIOCGIFFLAGS: 3267 ifr = data; 3268 ifr->ifr_flags = ifp->if_flags; 3269 break; 3270 3271 case SIOCGIFMETRIC: 3272 ifr = data; 3273 ifr->ifr_metric = ifp->if_metric; 3274 break; 3275 3276 case SIOCGIFMTU: 3277 ifr = data; 3278 ifr->ifr_mtu = ifp->if_mtu; 3279 break; 3280 3281 case SIOCGIFDLT: 3282 ifr = data; 3283 ifr->ifr_dlt = ifp->if_dlt; 3284 break; 3285 3286 case SIOCGIFCAP: 3287 ifcr = data; 3288 ifcr->ifcr_capabilities = ifp->if_capabilities; 3289 ifcr->ifcr_capenable = ifp->if_capenable; 3290 break; 3291 3292 case SIOCSIFMETRIC: 3293 ifr = data; 3294 ifp->if_metric = ifr->ifr_metric; 3295 break; 3296 3297 case SIOCGIFDATA: 3298 ifdr = data; 3299 if_export_if_data(ifp, &ifdr->ifdr_data, false); 3300 break; 3301 3302 case SIOCGIFINDEX: 3303 ifr = data; 3304 ifr->ifr_index = ifp->if_index; 3305 break; 3306 3307 case SIOCZIFDATA: 3308 ifdr = data; 3309 if_export_if_data(ifp, &ifdr->ifdr_data, true); 3310 getnanotime(&ifp->if_lastchange); 3311 break; 3312 case SIOCSIFMTU: 3313 ifr = data; 3314 if (ifp->if_mtu == ifr->ifr_mtu) 3315 break; 3316 ifp->if_mtu = ifr->ifr_mtu; 3317 return ENETRESET; 3318 case SIOCSIFDESCR: 3319 error = kauth_authorize_network(kauth_cred_get(), 3320 KAUTH_NETWORK_INTERFACE, 3321 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3322 NULL); 3323 if (error) 3324 return error; 3325 3326 ifr = data; 3327 3328 if (ifr->ifr_buflen > IFDESCRSIZE) 3329 return ENAMETOOLONG; 3330 3331 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) { 3332 /* unset description */ 3333 descr = NULL; 3334 } else { 3335 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP); 3336 /* 3337 * copy (IFDESCRSIZE - 1) bytes to ensure 3338 * terminating nul 3339 */ 3340 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1); 3341 if (error) { 3342 kmem_free(descr, IFDESCRSIZE); 3343 return error; 3344 } 3345 } 3346 3347 if (ifp->if_description != NULL) 3348 kmem_free(ifp->if_description, IFDESCRSIZE); 3349 3350 ifp->if_description = descr; 3351 break; 3352 3353 case SIOCGIFDESCR: 3354 ifr = data; 3355 descr = ifp->if_description; 3356 3357 if (descr == NULL) 3358 return ENOMSG; 3359 3360 if (ifr->ifr_buflen < IFDESCRSIZE) 3361 return EINVAL; 3362 3363 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE); 3364 if (error) 3365 return error; 3366 break; 3367 3368 default: 3369 return ENOTTY; 3370 } 3371 return 0; 3372 } 3373 3374 int 3375 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 3376 { 3377 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 3378 struct ifaddr *ifa; 3379 const struct sockaddr *any, *sa; 3380 union { 3381 struct sockaddr sa; 3382 struct sockaddr_storage ss; 3383 } u, v; 3384 int s, error = 0; 3385 3386 switch (cmd) { 3387 case SIOCSIFADDRPREF: 3388 error = kauth_authorize_network(kauth_cred_get(), 3389 KAUTH_NETWORK_INTERFACE, 3390 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3391 NULL); 3392 if (error) 3393 return error; 3394 break; 3395 case SIOCGIFADDRPREF: 3396 break; 3397 default: 3398 return EOPNOTSUPP; 3399 } 3400 3401 /* sanity checks */ 3402 if (data == NULL || ifp == NULL) { 3403 panic("invalid argument to %s", __func__); 3404 /*NOTREACHED*/ 3405 } 3406 3407 /* address must be specified on ADD and DELETE */ 3408 sa = sstocsa(&ifap->ifap_addr); 3409 if (sa->sa_family != sofamily(so)) 3410 return EINVAL; 3411 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 3412 return EINVAL; 3413 3414 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 3415 3416 s = pserialize_read_enter(); 3417 IFADDR_READER_FOREACH(ifa, ifp) { 3418 if (ifa->ifa_addr->sa_family != sa->sa_family) 3419 continue; 3420 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 3421 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 3422 break; 3423 } 3424 if (ifa == NULL) { 3425 error = EADDRNOTAVAIL; 3426 goto out; 3427 } 3428 3429 switch (cmd) { 3430 case SIOCSIFADDRPREF: 3431 ifa->ifa_preference = ifap->ifap_preference; 3432 goto out; 3433 case SIOCGIFADDRPREF: 3434 /* fill in the if_laddrreq structure */ 3435 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 3436 sizeof(ifap->ifap_addr), ifa->ifa_addr); 3437 ifap->ifap_preference = ifa->ifa_preference; 3438 goto out; 3439 default: 3440 error = EOPNOTSUPP; 3441 } 3442 out: 3443 pserialize_read_exit(s); 3444 return error; 3445 } 3446 3447 /* 3448 * Interface ioctls. 3449 */ 3450 static int 3451 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 3452 { 3453 struct ifnet *ifp; 3454 struct ifreq *ifr; 3455 int error = 0; 3456 u_long ocmd = cmd; 3457 u_short oif_flags; 3458 struct ifreq ifrb; 3459 struct oifreq *oifr = NULL; 3460 int r; 3461 struct psref psref; 3462 bool do_if43_post = false; 3463 bool do_ifm80_post = false; 3464 3465 switch (cmd) { 3466 case SIOCGIFCONF: 3467 return ifconf(cmd, data); 3468 case SIOCINITIFADDR: 3469 return EPERM; 3470 default: 3471 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(), 3472 error); 3473 if (error != ENOSYS) 3474 return error; 3475 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data), 3476 enosys(), error); 3477 if (error != ENOSYS) 3478 return error; 3479 error = 0; 3480 break; 3481 } 3482 3483 ifr = data; 3484 /* Pre-conversion */ 3485 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error); 3486 if (cmd != ocmd) { 3487 oifr = data; 3488 data = ifr = &ifrb; 3489 IFREQO2N_43(oifr, ifr); 3490 do_if43_post = true; 3491 } 3492 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post), 3493 enosys(), error); 3494 3495 switch (cmd) { 3496 case SIOCIFCREATE: 3497 case SIOCIFDESTROY: { 3498 const int bound = curlwp_bind(); 3499 if (l != NULL) { 3500 ifp = if_get(ifr->ifr_name, &psref); 3501 error = kauth_authorize_network(l->l_cred, 3502 KAUTH_NETWORK_INTERFACE, 3503 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3504 KAUTH_ARG(cmd), NULL); 3505 if (ifp != NULL) 3506 if_put(ifp, &psref); 3507 if (error != 0) { 3508 curlwp_bindx(bound); 3509 return error; 3510 } 3511 } 3512 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3513 mutex_enter(&if_clone_mtx); 3514 r = (cmd == SIOCIFCREATE) ? 3515 if_clone_create(ifr->ifr_name) : 3516 if_clone_destroy(ifr->ifr_name); 3517 mutex_exit(&if_clone_mtx); 3518 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3519 curlwp_bindx(bound); 3520 return r; 3521 } 3522 case SIOCIFGCLONERS: { 3523 struct if_clonereq *req = (struct if_clonereq *)data; 3524 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 3525 &req->ifcr_total); 3526 } 3527 } 3528 3529 if ((cmd & IOC_IN) == 0 || IOCPARM_LEN(cmd) < sizeof(ifr->ifr_name)) 3530 return EINVAL; 3531 3532 const int bound = curlwp_bind(); 3533 ifp = if_get(ifr->ifr_name, &psref); 3534 if (ifp == NULL) { 3535 curlwp_bindx(bound); 3536 return ENXIO; 3537 } 3538 3539 switch (cmd) { 3540 case SIOCALIFADDR: 3541 case SIOCDLIFADDR: 3542 case SIOCSIFADDRPREF: 3543 case SIOCSIFFLAGS: 3544 case SIOCSIFCAP: 3545 case SIOCSIFMETRIC: 3546 case SIOCZIFDATA: 3547 case SIOCSIFMTU: 3548 case SIOCSIFPHYADDR: 3549 case SIOCDIFPHYADDR: 3550 #ifdef INET6 3551 case SIOCSIFPHYADDR_IN6: 3552 #endif 3553 case SIOCSLIFPHYADDR: 3554 case SIOCADDMULTI: 3555 case SIOCDELMULTI: 3556 case SIOCSETHERCAP: 3557 case SIOCSIFMEDIA: 3558 case SIOCSDRVSPEC: 3559 case SIOCG80211: 3560 case SIOCS80211: 3561 case SIOCS80211NWID: 3562 case SIOCS80211NWKEY: 3563 case SIOCS80211POWER: 3564 case SIOCS80211BSSID: 3565 case SIOCS80211CHANNEL: 3566 case SIOCSLINKSTR: 3567 if (l != NULL) { 3568 error = kauth_authorize_network(l->l_cred, 3569 KAUTH_NETWORK_INTERFACE, 3570 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3571 KAUTH_ARG(cmd), NULL); 3572 if (error != 0) 3573 goto out; 3574 } 3575 } 3576 3577 oif_flags = ifp->if_flags; 3578 3579 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); 3580 IFNET_LOCK(ifp); 3581 3582 error = if_ioctl(ifp, cmd, data); 3583 if (error != ENOTTY) 3584 ; 3585 else if (so->so_proto == NULL) 3586 error = EOPNOTSUPP; 3587 else { 3588 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3589 MODULE_HOOK_CALL(if_ifioctl_43_hook, 3590 (so, ocmd, cmd, data, l), enosys(), error); 3591 if (error == ENOSYS) 3592 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 3593 cmd, data, ifp); 3594 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3595 } 3596 3597 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 3598 if ((ifp->if_flags & IFF_UP) != 0) { 3599 const int s = splsoftnet(); 3600 if_up_locked(ifp); 3601 splx(s); 3602 } 3603 } 3604 3605 /* Post-conversion */ 3606 if (do_ifm80_post && (error == 0)) 3607 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd), 3608 enosys(), error); 3609 if (do_if43_post) 3610 IFREQN2O_43(oifr, ifr); 3611 3612 IFNET_UNLOCK(ifp); 3613 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); 3614 out: 3615 if_put(ifp, &psref); 3616 curlwp_bindx(bound); 3617 return error; 3618 } 3619 3620 /* 3621 * Return interface configuration 3622 * of system. List may be used 3623 * in later ioctl's (above) to get 3624 * other information. 3625 * 3626 * Each record is a struct ifreq. Before the addition of 3627 * sockaddr_storage, the API rule was that sockaddr flavors that did 3628 * not fit would extend beyond the struct ifreq, with the next struct 3629 * ifreq starting sa_len beyond the struct sockaddr. Because the 3630 * union in struct ifreq includes struct sockaddr_storage, every kind 3631 * of sockaddr must fit. Thus, there are no longer any overlength 3632 * records. 3633 * 3634 * Records are added to the user buffer if they fit, and ifc_len is 3635 * adjusted to the length that was written. Thus, the user is only 3636 * assured of getting the complete list if ifc_len on return is at 3637 * least sizeof(struct ifreq) less than it was on entry. 3638 * 3639 * If the user buffer pointer is NULL, this routine copies no data and 3640 * returns the amount of space that would be needed. 3641 * 3642 * Invariants: 3643 * ifrp points to the next part of the user's buffer to be used. If 3644 * ifrp != NULL, space holds the number of bytes remaining that we may 3645 * write at ifrp. Otherwise, space holds the number of bytes that 3646 * would have been written had there been adequate space. 3647 */ 3648 /*ARGSUSED*/ 3649 static int 3650 ifconf(u_long cmd, void *data) 3651 { 3652 struct ifconf *ifc = (struct ifconf *)data; 3653 struct ifnet *ifp; 3654 struct ifaddr *ifa; 3655 struct ifreq ifr, *ifrp = NULL; 3656 int space = 0, error = 0; 3657 const int sz = (int)sizeof(struct ifreq); 3658 const bool docopy = ifc->ifc_req != NULL; 3659 struct psref psref; 3660 3661 if (docopy) { 3662 if (ifc->ifc_len < 0) 3663 return EINVAL; 3664 3665 space = ifc->ifc_len; 3666 ifrp = ifc->ifc_req; 3667 } 3668 memset(&ifr, 0, sizeof(ifr)); 3669 3670 const int bound = curlwp_bind(); 3671 int s = pserialize_read_enter(); 3672 IFNET_READER_FOREACH(ifp) { 3673 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3674 pserialize_read_exit(s); 3675 3676 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3677 sizeof(ifr.ifr_name)); 3678 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3679 error = ENAMETOOLONG; 3680 goto release_exit; 3681 } 3682 if (IFADDR_READER_EMPTY(ifp)) { 3683 /* Interface with no addresses - send zero sockaddr. */ 3684 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3685 if (!docopy) { 3686 space += sz; 3687 goto next; 3688 } 3689 if (space >= sz) { 3690 error = copyout(&ifr, ifrp, sz); 3691 if (error != 0) 3692 goto release_exit; 3693 ifrp++; 3694 space -= sz; 3695 } 3696 } 3697 3698 s = pserialize_read_enter(); 3699 IFADDR_READER_FOREACH(ifa, ifp) { 3700 struct sockaddr *sa = ifa->ifa_addr; 3701 /* all sockaddrs must fit in sockaddr_storage */ 3702 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3703 3704 if (!docopy) { 3705 space += sz; 3706 continue; 3707 } 3708 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3709 pserialize_read_exit(s); 3710 3711 if (space >= sz) { 3712 error = copyout(&ifr, ifrp, sz); 3713 if (error != 0) 3714 goto release_exit; 3715 ifrp++; space -= sz; 3716 } 3717 s = pserialize_read_enter(); 3718 } 3719 pserialize_read_exit(s); 3720 3721 next: 3722 s = pserialize_read_enter(); 3723 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3724 } 3725 pserialize_read_exit(s); 3726 curlwp_bindx(bound); 3727 3728 if (docopy) { 3729 KASSERT(0 <= space && space <= ifc->ifc_len); 3730 ifc->ifc_len -= space; 3731 } else { 3732 KASSERT(space >= 0); 3733 ifc->ifc_len = space; 3734 } 3735 return 0; 3736 3737 release_exit: 3738 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3739 curlwp_bindx(bound); 3740 return error; 3741 } 3742 3743 int 3744 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3745 { 3746 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space); 3747 struct ifreq ifrb; 3748 struct oifreq *oifr = NULL; 3749 u_long ocmd = cmd; 3750 int hook; 3751 3752 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook); 3753 if (hook != ENOSYS) { 3754 if (cmd != ocmd) { 3755 oifr = (struct oifreq *)(void *)ifr; 3756 ifr = &ifrb; 3757 IFREQO2N_43(oifr, ifr); 3758 len = sizeof(oifr->ifr_addr); 3759 } 3760 } 3761 3762 if (len < sa->sa_len) 3763 return EFBIG; 3764 3765 memset(&ifr->ifr_addr, 0, len); 3766 sockaddr_copy(&ifr->ifr_addr, len, sa); 3767 3768 if (cmd != ocmd) 3769 IFREQN2O_43(oifr, ifr); 3770 return 0; 3771 } 3772 3773 /* 3774 * wrapper function for the drivers which doesn't have if_transmit(). 3775 */ 3776 static int 3777 if_transmit(struct ifnet *ifp, struct mbuf *m) 3778 { 3779 int error; 3780 size_t pktlen = m->m_pkthdr.len; 3781 bool mcast = (m->m_flags & M_MCAST) != 0; 3782 3783 const int s = splnet(); 3784 3785 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3786 if (error != 0) { 3787 /* mbuf is already freed */ 3788 goto out; 3789 } 3790 3791 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 3792 if_statadd_ref(nsr, if_obytes, pktlen); 3793 if (mcast) 3794 if_statinc_ref(nsr, if_omcasts); 3795 IF_STAT_PUTREF(ifp); 3796 3797 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3798 if_start_lock(ifp); 3799 out: 3800 splx(s); 3801 3802 return error; 3803 } 3804 3805 int 3806 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3807 { 3808 int error; 3809 3810 kmsan_check_mbuf(m); 3811 3812 #ifdef ALTQ 3813 KERNEL_LOCK(1, NULL); 3814 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3815 error = if_transmit(ifp, m); 3816 KERNEL_UNLOCK_ONE(NULL); 3817 } else { 3818 KERNEL_UNLOCK_ONE(NULL); 3819 error = (*ifp->if_transmit)(ifp, m); 3820 /* mbuf is already freed */ 3821 } 3822 #else /* !ALTQ */ 3823 error = (*ifp->if_transmit)(ifp, m); 3824 /* mbuf is already freed */ 3825 #endif /* !ALTQ */ 3826 3827 return error; 3828 } 3829 3830 /* 3831 * Queue message on interface, and start output if interface 3832 * not yet active. 3833 */ 3834 int 3835 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3836 { 3837 3838 return if_transmit_lock(ifp, m); 3839 } 3840 3841 /* 3842 * Queue message on interface, possibly using a second fast queue 3843 */ 3844 int 3845 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3846 { 3847 int error = 0; 3848 3849 if (ifq != NULL 3850 #ifdef ALTQ 3851 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3852 #endif 3853 ) { 3854 if (IF_QFULL(ifq)) { 3855 IF_DROP(&ifp->if_snd); 3856 m_freem(m); 3857 if (error == 0) 3858 error = ENOBUFS; 3859 } else 3860 IF_ENQUEUE(ifq, m); 3861 } else 3862 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3863 if (error != 0) { 3864 if_statinc(ifp, if_oerrors); 3865 return error; 3866 } 3867 return 0; 3868 } 3869 3870 int 3871 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3872 { 3873 int rc; 3874 3875 KASSERT(IFNET_LOCKED(ifp)); 3876 if (ifp->if_initaddr != NULL) 3877 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3878 else if (src || (rc = if_ioctl(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3879 rc = if_ioctl(ifp, SIOCINITIFADDR, ifa); 3880 3881 return rc; 3882 } 3883 3884 int 3885 if_do_dad(struct ifnet *ifp) 3886 { 3887 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3888 return 0; 3889 3890 switch (ifp->if_type) { 3891 case IFT_FAITH: 3892 /* 3893 * These interfaces do not have the IFF_LOOPBACK flag, 3894 * but loop packets back. We do not have to do DAD on such 3895 * interfaces. We should even omit it, because loop-backed 3896 * responses would confuse the DAD procedure. 3897 */ 3898 return 0; 3899 default: 3900 /* 3901 * Our DAD routine requires the interface up and running. 3902 * However, some interfaces can be up before the RUNNING 3903 * status. Additionally, users may try to assign addresses 3904 * before the interface becomes up (or running). 3905 * We simply skip DAD in such a case as a work around. 3906 * XXX: we should rather mark "tentative" on such addresses, 3907 * and do DAD after the interface becomes ready. 3908 */ 3909 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 3910 (IFF_UP | IFF_RUNNING)) 3911 return 0; 3912 3913 return 1; 3914 } 3915 } 3916 3917 /* 3918 * if_flags_set(ifp, flags) 3919 * 3920 * Ask ifp to change ifp->if_flags to flags, as if with the 3921 * SIOCSIFFLAGS ioctl command. 3922 * 3923 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a 3924 * IFNET_LOCK. 3925 */ 3926 int 3927 if_flags_set(ifnet_t *ifp, const u_short flags) 3928 { 3929 int rc; 3930 3931 KASSERT(IFNET_LOCKED(ifp)); 3932 3933 if (ifp->if_setflags != NULL) 3934 rc = (*ifp->if_setflags)(ifp, flags); 3935 else { 3936 u_short cantflags, chgdflags; 3937 struct ifreq ifr; 3938 3939 chgdflags = ifp->if_flags ^ flags; 3940 cantflags = chgdflags & IFF_CANTCHANGE; 3941 3942 if (cantflags != 0) 3943 ifp->if_flags ^= cantflags; 3944 3945 /* 3946 * Traditionally, we do not call if_ioctl after 3947 * setting/clearing only IFF_PROMISC if the interface 3948 * isn't IFF_UP. Uphold that tradition. 3949 */ 3950 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3951 return 0; 3952 3953 memset(&ifr, 0, sizeof(ifr)); 3954 3955 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3956 rc = if_ioctl(ifp, SIOCSIFFLAGS, &ifr); 3957 3958 if (rc != 0 && cantflags != 0) 3959 ifp->if_flags ^= cantflags; 3960 } 3961 3962 return rc; 3963 } 3964 3965 /* 3966 * if_mcast_op(ifp, cmd, sa) 3967 * 3968 * Apply a multicast command, SIOCADDMULTI/SIOCDELMULTI, to the 3969 * interface. Returns 0 on success, nonzero errno(3) number on 3970 * failure. 3971 * 3972 * May sleep. 3973 * 3974 * Use this, not if_ioctl, for the multicast commands. 3975 */ 3976 int 3977 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3978 { 3979 int rc; 3980 struct ifreq ifr; 3981 3982 switch (cmd) { 3983 case SIOCADDMULTI: 3984 case SIOCDELMULTI: 3985 break; 3986 default: 3987 panic("invalid ifnet multicast command: 0x%lx", cmd); 3988 } 3989 3990 ifreq_setaddr(cmd, &ifr, sa); 3991 rc = if_ioctl(ifp, cmd, &ifr); 3992 3993 return rc; 3994 } 3995 3996 static void 3997 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3998 struct ifaltq *ifq) 3999 { 4000 const struct sysctlnode *cnode, *rnode; 4001 4002 if (sysctl_createv(clog, 0, NULL, &rnode, 4003 CTLFLAG_PERMANENT, 4004 CTLTYPE_NODE, "interfaces", 4005 SYSCTL_DESCR("Per-interface controls"), 4006 NULL, 0, NULL, 0, 4007 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 4008 goto bad; 4009 4010 if (sysctl_createv(clog, 0, &rnode, &rnode, 4011 CTLFLAG_PERMANENT, 4012 CTLTYPE_NODE, ifname, 4013 SYSCTL_DESCR("Interface controls"), 4014 NULL, 0, NULL, 0, 4015 CTL_CREATE, CTL_EOL) != 0) 4016 goto bad; 4017 4018 if (sysctl_createv(clog, 0, &rnode, &rnode, 4019 CTLFLAG_PERMANENT, 4020 CTLTYPE_NODE, "sndq", 4021 SYSCTL_DESCR("Interface output queue controls"), 4022 NULL, 0, NULL, 0, 4023 CTL_CREATE, CTL_EOL) != 0) 4024 goto bad; 4025 4026 if (sysctl_createv(clog, 0, &rnode, &cnode, 4027 CTLFLAG_PERMANENT, 4028 CTLTYPE_INT, "len", 4029 SYSCTL_DESCR("Current output queue length"), 4030 NULL, 0, &ifq->ifq_len, 0, 4031 CTL_CREATE, CTL_EOL) != 0) 4032 goto bad; 4033 4034 if (sysctl_createv(clog, 0, &rnode, &cnode, 4035 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 4036 CTLTYPE_INT, "maxlen", 4037 SYSCTL_DESCR("Maximum allowed output queue length"), 4038 NULL, 0, &ifq->ifq_maxlen, 0, 4039 CTL_CREATE, CTL_EOL) != 0) 4040 goto bad; 4041 4042 if (sysctl_createv(clog, 0, &rnode, &cnode, 4043 CTLFLAG_PERMANENT, 4044 CTLTYPE_QUAD, "drops", 4045 SYSCTL_DESCR("Packets dropped due to full output queue"), 4046 NULL, 0, &ifq->ifq_drops, 0, 4047 CTL_CREATE, CTL_EOL) != 0) 4048 goto bad; 4049 4050 return; 4051 bad: 4052 printf("%s: could not attach sysctl nodes\n", ifname); 4053 return; 4054 } 4055 4056 static int 4057 if_sdl_sysctl(SYSCTLFN_ARGS) 4058 { 4059 struct ifnet *ifp; 4060 const struct sockaddr_dl *sdl; 4061 struct psref psref; 4062 int error = 0; 4063 4064 if (namelen != 1) 4065 return EINVAL; 4066 4067 const int bound = curlwp_bind(); 4068 ifp = if_get_byindex(name[0], &psref); 4069 if (ifp == NULL) { 4070 error = ENODEV; 4071 goto out0; 4072 } 4073 4074 sdl = ifp->if_sadl; 4075 if (sdl == NULL) { 4076 *oldlenp = 0; 4077 goto out1; 4078 } 4079 4080 if (oldp == NULL) { 4081 *oldlenp = sdl->sdl_alen; 4082 goto out1; 4083 } 4084 4085 if (*oldlenp >= sdl->sdl_alen) 4086 *oldlenp = sdl->sdl_alen; 4087 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], 4088 oldp, *oldlenp); 4089 out1: 4090 if_put(ifp, &psref); 4091 out0: 4092 curlwp_bindx(bound); 4093 return error; 4094 } 4095 4096 static void 4097 if_sysctl_setup(struct sysctllog **clog) 4098 { 4099 const struct sysctlnode *rnode = NULL; 4100 4101 sysctl_createv(clog, 0, NULL, &rnode, 4102 CTLFLAG_PERMANENT, 4103 CTLTYPE_NODE, "sdl", 4104 SYSCTL_DESCR("Get active link-layer address"), 4105 if_sdl_sysctl, 0, NULL, 0, 4106 CTL_NET, CTL_CREATE, CTL_EOL); 4107 } 4108