xref: /netbsd-src/sys/net/if.c (revision 87d689fb734c654d2486f87f7be32f1b53ecdbec)
1 /*	$NetBSD: if.c,v 1.418 2018/01/10 01:22:26 ozaki-r Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by William Studenmund and Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the project nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  */
60 
61 /*
62  * Copyright (c) 1980, 1986, 1993
63  *	The Regents of the University of California.  All rights reserved.
64  *
65  * Redistribution and use in source and binary forms, with or without
66  * modification, are permitted provided that the following conditions
67  * are met:
68  * 1. Redistributions of source code must retain the above copyright
69  *    notice, this list of conditions and the following disclaimer.
70  * 2. Redistributions in binary form must reproduce the above copyright
71  *    notice, this list of conditions and the following disclaimer in the
72  *    documentation and/or other materials provided with the distribution.
73  * 3. Neither the name of the University nor the names of its contributors
74  *    may be used to endorse or promote products derived from this software
75  *    without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87  * SUCH DAMAGE.
88  *
89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
90  */
91 
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.418 2018/01/10 01:22:26 ozaki-r Exp $");
94 
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_atalk.h"
99 #include "opt_natm.h"
100 #include "opt_wlan.h"
101 #include "opt_net_mpsafe.h"
102 #include "opt_mrouting.h"
103 #endif
104 
105 #include <sys/param.h>
106 #include <sys/mbuf.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/proc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/kernel.h>
115 #include <sys/ioctl.h>
116 #include <sys/sysctl.h>
117 #include <sys/syslog.h>
118 #include <sys/kauth.h>
119 #include <sys/kmem.h>
120 #include <sys/xcall.h>
121 #include <sys/cpu.h>
122 #include <sys/intr.h>
123 
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/if_ether.h>
127 #include <net/if_media.h>
128 #include <net80211/ieee80211.h>
129 #include <net80211/ieee80211_ioctl.h>
130 #include <net/if_types.h>
131 #include <net/route.h>
132 #include <net/netisr.h>
133 #include <sys/module.h>
134 #ifdef NETATALK
135 #include <netatalk/at_extern.h>
136 #include <netatalk/at.h>
137 #endif
138 #include <net/pfil.h>
139 #include <netinet/in.h>
140 #include <netinet/in_var.h>
141 #include <netinet/ip_encap.h>
142 #include <net/bpf.h>
143 
144 #ifdef INET6
145 #include <netinet6/in6_var.h>
146 #include <netinet6/nd6.h>
147 #endif
148 
149 #include "ether.h"
150 #include "fddi.h"
151 #include "token.h"
152 
153 #include "carp.h"
154 #if NCARP > 0
155 #include <netinet/ip_carp.h>
156 #endif
157 
158 #include <compat/sys/sockio.h>
159 #include <compat/sys/socket.h>
160 
161 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
162 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
163 
164 /*
165  * Global list of interfaces.
166  */
167 /* DEPRECATED. Remove it once kvm(3) users disappeared */
168 struct ifnet_head		ifnet_list;
169 
170 struct pslist_head		ifnet_pslist;
171 static ifnet_t **		ifindex2ifnet = NULL;
172 static u_int			if_index = 1;
173 static size_t			if_indexlim = 0;
174 static uint64_t			index_gen;
175 /* Mutex to protect the above objects. */
176 kmutex_t			ifnet_mtx __cacheline_aligned;
177 static struct psref_class	*ifnet_psref_class __read_mostly;
178 static pserialize_t		ifnet_psz;
179 
180 static kmutex_t			if_clone_mtx;
181 
182 struct ifnet *lo0ifp;
183 int	ifqmaxlen = IFQ_MAXLEN;
184 
185 struct psref_class		*ifa_psref_class __read_mostly;
186 
187 static int	if_delroute_matcher(struct rtentry *, void *);
188 
189 static bool if_is_unit(const char *);
190 static struct if_clone *if_clone_lookup(const char *, int *);
191 
192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
193 static int if_cloners_count;
194 
195 /* Packet filtering hook for interfaces. */
196 pfil_head_t *			if_pfil __read_mostly;
197 
198 static kauth_listener_t if_listener;
199 
200 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
201 static void if_detach_queues(struct ifnet *, struct ifqueue *);
202 static void sysctl_sndq_setup(struct sysctllog **, const char *,
203     struct ifaltq *);
204 static void if_slowtimo(void *);
205 static void if_free_sadl(struct ifnet *);
206 static void if_attachdomain1(struct ifnet *);
207 static int ifconf(u_long, void *);
208 static int if_transmit(struct ifnet *, struct mbuf *);
209 static int if_clone_create(const char *);
210 static int if_clone_destroy(const char *);
211 static void if_link_state_change_si(void *);
212 static void if_up_locked(struct ifnet *);
213 static void _if_down(struct ifnet *);
214 static void if_down_deactivated(struct ifnet *);
215 
216 struct if_percpuq {
217 	struct ifnet	*ipq_ifp;
218 	void		*ipq_si;
219 	struct percpu	*ipq_ifqs;	/* struct ifqueue */
220 };
221 
222 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
223 
224 static void if_percpuq_drops(void *, void *, struct cpu_info *);
225 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
226 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
227     struct if_percpuq *);
228 
229 struct if_deferred_start {
230 	struct ifnet	*ids_ifp;
231 	void		(*ids_if_start)(struct ifnet *);
232 	void		*ids_si;
233 };
234 
235 static void if_deferred_start_softint(void *);
236 static void if_deferred_start_common(struct ifnet *);
237 static void if_deferred_start_destroy(struct ifnet *);
238 
239 #if defined(INET) || defined(INET6)
240 static void sysctl_net_pktq_setup(struct sysctllog **, int);
241 #endif
242 
243 static void if_sysctl_setup(struct sysctllog **);
244 
245 /*
246  * Pointer to stub or real compat_cvtcmd() depending on presence of
247  * the compat module
248  */
249 u_long stub_compat_cvtcmd(u_long);
250 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd;
251 
252 /* Similarly, pointer to compat_ifioctl() if it is present */
253 
254 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *,
255 	struct lwp *) = NULL;
256 
257 /* The stub version of compat_cvtcmd() */
258 u_long stub_compat_cvtcmd(u_long cmd)
259 {
260 
261 	return cmd;
262 }
263 
264 static int
265 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
266     void *arg0, void *arg1, void *arg2, void *arg3)
267 {
268 	int result;
269 	enum kauth_network_req req;
270 
271 	result = KAUTH_RESULT_DEFER;
272 	req = (enum kauth_network_req)arg1;
273 
274 	if (action != KAUTH_NETWORK_INTERFACE)
275 		return result;
276 
277 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
278 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
279 		result = KAUTH_RESULT_ALLOW;
280 
281 	return result;
282 }
283 
284 /*
285  * Network interface utility routines.
286  *
287  * Routines with ifa_ifwith* names take sockaddr *'s as
288  * parameters.
289  */
290 void
291 ifinit(void)
292 {
293 
294 	if_sysctl_setup(NULL);
295 
296 #if (defined(INET) || defined(INET6))
297 	encapinit();
298 #endif
299 
300 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
301 	    if_listener_cb, NULL);
302 
303 	/* interfaces are available, inform socket code */
304 	ifioctl = doifioctl;
305 }
306 
307 /*
308  * XXX Initialization before configure().
309  * XXX hack to get pfil_add_hook working in autoconf.
310  */
311 void
312 ifinit1(void)
313 {
314 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
315 
316 	TAILQ_INIT(&ifnet_list);
317 	mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
318 	ifnet_psz = pserialize_create();
319 	ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
320 	ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
321 	PSLIST_INIT(&ifnet_pslist);
322 
323 	if_indexlim = 8;
324 
325 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
326 	KASSERT(if_pfil != NULL);
327 
328 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
329 	etherinit();
330 #endif
331 }
332 
333 ifnet_t *
334 if_alloc(u_char type)
335 {
336 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
337 }
338 
339 void
340 if_free(ifnet_t *ifp)
341 {
342 	kmem_free(ifp, sizeof(ifnet_t));
343 }
344 
345 void
346 if_initname(struct ifnet *ifp, const char *name, int unit)
347 {
348 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
349 	    "%s%d", name, unit);
350 }
351 
352 /*
353  * Null routines used while an interface is going away.  These routines
354  * just return an error.
355  */
356 
357 int
358 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
359     const struct sockaddr *so, const struct rtentry *rt)
360 {
361 
362 	return ENXIO;
363 }
364 
365 void
366 if_nullinput(struct ifnet *ifp, struct mbuf *m)
367 {
368 
369 	/* Nothing. */
370 }
371 
372 void
373 if_nullstart(struct ifnet *ifp)
374 {
375 
376 	/* Nothing. */
377 }
378 
379 int
380 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
381 {
382 
383 	m_freem(m);
384 	return ENXIO;
385 }
386 
387 int
388 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
389 {
390 
391 	return ENXIO;
392 }
393 
394 int
395 if_nullinit(struct ifnet *ifp)
396 {
397 
398 	return ENXIO;
399 }
400 
401 void
402 if_nullstop(struct ifnet *ifp, int disable)
403 {
404 
405 	/* Nothing. */
406 }
407 
408 void
409 if_nullslowtimo(struct ifnet *ifp)
410 {
411 
412 	/* Nothing. */
413 }
414 
415 void
416 if_nulldrain(struct ifnet *ifp)
417 {
418 
419 	/* Nothing. */
420 }
421 
422 void
423 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
424 {
425 	struct ifaddr *ifa;
426 	struct sockaddr_dl *sdl;
427 
428 	ifp->if_addrlen = addrlen;
429 	if_alloc_sadl(ifp);
430 	ifa = ifp->if_dl;
431 	sdl = satosdl(ifa->ifa_addr);
432 
433 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
434 	if (factory) {
435 		ifp->if_hwdl = ifp->if_dl;
436 		ifaref(ifp->if_hwdl);
437 	}
438 	/* TBD routing socket */
439 }
440 
441 struct ifaddr *
442 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
443 {
444 	unsigned socksize, ifasize;
445 	int addrlen, namelen;
446 	struct sockaddr_dl *mask, *sdl;
447 	struct ifaddr *ifa;
448 
449 	namelen = strlen(ifp->if_xname);
450 	addrlen = ifp->if_addrlen;
451 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
452 	ifasize = sizeof(*ifa) + 2 * socksize;
453 	ifa = malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
454 
455 	sdl = (struct sockaddr_dl *)(ifa + 1);
456 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
457 
458 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
459 	    ifp->if_xname, namelen, NULL, addrlen);
460 	mask->sdl_family = AF_LINK;
461 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
462 	memset(&mask->sdl_data[0], 0xff, namelen);
463 	ifa->ifa_rtrequest = link_rtrequest;
464 	ifa->ifa_addr = (struct sockaddr *)sdl;
465 	ifa->ifa_netmask = (struct sockaddr *)mask;
466 	ifa_psref_init(ifa);
467 
468 	*sdlp = sdl;
469 
470 	return ifa;
471 }
472 
473 static void
474 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
475 {
476 	const struct sockaddr_dl *sdl;
477 
478 	ifp->if_dl = ifa;
479 	ifaref(ifa);
480 	sdl = satosdl(ifa->ifa_addr);
481 	ifp->if_sadl = sdl;
482 }
483 
484 /*
485  * Allocate the link level name for the specified interface.  This
486  * is an attachment helper.  It must be called after ifp->if_addrlen
487  * is initialized, which may not be the case when if_attach() is
488  * called.
489  */
490 void
491 if_alloc_sadl(struct ifnet *ifp)
492 {
493 	struct ifaddr *ifa;
494 	const struct sockaddr_dl *sdl;
495 
496 	/*
497 	 * If the interface already has a link name, release it
498 	 * now.  This is useful for interfaces that can change
499 	 * link types, and thus switch link names often.
500 	 */
501 	if (ifp->if_sadl != NULL)
502 		if_free_sadl(ifp);
503 
504 	ifa = if_dl_create(ifp, &sdl);
505 
506 	ifa_insert(ifp, ifa);
507 	if_sadl_setrefs(ifp, ifa);
508 }
509 
510 static void
511 if_deactivate_sadl(struct ifnet *ifp)
512 {
513 	struct ifaddr *ifa;
514 
515 	KASSERT(ifp->if_dl != NULL);
516 
517 	ifa = ifp->if_dl;
518 
519 	ifp->if_sadl = NULL;
520 
521 	ifp->if_dl = NULL;
522 	ifafree(ifa);
523 }
524 
525 static void
526 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
527 {
528 	struct ifaddr *old;
529 
530 	KASSERT(ifp->if_dl != NULL);
531 
532 	old = ifp->if_dl;
533 
534 	ifaref(ifa);
535 	/* XXX Update if_dl and if_sadl atomically */
536 	ifp->if_dl = ifa;
537 	ifp->if_sadl = satosdl(ifa->ifa_addr);
538 
539 	ifafree(old);
540 }
541 
542 void
543 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
544     const struct sockaddr_dl *sdl)
545 {
546 	int s, ss;
547 	struct ifaddr *ifa;
548 	int bound = curlwp_bind();
549 
550 	KASSERT(ifa_held(ifa0));
551 
552 	s = splsoftnet();
553 
554 	if_replace_sadl(ifp, ifa0);
555 
556 	ss = pserialize_read_enter();
557 	IFADDR_READER_FOREACH(ifa, ifp) {
558 		struct psref psref;
559 		ifa_acquire(ifa, &psref);
560 		pserialize_read_exit(ss);
561 
562 		rtinit(ifa, RTM_LLINFO_UPD, 0);
563 
564 		ss = pserialize_read_enter();
565 		ifa_release(ifa, &psref);
566 	}
567 	pserialize_read_exit(ss);
568 
569 	splx(s);
570 	curlwp_bindx(bound);
571 }
572 
573 /*
574  * Free the link level name for the specified interface.  This is
575  * a detach helper.  This is called from if_detach().
576  */
577 static void
578 if_free_sadl(struct ifnet *ifp)
579 {
580 	struct ifaddr *ifa;
581 	int s;
582 
583 	ifa = ifp->if_dl;
584 	if (ifa == NULL) {
585 		KASSERT(ifp->if_sadl == NULL);
586 		return;
587 	}
588 
589 	KASSERT(ifp->if_sadl != NULL);
590 
591 	s = splsoftnet();
592 	rtinit(ifa, RTM_DELETE, 0);
593 	ifa_remove(ifp, ifa);
594 	if_deactivate_sadl(ifp);
595 	if (ifp->if_hwdl == ifa) {
596 		ifafree(ifa);
597 		ifp->if_hwdl = NULL;
598 	}
599 	splx(s);
600 }
601 
602 static void
603 if_getindex(ifnet_t *ifp)
604 {
605 	bool hitlimit = false;
606 
607 	ifp->if_index_gen = index_gen++;
608 
609 	ifp->if_index = if_index;
610 	if (ifindex2ifnet == NULL) {
611 		if_index++;
612 		goto skip;
613 	}
614 	while (if_byindex(ifp->if_index)) {
615 		/*
616 		 * If we hit USHRT_MAX, we skip back to 0 since
617 		 * there are a number of places where the value
618 		 * of if_index or if_index itself is compared
619 		 * to or stored in an unsigned short.  By
620 		 * jumping back, we won't botch those assignments
621 		 * or comparisons.
622 		 */
623 		if (++if_index == 0) {
624 			if_index = 1;
625 		} else if (if_index == USHRT_MAX) {
626 			/*
627 			 * However, if we have to jump back to
628 			 * zero *twice* without finding an empty
629 			 * slot in ifindex2ifnet[], then there
630 			 * there are too many (>65535) interfaces.
631 			 */
632 			if (hitlimit) {
633 				panic("too many interfaces");
634 			}
635 			hitlimit = true;
636 			if_index = 1;
637 		}
638 		ifp->if_index = if_index;
639 	}
640 skip:
641 	/*
642 	 * ifindex2ifnet is indexed by if_index. Since if_index will
643 	 * grow dynamically, it should grow too.
644 	 */
645 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
646 		size_t m, n, oldlim;
647 		void *q;
648 
649 		oldlim = if_indexlim;
650 		while (ifp->if_index >= if_indexlim)
651 			if_indexlim <<= 1;
652 
653 		/* grow ifindex2ifnet */
654 		m = oldlim * sizeof(struct ifnet *);
655 		n = if_indexlim * sizeof(struct ifnet *);
656 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
657 		if (ifindex2ifnet != NULL) {
658 			memcpy(q, ifindex2ifnet, m);
659 			free(ifindex2ifnet, M_IFADDR);
660 		}
661 		ifindex2ifnet = (struct ifnet **)q;
662 	}
663 	ifindex2ifnet[ifp->if_index] = ifp;
664 }
665 
666 /*
667  * Initialize an interface and assign an index for it.
668  *
669  * It must be called prior to a device specific attach routine
670  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
671  * and be followed by if_register:
672  *
673  *     if_initialize(ifp);
674  *     ether_ifattach(ifp, enaddr);
675  *     if_register(ifp);
676  */
677 int
678 if_initialize(ifnet_t *ifp)
679 {
680 	int rv = 0;
681 
682 	KASSERT(if_indexlim > 0);
683 	TAILQ_INIT(&ifp->if_addrlist);
684 
685 	/*
686 	 * Link level name is allocated later by a separate call to
687 	 * if_alloc_sadl().
688 	 */
689 
690 	if (ifp->if_snd.ifq_maxlen == 0)
691 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
692 
693 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
694 
695 	ifp->if_link_state = LINK_STATE_UNKNOWN;
696 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
697 
698 	ifp->if_capenable = 0;
699 	ifp->if_csum_flags_tx = 0;
700 	ifp->if_csum_flags_rx = 0;
701 
702 #ifdef ALTQ
703 	ifp->if_snd.altq_type = 0;
704 	ifp->if_snd.altq_disc = NULL;
705 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
706 	ifp->if_snd.altq_tbr  = NULL;
707 	ifp->if_snd.altq_ifp  = ifp;
708 #endif
709 
710 	IFQ_LOCK_INIT(&ifp->if_snd);
711 
712 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
713 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
714 
715 	IF_AFDATA_LOCK_INIT(ifp);
716 
717 	if (if_is_link_state_changeable(ifp)) {
718 		u_int flags = SOFTINT_NET;
719 		flags |= ISSET(ifp->if_extflags, IFEF_MPSAFE) ?
720 		    SOFTINT_MPSAFE : 0;
721 		ifp->if_link_si = softint_establish(flags,
722 		    if_link_state_change_si, ifp);
723 		if (ifp->if_link_si == NULL) {
724 			rv = ENOMEM;
725 			goto fail;
726 		}
727 	}
728 
729 	PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
730 	PSLIST_INIT(&ifp->if_addr_pslist);
731 	psref_target_init(&ifp->if_psref, ifnet_psref_class);
732 	ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
733 	LIST_INIT(&ifp->if_multiaddrs);
734 
735 	IFNET_GLOBAL_LOCK();
736 	if_getindex(ifp);
737 	IFNET_GLOBAL_UNLOCK();
738 
739 	return 0;
740 
741 fail:
742 	IF_AFDATA_LOCK_DESTROY(ifp);
743 
744 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
745 	(void)pfil_head_destroy(ifp->if_pfil);
746 
747 	IFQ_LOCK_DESTROY(&ifp->if_snd);
748 
749 	return rv;
750 }
751 
752 /*
753  * Register an interface to the list of "active" interfaces.
754  */
755 void
756 if_register(ifnet_t *ifp)
757 {
758 	/*
759 	 * If the driver has not supplied its own if_ioctl, then
760 	 * supply the default.
761 	 */
762 	if (ifp->if_ioctl == NULL)
763 		ifp->if_ioctl = ifioctl_common;
764 
765 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
766 
767 	if (!STAILQ_EMPTY(&domains))
768 		if_attachdomain1(ifp);
769 
770 	/* Announce the interface. */
771 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
772 
773 	if (ifp->if_slowtimo != NULL) {
774 		ifp->if_slowtimo_ch =
775 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
776 		callout_init(ifp->if_slowtimo_ch, 0);
777 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
778 		if_slowtimo(ifp);
779 	}
780 
781 	if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
782 		ifp->if_transmit = if_transmit;
783 
784 	IFNET_GLOBAL_LOCK();
785 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
786 	IFNET_WRITER_INSERT_TAIL(ifp);
787 	IFNET_GLOBAL_UNLOCK();
788 }
789 
790 /*
791  * The if_percpuq framework
792  *
793  * It allows network device drivers to execute the network stack
794  * in softint (so called softint-based if_input). It utilizes
795  * softint and percpu ifqueue. It doesn't distribute any packets
796  * between CPUs, unlike pktqueue(9).
797  *
798  * Currently we support two options for device drivers to apply the framework:
799  * - Use it implicitly with less changes
800  *   - If you use if_attach in driver's _attach function and if_input in
801  *     driver's Rx interrupt handler, a packet is queued and a softint handles
802  *     the packet implicitly
803  * - Use it explicitly in each driver (recommended)
804  *   - You can use if_percpuq_* directly in your driver
805  *   - In this case, you need to allocate struct if_percpuq in driver's softc
806  *   - See wm(4) as a reference implementation
807  */
808 
809 static void
810 if_percpuq_softint(void *arg)
811 {
812 	struct if_percpuq *ipq = arg;
813 	struct ifnet *ifp = ipq->ipq_ifp;
814 	struct mbuf *m;
815 
816 	while ((m = if_percpuq_dequeue(ipq)) != NULL) {
817 		ifp->if_ipackets++;
818 		bpf_mtap(ifp, m);
819 
820 		ifp->_if_input(ifp, m);
821 	}
822 }
823 
824 static void
825 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
826 {
827 	struct ifqueue *const ifq = p;
828 
829 	memset(ifq, 0, sizeof(*ifq));
830 	ifq->ifq_maxlen = IFQ_MAXLEN;
831 }
832 
833 struct if_percpuq *
834 if_percpuq_create(struct ifnet *ifp)
835 {
836 	struct if_percpuq *ipq;
837 
838 	ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
839 	ipq->ipq_ifp = ifp;
840 	ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
841 	    if_percpuq_softint, ipq);
842 	ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
843 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
844 
845 	sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
846 
847 	return ipq;
848 }
849 
850 static struct mbuf *
851 if_percpuq_dequeue(struct if_percpuq *ipq)
852 {
853 	struct mbuf *m;
854 	struct ifqueue *ifq;
855 	int s;
856 
857 	s = splnet();
858 	ifq = percpu_getref(ipq->ipq_ifqs);
859 	IF_DEQUEUE(ifq, m);
860 	percpu_putref(ipq->ipq_ifqs);
861 	splx(s);
862 
863 	return m;
864 }
865 
866 static void
867 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
868 {
869 	struct ifqueue *const ifq = p;
870 
871 	IF_PURGE(ifq);
872 }
873 
874 void
875 if_percpuq_destroy(struct if_percpuq *ipq)
876 {
877 
878 	/* if_detach may already destroy it */
879 	if (ipq == NULL)
880 		return;
881 
882 	softint_disestablish(ipq->ipq_si);
883 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
884 	percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
885 	kmem_free(ipq, sizeof(*ipq));
886 }
887 
888 void
889 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
890 {
891 	struct ifqueue *ifq;
892 	int s;
893 
894 	KASSERT(ipq != NULL);
895 
896 	s = splnet();
897 	ifq = percpu_getref(ipq->ipq_ifqs);
898 	if (IF_QFULL(ifq)) {
899 		IF_DROP(ifq);
900 		percpu_putref(ipq->ipq_ifqs);
901 		m_freem(m);
902 		goto out;
903 	}
904 	IF_ENQUEUE(ifq, m);
905 	percpu_putref(ipq->ipq_ifqs);
906 
907 	softint_schedule(ipq->ipq_si);
908 out:
909 	splx(s);
910 }
911 
912 static void
913 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
914 {
915 	struct ifqueue *const ifq = p;
916 	int *sum = arg;
917 
918 	*sum += ifq->ifq_drops;
919 }
920 
921 static int
922 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
923 {
924 	struct sysctlnode node;
925 	struct if_percpuq *ipq;
926 	int sum = 0;
927 	int error;
928 
929 	node = *rnode;
930 	ipq = node.sysctl_data;
931 
932 	percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
933 
934 	node.sysctl_data = &sum;
935 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
936 	if (error != 0 || newp == NULL)
937 		return error;
938 
939 	return 0;
940 }
941 
942 static void
943 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
944     struct if_percpuq *ipq)
945 {
946 	const struct sysctlnode *cnode, *rnode;
947 
948 	if (sysctl_createv(clog, 0, NULL, &rnode,
949 		       CTLFLAG_PERMANENT,
950 		       CTLTYPE_NODE, "interfaces",
951 		       SYSCTL_DESCR("Per-interface controls"),
952 		       NULL, 0, NULL, 0,
953 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
954 		goto bad;
955 
956 	if (sysctl_createv(clog, 0, &rnode, &rnode,
957 		       CTLFLAG_PERMANENT,
958 		       CTLTYPE_NODE, ifname,
959 		       SYSCTL_DESCR("Interface controls"),
960 		       NULL, 0, NULL, 0,
961 		       CTL_CREATE, CTL_EOL) != 0)
962 		goto bad;
963 
964 	if (sysctl_createv(clog, 0, &rnode, &rnode,
965 		       CTLFLAG_PERMANENT,
966 		       CTLTYPE_NODE, "rcvq",
967 		       SYSCTL_DESCR("Interface input queue controls"),
968 		       NULL, 0, NULL, 0,
969 		       CTL_CREATE, CTL_EOL) != 0)
970 		goto bad;
971 
972 #ifdef NOTYET
973 	/* XXX Should show each per-CPU queue length? */
974 	if (sysctl_createv(clog, 0, &rnode, &rnode,
975 		       CTLFLAG_PERMANENT,
976 		       CTLTYPE_INT, "len",
977 		       SYSCTL_DESCR("Current input queue length"),
978 		       sysctl_percpuq_len, 0, NULL, 0,
979 		       CTL_CREATE, CTL_EOL) != 0)
980 		goto bad;
981 
982 	if (sysctl_createv(clog, 0, &rnode, &cnode,
983 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
984 		       CTLTYPE_INT, "maxlen",
985 		       SYSCTL_DESCR("Maximum allowed input queue length"),
986 		       sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
987 		       CTL_CREATE, CTL_EOL) != 0)
988 		goto bad;
989 #endif
990 
991 	if (sysctl_createv(clog, 0, &rnode, &cnode,
992 		       CTLFLAG_PERMANENT,
993 		       CTLTYPE_INT, "drops",
994 		       SYSCTL_DESCR("Total packets dropped due to full input queue"),
995 		       sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
996 		       CTL_CREATE, CTL_EOL) != 0)
997 		goto bad;
998 
999 	return;
1000 bad:
1001 	printf("%s: could not attach sysctl nodes\n", ifname);
1002 	return;
1003 }
1004 
1005 /*
1006  * The deferred if_start framework
1007  *
1008  * The common APIs to defer if_start to softint when if_start is requested
1009  * from a device driver running in hardware interrupt context.
1010  */
1011 /*
1012  * Call ifp->if_start (or equivalent) in a dedicated softint for
1013  * deferred if_start.
1014  */
1015 static void
1016 if_deferred_start_softint(void *arg)
1017 {
1018 	struct if_deferred_start *ids = arg;
1019 	struct ifnet *ifp = ids->ids_ifp;
1020 
1021 	ids->ids_if_start(ifp);
1022 }
1023 
1024 /*
1025  * The default callback function for deferred if_start.
1026  */
1027 static void
1028 if_deferred_start_common(struct ifnet *ifp)
1029 {
1030 	int s;
1031 
1032 	s = splnet();
1033 	if_start_lock(ifp);
1034 	splx(s);
1035 }
1036 
1037 static inline bool
1038 if_snd_is_used(struct ifnet *ifp)
1039 {
1040 
1041 	return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit ||
1042 	    ALTQ_IS_ENABLED(&ifp->if_snd);
1043 }
1044 
1045 /*
1046  * Schedule deferred if_start.
1047  */
1048 void
1049 if_schedule_deferred_start(struct ifnet *ifp)
1050 {
1051 
1052 	KASSERT(ifp->if_deferred_start != NULL);
1053 
1054 	if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1055 		return;
1056 
1057 	softint_schedule(ifp->if_deferred_start->ids_si);
1058 }
1059 
1060 /*
1061  * Create an instance of deferred if_start. A driver should call the function
1062  * only if the driver needs deferred if_start. Drivers can setup their own
1063  * deferred if_start function via 2nd argument.
1064  */
1065 void
1066 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1067 {
1068 	struct if_deferred_start *ids;
1069 
1070 	ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1071 	ids->ids_ifp = ifp;
1072 	ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
1073 	    if_deferred_start_softint, ids);
1074 	if (func != NULL)
1075 		ids->ids_if_start = func;
1076 	else
1077 		ids->ids_if_start = if_deferred_start_common;
1078 
1079 	ifp->if_deferred_start = ids;
1080 }
1081 
1082 static void
1083 if_deferred_start_destroy(struct ifnet *ifp)
1084 {
1085 
1086 	if (ifp->if_deferred_start == NULL)
1087 		return;
1088 
1089 	softint_disestablish(ifp->if_deferred_start->ids_si);
1090 	kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1091 	ifp->if_deferred_start = NULL;
1092 }
1093 
1094 /*
1095  * The common interface input routine that is called by device drivers,
1096  * which should be used only when the driver's rx handler already runs
1097  * in softint.
1098  */
1099 void
1100 if_input(struct ifnet *ifp, struct mbuf *m)
1101 {
1102 
1103 	KASSERT(ifp->if_percpuq == NULL);
1104 	KASSERT(!cpu_intr_p());
1105 
1106 	ifp->if_ipackets++;
1107 	bpf_mtap(ifp, m);
1108 
1109 	ifp->_if_input(ifp, m);
1110 }
1111 
1112 /*
1113  * DEPRECATED. Use if_initialize and if_register instead.
1114  * See the above comment of if_initialize.
1115  *
1116  * Note that it implicitly enables if_percpuq to make drivers easy to
1117  * migrate softint-based if_input without much changes. If you don't
1118  * want to enable it, use if_initialize instead.
1119  */
1120 int
1121 if_attach(ifnet_t *ifp)
1122 {
1123 	int rv;
1124 
1125 	rv = if_initialize(ifp);
1126 	if (rv != 0)
1127 		return rv;
1128 
1129 	ifp->if_percpuq = if_percpuq_create(ifp);
1130 	if_register(ifp);
1131 
1132 	return 0;
1133 }
1134 
1135 void
1136 if_attachdomain(void)
1137 {
1138 	struct ifnet *ifp;
1139 	int s;
1140 	int bound = curlwp_bind();
1141 
1142 	s = pserialize_read_enter();
1143 	IFNET_READER_FOREACH(ifp) {
1144 		struct psref psref;
1145 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1146 		pserialize_read_exit(s);
1147 		if_attachdomain1(ifp);
1148 		s = pserialize_read_enter();
1149 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1150 	}
1151 	pserialize_read_exit(s);
1152 	curlwp_bindx(bound);
1153 }
1154 
1155 static void
1156 if_attachdomain1(struct ifnet *ifp)
1157 {
1158 	struct domain *dp;
1159 	int s;
1160 
1161 	s = splsoftnet();
1162 
1163 	/* address family dependent data region */
1164 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1165 	DOMAIN_FOREACH(dp) {
1166 		if (dp->dom_ifattach != NULL)
1167 			ifp->if_afdata[dp->dom_family] =
1168 			    (*dp->dom_ifattach)(ifp);
1169 	}
1170 
1171 	splx(s);
1172 }
1173 
1174 /*
1175  * Deactivate an interface.  This points all of the procedure
1176  * handles at error stubs.  May be called from interrupt context.
1177  */
1178 void
1179 if_deactivate(struct ifnet *ifp)
1180 {
1181 	int s;
1182 
1183 	s = splsoftnet();
1184 
1185 	ifp->if_output	 = if_nulloutput;
1186 	ifp->_if_input	 = if_nullinput;
1187 	ifp->if_start	 = if_nullstart;
1188 	ifp->if_transmit = if_nulltransmit;
1189 	ifp->if_ioctl	 = if_nullioctl;
1190 	ifp->if_init	 = if_nullinit;
1191 	ifp->if_stop	 = if_nullstop;
1192 	ifp->if_slowtimo = if_nullslowtimo;
1193 	ifp->if_drain	 = if_nulldrain;
1194 
1195 	/* No more packets may be enqueued. */
1196 	ifp->if_snd.ifq_maxlen = 0;
1197 
1198 	splx(s);
1199 }
1200 
1201 bool
1202 if_is_deactivated(const struct ifnet *ifp)
1203 {
1204 
1205 	return ifp->if_output == if_nulloutput;
1206 }
1207 
1208 void
1209 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1210 {
1211 	struct ifaddr *ifa, *nifa;
1212 	int s;
1213 
1214 	s = pserialize_read_enter();
1215 	for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1216 		nifa = IFADDR_READER_NEXT(ifa);
1217 		if (ifa->ifa_addr->sa_family != family)
1218 			continue;
1219 		pserialize_read_exit(s);
1220 
1221 		(*purgeaddr)(ifa);
1222 
1223 		s = pserialize_read_enter();
1224 	}
1225 	pserialize_read_exit(s);
1226 }
1227 
1228 #ifdef IFAREF_DEBUG
1229 static struct ifaddr **ifa_list;
1230 static int ifa_list_size;
1231 
1232 /* Depends on only one if_attach runs at once */
1233 static void
1234 if_build_ifa_list(struct ifnet *ifp)
1235 {
1236 	struct ifaddr *ifa;
1237 	int i;
1238 
1239 	KASSERT(ifa_list == NULL);
1240 	KASSERT(ifa_list_size == 0);
1241 
1242 	IFADDR_READER_FOREACH(ifa, ifp)
1243 		ifa_list_size++;
1244 
1245 	ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1246 	i = 0;
1247 	IFADDR_READER_FOREACH(ifa, ifp) {
1248 		ifa_list[i++] = ifa;
1249 		ifaref(ifa);
1250 	}
1251 }
1252 
1253 static void
1254 if_check_and_free_ifa_list(struct ifnet *ifp)
1255 {
1256 	int i;
1257 	struct ifaddr *ifa;
1258 
1259 	if (ifa_list == NULL)
1260 		return;
1261 
1262 	for (i = 0; i < ifa_list_size; i++) {
1263 		char buf[64];
1264 
1265 		ifa = ifa_list[i];
1266 		sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1267 		if (ifa->ifa_refcnt > 1) {
1268 			log(LOG_WARNING,
1269 			    "ifa(%s) still referenced (refcnt=%d)\n",
1270 			    buf, ifa->ifa_refcnt - 1);
1271 		} else
1272 			log(LOG_DEBUG,
1273 			    "ifa(%s) not referenced (refcnt=%d)\n",
1274 			    buf, ifa->ifa_refcnt - 1);
1275 		ifafree(ifa);
1276 	}
1277 
1278 	kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1279 	ifa_list = NULL;
1280 	ifa_list_size = 0;
1281 }
1282 #endif
1283 
1284 /*
1285  * Detach an interface from the list of "active" interfaces,
1286  * freeing any resources as we go along.
1287  *
1288  * NOTE: This routine must be called with a valid thread context,
1289  * as it may block.
1290  */
1291 void
1292 if_detach(struct ifnet *ifp)
1293 {
1294 	struct socket so;
1295 	struct ifaddr *ifa;
1296 #ifdef IFAREF_DEBUG
1297 	struct ifaddr *last_ifa = NULL;
1298 #endif
1299 	struct domain *dp;
1300 	const struct protosw *pr;
1301 	int s, i, family, purged;
1302 	uint64_t xc;
1303 
1304 #ifdef IFAREF_DEBUG
1305 	if_build_ifa_list(ifp);
1306 #endif
1307 	/*
1308 	 * XXX It's kind of lame that we have to have the
1309 	 * XXX socket structure...
1310 	 */
1311 	memset(&so, 0, sizeof(so));
1312 
1313 	s = splnet();
1314 
1315 	sysctl_teardown(&ifp->if_sysctl_log);
1316 	IFNET_LOCK(ifp);
1317 	if_deactivate(ifp);
1318 	IFNET_UNLOCK(ifp);
1319 
1320 	if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1321 		ifp->if_slowtimo = NULL;
1322 		callout_halt(ifp->if_slowtimo_ch, NULL);
1323 		callout_destroy(ifp->if_slowtimo_ch);
1324 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1325 	}
1326 	if_deferred_start_destroy(ifp);
1327 
1328 	/*
1329 	 * Do an if_down() to give protocols a chance to do something.
1330 	 */
1331 	if_down_deactivated(ifp);
1332 
1333 #ifdef ALTQ
1334 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
1335 		altq_disable(&ifp->if_snd);
1336 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1337 		altq_detach(&ifp->if_snd);
1338 #endif
1339 
1340 	mutex_obj_free(ifp->if_snd.ifq_lock);
1341 
1342 #if NCARP > 0
1343 	/* Remove the interface from any carp group it is a part of.  */
1344 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1345 		carp_ifdetach(ifp);
1346 #endif
1347 
1348 	/*
1349 	 * Rip all the addresses off the interface.  This should make
1350 	 * all of the routes go away.
1351 	 *
1352 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1353 	 * from the list, including our "cursor", ifa.  For safety,
1354 	 * and to honor the TAILQ abstraction, I just restart the
1355 	 * loop after each removal.  Note that the loop will exit
1356 	 * when all of the remaining ifaddrs belong to the AF_LINK
1357 	 * family.  I am counting on the historical fact that at
1358 	 * least one pr_usrreq in each address domain removes at
1359 	 * least one ifaddr.
1360 	 */
1361 again:
1362 	/*
1363 	 * At this point, no other one tries to remove ifa in the list,
1364 	 * so we don't need to take a lock or psref.  Avoid using
1365 	 * IFADDR_READER_FOREACH to pass over an inspection of contract
1366 	 * violations of pserialize.
1367 	 */
1368 	IFADDR_WRITER_FOREACH(ifa, ifp) {
1369 		family = ifa->ifa_addr->sa_family;
1370 #ifdef IFAREF_DEBUG
1371 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1372 		    ifa, family, ifa->ifa_refcnt);
1373 		if (last_ifa != NULL && ifa == last_ifa)
1374 			panic("if_detach: loop detected");
1375 		last_ifa = ifa;
1376 #endif
1377 		if (family == AF_LINK)
1378 			continue;
1379 		dp = pffinddomain(family);
1380 		KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1381 		/*
1382 		 * XXX These PURGEIF calls are redundant with the
1383 		 * purge-all-families calls below, but are left in for
1384 		 * now both to make a smaller change, and to avoid
1385 		 * unplanned interactions with clearing of
1386 		 * ifp->if_addrlist.
1387 		 */
1388 		purged = 0;
1389 		for (pr = dp->dom_protosw;
1390 		     pr < dp->dom_protoswNPROTOSW; pr++) {
1391 			so.so_proto = pr;
1392 			if (pr->pr_usrreqs) {
1393 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1394 				purged = 1;
1395 			}
1396 		}
1397 		if (purged == 0) {
1398 			/*
1399 			 * XXX What's really the best thing to do
1400 			 * XXX here?  --thorpej@NetBSD.org
1401 			 */
1402 			printf("if_detach: WARNING: AF %d not purged\n",
1403 			    family);
1404 			ifa_remove(ifp, ifa);
1405 		}
1406 		goto again;
1407 	}
1408 
1409 	if_free_sadl(ifp);
1410 
1411 	/* Delete stray routes from the routing table. */
1412 	for (i = 0; i <= AF_MAX; i++)
1413 		rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1414 
1415 	DOMAIN_FOREACH(dp) {
1416 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1417 		{
1418 			void *p = ifp->if_afdata[dp->dom_family];
1419 			if (p) {
1420 				ifp->if_afdata[dp->dom_family] = NULL;
1421 				(*dp->dom_ifdetach)(ifp, p);
1422 			}
1423 		}
1424 
1425 		/*
1426 		 * One would expect multicast memberships (INET and
1427 		 * INET6) on UDP sockets to be purged by the PURGEIF
1428 		 * calls above, but if all addresses were removed from
1429 		 * the interface prior to destruction, the calls will
1430 		 * not be made (e.g. ppp, for which pppd(8) generally
1431 		 * removes addresses before destroying the interface).
1432 		 * Because there is no invariant that multicast
1433 		 * memberships only exist for interfaces with IPv4
1434 		 * addresses, we must call PURGEIF regardless of
1435 		 * addresses.  (Protocols which might store ifnet
1436 		 * pointers are marked with PR_PURGEIF.)
1437 		 */
1438 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1439 			so.so_proto = pr;
1440 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1441 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1442 		}
1443 	}
1444 
1445 	/* Wait for all readers to drain before freeing.  */
1446 	IFNET_GLOBAL_LOCK();
1447 	ifindex2ifnet[ifp->if_index] = NULL;
1448 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1449 	IFNET_WRITER_REMOVE(ifp);
1450 	pserialize_perform(ifnet_psz);
1451 	IFNET_GLOBAL_UNLOCK();
1452 
1453 	psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1454 	PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1455 
1456 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1457 	(void)pfil_head_destroy(ifp->if_pfil);
1458 
1459 	/* Announce that the interface is gone. */
1460 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1461 
1462 	IF_AFDATA_LOCK_DESTROY(ifp);
1463 
1464 	if (if_is_link_state_changeable(ifp)) {
1465 		softint_disestablish(ifp->if_link_si);
1466 		ifp->if_link_si = NULL;
1467 	}
1468 
1469 	/*
1470 	 * remove packets that came from ifp, from software interrupt queues.
1471 	 */
1472 	DOMAIN_FOREACH(dp) {
1473 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1474 			struct ifqueue *iq = dp->dom_ifqueues[i];
1475 			if (iq == NULL)
1476 				break;
1477 			dp->dom_ifqueues[i] = NULL;
1478 			if_detach_queues(ifp, iq);
1479 		}
1480 	}
1481 
1482 	/*
1483 	 * IP queues have to be processed separately: net-queue barrier
1484 	 * ensures that the packets are dequeued while a cross-call will
1485 	 * ensure that the interrupts have completed. FIXME: not quite..
1486 	 */
1487 #ifdef INET
1488 	pktq_barrier(ip_pktq);
1489 #endif
1490 #ifdef INET6
1491 	if (in6_present)
1492 		pktq_barrier(ip6_pktq);
1493 #endif
1494 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1495 	xc_wait(xc);
1496 
1497 	if (ifp->if_percpuq != NULL) {
1498 		if_percpuq_destroy(ifp->if_percpuq);
1499 		ifp->if_percpuq = NULL;
1500 	}
1501 
1502 	mutex_obj_free(ifp->if_ioctl_lock);
1503 	ifp->if_ioctl_lock = NULL;
1504 
1505 	splx(s);
1506 
1507 #ifdef IFAREF_DEBUG
1508 	if_check_and_free_ifa_list(ifp);
1509 #endif
1510 }
1511 
1512 static void
1513 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1514 {
1515 	struct mbuf *m, *prev, *next;
1516 
1517 	prev = NULL;
1518 	for (m = q->ifq_head; m != NULL; m = next) {
1519 		KASSERT((m->m_flags & M_PKTHDR) != 0);
1520 
1521 		next = m->m_nextpkt;
1522 		if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1523 			prev = m;
1524 			continue;
1525 		}
1526 
1527 		if (prev != NULL)
1528 			prev->m_nextpkt = m->m_nextpkt;
1529 		else
1530 			q->ifq_head = m->m_nextpkt;
1531 		if (q->ifq_tail == m)
1532 			q->ifq_tail = prev;
1533 		q->ifq_len--;
1534 
1535 		m->m_nextpkt = NULL;
1536 		m_freem(m);
1537 		IF_DROP(q);
1538 	}
1539 }
1540 
1541 /*
1542  * Callback for a radix tree walk to delete all references to an
1543  * ifnet.
1544  */
1545 static int
1546 if_delroute_matcher(struct rtentry *rt, void *v)
1547 {
1548 	struct ifnet *ifp = (struct ifnet *)v;
1549 
1550 	if (rt->rt_ifp == ifp)
1551 		return 1;
1552 	else
1553 		return 0;
1554 }
1555 
1556 /*
1557  * Create a clone network interface.
1558  */
1559 static int
1560 if_clone_create(const char *name)
1561 {
1562 	struct if_clone *ifc;
1563 	int unit;
1564 	struct ifnet *ifp;
1565 	struct psref psref;
1566 
1567 	KASSERT(mutex_owned(&if_clone_mtx));
1568 
1569 	ifc = if_clone_lookup(name, &unit);
1570 	if (ifc == NULL)
1571 		return EINVAL;
1572 
1573 	ifp = if_get(name, &psref);
1574 	if (ifp != NULL) {
1575 		if_put(ifp, &psref);
1576 		return EEXIST;
1577 	}
1578 
1579 	return (*ifc->ifc_create)(ifc, unit);
1580 }
1581 
1582 /*
1583  * Destroy a clone network interface.
1584  */
1585 static int
1586 if_clone_destroy(const char *name)
1587 {
1588 	struct if_clone *ifc;
1589 	struct ifnet *ifp;
1590 	struct psref psref;
1591 
1592 	KASSERT(mutex_owned(&if_clone_mtx));
1593 
1594 	ifc = if_clone_lookup(name, NULL);
1595 	if (ifc == NULL)
1596 		return EINVAL;
1597 
1598 	if (ifc->ifc_destroy == NULL)
1599 		return EOPNOTSUPP;
1600 
1601 	ifp = if_get(name, &psref);
1602 	if (ifp == NULL)
1603 		return ENXIO;
1604 
1605 	/* We have to disable ioctls here */
1606 	IFNET_LOCK(ifp);
1607 	ifp->if_ioctl = if_nullioctl;
1608 	IFNET_UNLOCK(ifp);
1609 
1610 	/*
1611 	 * We cannot call ifc_destroy with holding ifp.
1612 	 * Releasing ifp here is safe thanks to if_clone_mtx.
1613 	 */
1614 	if_put(ifp, &psref);
1615 
1616 	return (*ifc->ifc_destroy)(ifp);
1617 }
1618 
1619 static bool
1620 if_is_unit(const char *name)
1621 {
1622 
1623 	while(*name != '\0') {
1624 		if (*name < '0' || *name > '9')
1625 			return false;
1626 		name++;
1627 	}
1628 
1629 	return true;
1630 }
1631 
1632 /*
1633  * Look up a network interface cloner.
1634  */
1635 static struct if_clone *
1636 if_clone_lookup(const char *name, int *unitp)
1637 {
1638 	struct if_clone *ifc;
1639 	const char *cp;
1640 	char *dp, ifname[IFNAMSIZ + 3];
1641 	int unit;
1642 
1643 	KASSERT(mutex_owned(&if_clone_mtx));
1644 
1645 	strcpy(ifname, "if_");
1646 	/* separate interface name from unit */
1647 	/* TODO: search unit number from backward */
1648 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1649 	    *cp && !if_is_unit(cp);)
1650 		*dp++ = *cp++;
1651 
1652 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
1653 		return NULL;	/* No name or unit number */
1654 	*dp++ = '\0';
1655 
1656 again:
1657 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1658 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1659 			break;
1660 	}
1661 
1662 	if (ifc == NULL) {
1663 		int error;
1664 		if (*ifname == '\0')
1665 			return NULL;
1666 		mutex_exit(&if_clone_mtx);
1667 		error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1668 		mutex_enter(&if_clone_mtx);
1669 		if (error)
1670 			return NULL;
1671 		*ifname = '\0';
1672 		goto again;
1673 	}
1674 
1675 	unit = 0;
1676 	while (cp - name < IFNAMSIZ && *cp) {
1677 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1678 			/* Bogus unit number. */
1679 			return NULL;
1680 		}
1681 		unit = (unit * 10) + (*cp++ - '0');
1682 	}
1683 
1684 	if (unitp != NULL)
1685 		*unitp = unit;
1686 	return ifc;
1687 }
1688 
1689 /*
1690  * Register a network interface cloner.
1691  */
1692 void
1693 if_clone_attach(struct if_clone *ifc)
1694 {
1695 
1696 	mutex_enter(&if_clone_mtx);
1697 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1698 	if_cloners_count++;
1699 	mutex_exit(&if_clone_mtx);
1700 }
1701 
1702 /*
1703  * Unregister a network interface cloner.
1704  */
1705 void
1706 if_clone_detach(struct if_clone *ifc)
1707 {
1708 
1709 	mutex_enter(&if_clone_mtx);
1710 	LIST_REMOVE(ifc, ifc_list);
1711 	if_cloners_count--;
1712 	mutex_exit(&if_clone_mtx);
1713 }
1714 
1715 /*
1716  * Provide list of interface cloners to userspace.
1717  */
1718 int
1719 if_clone_list(int buf_count, char *buffer, int *total)
1720 {
1721 	char outbuf[IFNAMSIZ], *dst;
1722 	struct if_clone *ifc;
1723 	int count, error = 0;
1724 
1725 	mutex_enter(&if_clone_mtx);
1726 	*total = if_cloners_count;
1727 	if ((dst = buffer) == NULL) {
1728 		/* Just asking how many there are. */
1729 		goto out;
1730 	}
1731 
1732 	if (buf_count < 0) {
1733 		error = EINVAL;
1734 		goto out;
1735 	}
1736 
1737 	count = (if_cloners_count < buf_count) ?
1738 	    if_cloners_count : buf_count;
1739 
1740 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1741 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1742 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1743 		if (outbuf[sizeof(outbuf) - 1] != '\0') {
1744 			error = ENAMETOOLONG;
1745 			goto out;
1746 		}
1747 		error = copyout(outbuf, dst, sizeof(outbuf));
1748 		if (error != 0)
1749 			break;
1750 	}
1751 
1752 out:
1753 	mutex_exit(&if_clone_mtx);
1754 	return error;
1755 }
1756 
1757 void
1758 ifa_psref_init(struct ifaddr *ifa)
1759 {
1760 
1761 	psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1762 }
1763 
1764 void
1765 ifaref(struct ifaddr *ifa)
1766 {
1767 	KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING));
1768 	ifa->ifa_refcnt++;
1769 }
1770 
1771 void
1772 ifafree(struct ifaddr *ifa)
1773 {
1774 	KASSERT(ifa != NULL);
1775 	KASSERT(ifa->ifa_refcnt > 0);
1776 
1777 	if (--ifa->ifa_refcnt == 0) {
1778 		free(ifa, M_IFADDR);
1779 	}
1780 }
1781 
1782 bool
1783 ifa_is_destroying(struct ifaddr *ifa)
1784 {
1785 
1786 	return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1787 }
1788 
1789 void
1790 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1791 {
1792 
1793 	ifa->ifa_ifp = ifp;
1794 
1795 	/*
1796 	 * Check MP-safety for IFEF_MPSAFE drivers.
1797 	 * Check !IFF_RUNNING for initialization routines that normally don't
1798 	 * take IFNET_LOCK but it's safe because there is no competitor.
1799 	 * XXX there are false positive cases because IFF_RUNNING can be off on
1800 	 * if_stop.
1801 	 */
1802 	KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
1803 	    IFNET_LOCKED(ifp));
1804 
1805 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1806 	IFADDR_ENTRY_INIT(ifa);
1807 	IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1808 
1809 	ifaref(ifa);
1810 }
1811 
1812 void
1813 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1814 {
1815 
1816 	KASSERT(ifa->ifa_ifp == ifp);
1817 	/*
1818 	 * Check MP-safety for IFEF_MPSAFE drivers.
1819 	 * if_is_deactivated indicates ifa_remove is called form if_detach
1820 	 * where is safe even if IFNET_LOCK isn't held.
1821 	 */
1822 	KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
1823 
1824 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1825 	IFADDR_WRITER_REMOVE(ifa);
1826 #ifdef NET_MPSAFE
1827 	IFNET_GLOBAL_LOCK();
1828 	pserialize_perform(ifnet_psz);
1829 	IFNET_GLOBAL_UNLOCK();
1830 #endif
1831 
1832 #ifdef NET_MPSAFE
1833 	psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1834 #endif
1835 	IFADDR_ENTRY_DESTROY(ifa);
1836 	ifafree(ifa);
1837 }
1838 
1839 void
1840 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1841 {
1842 
1843 	psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1844 }
1845 
1846 void
1847 ifa_release(struct ifaddr *ifa, struct psref *psref)
1848 {
1849 
1850 	if (ifa == NULL)
1851 		return;
1852 
1853 	psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1854 }
1855 
1856 bool
1857 ifa_held(struct ifaddr *ifa)
1858 {
1859 
1860 	return psref_held(&ifa->ifa_psref, ifa_psref_class);
1861 }
1862 
1863 static inline int
1864 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1865 {
1866 	return sockaddr_cmp(sa1, sa2) == 0;
1867 }
1868 
1869 /*
1870  * Locate an interface based on a complete address.
1871  */
1872 /*ARGSUSED*/
1873 struct ifaddr *
1874 ifa_ifwithaddr(const struct sockaddr *addr)
1875 {
1876 	struct ifnet *ifp;
1877 	struct ifaddr *ifa;
1878 
1879 	IFNET_READER_FOREACH(ifp) {
1880 		if (if_is_deactivated(ifp))
1881 			continue;
1882 		IFADDR_READER_FOREACH(ifa, ifp) {
1883 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1884 				continue;
1885 			if (equal(addr, ifa->ifa_addr))
1886 				return ifa;
1887 			if ((ifp->if_flags & IFF_BROADCAST) &&
1888 			    ifa->ifa_broadaddr &&
1889 			    /* IP6 doesn't have broadcast */
1890 			    ifa->ifa_broadaddr->sa_len != 0 &&
1891 			    equal(ifa->ifa_broadaddr, addr))
1892 				return ifa;
1893 		}
1894 	}
1895 	return NULL;
1896 }
1897 
1898 struct ifaddr *
1899 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1900 {
1901 	struct ifaddr *ifa;
1902 	int s = pserialize_read_enter();
1903 
1904 	ifa = ifa_ifwithaddr(addr);
1905 	if (ifa != NULL)
1906 		ifa_acquire(ifa, psref);
1907 	pserialize_read_exit(s);
1908 
1909 	return ifa;
1910 }
1911 
1912 /*
1913  * Locate the point to point interface with a given destination address.
1914  */
1915 /*ARGSUSED*/
1916 struct ifaddr *
1917 ifa_ifwithdstaddr(const struct sockaddr *addr)
1918 {
1919 	struct ifnet *ifp;
1920 	struct ifaddr *ifa;
1921 
1922 	IFNET_READER_FOREACH(ifp) {
1923 		if (if_is_deactivated(ifp))
1924 			continue;
1925 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1926 			continue;
1927 		IFADDR_READER_FOREACH(ifa, ifp) {
1928 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
1929 			    ifa->ifa_dstaddr == NULL)
1930 				continue;
1931 			if (equal(addr, ifa->ifa_dstaddr))
1932 				return ifa;
1933 		}
1934 	}
1935 
1936 	return NULL;
1937 }
1938 
1939 struct ifaddr *
1940 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1941 {
1942 	struct ifaddr *ifa;
1943 	int s;
1944 
1945 	s = pserialize_read_enter();
1946 	ifa = ifa_ifwithdstaddr(addr);
1947 	if (ifa != NULL)
1948 		ifa_acquire(ifa, psref);
1949 	pserialize_read_exit(s);
1950 
1951 	return ifa;
1952 }
1953 
1954 /*
1955  * Find an interface on a specific network.  If many, choice
1956  * is most specific found.
1957  */
1958 struct ifaddr *
1959 ifa_ifwithnet(const struct sockaddr *addr)
1960 {
1961 	struct ifnet *ifp;
1962 	struct ifaddr *ifa, *ifa_maybe = NULL;
1963 	const struct sockaddr_dl *sdl;
1964 	u_int af = addr->sa_family;
1965 	const char *addr_data = addr->sa_data, *cplim;
1966 
1967 	if (af == AF_LINK) {
1968 		sdl = satocsdl(addr);
1969 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1970 		    ifindex2ifnet[sdl->sdl_index] &&
1971 		    !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
1972 			return ifindex2ifnet[sdl->sdl_index]->if_dl;
1973 		}
1974 	}
1975 #ifdef NETATALK
1976 	if (af == AF_APPLETALK) {
1977 		const struct sockaddr_at *sat, *sat2;
1978 		sat = (const struct sockaddr_at *)addr;
1979 		IFNET_READER_FOREACH(ifp) {
1980 			if (if_is_deactivated(ifp))
1981 				continue;
1982 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1983 			if (ifa == NULL)
1984 				continue;
1985 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1986 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1987 				return ifa; /* exact match */
1988 			if (ifa_maybe == NULL) {
1989 				/* else keep the if with the right range */
1990 				ifa_maybe = ifa;
1991 			}
1992 		}
1993 		return ifa_maybe;
1994 	}
1995 #endif
1996 	IFNET_READER_FOREACH(ifp) {
1997 		if (if_is_deactivated(ifp))
1998 			continue;
1999 		IFADDR_READER_FOREACH(ifa, ifp) {
2000 			const char *cp, *cp2, *cp3;
2001 
2002 			if (ifa->ifa_addr->sa_family != af ||
2003 			    ifa->ifa_netmask == NULL)
2004  next:				continue;
2005 			cp = addr_data;
2006 			cp2 = ifa->ifa_addr->sa_data;
2007 			cp3 = ifa->ifa_netmask->sa_data;
2008 			cplim = (const char *)ifa->ifa_netmask +
2009 			    ifa->ifa_netmask->sa_len;
2010 			while (cp3 < cplim) {
2011 				if ((*cp++ ^ *cp2++) & *cp3++) {
2012 					/* want to continue for() loop */
2013 					goto next;
2014 				}
2015 			}
2016 			if (ifa_maybe == NULL ||
2017 			    rt_refines(ifa->ifa_netmask,
2018 			               ifa_maybe->ifa_netmask))
2019 				ifa_maybe = ifa;
2020 		}
2021 	}
2022 	return ifa_maybe;
2023 }
2024 
2025 struct ifaddr *
2026 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2027 {
2028 	struct ifaddr *ifa;
2029 	int s;
2030 
2031 	s = pserialize_read_enter();
2032 	ifa = ifa_ifwithnet(addr);
2033 	if (ifa != NULL)
2034 		ifa_acquire(ifa, psref);
2035 	pserialize_read_exit(s);
2036 
2037 	return ifa;
2038 }
2039 
2040 /*
2041  * Find the interface of the addresss.
2042  */
2043 struct ifaddr *
2044 ifa_ifwithladdr(const struct sockaddr *addr)
2045 {
2046 	struct ifaddr *ia;
2047 
2048 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2049 	    (ia = ifa_ifwithnet(addr)))
2050 		return ia;
2051 	return NULL;
2052 }
2053 
2054 struct ifaddr *
2055 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2056 {
2057 	struct ifaddr *ifa;
2058 	int s;
2059 
2060 	s = pserialize_read_enter();
2061 	ifa = ifa_ifwithladdr(addr);
2062 	if (ifa != NULL)
2063 		ifa_acquire(ifa, psref);
2064 	pserialize_read_exit(s);
2065 
2066 	return ifa;
2067 }
2068 
2069 /*
2070  * Find an interface using a specific address family
2071  */
2072 struct ifaddr *
2073 ifa_ifwithaf(int af)
2074 {
2075 	struct ifnet *ifp;
2076 	struct ifaddr *ifa = NULL;
2077 	int s;
2078 
2079 	s = pserialize_read_enter();
2080 	IFNET_READER_FOREACH(ifp) {
2081 		if (if_is_deactivated(ifp))
2082 			continue;
2083 		IFADDR_READER_FOREACH(ifa, ifp) {
2084 			if (ifa->ifa_addr->sa_family == af)
2085 				goto out;
2086 		}
2087 	}
2088 out:
2089 	pserialize_read_exit(s);
2090 	return ifa;
2091 }
2092 
2093 /*
2094  * Find an interface address specific to an interface best matching
2095  * a given address.
2096  */
2097 struct ifaddr *
2098 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2099 {
2100 	struct ifaddr *ifa;
2101 	const char *cp, *cp2, *cp3;
2102 	const char *cplim;
2103 	struct ifaddr *ifa_maybe = 0;
2104 	u_int af = addr->sa_family;
2105 
2106 	if (if_is_deactivated(ifp))
2107 		return NULL;
2108 
2109 	if (af >= AF_MAX)
2110 		return NULL;
2111 
2112 	IFADDR_READER_FOREACH(ifa, ifp) {
2113 		if (ifa->ifa_addr->sa_family != af)
2114 			continue;
2115 		ifa_maybe = ifa;
2116 		if (ifa->ifa_netmask == NULL) {
2117 			if (equal(addr, ifa->ifa_addr) ||
2118 			    (ifa->ifa_dstaddr &&
2119 			     equal(addr, ifa->ifa_dstaddr)))
2120 				return ifa;
2121 			continue;
2122 		}
2123 		cp = addr->sa_data;
2124 		cp2 = ifa->ifa_addr->sa_data;
2125 		cp3 = ifa->ifa_netmask->sa_data;
2126 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2127 		for (; cp3 < cplim; cp3++) {
2128 			if ((*cp++ ^ *cp2++) & *cp3)
2129 				break;
2130 		}
2131 		if (cp3 == cplim)
2132 			return ifa;
2133 	}
2134 	return ifa_maybe;
2135 }
2136 
2137 struct ifaddr *
2138 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2139     struct psref *psref)
2140 {
2141 	struct ifaddr *ifa;
2142 	int s;
2143 
2144 	s = pserialize_read_enter();
2145 	ifa = ifaof_ifpforaddr(addr, ifp);
2146 	if (ifa != NULL)
2147 		ifa_acquire(ifa, psref);
2148 	pserialize_read_exit(s);
2149 
2150 	return ifa;
2151 }
2152 
2153 /*
2154  * Default action when installing a route with a Link Level gateway.
2155  * Lookup an appropriate real ifa to point to.
2156  * This should be moved to /sys/net/link.c eventually.
2157  */
2158 void
2159 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2160 {
2161 	struct ifaddr *ifa;
2162 	const struct sockaddr *dst;
2163 	struct ifnet *ifp;
2164 	struct psref psref;
2165 
2166 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
2167 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
2168 		return;
2169 	if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2170 		rt_replace_ifa(rt, ifa);
2171 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2172 			ifa->ifa_rtrequest(cmd, rt, info);
2173 		ifa_release(ifa, &psref);
2174 	}
2175 }
2176 
2177 /*
2178  * bitmask macros to manage a densely packed link_state change queue.
2179  * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2180  * LINK_STATE_UP(2) we need 2 bits for each state change.
2181  * As a state change to store is 0, treat all bits set as an unset item.
2182  */
2183 #define LQ_ITEM_BITS		2
2184 #define LQ_ITEM_MASK		((1 << LQ_ITEM_BITS) - 1)
2185 #define LQ_MASK(i)		(LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2186 #define LINK_STATE_UNSET	LQ_ITEM_MASK
2187 #define LQ_ITEM(q, i)		(((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2188 #define LQ_STORE(q, i, v)						      \
2189 	do {								      \
2190 		(q) &= ~LQ_MASK((i));					      \
2191 		(q) |= (v) << (i) * LQ_ITEM_BITS;			      \
2192 	} while (0 /* CONSTCOND */)
2193 #define LQ_MAX(q)		((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2194 #define LQ_POP(q, v)							      \
2195 	do {								      \
2196 		(v) = LQ_ITEM((q), 0);					      \
2197 		(q) >>= LQ_ITEM_BITS;					      \
2198 		(q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;  \
2199 	} while (0 /* CONSTCOND */)
2200 #define LQ_PUSH(q, v)							      \
2201 	do {								      \
2202 		(q) >>= LQ_ITEM_BITS;					      \
2203 		(q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;		      \
2204 	} while (0 /* CONSTCOND */)
2205 #define LQ_FIND_UNSET(q, i)						      \
2206 	for ((i) = 0; i < LQ_MAX((q)); (i)++) {				      \
2207 		if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET)		      \
2208 			break;						      \
2209 	}
2210 
2211 /*
2212  * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
2213  * for each ifnet.  It doesn't matter because:
2214  * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
2215  *   ifq_lock don't happen
2216  * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
2217  *   because if_snd, if_link_state_change and if_link_state_change_softint
2218  *   are all called with KERNEL_LOCK
2219  */
2220 #define IF_LINK_STATE_CHANGE_LOCK(ifp)		\
2221 	mutex_enter((ifp)->if_snd.ifq_lock)
2222 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp)	\
2223 	mutex_exit((ifp)->if_snd.ifq_lock)
2224 
2225 /*
2226  * Handle a change in the interface link state and
2227  * queue notifications.
2228  */
2229 void
2230 if_link_state_change(struct ifnet *ifp, int link_state)
2231 {
2232 	int idx;
2233 
2234 	KASSERTMSG(if_is_link_state_changeable(ifp),
2235 	    "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
2236 	    ifp->if_xname, ifp->if_extflags);
2237 
2238 	/* Ensure change is to a valid state */
2239 	switch (link_state) {
2240 	case LINK_STATE_UNKNOWN:	/* FALLTHROUGH */
2241 	case LINK_STATE_DOWN:		/* FALLTHROUGH */
2242 	case LINK_STATE_UP:
2243 		break;
2244 	default:
2245 #ifdef DEBUG
2246 		printf("%s: invalid link state %d\n",
2247 		    ifp->if_xname, link_state);
2248 #endif
2249 		return;
2250 	}
2251 
2252 	IF_LINK_STATE_CHANGE_LOCK(ifp);
2253 
2254 	/* Find the last unset event in the queue. */
2255 	LQ_FIND_UNSET(ifp->if_link_queue, idx);
2256 
2257 	/*
2258 	 * Ensure link_state doesn't match the last event in the queue.
2259 	 * ifp->if_link_state is not checked and set here because
2260 	 * that would present an inconsistent picture to the system.
2261 	 */
2262 	if (idx != 0 &&
2263 	    LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2264 		goto out;
2265 
2266 	/* Handle queue overflow. */
2267 	if (idx == LQ_MAX(ifp->if_link_queue)) {
2268 		uint8_t lost;
2269 
2270 		/*
2271 		 * The DOWN state must be protected from being pushed off
2272 		 * the queue to ensure that userland will always be
2273 		 * in a sane state.
2274 		 * Because DOWN is protected, there is no need to protect
2275 		 * UNKNOWN.
2276 		 * It should be invalid to change from any other state to
2277 		 * UNKNOWN anyway ...
2278 		 */
2279 		lost = LQ_ITEM(ifp->if_link_queue, 0);
2280 		LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2281 		if (lost == LINK_STATE_DOWN) {
2282 			lost = LQ_ITEM(ifp->if_link_queue, 0);
2283 			LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2284 		}
2285 		printf("%s: lost link state change %s\n",
2286 		    ifp->if_xname,
2287 		    lost == LINK_STATE_UP ? "UP" :
2288 		    lost == LINK_STATE_DOWN ? "DOWN" :
2289 		    "UNKNOWN");
2290 	} else
2291 		LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2292 
2293 	softint_schedule(ifp->if_link_si);
2294 
2295 out:
2296 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2297 }
2298 
2299 /*
2300  * Handle interface link state change notifications.
2301  */
2302 void
2303 if_link_state_change_softint(struct ifnet *ifp, int link_state)
2304 {
2305 	struct domain *dp;
2306 	int s = splnet();
2307 	bool notify;
2308 
2309 	KASSERT(!cpu_intr_p());
2310 
2311 	IF_LINK_STATE_CHANGE_LOCK(ifp);
2312 
2313 	/* Ensure the change is still valid. */
2314 	if (ifp->if_link_state == link_state) {
2315 		IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2316 		return;
2317 	}
2318 
2319 #ifdef DEBUG
2320 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2321 		link_state == LINK_STATE_UP ? "UP" :
2322 		link_state == LINK_STATE_DOWN ? "DOWN" :
2323 		"UNKNOWN",
2324 		ifp->if_link_state == LINK_STATE_UP ? "UP" :
2325 		ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2326 		"UNKNOWN");
2327 #endif
2328 
2329 	/*
2330 	 * When going from UNKNOWN to UP, we need to mark existing
2331 	 * addresses as tentative and restart DAD as we may have
2332 	 * erroneously not found a duplicate.
2333 	 *
2334 	 * This needs to happen before rt_ifmsg to avoid a race where
2335 	 * listeners would have an address and expect it to work right
2336 	 * away.
2337 	 */
2338 	notify = (link_state == LINK_STATE_UP &&
2339 	    ifp->if_link_state == LINK_STATE_UNKNOWN);
2340 	ifp->if_link_state = link_state;
2341 	/* The following routines may sleep so release the spin mutex */
2342 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2343 
2344 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
2345 	if (notify) {
2346 		DOMAIN_FOREACH(dp) {
2347 			if (dp->dom_if_link_state_change != NULL)
2348 				dp->dom_if_link_state_change(ifp,
2349 				    LINK_STATE_DOWN);
2350 		}
2351 	}
2352 
2353 	/* Notify that the link state has changed. */
2354 	rt_ifmsg(ifp);
2355 
2356 #if NCARP > 0
2357 	if (ifp->if_carp)
2358 		carp_carpdev_state(ifp);
2359 #endif
2360 
2361 	DOMAIN_FOREACH(dp) {
2362 		if (dp->dom_if_link_state_change != NULL)
2363 			dp->dom_if_link_state_change(ifp, link_state);
2364 	}
2365 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2366 	splx(s);
2367 }
2368 
2369 /*
2370  * Process the interface link state change queue.
2371  */
2372 static void
2373 if_link_state_change_si(void *arg)
2374 {
2375 	struct ifnet *ifp = arg;
2376 	int s;
2377 	uint8_t state;
2378 	bool schedule;
2379 
2380 	SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
2381 	s = splnet();
2382 
2383 	/* Pop a link state change from the queue and process it. */
2384 	IF_LINK_STATE_CHANGE_LOCK(ifp);
2385 	LQ_POP(ifp->if_link_queue, state);
2386 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2387 
2388 	if_link_state_change_softint(ifp, state);
2389 
2390 	/* If there is a link state change to come, schedule it. */
2391 	IF_LINK_STATE_CHANGE_LOCK(ifp);
2392 	schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET);
2393 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2394 	if (schedule)
2395 		softint_schedule(ifp->if_link_si);
2396 
2397 	splx(s);
2398 	SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2399 }
2400 
2401 /*
2402  * Default action when installing a local route on a point-to-point
2403  * interface.
2404  */
2405 void
2406 p2p_rtrequest(int req, struct rtentry *rt,
2407     __unused const struct rt_addrinfo *info)
2408 {
2409 	struct ifnet *ifp = rt->rt_ifp;
2410 	struct ifaddr *ifa, *lo0ifa;
2411 	int s = pserialize_read_enter();
2412 
2413 	switch (req) {
2414 	case RTM_ADD:
2415 		if ((rt->rt_flags & RTF_LOCAL) == 0)
2416 			break;
2417 
2418 		rt->rt_ifp = lo0ifp;
2419 
2420 		IFADDR_READER_FOREACH(ifa, ifp) {
2421 			if (equal(rt_getkey(rt), ifa->ifa_addr))
2422 				break;
2423 		}
2424 		if (ifa == NULL)
2425 			break;
2426 
2427 		/*
2428 		 * Ensure lo0 has an address of the same family.
2429 		 */
2430 		IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2431 			if (lo0ifa->ifa_addr->sa_family ==
2432 			    ifa->ifa_addr->sa_family)
2433 				break;
2434 		}
2435 		if (lo0ifa == NULL)
2436 			break;
2437 
2438 		/*
2439 		 * Make sure to set rt->rt_ifa to the interface
2440 		 * address we are using, otherwise we will have trouble
2441 		 * with source address selection.
2442 		 */
2443 		if (ifa != rt->rt_ifa)
2444 			rt_replace_ifa(rt, ifa);
2445 		break;
2446 	case RTM_DELETE:
2447 	default:
2448 		break;
2449 	}
2450 	pserialize_read_exit(s);
2451 }
2452 
2453 static void
2454 _if_down(struct ifnet *ifp)
2455 {
2456 	struct ifaddr *ifa;
2457 	struct domain *dp;
2458 	int s, bound;
2459 	struct psref psref;
2460 
2461 	ifp->if_flags &= ~IFF_UP;
2462 	nanotime(&ifp->if_lastchange);
2463 
2464 	bound = curlwp_bind();
2465 	s = pserialize_read_enter();
2466 	IFADDR_READER_FOREACH(ifa, ifp) {
2467 		ifa_acquire(ifa, &psref);
2468 		pserialize_read_exit(s);
2469 
2470 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2471 
2472 		s = pserialize_read_enter();
2473 		ifa_release(ifa, &psref);
2474 	}
2475 	pserialize_read_exit(s);
2476 	curlwp_bindx(bound);
2477 
2478 	IFQ_PURGE(&ifp->if_snd);
2479 #if NCARP > 0
2480 	if (ifp->if_carp)
2481 		carp_carpdev_state(ifp);
2482 #endif
2483 	rt_ifmsg(ifp);
2484 	DOMAIN_FOREACH(dp) {
2485 		if (dp->dom_if_down)
2486 			dp->dom_if_down(ifp);
2487 	}
2488 }
2489 
2490 static void
2491 if_down_deactivated(struct ifnet *ifp)
2492 {
2493 
2494 	KASSERT(if_is_deactivated(ifp));
2495 	_if_down(ifp);
2496 }
2497 
2498 void
2499 if_down_locked(struct ifnet *ifp)
2500 {
2501 
2502 	KASSERT(IFNET_LOCKED(ifp));
2503 	_if_down(ifp);
2504 }
2505 
2506 /*
2507  * Mark an interface down and notify protocols of
2508  * the transition.
2509  * NOTE: must be called at splsoftnet or equivalent.
2510  */
2511 void
2512 if_down(struct ifnet *ifp)
2513 {
2514 
2515 	IFNET_LOCK(ifp);
2516 	if_down_locked(ifp);
2517 	IFNET_UNLOCK(ifp);
2518 }
2519 
2520 /*
2521  * Must be called with holding if_ioctl_lock.
2522  */
2523 static void
2524 if_up_locked(struct ifnet *ifp)
2525 {
2526 #ifdef notyet
2527 	struct ifaddr *ifa;
2528 #endif
2529 	struct domain *dp;
2530 
2531 	KASSERT(IFNET_LOCKED(ifp));
2532 
2533 	KASSERT(!if_is_deactivated(ifp));
2534 	ifp->if_flags |= IFF_UP;
2535 	nanotime(&ifp->if_lastchange);
2536 #ifdef notyet
2537 	/* this has no effect on IP, and will kill all ISO connections XXX */
2538 	IFADDR_READER_FOREACH(ifa, ifp)
2539 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
2540 #endif
2541 #if NCARP > 0
2542 	if (ifp->if_carp)
2543 		carp_carpdev_state(ifp);
2544 #endif
2545 	rt_ifmsg(ifp);
2546 	DOMAIN_FOREACH(dp) {
2547 		if (dp->dom_if_up)
2548 			dp->dom_if_up(ifp);
2549 	}
2550 }
2551 
2552 /*
2553  * Handle interface slowtimo timer routine.  Called
2554  * from softclock, we decrement timer (if set) and
2555  * call the appropriate interface routine on expiration.
2556  */
2557 static void
2558 if_slowtimo(void *arg)
2559 {
2560 	void (*slowtimo)(struct ifnet *);
2561 	struct ifnet *ifp = arg;
2562 	int s;
2563 
2564 	slowtimo = ifp->if_slowtimo;
2565 	if (__predict_false(slowtimo == NULL))
2566 		return;
2567 
2568 	s = splnet();
2569 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2570 		(*slowtimo)(ifp);
2571 
2572 	splx(s);
2573 
2574 	if (__predict_true(ifp->if_slowtimo != NULL))
2575 		callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2576 }
2577 
2578 /*
2579  * Mark an interface up and notify protocols of
2580  * the transition.
2581  * NOTE: must be called at splsoftnet or equivalent.
2582  */
2583 void
2584 if_up(struct ifnet *ifp)
2585 {
2586 
2587 	IFNET_LOCK(ifp);
2588 	if_up_locked(ifp);
2589 	IFNET_UNLOCK(ifp);
2590 }
2591 
2592 /*
2593  * Set/clear promiscuous mode on interface ifp based on the truth value
2594  * of pswitch.  The calls are reference counted so that only the first
2595  * "on" request actually has an effect, as does the final "off" request.
2596  * Results are undefined if the "off" and "on" requests are not matched.
2597  */
2598 int
2599 ifpromisc_locked(struct ifnet *ifp, int pswitch)
2600 {
2601 	int pcount, ret = 0;
2602 	short nflags;
2603 
2604 	KASSERT(IFNET_LOCKED(ifp));
2605 
2606 	pcount = ifp->if_pcount;
2607 	if (pswitch) {
2608 		/*
2609 		 * Allow the device to be "placed" into promiscuous
2610 		 * mode even if it is not configured up.  It will
2611 		 * consult IFF_PROMISC when it is brought up.
2612 		 */
2613 		if (ifp->if_pcount++ != 0)
2614 			goto out;
2615 		nflags = ifp->if_flags | IFF_PROMISC;
2616 	} else {
2617 		if (--ifp->if_pcount > 0)
2618 			goto out;
2619 		nflags = ifp->if_flags & ~IFF_PROMISC;
2620 	}
2621 	ret = if_flags_set(ifp, nflags);
2622 	/* Restore interface state if not successful. */
2623 	if (ret != 0) {
2624 		ifp->if_pcount = pcount;
2625 	}
2626 out:
2627 	return ret;
2628 }
2629 
2630 int
2631 ifpromisc(struct ifnet *ifp, int pswitch)
2632 {
2633 	int e;
2634 
2635 	IFNET_LOCK(ifp);
2636 	e = ifpromisc_locked(ifp, pswitch);
2637 	IFNET_UNLOCK(ifp);
2638 
2639 	return e;
2640 }
2641 
2642 /*
2643  * Map interface name to
2644  * interface structure pointer.
2645  */
2646 struct ifnet *
2647 ifunit(const char *name)
2648 {
2649 	struct ifnet *ifp;
2650 	const char *cp = name;
2651 	u_int unit = 0;
2652 	u_int i;
2653 	int s;
2654 
2655 	/*
2656 	 * If the entire name is a number, treat it as an ifindex.
2657 	 */
2658 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2659 		unit = unit * 10 + (*cp - '0');
2660 	}
2661 
2662 	/*
2663 	 * If the number took all of the name, then it's a valid ifindex.
2664 	 */
2665 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2666 		return if_byindex(unit);
2667 
2668 	ifp = NULL;
2669 	s = pserialize_read_enter();
2670 	IFNET_READER_FOREACH(ifp) {
2671 		if (if_is_deactivated(ifp))
2672 			continue;
2673 	 	if (strcmp(ifp->if_xname, name) == 0)
2674 			goto out;
2675 	}
2676 out:
2677 	pserialize_read_exit(s);
2678 	return ifp;
2679 }
2680 
2681 /*
2682  * Get a reference of an ifnet object by an interface name.
2683  * The returned reference is protected by psref(9). The caller
2684  * must release a returned reference by if_put after use.
2685  */
2686 struct ifnet *
2687 if_get(const char *name, struct psref *psref)
2688 {
2689 	struct ifnet *ifp;
2690 	const char *cp = name;
2691 	u_int unit = 0;
2692 	u_int i;
2693 	int s;
2694 
2695 	/*
2696 	 * If the entire name is a number, treat it as an ifindex.
2697 	 */
2698 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2699 		unit = unit * 10 + (*cp - '0');
2700 	}
2701 
2702 	/*
2703 	 * If the number took all of the name, then it's a valid ifindex.
2704 	 */
2705 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2706 		return if_get_byindex(unit, psref);
2707 
2708 	ifp = NULL;
2709 	s = pserialize_read_enter();
2710 	IFNET_READER_FOREACH(ifp) {
2711 		if (if_is_deactivated(ifp))
2712 			continue;
2713 		if (strcmp(ifp->if_xname, name) == 0) {
2714 			psref_acquire(psref, &ifp->if_psref,
2715 			    ifnet_psref_class);
2716 			goto out;
2717 		}
2718 	}
2719 out:
2720 	pserialize_read_exit(s);
2721 	return ifp;
2722 }
2723 
2724 /*
2725  * Release a reference of an ifnet object given by if_get, if_get_byindex
2726  * or if_get_bylla.
2727  */
2728 void
2729 if_put(const struct ifnet *ifp, struct psref *psref)
2730 {
2731 
2732 	if (ifp == NULL)
2733 		return;
2734 
2735 	psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2736 }
2737 
2738 /*
2739  * Return ifp having idx. Return NULL if not found.  Normally if_byindex
2740  * should be used.
2741  */
2742 ifnet_t *
2743 _if_byindex(u_int idx)
2744 {
2745 
2746 	return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2747 }
2748 
2749 /*
2750  * Return ifp having idx. Return NULL if not found or the found ifp is
2751  * already deactivated.
2752  */
2753 ifnet_t *
2754 if_byindex(u_int idx)
2755 {
2756 	ifnet_t *ifp;
2757 
2758 	ifp = _if_byindex(idx);
2759 	if (ifp != NULL && if_is_deactivated(ifp))
2760 		ifp = NULL;
2761 	return ifp;
2762 }
2763 
2764 /*
2765  * Get a reference of an ifnet object by an interface index.
2766  * The returned reference is protected by psref(9). The caller
2767  * must release a returned reference by if_put after use.
2768  */
2769 ifnet_t *
2770 if_get_byindex(u_int idx, struct psref *psref)
2771 {
2772 	ifnet_t *ifp;
2773 	int s;
2774 
2775 	s = pserialize_read_enter();
2776 	ifp = if_byindex(idx);
2777 	if (__predict_true(ifp != NULL))
2778 		psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2779 	pserialize_read_exit(s);
2780 
2781 	return ifp;
2782 }
2783 
2784 ifnet_t *
2785 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
2786 {
2787 	ifnet_t *ifp;
2788 	int s;
2789 
2790 	s = pserialize_read_enter();
2791 	IFNET_READER_FOREACH(ifp) {
2792 		if (if_is_deactivated(ifp))
2793 			continue;
2794 		if (ifp->if_addrlen != lla_len)
2795 			continue;
2796 		if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
2797 			psref_acquire(psref, &ifp->if_psref,
2798 			    ifnet_psref_class);
2799 			break;
2800 		}
2801 	}
2802 	pserialize_read_exit(s);
2803 
2804 	return ifp;
2805 }
2806 
2807 /*
2808  * Note that it's safe only if the passed ifp is guaranteed to not be freed,
2809  * for example using pserialize or the ifp is already held or some other
2810  * object is held which guarantes the ifp to not be freed indirectly.
2811  */
2812 void
2813 if_acquire(struct ifnet *ifp, struct psref *psref)
2814 {
2815 
2816 	KASSERT(ifp->if_index != 0);
2817 	psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2818 }
2819 
2820 bool
2821 if_held(struct ifnet *ifp)
2822 {
2823 
2824 	return psref_held(&ifp->if_psref, ifnet_psref_class);
2825 }
2826 
2827 /*
2828  * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
2829  * Check the tunnel nesting count.
2830  * Return > 0, if tunnel nesting count is more than limit.
2831  * Return 0, if tunnel nesting count is equal or less than limit.
2832  */
2833 int
2834 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
2835 {
2836 	struct m_tag *mtag;
2837 	int *count;
2838 
2839 	mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO, NULL);
2840 	if (mtag != NULL) {
2841 		count = (int *)(mtag + 1);
2842 		if (++(*count) > limit) {
2843 			log(LOG_NOTICE,
2844 			    "%s: recursively called too many times(%d)\n",
2845 			    ifp->if_xname, *count);
2846 			return EIO;
2847 		}
2848 	} else {
2849 		mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
2850 		    M_NOWAIT);
2851 		if (mtag != NULL) {
2852 			m_tag_prepend(m, mtag);
2853 			count = (int *)(mtag + 1);
2854 			*count = 0;
2855 		} else {
2856 			log(LOG_DEBUG,
2857 			    "%s: m_tag_get() failed, recursion calls are not prevented.\n",
2858 			    ifp->if_xname);
2859 		}
2860 	}
2861 
2862 	return 0;
2863 }
2864 
2865 /* common */
2866 int
2867 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2868 {
2869 	int s;
2870 	struct ifreq *ifr;
2871 	struct ifcapreq *ifcr;
2872 	struct ifdatareq *ifdr;
2873 
2874 	switch (cmd) {
2875 	case SIOCSIFCAP:
2876 		ifcr = data;
2877 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2878 			return EINVAL;
2879 
2880 		if (ifcr->ifcr_capenable == ifp->if_capenable)
2881 			return 0;
2882 
2883 		ifp->if_capenable = ifcr->ifcr_capenable;
2884 
2885 		/* Pre-compute the checksum flags mask. */
2886 		ifp->if_csum_flags_tx = 0;
2887 		ifp->if_csum_flags_rx = 0;
2888 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2889 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2890 		}
2891 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2892 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2893 		}
2894 
2895 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2896 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2897 		}
2898 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2899 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2900 		}
2901 
2902 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2903 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2904 		}
2905 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2906 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2907 		}
2908 
2909 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2910 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2911 		}
2912 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2913 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2914 		}
2915 
2916 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2917 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2918 		}
2919 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2920 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2921 		}
2922 		if (ifp->if_flags & IFF_UP)
2923 			return ENETRESET;
2924 		return 0;
2925 	case SIOCSIFFLAGS:
2926 		ifr = data;
2927 		/*
2928 		 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
2929 		 * and if_down aren't MP-safe yet, so we must hold the lock.
2930 		 */
2931 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
2932 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2933 			s = splsoftnet();
2934 			if_down_locked(ifp);
2935 			splx(s);
2936 		}
2937 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2938 			s = splsoftnet();
2939 			if_up_locked(ifp);
2940 			splx(s);
2941 		}
2942 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
2943 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2944 			(ifr->ifr_flags &~ IFF_CANTCHANGE);
2945 		break;
2946 	case SIOCGIFFLAGS:
2947 		ifr = data;
2948 		ifr->ifr_flags = ifp->if_flags;
2949 		break;
2950 
2951 	case SIOCGIFMETRIC:
2952 		ifr = data;
2953 		ifr->ifr_metric = ifp->if_metric;
2954 		break;
2955 
2956 	case SIOCGIFMTU:
2957 		ifr = data;
2958 		ifr->ifr_mtu = ifp->if_mtu;
2959 		break;
2960 
2961 	case SIOCGIFDLT:
2962 		ifr = data;
2963 		ifr->ifr_dlt = ifp->if_dlt;
2964 		break;
2965 
2966 	case SIOCGIFCAP:
2967 		ifcr = data;
2968 		ifcr->ifcr_capabilities = ifp->if_capabilities;
2969 		ifcr->ifcr_capenable = ifp->if_capenable;
2970 		break;
2971 
2972 	case SIOCSIFMETRIC:
2973 		ifr = data;
2974 		ifp->if_metric = ifr->ifr_metric;
2975 		break;
2976 
2977 	case SIOCGIFDATA:
2978 		ifdr = data;
2979 		ifdr->ifdr_data = ifp->if_data;
2980 		break;
2981 
2982 	case SIOCGIFINDEX:
2983 		ifr = data;
2984 		ifr->ifr_index = ifp->if_index;
2985 		break;
2986 
2987 	case SIOCZIFDATA:
2988 		ifdr = data;
2989 		ifdr->ifdr_data = ifp->if_data;
2990 		/*
2991 		 * Assumes that the volatile counters that can be
2992 		 * zero'ed are at the end of if_data.
2993 		 */
2994 		memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2995 		    offsetof(struct if_data, ifi_ipackets));
2996 		/*
2997 		 * The memset() clears to the bottm of if_data. In the area,
2998 		 * if_lastchange is included. Please be careful if new entry
2999 		 * will be added into if_data or rewite this.
3000 		 *
3001 		 * And also, update if_lastchnage.
3002 		 */
3003 		getnanotime(&ifp->if_lastchange);
3004 		break;
3005 	case SIOCSIFMTU:
3006 		ifr = data;
3007 		if (ifp->if_mtu == ifr->ifr_mtu)
3008 			break;
3009 		ifp->if_mtu = ifr->ifr_mtu;
3010 		/*
3011 		 * If the link MTU changed, do network layer specific procedure.
3012 		 */
3013 #ifdef INET6
3014 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
3015 		if (in6_present)
3016 			nd6_setmtu(ifp);
3017 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3018 #endif
3019 		return ENETRESET;
3020 	default:
3021 		return ENOTTY;
3022 	}
3023 	return 0;
3024 }
3025 
3026 int
3027 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
3028 {
3029 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
3030 	struct ifaddr *ifa;
3031 	const struct sockaddr *any, *sa;
3032 	union {
3033 		struct sockaddr sa;
3034 		struct sockaddr_storage ss;
3035 	} u, v;
3036 	int s, error = 0;
3037 
3038 	switch (cmd) {
3039 	case SIOCSIFADDRPREF:
3040 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
3041 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
3042 		    NULL) != 0)
3043 			return EPERM;
3044 	case SIOCGIFADDRPREF:
3045 		break;
3046 	default:
3047 		return EOPNOTSUPP;
3048 	}
3049 
3050 	/* sanity checks */
3051 	if (data == NULL || ifp == NULL) {
3052 		panic("invalid argument to %s", __func__);
3053 		/*NOTREACHED*/
3054 	}
3055 
3056 	/* address must be specified on ADD and DELETE */
3057 	sa = sstocsa(&ifap->ifap_addr);
3058 	if (sa->sa_family != sofamily(so))
3059 		return EINVAL;
3060 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
3061 		return EINVAL;
3062 
3063 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
3064 
3065 	s = pserialize_read_enter();
3066 	IFADDR_READER_FOREACH(ifa, ifp) {
3067 		if (ifa->ifa_addr->sa_family != sa->sa_family)
3068 			continue;
3069 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
3070 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
3071 			break;
3072 	}
3073 	if (ifa == NULL) {
3074 		error = EADDRNOTAVAIL;
3075 		goto out;
3076 	}
3077 
3078 	switch (cmd) {
3079 	case SIOCSIFADDRPREF:
3080 		ifa->ifa_preference = ifap->ifap_preference;
3081 		goto out;
3082 	case SIOCGIFADDRPREF:
3083 		/* fill in the if_laddrreq structure */
3084 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
3085 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
3086 		ifap->ifap_preference = ifa->ifa_preference;
3087 		goto out;
3088 	default:
3089 		error = EOPNOTSUPP;
3090 	}
3091 out:
3092 	pserialize_read_exit(s);
3093 	return error;
3094 }
3095 
3096 /*
3097  * Interface ioctls.
3098  */
3099 static int
3100 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
3101 {
3102 	struct ifnet *ifp;
3103 	struct ifreq *ifr;
3104 	int error = 0;
3105 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
3106 	u_long ocmd = cmd;
3107 #endif
3108 	short oif_flags;
3109 #ifdef COMPAT_OIFREQ
3110 	struct ifreq ifrb;
3111 	struct oifreq *oifr = NULL;
3112 #endif
3113 	int r;
3114 	struct psref psref;
3115 	int bound;
3116 
3117 	switch (cmd) {
3118 #ifdef COMPAT_OIFREQ
3119 	case OSIOCGIFCONF:
3120 	case OOSIOCGIFCONF:
3121 		return compat_ifconf(cmd, data);
3122 #endif
3123 #ifdef COMPAT_OIFDATA
3124 	case OSIOCGIFDATA:
3125 	case OSIOCZIFDATA:
3126 		return compat_ifdatareq(l, cmd, data);
3127 #endif
3128 	case SIOCGIFCONF:
3129 		return ifconf(cmd, data);
3130 	case SIOCINITIFADDR:
3131 		return EPERM;
3132 	}
3133 
3134 #ifdef COMPAT_OIFREQ
3135 	cmd = (*vec_compat_cvtcmd)(cmd);
3136 	if (cmd != ocmd) {
3137 		oifr = data;
3138 		data = ifr = &ifrb;
3139 		ifreqo2n(oifr, ifr);
3140 	} else
3141 #endif
3142 		ifr = data;
3143 
3144 	switch (cmd) {
3145 	case SIOCIFCREATE:
3146 	case SIOCIFDESTROY:
3147 		bound = curlwp_bind();
3148 		if (l != NULL) {
3149 			ifp = if_get(ifr->ifr_name, &psref);
3150 			error = kauth_authorize_network(l->l_cred,
3151 			    KAUTH_NETWORK_INTERFACE,
3152 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3153 			    (void *)cmd, NULL);
3154 			if (ifp != NULL)
3155 				if_put(ifp, &psref);
3156 			if (error != 0) {
3157 				curlwp_bindx(bound);
3158 				return error;
3159 			}
3160 		}
3161 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
3162 		mutex_enter(&if_clone_mtx);
3163 		r = (cmd == SIOCIFCREATE) ?
3164 			if_clone_create(ifr->ifr_name) :
3165 			if_clone_destroy(ifr->ifr_name);
3166 		mutex_exit(&if_clone_mtx);
3167 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3168 		curlwp_bindx(bound);
3169 		return r;
3170 
3171 	case SIOCIFGCLONERS:
3172 		{
3173 			struct if_clonereq *req = (struct if_clonereq *)data;
3174 			return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3175 			    &req->ifcr_total);
3176 		}
3177 	}
3178 
3179 	bound = curlwp_bind();
3180 	ifp = if_get(ifr->ifr_name, &psref);
3181 	if (ifp == NULL) {
3182 		curlwp_bindx(bound);
3183 		return ENXIO;
3184 	}
3185 
3186 	switch (cmd) {
3187 	case SIOCALIFADDR:
3188 	case SIOCDLIFADDR:
3189 	case SIOCSIFADDRPREF:
3190 	case SIOCSIFFLAGS:
3191 	case SIOCSIFCAP:
3192 	case SIOCSIFMETRIC:
3193 	case SIOCZIFDATA:
3194 	case SIOCSIFMTU:
3195 	case SIOCSIFPHYADDR:
3196 	case SIOCDIFPHYADDR:
3197 #ifdef INET6
3198 	case SIOCSIFPHYADDR_IN6:
3199 #endif
3200 	case SIOCSLIFPHYADDR:
3201 	case SIOCADDMULTI:
3202 	case SIOCDELMULTI:
3203 	case SIOCSIFMEDIA:
3204 	case SIOCSDRVSPEC:
3205 	case SIOCG80211:
3206 	case SIOCS80211:
3207 	case SIOCS80211NWID:
3208 	case SIOCS80211NWKEY:
3209 	case SIOCS80211POWER:
3210 	case SIOCS80211BSSID:
3211 	case SIOCS80211CHANNEL:
3212 	case SIOCSLINKSTR:
3213 		if (l != NULL) {
3214 			error = kauth_authorize_network(l->l_cred,
3215 			    KAUTH_NETWORK_INTERFACE,
3216 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3217 			    (void *)cmd, NULL);
3218 			if (error != 0)
3219 				goto out;
3220 		}
3221 	}
3222 
3223 	oif_flags = ifp->if_flags;
3224 
3225 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
3226 	IFNET_LOCK(ifp);
3227 
3228 	error = (*ifp->if_ioctl)(ifp, cmd, data);
3229 	if (error != ENOTTY)
3230 		;
3231 	else if (so->so_proto == NULL)
3232 		error = EOPNOTSUPP;
3233 	else {
3234 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3235 #ifdef COMPAT_OSOCK
3236 		if (vec_compat_ifioctl != NULL)
3237 			error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l);
3238 		else
3239 #endif
3240 			error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3241 			    cmd, data, ifp);
3242 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3243 	}
3244 
3245 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3246 		if ((ifp->if_flags & IFF_UP) != 0) {
3247 			int s = splsoftnet();
3248 			if_up_locked(ifp);
3249 			splx(s);
3250 		}
3251 	}
3252 #ifdef COMPAT_OIFREQ
3253 	if (cmd != ocmd)
3254 		ifreqn2o(oifr, ifr);
3255 #endif
3256 
3257 	IFNET_UNLOCK(ifp);
3258 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
3259 out:
3260 	if_put(ifp, &psref);
3261 	curlwp_bindx(bound);
3262 	return error;
3263 }
3264 
3265 /*
3266  * Return interface configuration
3267  * of system.  List may be used
3268  * in later ioctl's (above) to get
3269  * other information.
3270  *
3271  * Each record is a struct ifreq.  Before the addition of
3272  * sockaddr_storage, the API rule was that sockaddr flavors that did
3273  * not fit would extend beyond the struct ifreq, with the next struct
3274  * ifreq starting sa_len beyond the struct sockaddr.  Because the
3275  * union in struct ifreq includes struct sockaddr_storage, every kind
3276  * of sockaddr must fit.  Thus, there are no longer any overlength
3277  * records.
3278  *
3279  * Records are added to the user buffer if they fit, and ifc_len is
3280  * adjusted to the length that was written.  Thus, the user is only
3281  * assured of getting the complete list if ifc_len on return is at
3282  * least sizeof(struct ifreq) less than it was on entry.
3283  *
3284  * If the user buffer pointer is NULL, this routine copies no data and
3285  * returns the amount of space that would be needed.
3286  *
3287  * Invariants:
3288  * ifrp points to the next part of the user's buffer to be used.  If
3289  * ifrp != NULL, space holds the number of bytes remaining that we may
3290  * write at ifrp.  Otherwise, space holds the number of bytes that
3291  * would have been written had there been adequate space.
3292  */
3293 /*ARGSUSED*/
3294 static int
3295 ifconf(u_long cmd, void *data)
3296 {
3297 	struct ifconf *ifc = (struct ifconf *)data;
3298 	struct ifnet *ifp;
3299 	struct ifaddr *ifa;
3300 	struct ifreq ifr, *ifrp = NULL;
3301 	int space = 0, error = 0;
3302 	const int sz = (int)sizeof(struct ifreq);
3303 	const bool docopy = ifc->ifc_req != NULL;
3304 	int s;
3305 	int bound;
3306 	struct psref psref;
3307 
3308 	if (docopy) {
3309 		space = ifc->ifc_len;
3310 		ifrp = ifc->ifc_req;
3311 	}
3312 
3313 	bound = curlwp_bind();
3314 	s = pserialize_read_enter();
3315 	IFNET_READER_FOREACH(ifp) {
3316 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3317 		pserialize_read_exit(s);
3318 
3319 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
3320 		    sizeof(ifr.ifr_name));
3321 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3322 			error = ENAMETOOLONG;
3323 			goto release_exit;
3324 		}
3325 		if (IFADDR_READER_EMPTY(ifp)) {
3326 			/* Interface with no addresses - send zero sockaddr. */
3327 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3328 			if (!docopy) {
3329 				space += sz;
3330 				goto next;
3331 			}
3332 			if (space >= sz) {
3333 				error = copyout(&ifr, ifrp, sz);
3334 				if (error != 0)
3335 					goto release_exit;
3336 				ifrp++;
3337 				space -= sz;
3338 			}
3339 		}
3340 
3341 		s = pserialize_read_enter();
3342 		IFADDR_READER_FOREACH(ifa, ifp) {
3343 			struct sockaddr *sa = ifa->ifa_addr;
3344 			/* all sockaddrs must fit in sockaddr_storage */
3345 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3346 
3347 			if (!docopy) {
3348 				space += sz;
3349 				continue;
3350 			}
3351 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
3352 			pserialize_read_exit(s);
3353 
3354 			if (space >= sz) {
3355 				error = copyout(&ifr, ifrp, sz);
3356 				if (error != 0)
3357 					goto release_exit;
3358 				ifrp++; space -= sz;
3359 			}
3360 			s = pserialize_read_enter();
3361 		}
3362 		pserialize_read_exit(s);
3363 
3364         next:
3365 		s = pserialize_read_enter();
3366 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3367 	}
3368 	pserialize_read_exit(s);
3369 	curlwp_bindx(bound);
3370 
3371 	if (docopy) {
3372 		KASSERT(0 <= space && space <= ifc->ifc_len);
3373 		ifc->ifc_len -= space;
3374 	} else {
3375 		KASSERT(space >= 0);
3376 		ifc->ifc_len = space;
3377 	}
3378 	return (0);
3379 
3380 release_exit:
3381 	psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3382 	curlwp_bindx(bound);
3383 	return error;
3384 }
3385 
3386 int
3387 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3388 {
3389 	uint8_t len;
3390 #ifdef COMPAT_OIFREQ
3391 	struct ifreq ifrb;
3392 	struct oifreq *oifr = NULL;
3393 	u_long ocmd = cmd;
3394 	cmd = (*vec_compat_cvtcmd)(cmd);
3395 	if (cmd != ocmd) {
3396 		oifr = (struct oifreq *)(void *)ifr;
3397 		ifr = &ifrb;
3398 		ifreqo2n(oifr, ifr);
3399 		len = sizeof(oifr->ifr_addr);
3400 	} else
3401 #endif
3402 		len = sizeof(ifr->ifr_ifru.ifru_space);
3403 
3404 	if (len < sa->sa_len)
3405 		return EFBIG;
3406 
3407 	memset(&ifr->ifr_addr, 0, len);
3408 	sockaddr_copy(&ifr->ifr_addr, len, sa);
3409 
3410 #ifdef COMPAT_OIFREQ
3411 	if (cmd != ocmd)
3412 		ifreqn2o(oifr, ifr);
3413 #endif
3414 	return 0;
3415 }
3416 
3417 /*
3418  * wrapper function for the drivers which doesn't have if_transmit().
3419  */
3420 static int
3421 if_transmit(struct ifnet *ifp, struct mbuf *m)
3422 {
3423 	int s, error;
3424 	size_t pktlen = m->m_pkthdr.len;
3425 	bool mcast = (m->m_flags & M_MCAST) != 0;
3426 
3427 	s = splnet();
3428 
3429 	IFQ_ENQUEUE(&ifp->if_snd, m, error);
3430 	if (error != 0) {
3431 		/* mbuf is already freed */
3432 		goto out;
3433 	}
3434 
3435 	ifp->if_obytes += pktlen;
3436 	if (mcast)
3437 		ifp->if_omcasts++;
3438 
3439 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
3440 		if_start_lock(ifp);
3441 out:
3442 	splx(s);
3443 
3444 	return error;
3445 }
3446 
3447 int
3448 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3449 {
3450 	int error;
3451 
3452 #ifdef ALTQ
3453 	KERNEL_LOCK(1, NULL);
3454 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3455 		error = if_transmit(ifp, m);
3456 		KERNEL_UNLOCK_ONE(NULL);
3457 	} else {
3458 		KERNEL_UNLOCK_ONE(NULL);
3459 		error = (*ifp->if_transmit)(ifp, m);
3460 		/* mbuf is alredy freed */
3461 	}
3462 #else /* !ALTQ */
3463 	error = (*ifp->if_transmit)(ifp, m);
3464 	/* mbuf is alredy freed */
3465 #endif /* !ALTQ */
3466 
3467 	return error;
3468 }
3469 
3470 /*
3471  * Queue message on interface, and start output if interface
3472  * not yet active.
3473  */
3474 int
3475 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3476 {
3477 
3478 	return if_transmit_lock(ifp, m);
3479 }
3480 
3481 /*
3482  * Queue message on interface, possibly using a second fast queue
3483  */
3484 int
3485 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3486 {
3487 	int error = 0;
3488 
3489 	if (ifq != NULL
3490 #ifdef ALTQ
3491 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3492 #endif
3493 	    ) {
3494 		if (IF_QFULL(ifq)) {
3495 			IF_DROP(&ifp->if_snd);
3496 			m_freem(m);
3497 			if (error == 0)
3498 				error = ENOBUFS;
3499 		} else
3500 			IF_ENQUEUE(ifq, m);
3501 	} else
3502 		IFQ_ENQUEUE(&ifp->if_snd, m, error);
3503 	if (error != 0) {
3504 		++ifp->if_oerrors;
3505 		return error;
3506 	}
3507 	return 0;
3508 }
3509 
3510 int
3511 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3512 {
3513 	int rc;
3514 
3515 	KASSERT(IFNET_LOCKED(ifp));
3516 	if (ifp->if_initaddr != NULL)
3517 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
3518 	else if (src ||
3519 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3520 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3521 
3522 	return rc;
3523 }
3524 
3525 int
3526 if_do_dad(struct ifnet *ifp)
3527 {
3528 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3529 		return 0;
3530 
3531 	switch (ifp->if_type) {
3532 	case IFT_FAITH:
3533 		/*
3534 		 * These interfaces do not have the IFF_LOOPBACK flag,
3535 		 * but loop packets back.  We do not have to do DAD on such
3536 		 * interfaces.  We should even omit it, because loop-backed
3537 		 * responses would confuse the DAD procedure.
3538 		 */
3539 		return 0;
3540 	default:
3541 		/*
3542 		 * Our DAD routine requires the interface up and running.
3543 		 * However, some interfaces can be up before the RUNNING
3544 		 * status.  Additionaly, users may try to assign addresses
3545 		 * before the interface becomes up (or running).
3546 		 * We simply skip DAD in such a case as a work around.
3547 		 * XXX: we should rather mark "tentative" on such addresses,
3548 		 * and do DAD after the interface becomes ready.
3549 		 */
3550 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
3551 		    (IFF_UP|IFF_RUNNING))
3552 			return 0;
3553 
3554 		return 1;
3555 	}
3556 }
3557 
3558 int
3559 if_flags_set(ifnet_t *ifp, const short flags)
3560 {
3561 	int rc;
3562 
3563 	KASSERT(IFNET_LOCKED(ifp));
3564 
3565 	if (ifp->if_setflags != NULL)
3566 		rc = (*ifp->if_setflags)(ifp, flags);
3567 	else {
3568 		short cantflags, chgdflags;
3569 		struct ifreq ifr;
3570 
3571 		chgdflags = ifp->if_flags ^ flags;
3572 		cantflags = chgdflags & IFF_CANTCHANGE;
3573 
3574 		if (cantflags != 0)
3575 			ifp->if_flags ^= cantflags;
3576 
3577                 /* Traditionally, we do not call if_ioctl after
3578                  * setting/clearing only IFF_PROMISC if the interface
3579                  * isn't IFF_UP.  Uphold that tradition.
3580 		 */
3581 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3582 			return 0;
3583 
3584 		memset(&ifr, 0, sizeof(ifr));
3585 
3586 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3587 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3588 
3589 		if (rc != 0 && cantflags != 0)
3590 			ifp->if_flags ^= cantflags;
3591 	}
3592 
3593 	return rc;
3594 }
3595 
3596 int
3597 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3598 {
3599 	int rc;
3600 	struct ifreq ifr;
3601 
3602 	/* CARP and MROUTING still don't deal with the lock yet */
3603 #if (!defined(NCARP) || (NCARP == 0)) && !defined(MROUTING)
3604 	KASSERT(IFNET_LOCKED(ifp));
3605 #endif
3606 	if (ifp->if_mcastop != NULL)
3607 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3608 	else {
3609 		ifreq_setaddr(cmd, &ifr, sa);
3610 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3611 	}
3612 
3613 	return rc;
3614 }
3615 
3616 static void
3617 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3618     struct ifaltq *ifq)
3619 {
3620 	const struct sysctlnode *cnode, *rnode;
3621 
3622 	if (sysctl_createv(clog, 0, NULL, &rnode,
3623 		       CTLFLAG_PERMANENT,
3624 		       CTLTYPE_NODE, "interfaces",
3625 		       SYSCTL_DESCR("Per-interface controls"),
3626 		       NULL, 0, NULL, 0,
3627 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3628 		goto bad;
3629 
3630 	if (sysctl_createv(clog, 0, &rnode, &rnode,
3631 		       CTLFLAG_PERMANENT,
3632 		       CTLTYPE_NODE, ifname,
3633 		       SYSCTL_DESCR("Interface controls"),
3634 		       NULL, 0, NULL, 0,
3635 		       CTL_CREATE, CTL_EOL) != 0)
3636 		goto bad;
3637 
3638 	if (sysctl_createv(clog, 0, &rnode, &rnode,
3639 		       CTLFLAG_PERMANENT,
3640 		       CTLTYPE_NODE, "sndq",
3641 		       SYSCTL_DESCR("Interface output queue controls"),
3642 		       NULL, 0, NULL, 0,
3643 		       CTL_CREATE, CTL_EOL) != 0)
3644 		goto bad;
3645 
3646 	if (sysctl_createv(clog, 0, &rnode, &cnode,
3647 		       CTLFLAG_PERMANENT,
3648 		       CTLTYPE_INT, "len",
3649 		       SYSCTL_DESCR("Current output queue length"),
3650 		       NULL, 0, &ifq->ifq_len, 0,
3651 		       CTL_CREATE, CTL_EOL) != 0)
3652 		goto bad;
3653 
3654 	if (sysctl_createv(clog, 0, &rnode, &cnode,
3655 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3656 		       CTLTYPE_INT, "maxlen",
3657 		       SYSCTL_DESCR("Maximum allowed output queue length"),
3658 		       NULL, 0, &ifq->ifq_maxlen, 0,
3659 		       CTL_CREATE, CTL_EOL) != 0)
3660 		goto bad;
3661 
3662 	if (sysctl_createv(clog, 0, &rnode, &cnode,
3663 		       CTLFLAG_PERMANENT,
3664 		       CTLTYPE_INT, "drops",
3665 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
3666 		       NULL, 0, &ifq->ifq_drops, 0,
3667 		       CTL_CREATE, CTL_EOL) != 0)
3668 		goto bad;
3669 
3670 	return;
3671 bad:
3672 	printf("%s: could not attach sysctl nodes\n", ifname);
3673 	return;
3674 }
3675 
3676 #if defined(INET) || defined(INET6)
3677 
3678 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
3679 	static int							\
3680 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
3681 	{								\
3682 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
3683 	}
3684 
3685 #if defined(INET)
3686 static int
3687 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3688 {
3689 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3690 }
3691 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3692 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3693 #endif
3694 
3695 #if defined(INET6)
3696 static int
3697 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3698 {
3699 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3700 }
3701 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3702 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3703 #endif
3704 
3705 static void
3706 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3707 {
3708 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3709 	const char *pfname = NULL, *ipname = NULL;
3710 	int ipn = 0, qid = 0;
3711 
3712 	switch (pf) {
3713 #if defined(INET)
3714 	case PF_INET:
3715 		len_func = sysctl_net_ip_pktq_items;
3716 		maxlen_func = sysctl_net_ip_pktq_maxlen;
3717 		drops_func = sysctl_net_ip_pktq_drops;
3718 		pfname = "inet", ipn = IPPROTO_IP;
3719 		ipname = "ip", qid = IPCTL_IFQ;
3720 		break;
3721 #endif
3722 #if defined(INET6)
3723 	case PF_INET6:
3724 		len_func = sysctl_net_ip6_pktq_items;
3725 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
3726 		drops_func = sysctl_net_ip6_pktq_drops;
3727 		pfname = "inet6", ipn = IPPROTO_IPV6;
3728 		ipname = "ip6", qid = IPV6CTL_IFQ;
3729 		break;
3730 #endif
3731 	default:
3732 		KASSERT(false);
3733 	}
3734 
3735 	sysctl_createv(clog, 0, NULL, NULL,
3736 		       CTLFLAG_PERMANENT,
3737 		       CTLTYPE_NODE, pfname, NULL,
3738 		       NULL, 0, NULL, 0,
3739 		       CTL_NET, pf, CTL_EOL);
3740 	sysctl_createv(clog, 0, NULL, NULL,
3741 		       CTLFLAG_PERMANENT,
3742 		       CTLTYPE_NODE, ipname, NULL,
3743 		       NULL, 0, NULL, 0,
3744 		       CTL_NET, pf, ipn, CTL_EOL);
3745 	sysctl_createv(clog, 0, NULL, NULL,
3746 		       CTLFLAG_PERMANENT,
3747 		       CTLTYPE_NODE, "ifq",
3748 		       SYSCTL_DESCR("Protocol input queue controls"),
3749 		       NULL, 0, NULL, 0,
3750 		       CTL_NET, pf, ipn, qid, CTL_EOL);
3751 
3752 	sysctl_createv(clog, 0, NULL, NULL,
3753 		       CTLFLAG_PERMANENT,
3754 		       CTLTYPE_INT, "len",
3755 		       SYSCTL_DESCR("Current input queue length"),
3756 		       len_func, 0, NULL, 0,
3757 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3758 	sysctl_createv(clog, 0, NULL, NULL,
3759 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3760 		       CTLTYPE_INT, "maxlen",
3761 		       SYSCTL_DESCR("Maximum allowed input queue length"),
3762 		       maxlen_func, 0, NULL, 0,
3763 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3764 	sysctl_createv(clog, 0, NULL, NULL,
3765 		       CTLFLAG_PERMANENT,
3766 		       CTLTYPE_INT, "drops",
3767 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
3768 		       drops_func, 0, NULL, 0,
3769 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3770 }
3771 #endif /* INET || INET6 */
3772 
3773 static int
3774 if_sdl_sysctl(SYSCTLFN_ARGS)
3775 {
3776 	struct ifnet *ifp;
3777 	const struct sockaddr_dl *sdl;
3778 	struct psref psref;
3779 	int error = 0;
3780 	int bound;
3781 
3782 	if (namelen != 1)
3783 		return EINVAL;
3784 
3785 	bound = curlwp_bind();
3786 	ifp = if_get_byindex(name[0], &psref);
3787 	if (ifp == NULL) {
3788 		error = ENODEV;
3789 		goto out0;
3790 	}
3791 
3792 	sdl = ifp->if_sadl;
3793 	if (sdl == NULL) {
3794 		*oldlenp = 0;
3795 		goto out1;
3796 	}
3797 
3798 	if (oldp == NULL) {
3799 		*oldlenp = sdl->sdl_alen;
3800 		goto out1;
3801 	}
3802 
3803 	if (*oldlenp >= sdl->sdl_alen)
3804 		*oldlenp = sdl->sdl_alen;
3805 	error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3806 out1:
3807 	if_put(ifp, &psref);
3808 out0:
3809 	curlwp_bindx(bound);
3810 	return error;
3811 }
3812 
3813 static void
3814 if_sysctl_setup(struct sysctllog **clog)
3815 {
3816 	const struct sysctlnode *rnode = NULL;
3817 
3818 	sysctl_createv(clog, 0, NULL, &rnode,
3819 		       CTLFLAG_PERMANENT,
3820 		       CTLTYPE_NODE, "sdl",
3821 		       SYSCTL_DESCR("Get active link-layer address"),
3822 		       if_sdl_sysctl, 0, NULL, 0,
3823 		       CTL_NET, CTL_CREATE, CTL_EOL);
3824 
3825 #if defined(INET)
3826 	sysctl_net_pktq_setup(NULL, PF_INET);
3827 #endif
3828 #ifdef INET6
3829 	if (in6_present)
3830 		sysctl_net_pktq_setup(NULL, PF_INET6);
3831 #endif
3832 }
3833