1 /* $NetBSD: if.c,v 1.418 2018/01/10 01:22:26 ozaki-r Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.418 2018/01/10 01:22:26 ozaki-r Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 #include "opt_atalk.h" 99 #include "opt_natm.h" 100 #include "opt_wlan.h" 101 #include "opt_net_mpsafe.h" 102 #include "opt_mrouting.h" 103 #endif 104 105 #include <sys/param.h> 106 #include <sys/mbuf.h> 107 #include <sys/systm.h> 108 #include <sys/callout.h> 109 #include <sys/proc.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/domain.h> 113 #include <sys/protosw.h> 114 #include <sys/kernel.h> 115 #include <sys/ioctl.h> 116 #include <sys/sysctl.h> 117 #include <sys/syslog.h> 118 #include <sys/kauth.h> 119 #include <sys/kmem.h> 120 #include <sys/xcall.h> 121 #include <sys/cpu.h> 122 #include <sys/intr.h> 123 124 #include <net/if.h> 125 #include <net/if_dl.h> 126 #include <net/if_ether.h> 127 #include <net/if_media.h> 128 #include <net80211/ieee80211.h> 129 #include <net80211/ieee80211_ioctl.h> 130 #include <net/if_types.h> 131 #include <net/route.h> 132 #include <net/netisr.h> 133 #include <sys/module.h> 134 #ifdef NETATALK 135 #include <netatalk/at_extern.h> 136 #include <netatalk/at.h> 137 #endif 138 #include <net/pfil.h> 139 #include <netinet/in.h> 140 #include <netinet/in_var.h> 141 #include <netinet/ip_encap.h> 142 #include <net/bpf.h> 143 144 #ifdef INET6 145 #include <netinet6/in6_var.h> 146 #include <netinet6/nd6.h> 147 #endif 148 149 #include "ether.h" 150 #include "fddi.h" 151 #include "token.h" 152 153 #include "carp.h" 154 #if NCARP > 0 155 #include <netinet/ip_carp.h> 156 #endif 157 158 #include <compat/sys/sockio.h> 159 #include <compat/sys/socket.h> 160 161 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 162 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 163 164 /* 165 * Global list of interfaces. 166 */ 167 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 168 struct ifnet_head ifnet_list; 169 170 struct pslist_head ifnet_pslist; 171 static ifnet_t ** ifindex2ifnet = NULL; 172 static u_int if_index = 1; 173 static size_t if_indexlim = 0; 174 static uint64_t index_gen; 175 /* Mutex to protect the above objects. */ 176 kmutex_t ifnet_mtx __cacheline_aligned; 177 static struct psref_class *ifnet_psref_class __read_mostly; 178 static pserialize_t ifnet_psz; 179 180 static kmutex_t if_clone_mtx; 181 182 struct ifnet *lo0ifp; 183 int ifqmaxlen = IFQ_MAXLEN; 184 185 struct psref_class *ifa_psref_class __read_mostly; 186 187 static int if_delroute_matcher(struct rtentry *, void *); 188 189 static bool if_is_unit(const char *); 190 static struct if_clone *if_clone_lookup(const char *, int *); 191 192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 193 static int if_cloners_count; 194 195 /* Packet filtering hook for interfaces. */ 196 pfil_head_t * if_pfil __read_mostly; 197 198 static kauth_listener_t if_listener; 199 200 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 201 static void if_detach_queues(struct ifnet *, struct ifqueue *); 202 static void sysctl_sndq_setup(struct sysctllog **, const char *, 203 struct ifaltq *); 204 static void if_slowtimo(void *); 205 static void if_free_sadl(struct ifnet *); 206 static void if_attachdomain1(struct ifnet *); 207 static int ifconf(u_long, void *); 208 static int if_transmit(struct ifnet *, struct mbuf *); 209 static int if_clone_create(const char *); 210 static int if_clone_destroy(const char *); 211 static void if_link_state_change_si(void *); 212 static void if_up_locked(struct ifnet *); 213 static void _if_down(struct ifnet *); 214 static void if_down_deactivated(struct ifnet *); 215 216 struct if_percpuq { 217 struct ifnet *ipq_ifp; 218 void *ipq_si; 219 struct percpu *ipq_ifqs; /* struct ifqueue */ 220 }; 221 222 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 223 224 static void if_percpuq_drops(void *, void *, struct cpu_info *); 225 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 226 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 227 struct if_percpuq *); 228 229 struct if_deferred_start { 230 struct ifnet *ids_ifp; 231 void (*ids_if_start)(struct ifnet *); 232 void *ids_si; 233 }; 234 235 static void if_deferred_start_softint(void *); 236 static void if_deferred_start_common(struct ifnet *); 237 static void if_deferred_start_destroy(struct ifnet *); 238 239 #if defined(INET) || defined(INET6) 240 static void sysctl_net_pktq_setup(struct sysctllog **, int); 241 #endif 242 243 static void if_sysctl_setup(struct sysctllog **); 244 245 /* 246 * Pointer to stub or real compat_cvtcmd() depending on presence of 247 * the compat module 248 */ 249 u_long stub_compat_cvtcmd(u_long); 250 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd; 251 252 /* Similarly, pointer to compat_ifioctl() if it is present */ 253 254 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *, 255 struct lwp *) = NULL; 256 257 /* The stub version of compat_cvtcmd() */ 258 u_long stub_compat_cvtcmd(u_long cmd) 259 { 260 261 return cmd; 262 } 263 264 static int 265 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 266 void *arg0, void *arg1, void *arg2, void *arg3) 267 { 268 int result; 269 enum kauth_network_req req; 270 271 result = KAUTH_RESULT_DEFER; 272 req = (enum kauth_network_req)arg1; 273 274 if (action != KAUTH_NETWORK_INTERFACE) 275 return result; 276 277 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 278 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 279 result = KAUTH_RESULT_ALLOW; 280 281 return result; 282 } 283 284 /* 285 * Network interface utility routines. 286 * 287 * Routines with ifa_ifwith* names take sockaddr *'s as 288 * parameters. 289 */ 290 void 291 ifinit(void) 292 { 293 294 if_sysctl_setup(NULL); 295 296 #if (defined(INET) || defined(INET6)) 297 encapinit(); 298 #endif 299 300 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 301 if_listener_cb, NULL); 302 303 /* interfaces are available, inform socket code */ 304 ifioctl = doifioctl; 305 } 306 307 /* 308 * XXX Initialization before configure(). 309 * XXX hack to get pfil_add_hook working in autoconf. 310 */ 311 void 312 ifinit1(void) 313 { 314 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 315 316 TAILQ_INIT(&ifnet_list); 317 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 318 ifnet_psz = pserialize_create(); 319 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 320 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 321 PSLIST_INIT(&ifnet_pslist); 322 323 if_indexlim = 8; 324 325 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 326 KASSERT(if_pfil != NULL); 327 328 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN) 329 etherinit(); 330 #endif 331 } 332 333 ifnet_t * 334 if_alloc(u_char type) 335 { 336 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 337 } 338 339 void 340 if_free(ifnet_t *ifp) 341 { 342 kmem_free(ifp, sizeof(ifnet_t)); 343 } 344 345 void 346 if_initname(struct ifnet *ifp, const char *name, int unit) 347 { 348 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 349 "%s%d", name, unit); 350 } 351 352 /* 353 * Null routines used while an interface is going away. These routines 354 * just return an error. 355 */ 356 357 int 358 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 359 const struct sockaddr *so, const struct rtentry *rt) 360 { 361 362 return ENXIO; 363 } 364 365 void 366 if_nullinput(struct ifnet *ifp, struct mbuf *m) 367 { 368 369 /* Nothing. */ 370 } 371 372 void 373 if_nullstart(struct ifnet *ifp) 374 { 375 376 /* Nothing. */ 377 } 378 379 int 380 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 381 { 382 383 m_freem(m); 384 return ENXIO; 385 } 386 387 int 388 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 389 { 390 391 return ENXIO; 392 } 393 394 int 395 if_nullinit(struct ifnet *ifp) 396 { 397 398 return ENXIO; 399 } 400 401 void 402 if_nullstop(struct ifnet *ifp, int disable) 403 { 404 405 /* Nothing. */ 406 } 407 408 void 409 if_nullslowtimo(struct ifnet *ifp) 410 { 411 412 /* Nothing. */ 413 } 414 415 void 416 if_nulldrain(struct ifnet *ifp) 417 { 418 419 /* Nothing. */ 420 } 421 422 void 423 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 424 { 425 struct ifaddr *ifa; 426 struct sockaddr_dl *sdl; 427 428 ifp->if_addrlen = addrlen; 429 if_alloc_sadl(ifp); 430 ifa = ifp->if_dl; 431 sdl = satosdl(ifa->ifa_addr); 432 433 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 434 if (factory) { 435 ifp->if_hwdl = ifp->if_dl; 436 ifaref(ifp->if_hwdl); 437 } 438 /* TBD routing socket */ 439 } 440 441 struct ifaddr * 442 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 443 { 444 unsigned socksize, ifasize; 445 int addrlen, namelen; 446 struct sockaddr_dl *mask, *sdl; 447 struct ifaddr *ifa; 448 449 namelen = strlen(ifp->if_xname); 450 addrlen = ifp->if_addrlen; 451 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 452 ifasize = sizeof(*ifa) + 2 * socksize; 453 ifa = malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO); 454 455 sdl = (struct sockaddr_dl *)(ifa + 1); 456 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 457 458 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 459 ifp->if_xname, namelen, NULL, addrlen); 460 mask->sdl_family = AF_LINK; 461 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 462 memset(&mask->sdl_data[0], 0xff, namelen); 463 ifa->ifa_rtrequest = link_rtrequest; 464 ifa->ifa_addr = (struct sockaddr *)sdl; 465 ifa->ifa_netmask = (struct sockaddr *)mask; 466 ifa_psref_init(ifa); 467 468 *sdlp = sdl; 469 470 return ifa; 471 } 472 473 static void 474 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 475 { 476 const struct sockaddr_dl *sdl; 477 478 ifp->if_dl = ifa; 479 ifaref(ifa); 480 sdl = satosdl(ifa->ifa_addr); 481 ifp->if_sadl = sdl; 482 } 483 484 /* 485 * Allocate the link level name for the specified interface. This 486 * is an attachment helper. It must be called after ifp->if_addrlen 487 * is initialized, which may not be the case when if_attach() is 488 * called. 489 */ 490 void 491 if_alloc_sadl(struct ifnet *ifp) 492 { 493 struct ifaddr *ifa; 494 const struct sockaddr_dl *sdl; 495 496 /* 497 * If the interface already has a link name, release it 498 * now. This is useful for interfaces that can change 499 * link types, and thus switch link names often. 500 */ 501 if (ifp->if_sadl != NULL) 502 if_free_sadl(ifp); 503 504 ifa = if_dl_create(ifp, &sdl); 505 506 ifa_insert(ifp, ifa); 507 if_sadl_setrefs(ifp, ifa); 508 } 509 510 static void 511 if_deactivate_sadl(struct ifnet *ifp) 512 { 513 struct ifaddr *ifa; 514 515 KASSERT(ifp->if_dl != NULL); 516 517 ifa = ifp->if_dl; 518 519 ifp->if_sadl = NULL; 520 521 ifp->if_dl = NULL; 522 ifafree(ifa); 523 } 524 525 static void 526 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa) 527 { 528 struct ifaddr *old; 529 530 KASSERT(ifp->if_dl != NULL); 531 532 old = ifp->if_dl; 533 534 ifaref(ifa); 535 /* XXX Update if_dl and if_sadl atomically */ 536 ifp->if_dl = ifa; 537 ifp->if_sadl = satosdl(ifa->ifa_addr); 538 539 ifafree(old); 540 } 541 542 void 543 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 544 const struct sockaddr_dl *sdl) 545 { 546 int s, ss; 547 struct ifaddr *ifa; 548 int bound = curlwp_bind(); 549 550 KASSERT(ifa_held(ifa0)); 551 552 s = splsoftnet(); 553 554 if_replace_sadl(ifp, ifa0); 555 556 ss = pserialize_read_enter(); 557 IFADDR_READER_FOREACH(ifa, ifp) { 558 struct psref psref; 559 ifa_acquire(ifa, &psref); 560 pserialize_read_exit(ss); 561 562 rtinit(ifa, RTM_LLINFO_UPD, 0); 563 564 ss = pserialize_read_enter(); 565 ifa_release(ifa, &psref); 566 } 567 pserialize_read_exit(ss); 568 569 splx(s); 570 curlwp_bindx(bound); 571 } 572 573 /* 574 * Free the link level name for the specified interface. This is 575 * a detach helper. This is called from if_detach(). 576 */ 577 static void 578 if_free_sadl(struct ifnet *ifp) 579 { 580 struct ifaddr *ifa; 581 int s; 582 583 ifa = ifp->if_dl; 584 if (ifa == NULL) { 585 KASSERT(ifp->if_sadl == NULL); 586 return; 587 } 588 589 KASSERT(ifp->if_sadl != NULL); 590 591 s = splsoftnet(); 592 rtinit(ifa, RTM_DELETE, 0); 593 ifa_remove(ifp, ifa); 594 if_deactivate_sadl(ifp); 595 if (ifp->if_hwdl == ifa) { 596 ifafree(ifa); 597 ifp->if_hwdl = NULL; 598 } 599 splx(s); 600 } 601 602 static void 603 if_getindex(ifnet_t *ifp) 604 { 605 bool hitlimit = false; 606 607 ifp->if_index_gen = index_gen++; 608 609 ifp->if_index = if_index; 610 if (ifindex2ifnet == NULL) { 611 if_index++; 612 goto skip; 613 } 614 while (if_byindex(ifp->if_index)) { 615 /* 616 * If we hit USHRT_MAX, we skip back to 0 since 617 * there are a number of places where the value 618 * of if_index or if_index itself is compared 619 * to or stored in an unsigned short. By 620 * jumping back, we won't botch those assignments 621 * or comparisons. 622 */ 623 if (++if_index == 0) { 624 if_index = 1; 625 } else if (if_index == USHRT_MAX) { 626 /* 627 * However, if we have to jump back to 628 * zero *twice* without finding an empty 629 * slot in ifindex2ifnet[], then there 630 * there are too many (>65535) interfaces. 631 */ 632 if (hitlimit) { 633 panic("too many interfaces"); 634 } 635 hitlimit = true; 636 if_index = 1; 637 } 638 ifp->if_index = if_index; 639 } 640 skip: 641 /* 642 * ifindex2ifnet is indexed by if_index. Since if_index will 643 * grow dynamically, it should grow too. 644 */ 645 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 646 size_t m, n, oldlim; 647 void *q; 648 649 oldlim = if_indexlim; 650 while (ifp->if_index >= if_indexlim) 651 if_indexlim <<= 1; 652 653 /* grow ifindex2ifnet */ 654 m = oldlim * sizeof(struct ifnet *); 655 n = if_indexlim * sizeof(struct ifnet *); 656 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); 657 if (ifindex2ifnet != NULL) { 658 memcpy(q, ifindex2ifnet, m); 659 free(ifindex2ifnet, M_IFADDR); 660 } 661 ifindex2ifnet = (struct ifnet **)q; 662 } 663 ifindex2ifnet[ifp->if_index] = ifp; 664 } 665 666 /* 667 * Initialize an interface and assign an index for it. 668 * 669 * It must be called prior to a device specific attach routine 670 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 671 * and be followed by if_register: 672 * 673 * if_initialize(ifp); 674 * ether_ifattach(ifp, enaddr); 675 * if_register(ifp); 676 */ 677 int 678 if_initialize(ifnet_t *ifp) 679 { 680 int rv = 0; 681 682 KASSERT(if_indexlim > 0); 683 TAILQ_INIT(&ifp->if_addrlist); 684 685 /* 686 * Link level name is allocated later by a separate call to 687 * if_alloc_sadl(). 688 */ 689 690 if (ifp->if_snd.ifq_maxlen == 0) 691 ifp->if_snd.ifq_maxlen = ifqmaxlen; 692 693 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 694 695 ifp->if_link_state = LINK_STATE_UNKNOWN; 696 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 697 698 ifp->if_capenable = 0; 699 ifp->if_csum_flags_tx = 0; 700 ifp->if_csum_flags_rx = 0; 701 702 #ifdef ALTQ 703 ifp->if_snd.altq_type = 0; 704 ifp->if_snd.altq_disc = NULL; 705 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 706 ifp->if_snd.altq_tbr = NULL; 707 ifp->if_snd.altq_ifp = ifp; 708 #endif 709 710 IFQ_LOCK_INIT(&ifp->if_snd); 711 712 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 713 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); 714 715 IF_AFDATA_LOCK_INIT(ifp); 716 717 if (if_is_link_state_changeable(ifp)) { 718 u_int flags = SOFTINT_NET; 719 flags |= ISSET(ifp->if_extflags, IFEF_MPSAFE) ? 720 SOFTINT_MPSAFE : 0; 721 ifp->if_link_si = softint_establish(flags, 722 if_link_state_change_si, ifp); 723 if (ifp->if_link_si == NULL) { 724 rv = ENOMEM; 725 goto fail; 726 } 727 } 728 729 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 730 PSLIST_INIT(&ifp->if_addr_pslist); 731 psref_target_init(&ifp->if_psref, ifnet_psref_class); 732 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 733 LIST_INIT(&ifp->if_multiaddrs); 734 735 IFNET_GLOBAL_LOCK(); 736 if_getindex(ifp); 737 IFNET_GLOBAL_UNLOCK(); 738 739 return 0; 740 741 fail: 742 IF_AFDATA_LOCK_DESTROY(ifp); 743 744 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 745 (void)pfil_head_destroy(ifp->if_pfil); 746 747 IFQ_LOCK_DESTROY(&ifp->if_snd); 748 749 return rv; 750 } 751 752 /* 753 * Register an interface to the list of "active" interfaces. 754 */ 755 void 756 if_register(ifnet_t *ifp) 757 { 758 /* 759 * If the driver has not supplied its own if_ioctl, then 760 * supply the default. 761 */ 762 if (ifp->if_ioctl == NULL) 763 ifp->if_ioctl = ifioctl_common; 764 765 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 766 767 if (!STAILQ_EMPTY(&domains)) 768 if_attachdomain1(ifp); 769 770 /* Announce the interface. */ 771 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 772 773 if (ifp->if_slowtimo != NULL) { 774 ifp->if_slowtimo_ch = 775 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP); 776 callout_init(ifp->if_slowtimo_ch, 0); 777 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp); 778 if_slowtimo(ifp); 779 } 780 781 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 782 ifp->if_transmit = if_transmit; 783 784 IFNET_GLOBAL_LOCK(); 785 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 786 IFNET_WRITER_INSERT_TAIL(ifp); 787 IFNET_GLOBAL_UNLOCK(); 788 } 789 790 /* 791 * The if_percpuq framework 792 * 793 * It allows network device drivers to execute the network stack 794 * in softint (so called softint-based if_input). It utilizes 795 * softint and percpu ifqueue. It doesn't distribute any packets 796 * between CPUs, unlike pktqueue(9). 797 * 798 * Currently we support two options for device drivers to apply the framework: 799 * - Use it implicitly with less changes 800 * - If you use if_attach in driver's _attach function and if_input in 801 * driver's Rx interrupt handler, a packet is queued and a softint handles 802 * the packet implicitly 803 * - Use it explicitly in each driver (recommended) 804 * - You can use if_percpuq_* directly in your driver 805 * - In this case, you need to allocate struct if_percpuq in driver's softc 806 * - See wm(4) as a reference implementation 807 */ 808 809 static void 810 if_percpuq_softint(void *arg) 811 { 812 struct if_percpuq *ipq = arg; 813 struct ifnet *ifp = ipq->ipq_ifp; 814 struct mbuf *m; 815 816 while ((m = if_percpuq_dequeue(ipq)) != NULL) { 817 ifp->if_ipackets++; 818 bpf_mtap(ifp, m); 819 820 ifp->_if_input(ifp, m); 821 } 822 } 823 824 static void 825 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 826 { 827 struct ifqueue *const ifq = p; 828 829 memset(ifq, 0, sizeof(*ifq)); 830 ifq->ifq_maxlen = IFQ_MAXLEN; 831 } 832 833 struct if_percpuq * 834 if_percpuq_create(struct ifnet *ifp) 835 { 836 struct if_percpuq *ipq; 837 838 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 839 ipq->ipq_ifp = ifp; 840 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, 841 if_percpuq_softint, ipq); 842 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 843 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 844 845 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 846 847 return ipq; 848 } 849 850 static struct mbuf * 851 if_percpuq_dequeue(struct if_percpuq *ipq) 852 { 853 struct mbuf *m; 854 struct ifqueue *ifq; 855 int s; 856 857 s = splnet(); 858 ifq = percpu_getref(ipq->ipq_ifqs); 859 IF_DEQUEUE(ifq, m); 860 percpu_putref(ipq->ipq_ifqs); 861 splx(s); 862 863 return m; 864 } 865 866 static void 867 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 868 { 869 struct ifqueue *const ifq = p; 870 871 IF_PURGE(ifq); 872 } 873 874 void 875 if_percpuq_destroy(struct if_percpuq *ipq) 876 { 877 878 /* if_detach may already destroy it */ 879 if (ipq == NULL) 880 return; 881 882 softint_disestablish(ipq->ipq_si); 883 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 884 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 885 kmem_free(ipq, sizeof(*ipq)); 886 } 887 888 void 889 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 890 { 891 struct ifqueue *ifq; 892 int s; 893 894 KASSERT(ipq != NULL); 895 896 s = splnet(); 897 ifq = percpu_getref(ipq->ipq_ifqs); 898 if (IF_QFULL(ifq)) { 899 IF_DROP(ifq); 900 percpu_putref(ipq->ipq_ifqs); 901 m_freem(m); 902 goto out; 903 } 904 IF_ENQUEUE(ifq, m); 905 percpu_putref(ipq->ipq_ifqs); 906 907 softint_schedule(ipq->ipq_si); 908 out: 909 splx(s); 910 } 911 912 static void 913 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 914 { 915 struct ifqueue *const ifq = p; 916 int *sum = arg; 917 918 *sum += ifq->ifq_drops; 919 } 920 921 static int 922 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 923 { 924 struct sysctlnode node; 925 struct if_percpuq *ipq; 926 int sum = 0; 927 int error; 928 929 node = *rnode; 930 ipq = node.sysctl_data; 931 932 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 933 934 node.sysctl_data = ∑ 935 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 936 if (error != 0 || newp == NULL) 937 return error; 938 939 return 0; 940 } 941 942 static void 943 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 944 struct if_percpuq *ipq) 945 { 946 const struct sysctlnode *cnode, *rnode; 947 948 if (sysctl_createv(clog, 0, NULL, &rnode, 949 CTLFLAG_PERMANENT, 950 CTLTYPE_NODE, "interfaces", 951 SYSCTL_DESCR("Per-interface controls"), 952 NULL, 0, NULL, 0, 953 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 954 goto bad; 955 956 if (sysctl_createv(clog, 0, &rnode, &rnode, 957 CTLFLAG_PERMANENT, 958 CTLTYPE_NODE, ifname, 959 SYSCTL_DESCR("Interface controls"), 960 NULL, 0, NULL, 0, 961 CTL_CREATE, CTL_EOL) != 0) 962 goto bad; 963 964 if (sysctl_createv(clog, 0, &rnode, &rnode, 965 CTLFLAG_PERMANENT, 966 CTLTYPE_NODE, "rcvq", 967 SYSCTL_DESCR("Interface input queue controls"), 968 NULL, 0, NULL, 0, 969 CTL_CREATE, CTL_EOL) != 0) 970 goto bad; 971 972 #ifdef NOTYET 973 /* XXX Should show each per-CPU queue length? */ 974 if (sysctl_createv(clog, 0, &rnode, &rnode, 975 CTLFLAG_PERMANENT, 976 CTLTYPE_INT, "len", 977 SYSCTL_DESCR("Current input queue length"), 978 sysctl_percpuq_len, 0, NULL, 0, 979 CTL_CREATE, CTL_EOL) != 0) 980 goto bad; 981 982 if (sysctl_createv(clog, 0, &rnode, &cnode, 983 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 984 CTLTYPE_INT, "maxlen", 985 SYSCTL_DESCR("Maximum allowed input queue length"), 986 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 987 CTL_CREATE, CTL_EOL) != 0) 988 goto bad; 989 #endif 990 991 if (sysctl_createv(clog, 0, &rnode, &cnode, 992 CTLFLAG_PERMANENT, 993 CTLTYPE_INT, "drops", 994 SYSCTL_DESCR("Total packets dropped due to full input queue"), 995 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 996 CTL_CREATE, CTL_EOL) != 0) 997 goto bad; 998 999 return; 1000 bad: 1001 printf("%s: could not attach sysctl nodes\n", ifname); 1002 return; 1003 } 1004 1005 /* 1006 * The deferred if_start framework 1007 * 1008 * The common APIs to defer if_start to softint when if_start is requested 1009 * from a device driver running in hardware interrupt context. 1010 */ 1011 /* 1012 * Call ifp->if_start (or equivalent) in a dedicated softint for 1013 * deferred if_start. 1014 */ 1015 static void 1016 if_deferred_start_softint(void *arg) 1017 { 1018 struct if_deferred_start *ids = arg; 1019 struct ifnet *ifp = ids->ids_ifp; 1020 1021 ids->ids_if_start(ifp); 1022 } 1023 1024 /* 1025 * The default callback function for deferred if_start. 1026 */ 1027 static void 1028 if_deferred_start_common(struct ifnet *ifp) 1029 { 1030 int s; 1031 1032 s = splnet(); 1033 if_start_lock(ifp); 1034 splx(s); 1035 } 1036 1037 static inline bool 1038 if_snd_is_used(struct ifnet *ifp) 1039 { 1040 1041 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit || 1042 ALTQ_IS_ENABLED(&ifp->if_snd); 1043 } 1044 1045 /* 1046 * Schedule deferred if_start. 1047 */ 1048 void 1049 if_schedule_deferred_start(struct ifnet *ifp) 1050 { 1051 1052 KASSERT(ifp->if_deferred_start != NULL); 1053 1054 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1055 return; 1056 1057 softint_schedule(ifp->if_deferred_start->ids_si); 1058 } 1059 1060 /* 1061 * Create an instance of deferred if_start. A driver should call the function 1062 * only if the driver needs deferred if_start. Drivers can setup their own 1063 * deferred if_start function via 2nd argument. 1064 */ 1065 void 1066 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1067 { 1068 struct if_deferred_start *ids; 1069 1070 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1071 ids->ids_ifp = ifp; 1072 ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, 1073 if_deferred_start_softint, ids); 1074 if (func != NULL) 1075 ids->ids_if_start = func; 1076 else 1077 ids->ids_if_start = if_deferred_start_common; 1078 1079 ifp->if_deferred_start = ids; 1080 } 1081 1082 static void 1083 if_deferred_start_destroy(struct ifnet *ifp) 1084 { 1085 1086 if (ifp->if_deferred_start == NULL) 1087 return; 1088 1089 softint_disestablish(ifp->if_deferred_start->ids_si); 1090 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1091 ifp->if_deferred_start = NULL; 1092 } 1093 1094 /* 1095 * The common interface input routine that is called by device drivers, 1096 * which should be used only when the driver's rx handler already runs 1097 * in softint. 1098 */ 1099 void 1100 if_input(struct ifnet *ifp, struct mbuf *m) 1101 { 1102 1103 KASSERT(ifp->if_percpuq == NULL); 1104 KASSERT(!cpu_intr_p()); 1105 1106 ifp->if_ipackets++; 1107 bpf_mtap(ifp, m); 1108 1109 ifp->_if_input(ifp, m); 1110 } 1111 1112 /* 1113 * DEPRECATED. Use if_initialize and if_register instead. 1114 * See the above comment of if_initialize. 1115 * 1116 * Note that it implicitly enables if_percpuq to make drivers easy to 1117 * migrate softint-based if_input without much changes. If you don't 1118 * want to enable it, use if_initialize instead. 1119 */ 1120 int 1121 if_attach(ifnet_t *ifp) 1122 { 1123 int rv; 1124 1125 rv = if_initialize(ifp); 1126 if (rv != 0) 1127 return rv; 1128 1129 ifp->if_percpuq = if_percpuq_create(ifp); 1130 if_register(ifp); 1131 1132 return 0; 1133 } 1134 1135 void 1136 if_attachdomain(void) 1137 { 1138 struct ifnet *ifp; 1139 int s; 1140 int bound = curlwp_bind(); 1141 1142 s = pserialize_read_enter(); 1143 IFNET_READER_FOREACH(ifp) { 1144 struct psref psref; 1145 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1146 pserialize_read_exit(s); 1147 if_attachdomain1(ifp); 1148 s = pserialize_read_enter(); 1149 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1150 } 1151 pserialize_read_exit(s); 1152 curlwp_bindx(bound); 1153 } 1154 1155 static void 1156 if_attachdomain1(struct ifnet *ifp) 1157 { 1158 struct domain *dp; 1159 int s; 1160 1161 s = splsoftnet(); 1162 1163 /* address family dependent data region */ 1164 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1165 DOMAIN_FOREACH(dp) { 1166 if (dp->dom_ifattach != NULL) 1167 ifp->if_afdata[dp->dom_family] = 1168 (*dp->dom_ifattach)(ifp); 1169 } 1170 1171 splx(s); 1172 } 1173 1174 /* 1175 * Deactivate an interface. This points all of the procedure 1176 * handles at error stubs. May be called from interrupt context. 1177 */ 1178 void 1179 if_deactivate(struct ifnet *ifp) 1180 { 1181 int s; 1182 1183 s = splsoftnet(); 1184 1185 ifp->if_output = if_nulloutput; 1186 ifp->_if_input = if_nullinput; 1187 ifp->if_start = if_nullstart; 1188 ifp->if_transmit = if_nulltransmit; 1189 ifp->if_ioctl = if_nullioctl; 1190 ifp->if_init = if_nullinit; 1191 ifp->if_stop = if_nullstop; 1192 ifp->if_slowtimo = if_nullslowtimo; 1193 ifp->if_drain = if_nulldrain; 1194 1195 /* No more packets may be enqueued. */ 1196 ifp->if_snd.ifq_maxlen = 0; 1197 1198 splx(s); 1199 } 1200 1201 bool 1202 if_is_deactivated(const struct ifnet *ifp) 1203 { 1204 1205 return ifp->if_output == if_nulloutput; 1206 } 1207 1208 void 1209 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 1210 { 1211 struct ifaddr *ifa, *nifa; 1212 int s; 1213 1214 s = pserialize_read_enter(); 1215 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1216 nifa = IFADDR_READER_NEXT(ifa); 1217 if (ifa->ifa_addr->sa_family != family) 1218 continue; 1219 pserialize_read_exit(s); 1220 1221 (*purgeaddr)(ifa); 1222 1223 s = pserialize_read_enter(); 1224 } 1225 pserialize_read_exit(s); 1226 } 1227 1228 #ifdef IFAREF_DEBUG 1229 static struct ifaddr **ifa_list; 1230 static int ifa_list_size; 1231 1232 /* Depends on only one if_attach runs at once */ 1233 static void 1234 if_build_ifa_list(struct ifnet *ifp) 1235 { 1236 struct ifaddr *ifa; 1237 int i; 1238 1239 KASSERT(ifa_list == NULL); 1240 KASSERT(ifa_list_size == 0); 1241 1242 IFADDR_READER_FOREACH(ifa, ifp) 1243 ifa_list_size++; 1244 1245 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1246 i = 0; 1247 IFADDR_READER_FOREACH(ifa, ifp) { 1248 ifa_list[i++] = ifa; 1249 ifaref(ifa); 1250 } 1251 } 1252 1253 static void 1254 if_check_and_free_ifa_list(struct ifnet *ifp) 1255 { 1256 int i; 1257 struct ifaddr *ifa; 1258 1259 if (ifa_list == NULL) 1260 return; 1261 1262 for (i = 0; i < ifa_list_size; i++) { 1263 char buf[64]; 1264 1265 ifa = ifa_list[i]; 1266 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1267 if (ifa->ifa_refcnt > 1) { 1268 log(LOG_WARNING, 1269 "ifa(%s) still referenced (refcnt=%d)\n", 1270 buf, ifa->ifa_refcnt - 1); 1271 } else 1272 log(LOG_DEBUG, 1273 "ifa(%s) not referenced (refcnt=%d)\n", 1274 buf, ifa->ifa_refcnt - 1); 1275 ifafree(ifa); 1276 } 1277 1278 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1279 ifa_list = NULL; 1280 ifa_list_size = 0; 1281 } 1282 #endif 1283 1284 /* 1285 * Detach an interface from the list of "active" interfaces, 1286 * freeing any resources as we go along. 1287 * 1288 * NOTE: This routine must be called with a valid thread context, 1289 * as it may block. 1290 */ 1291 void 1292 if_detach(struct ifnet *ifp) 1293 { 1294 struct socket so; 1295 struct ifaddr *ifa; 1296 #ifdef IFAREF_DEBUG 1297 struct ifaddr *last_ifa = NULL; 1298 #endif 1299 struct domain *dp; 1300 const struct protosw *pr; 1301 int s, i, family, purged; 1302 uint64_t xc; 1303 1304 #ifdef IFAREF_DEBUG 1305 if_build_ifa_list(ifp); 1306 #endif 1307 /* 1308 * XXX It's kind of lame that we have to have the 1309 * XXX socket structure... 1310 */ 1311 memset(&so, 0, sizeof(so)); 1312 1313 s = splnet(); 1314 1315 sysctl_teardown(&ifp->if_sysctl_log); 1316 IFNET_LOCK(ifp); 1317 if_deactivate(ifp); 1318 IFNET_UNLOCK(ifp); 1319 1320 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) { 1321 ifp->if_slowtimo = NULL; 1322 callout_halt(ifp->if_slowtimo_ch, NULL); 1323 callout_destroy(ifp->if_slowtimo_ch); 1324 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch)); 1325 } 1326 if_deferred_start_destroy(ifp); 1327 1328 /* 1329 * Do an if_down() to give protocols a chance to do something. 1330 */ 1331 if_down_deactivated(ifp); 1332 1333 #ifdef ALTQ 1334 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1335 altq_disable(&ifp->if_snd); 1336 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1337 altq_detach(&ifp->if_snd); 1338 #endif 1339 1340 mutex_obj_free(ifp->if_snd.ifq_lock); 1341 1342 #if NCARP > 0 1343 /* Remove the interface from any carp group it is a part of. */ 1344 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1345 carp_ifdetach(ifp); 1346 #endif 1347 1348 /* 1349 * Rip all the addresses off the interface. This should make 1350 * all of the routes go away. 1351 * 1352 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1353 * from the list, including our "cursor", ifa. For safety, 1354 * and to honor the TAILQ abstraction, I just restart the 1355 * loop after each removal. Note that the loop will exit 1356 * when all of the remaining ifaddrs belong to the AF_LINK 1357 * family. I am counting on the historical fact that at 1358 * least one pr_usrreq in each address domain removes at 1359 * least one ifaddr. 1360 */ 1361 again: 1362 /* 1363 * At this point, no other one tries to remove ifa in the list, 1364 * so we don't need to take a lock or psref. Avoid using 1365 * IFADDR_READER_FOREACH to pass over an inspection of contract 1366 * violations of pserialize. 1367 */ 1368 IFADDR_WRITER_FOREACH(ifa, ifp) { 1369 family = ifa->ifa_addr->sa_family; 1370 #ifdef IFAREF_DEBUG 1371 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1372 ifa, family, ifa->ifa_refcnt); 1373 if (last_ifa != NULL && ifa == last_ifa) 1374 panic("if_detach: loop detected"); 1375 last_ifa = ifa; 1376 #endif 1377 if (family == AF_LINK) 1378 continue; 1379 dp = pffinddomain(family); 1380 KASSERTMSG(dp != NULL, "no domain for AF %d", family); 1381 /* 1382 * XXX These PURGEIF calls are redundant with the 1383 * purge-all-families calls below, but are left in for 1384 * now both to make a smaller change, and to avoid 1385 * unplanned interactions with clearing of 1386 * ifp->if_addrlist. 1387 */ 1388 purged = 0; 1389 for (pr = dp->dom_protosw; 1390 pr < dp->dom_protoswNPROTOSW; pr++) { 1391 so.so_proto = pr; 1392 if (pr->pr_usrreqs) { 1393 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1394 purged = 1; 1395 } 1396 } 1397 if (purged == 0) { 1398 /* 1399 * XXX What's really the best thing to do 1400 * XXX here? --thorpej@NetBSD.org 1401 */ 1402 printf("if_detach: WARNING: AF %d not purged\n", 1403 family); 1404 ifa_remove(ifp, ifa); 1405 } 1406 goto again; 1407 } 1408 1409 if_free_sadl(ifp); 1410 1411 /* Delete stray routes from the routing table. */ 1412 for (i = 0; i <= AF_MAX; i++) 1413 rt_delete_matched_entries(i, if_delroute_matcher, ifp); 1414 1415 DOMAIN_FOREACH(dp) { 1416 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1417 { 1418 void *p = ifp->if_afdata[dp->dom_family]; 1419 if (p) { 1420 ifp->if_afdata[dp->dom_family] = NULL; 1421 (*dp->dom_ifdetach)(ifp, p); 1422 } 1423 } 1424 1425 /* 1426 * One would expect multicast memberships (INET and 1427 * INET6) on UDP sockets to be purged by the PURGEIF 1428 * calls above, but if all addresses were removed from 1429 * the interface prior to destruction, the calls will 1430 * not be made (e.g. ppp, for which pppd(8) generally 1431 * removes addresses before destroying the interface). 1432 * Because there is no invariant that multicast 1433 * memberships only exist for interfaces with IPv4 1434 * addresses, we must call PURGEIF regardless of 1435 * addresses. (Protocols which might store ifnet 1436 * pointers are marked with PR_PURGEIF.) 1437 */ 1438 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 1439 so.so_proto = pr; 1440 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1441 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1442 } 1443 } 1444 1445 /* Wait for all readers to drain before freeing. */ 1446 IFNET_GLOBAL_LOCK(); 1447 ifindex2ifnet[ifp->if_index] = NULL; 1448 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1449 IFNET_WRITER_REMOVE(ifp); 1450 pserialize_perform(ifnet_psz); 1451 IFNET_GLOBAL_UNLOCK(); 1452 1453 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1454 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1455 1456 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 1457 (void)pfil_head_destroy(ifp->if_pfil); 1458 1459 /* Announce that the interface is gone. */ 1460 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1461 1462 IF_AFDATA_LOCK_DESTROY(ifp); 1463 1464 if (if_is_link_state_changeable(ifp)) { 1465 softint_disestablish(ifp->if_link_si); 1466 ifp->if_link_si = NULL; 1467 } 1468 1469 /* 1470 * remove packets that came from ifp, from software interrupt queues. 1471 */ 1472 DOMAIN_FOREACH(dp) { 1473 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { 1474 struct ifqueue *iq = dp->dom_ifqueues[i]; 1475 if (iq == NULL) 1476 break; 1477 dp->dom_ifqueues[i] = NULL; 1478 if_detach_queues(ifp, iq); 1479 } 1480 } 1481 1482 /* 1483 * IP queues have to be processed separately: net-queue barrier 1484 * ensures that the packets are dequeued while a cross-call will 1485 * ensure that the interrupts have completed. FIXME: not quite.. 1486 */ 1487 #ifdef INET 1488 pktq_barrier(ip_pktq); 1489 #endif 1490 #ifdef INET6 1491 if (in6_present) 1492 pktq_barrier(ip6_pktq); 1493 #endif 1494 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 1495 xc_wait(xc); 1496 1497 if (ifp->if_percpuq != NULL) { 1498 if_percpuq_destroy(ifp->if_percpuq); 1499 ifp->if_percpuq = NULL; 1500 } 1501 1502 mutex_obj_free(ifp->if_ioctl_lock); 1503 ifp->if_ioctl_lock = NULL; 1504 1505 splx(s); 1506 1507 #ifdef IFAREF_DEBUG 1508 if_check_and_free_ifa_list(ifp); 1509 #endif 1510 } 1511 1512 static void 1513 if_detach_queues(struct ifnet *ifp, struct ifqueue *q) 1514 { 1515 struct mbuf *m, *prev, *next; 1516 1517 prev = NULL; 1518 for (m = q->ifq_head; m != NULL; m = next) { 1519 KASSERT((m->m_flags & M_PKTHDR) != 0); 1520 1521 next = m->m_nextpkt; 1522 if (m->m_pkthdr.rcvif_index != ifp->if_index) { 1523 prev = m; 1524 continue; 1525 } 1526 1527 if (prev != NULL) 1528 prev->m_nextpkt = m->m_nextpkt; 1529 else 1530 q->ifq_head = m->m_nextpkt; 1531 if (q->ifq_tail == m) 1532 q->ifq_tail = prev; 1533 q->ifq_len--; 1534 1535 m->m_nextpkt = NULL; 1536 m_freem(m); 1537 IF_DROP(q); 1538 } 1539 } 1540 1541 /* 1542 * Callback for a radix tree walk to delete all references to an 1543 * ifnet. 1544 */ 1545 static int 1546 if_delroute_matcher(struct rtentry *rt, void *v) 1547 { 1548 struct ifnet *ifp = (struct ifnet *)v; 1549 1550 if (rt->rt_ifp == ifp) 1551 return 1; 1552 else 1553 return 0; 1554 } 1555 1556 /* 1557 * Create a clone network interface. 1558 */ 1559 static int 1560 if_clone_create(const char *name) 1561 { 1562 struct if_clone *ifc; 1563 int unit; 1564 struct ifnet *ifp; 1565 struct psref psref; 1566 1567 KASSERT(mutex_owned(&if_clone_mtx)); 1568 1569 ifc = if_clone_lookup(name, &unit); 1570 if (ifc == NULL) 1571 return EINVAL; 1572 1573 ifp = if_get(name, &psref); 1574 if (ifp != NULL) { 1575 if_put(ifp, &psref); 1576 return EEXIST; 1577 } 1578 1579 return (*ifc->ifc_create)(ifc, unit); 1580 } 1581 1582 /* 1583 * Destroy a clone network interface. 1584 */ 1585 static int 1586 if_clone_destroy(const char *name) 1587 { 1588 struct if_clone *ifc; 1589 struct ifnet *ifp; 1590 struct psref psref; 1591 1592 KASSERT(mutex_owned(&if_clone_mtx)); 1593 1594 ifc = if_clone_lookup(name, NULL); 1595 if (ifc == NULL) 1596 return EINVAL; 1597 1598 if (ifc->ifc_destroy == NULL) 1599 return EOPNOTSUPP; 1600 1601 ifp = if_get(name, &psref); 1602 if (ifp == NULL) 1603 return ENXIO; 1604 1605 /* We have to disable ioctls here */ 1606 IFNET_LOCK(ifp); 1607 ifp->if_ioctl = if_nullioctl; 1608 IFNET_UNLOCK(ifp); 1609 1610 /* 1611 * We cannot call ifc_destroy with holding ifp. 1612 * Releasing ifp here is safe thanks to if_clone_mtx. 1613 */ 1614 if_put(ifp, &psref); 1615 1616 return (*ifc->ifc_destroy)(ifp); 1617 } 1618 1619 static bool 1620 if_is_unit(const char *name) 1621 { 1622 1623 while(*name != '\0') { 1624 if (*name < '0' || *name > '9') 1625 return false; 1626 name++; 1627 } 1628 1629 return true; 1630 } 1631 1632 /* 1633 * Look up a network interface cloner. 1634 */ 1635 static struct if_clone * 1636 if_clone_lookup(const char *name, int *unitp) 1637 { 1638 struct if_clone *ifc; 1639 const char *cp; 1640 char *dp, ifname[IFNAMSIZ + 3]; 1641 int unit; 1642 1643 KASSERT(mutex_owned(&if_clone_mtx)); 1644 1645 strcpy(ifname, "if_"); 1646 /* separate interface name from unit */ 1647 /* TODO: search unit number from backward */ 1648 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1649 *cp && !if_is_unit(cp);) 1650 *dp++ = *cp++; 1651 1652 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1653 return NULL; /* No name or unit number */ 1654 *dp++ = '\0'; 1655 1656 again: 1657 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1658 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1659 break; 1660 } 1661 1662 if (ifc == NULL) { 1663 int error; 1664 if (*ifname == '\0') 1665 return NULL; 1666 mutex_exit(&if_clone_mtx); 1667 error = module_autoload(ifname, MODULE_CLASS_DRIVER); 1668 mutex_enter(&if_clone_mtx); 1669 if (error) 1670 return NULL; 1671 *ifname = '\0'; 1672 goto again; 1673 } 1674 1675 unit = 0; 1676 while (cp - name < IFNAMSIZ && *cp) { 1677 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1678 /* Bogus unit number. */ 1679 return NULL; 1680 } 1681 unit = (unit * 10) + (*cp++ - '0'); 1682 } 1683 1684 if (unitp != NULL) 1685 *unitp = unit; 1686 return ifc; 1687 } 1688 1689 /* 1690 * Register a network interface cloner. 1691 */ 1692 void 1693 if_clone_attach(struct if_clone *ifc) 1694 { 1695 1696 mutex_enter(&if_clone_mtx); 1697 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1698 if_cloners_count++; 1699 mutex_exit(&if_clone_mtx); 1700 } 1701 1702 /* 1703 * Unregister a network interface cloner. 1704 */ 1705 void 1706 if_clone_detach(struct if_clone *ifc) 1707 { 1708 1709 mutex_enter(&if_clone_mtx); 1710 LIST_REMOVE(ifc, ifc_list); 1711 if_cloners_count--; 1712 mutex_exit(&if_clone_mtx); 1713 } 1714 1715 /* 1716 * Provide list of interface cloners to userspace. 1717 */ 1718 int 1719 if_clone_list(int buf_count, char *buffer, int *total) 1720 { 1721 char outbuf[IFNAMSIZ], *dst; 1722 struct if_clone *ifc; 1723 int count, error = 0; 1724 1725 mutex_enter(&if_clone_mtx); 1726 *total = if_cloners_count; 1727 if ((dst = buffer) == NULL) { 1728 /* Just asking how many there are. */ 1729 goto out; 1730 } 1731 1732 if (buf_count < 0) { 1733 error = EINVAL; 1734 goto out; 1735 } 1736 1737 count = (if_cloners_count < buf_count) ? 1738 if_cloners_count : buf_count; 1739 1740 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1741 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1742 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1743 if (outbuf[sizeof(outbuf) - 1] != '\0') { 1744 error = ENAMETOOLONG; 1745 goto out; 1746 } 1747 error = copyout(outbuf, dst, sizeof(outbuf)); 1748 if (error != 0) 1749 break; 1750 } 1751 1752 out: 1753 mutex_exit(&if_clone_mtx); 1754 return error; 1755 } 1756 1757 void 1758 ifa_psref_init(struct ifaddr *ifa) 1759 { 1760 1761 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1762 } 1763 1764 void 1765 ifaref(struct ifaddr *ifa) 1766 { 1767 KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING)); 1768 ifa->ifa_refcnt++; 1769 } 1770 1771 void 1772 ifafree(struct ifaddr *ifa) 1773 { 1774 KASSERT(ifa != NULL); 1775 KASSERT(ifa->ifa_refcnt > 0); 1776 1777 if (--ifa->ifa_refcnt == 0) { 1778 free(ifa, M_IFADDR); 1779 } 1780 } 1781 1782 bool 1783 ifa_is_destroying(struct ifaddr *ifa) 1784 { 1785 1786 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1787 } 1788 1789 void 1790 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1791 { 1792 1793 ifa->ifa_ifp = ifp; 1794 1795 /* 1796 * Check MP-safety for IFEF_MPSAFE drivers. 1797 * Check !IFF_RUNNING for initialization routines that normally don't 1798 * take IFNET_LOCK but it's safe because there is no competitor. 1799 * XXX there are false positive cases because IFF_RUNNING can be off on 1800 * if_stop. 1801 */ 1802 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) || 1803 IFNET_LOCKED(ifp)); 1804 1805 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1806 IFADDR_ENTRY_INIT(ifa); 1807 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1808 1809 ifaref(ifa); 1810 } 1811 1812 void 1813 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1814 { 1815 1816 KASSERT(ifa->ifa_ifp == ifp); 1817 /* 1818 * Check MP-safety for IFEF_MPSAFE drivers. 1819 * if_is_deactivated indicates ifa_remove is called form if_detach 1820 * where is safe even if IFNET_LOCK isn't held. 1821 */ 1822 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp)); 1823 1824 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1825 IFADDR_WRITER_REMOVE(ifa); 1826 #ifdef NET_MPSAFE 1827 IFNET_GLOBAL_LOCK(); 1828 pserialize_perform(ifnet_psz); 1829 IFNET_GLOBAL_UNLOCK(); 1830 #endif 1831 1832 #ifdef NET_MPSAFE 1833 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1834 #endif 1835 IFADDR_ENTRY_DESTROY(ifa); 1836 ifafree(ifa); 1837 } 1838 1839 void 1840 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1841 { 1842 1843 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1844 } 1845 1846 void 1847 ifa_release(struct ifaddr *ifa, struct psref *psref) 1848 { 1849 1850 if (ifa == NULL) 1851 return; 1852 1853 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1854 } 1855 1856 bool 1857 ifa_held(struct ifaddr *ifa) 1858 { 1859 1860 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1861 } 1862 1863 static inline int 1864 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1865 { 1866 return sockaddr_cmp(sa1, sa2) == 0; 1867 } 1868 1869 /* 1870 * Locate an interface based on a complete address. 1871 */ 1872 /*ARGSUSED*/ 1873 struct ifaddr * 1874 ifa_ifwithaddr(const struct sockaddr *addr) 1875 { 1876 struct ifnet *ifp; 1877 struct ifaddr *ifa; 1878 1879 IFNET_READER_FOREACH(ifp) { 1880 if (if_is_deactivated(ifp)) 1881 continue; 1882 IFADDR_READER_FOREACH(ifa, ifp) { 1883 if (ifa->ifa_addr->sa_family != addr->sa_family) 1884 continue; 1885 if (equal(addr, ifa->ifa_addr)) 1886 return ifa; 1887 if ((ifp->if_flags & IFF_BROADCAST) && 1888 ifa->ifa_broadaddr && 1889 /* IP6 doesn't have broadcast */ 1890 ifa->ifa_broadaddr->sa_len != 0 && 1891 equal(ifa->ifa_broadaddr, addr)) 1892 return ifa; 1893 } 1894 } 1895 return NULL; 1896 } 1897 1898 struct ifaddr * 1899 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1900 { 1901 struct ifaddr *ifa; 1902 int s = pserialize_read_enter(); 1903 1904 ifa = ifa_ifwithaddr(addr); 1905 if (ifa != NULL) 1906 ifa_acquire(ifa, psref); 1907 pserialize_read_exit(s); 1908 1909 return ifa; 1910 } 1911 1912 /* 1913 * Locate the point to point interface with a given destination address. 1914 */ 1915 /*ARGSUSED*/ 1916 struct ifaddr * 1917 ifa_ifwithdstaddr(const struct sockaddr *addr) 1918 { 1919 struct ifnet *ifp; 1920 struct ifaddr *ifa; 1921 1922 IFNET_READER_FOREACH(ifp) { 1923 if (if_is_deactivated(ifp)) 1924 continue; 1925 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1926 continue; 1927 IFADDR_READER_FOREACH(ifa, ifp) { 1928 if (ifa->ifa_addr->sa_family != addr->sa_family || 1929 ifa->ifa_dstaddr == NULL) 1930 continue; 1931 if (equal(addr, ifa->ifa_dstaddr)) 1932 return ifa; 1933 } 1934 } 1935 1936 return NULL; 1937 } 1938 1939 struct ifaddr * 1940 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 1941 { 1942 struct ifaddr *ifa; 1943 int s; 1944 1945 s = pserialize_read_enter(); 1946 ifa = ifa_ifwithdstaddr(addr); 1947 if (ifa != NULL) 1948 ifa_acquire(ifa, psref); 1949 pserialize_read_exit(s); 1950 1951 return ifa; 1952 } 1953 1954 /* 1955 * Find an interface on a specific network. If many, choice 1956 * is most specific found. 1957 */ 1958 struct ifaddr * 1959 ifa_ifwithnet(const struct sockaddr *addr) 1960 { 1961 struct ifnet *ifp; 1962 struct ifaddr *ifa, *ifa_maybe = NULL; 1963 const struct sockaddr_dl *sdl; 1964 u_int af = addr->sa_family; 1965 const char *addr_data = addr->sa_data, *cplim; 1966 1967 if (af == AF_LINK) { 1968 sdl = satocsdl(addr); 1969 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1970 ifindex2ifnet[sdl->sdl_index] && 1971 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 1972 return ifindex2ifnet[sdl->sdl_index]->if_dl; 1973 } 1974 } 1975 #ifdef NETATALK 1976 if (af == AF_APPLETALK) { 1977 const struct sockaddr_at *sat, *sat2; 1978 sat = (const struct sockaddr_at *)addr; 1979 IFNET_READER_FOREACH(ifp) { 1980 if (if_is_deactivated(ifp)) 1981 continue; 1982 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 1983 if (ifa == NULL) 1984 continue; 1985 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 1986 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 1987 return ifa; /* exact match */ 1988 if (ifa_maybe == NULL) { 1989 /* else keep the if with the right range */ 1990 ifa_maybe = ifa; 1991 } 1992 } 1993 return ifa_maybe; 1994 } 1995 #endif 1996 IFNET_READER_FOREACH(ifp) { 1997 if (if_is_deactivated(ifp)) 1998 continue; 1999 IFADDR_READER_FOREACH(ifa, ifp) { 2000 const char *cp, *cp2, *cp3; 2001 2002 if (ifa->ifa_addr->sa_family != af || 2003 ifa->ifa_netmask == NULL) 2004 next: continue; 2005 cp = addr_data; 2006 cp2 = ifa->ifa_addr->sa_data; 2007 cp3 = ifa->ifa_netmask->sa_data; 2008 cplim = (const char *)ifa->ifa_netmask + 2009 ifa->ifa_netmask->sa_len; 2010 while (cp3 < cplim) { 2011 if ((*cp++ ^ *cp2++) & *cp3++) { 2012 /* want to continue for() loop */ 2013 goto next; 2014 } 2015 } 2016 if (ifa_maybe == NULL || 2017 rt_refines(ifa->ifa_netmask, 2018 ifa_maybe->ifa_netmask)) 2019 ifa_maybe = ifa; 2020 } 2021 } 2022 return ifa_maybe; 2023 } 2024 2025 struct ifaddr * 2026 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 2027 { 2028 struct ifaddr *ifa; 2029 int s; 2030 2031 s = pserialize_read_enter(); 2032 ifa = ifa_ifwithnet(addr); 2033 if (ifa != NULL) 2034 ifa_acquire(ifa, psref); 2035 pserialize_read_exit(s); 2036 2037 return ifa; 2038 } 2039 2040 /* 2041 * Find the interface of the addresss. 2042 */ 2043 struct ifaddr * 2044 ifa_ifwithladdr(const struct sockaddr *addr) 2045 { 2046 struct ifaddr *ia; 2047 2048 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 2049 (ia = ifa_ifwithnet(addr))) 2050 return ia; 2051 return NULL; 2052 } 2053 2054 struct ifaddr * 2055 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 2056 { 2057 struct ifaddr *ifa; 2058 int s; 2059 2060 s = pserialize_read_enter(); 2061 ifa = ifa_ifwithladdr(addr); 2062 if (ifa != NULL) 2063 ifa_acquire(ifa, psref); 2064 pserialize_read_exit(s); 2065 2066 return ifa; 2067 } 2068 2069 /* 2070 * Find an interface using a specific address family 2071 */ 2072 struct ifaddr * 2073 ifa_ifwithaf(int af) 2074 { 2075 struct ifnet *ifp; 2076 struct ifaddr *ifa = NULL; 2077 int s; 2078 2079 s = pserialize_read_enter(); 2080 IFNET_READER_FOREACH(ifp) { 2081 if (if_is_deactivated(ifp)) 2082 continue; 2083 IFADDR_READER_FOREACH(ifa, ifp) { 2084 if (ifa->ifa_addr->sa_family == af) 2085 goto out; 2086 } 2087 } 2088 out: 2089 pserialize_read_exit(s); 2090 return ifa; 2091 } 2092 2093 /* 2094 * Find an interface address specific to an interface best matching 2095 * a given address. 2096 */ 2097 struct ifaddr * 2098 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2099 { 2100 struct ifaddr *ifa; 2101 const char *cp, *cp2, *cp3; 2102 const char *cplim; 2103 struct ifaddr *ifa_maybe = 0; 2104 u_int af = addr->sa_family; 2105 2106 if (if_is_deactivated(ifp)) 2107 return NULL; 2108 2109 if (af >= AF_MAX) 2110 return NULL; 2111 2112 IFADDR_READER_FOREACH(ifa, ifp) { 2113 if (ifa->ifa_addr->sa_family != af) 2114 continue; 2115 ifa_maybe = ifa; 2116 if (ifa->ifa_netmask == NULL) { 2117 if (equal(addr, ifa->ifa_addr) || 2118 (ifa->ifa_dstaddr && 2119 equal(addr, ifa->ifa_dstaddr))) 2120 return ifa; 2121 continue; 2122 } 2123 cp = addr->sa_data; 2124 cp2 = ifa->ifa_addr->sa_data; 2125 cp3 = ifa->ifa_netmask->sa_data; 2126 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2127 for (; cp3 < cplim; cp3++) { 2128 if ((*cp++ ^ *cp2++) & *cp3) 2129 break; 2130 } 2131 if (cp3 == cplim) 2132 return ifa; 2133 } 2134 return ifa_maybe; 2135 } 2136 2137 struct ifaddr * 2138 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2139 struct psref *psref) 2140 { 2141 struct ifaddr *ifa; 2142 int s; 2143 2144 s = pserialize_read_enter(); 2145 ifa = ifaof_ifpforaddr(addr, ifp); 2146 if (ifa != NULL) 2147 ifa_acquire(ifa, psref); 2148 pserialize_read_exit(s); 2149 2150 return ifa; 2151 } 2152 2153 /* 2154 * Default action when installing a route with a Link Level gateway. 2155 * Lookup an appropriate real ifa to point to. 2156 * This should be moved to /sys/net/link.c eventually. 2157 */ 2158 void 2159 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2160 { 2161 struct ifaddr *ifa; 2162 const struct sockaddr *dst; 2163 struct ifnet *ifp; 2164 struct psref psref; 2165 2166 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 2167 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL) 2168 return; 2169 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2170 rt_replace_ifa(rt, ifa); 2171 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2172 ifa->ifa_rtrequest(cmd, rt, info); 2173 ifa_release(ifa, &psref); 2174 } 2175 } 2176 2177 /* 2178 * bitmask macros to manage a densely packed link_state change queue. 2179 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2180 * LINK_STATE_UP(2) we need 2 bits for each state change. 2181 * As a state change to store is 0, treat all bits set as an unset item. 2182 */ 2183 #define LQ_ITEM_BITS 2 2184 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2185 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2186 #define LINK_STATE_UNSET LQ_ITEM_MASK 2187 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2188 #define LQ_STORE(q, i, v) \ 2189 do { \ 2190 (q) &= ~LQ_MASK((i)); \ 2191 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2192 } while (0 /* CONSTCOND */) 2193 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2194 #define LQ_POP(q, v) \ 2195 do { \ 2196 (v) = LQ_ITEM((q), 0); \ 2197 (q) >>= LQ_ITEM_BITS; \ 2198 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2199 } while (0 /* CONSTCOND */) 2200 #define LQ_PUSH(q, v) \ 2201 do { \ 2202 (q) >>= LQ_ITEM_BITS; \ 2203 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2204 } while (0 /* CONSTCOND */) 2205 #define LQ_FIND_UNSET(q, i) \ 2206 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2207 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2208 break; \ 2209 } 2210 2211 /* 2212 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex 2213 * for each ifnet. It doesn't matter because: 2214 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on 2215 * ifq_lock don't happen 2216 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock 2217 * because if_snd, if_link_state_change and if_link_state_change_softint 2218 * are all called with KERNEL_LOCK 2219 */ 2220 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \ 2221 mutex_enter((ifp)->if_snd.ifq_lock) 2222 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \ 2223 mutex_exit((ifp)->if_snd.ifq_lock) 2224 2225 /* 2226 * Handle a change in the interface link state and 2227 * queue notifications. 2228 */ 2229 void 2230 if_link_state_change(struct ifnet *ifp, int link_state) 2231 { 2232 int idx; 2233 2234 KASSERTMSG(if_is_link_state_changeable(ifp), 2235 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x", 2236 ifp->if_xname, ifp->if_extflags); 2237 2238 /* Ensure change is to a valid state */ 2239 switch (link_state) { 2240 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2241 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2242 case LINK_STATE_UP: 2243 break; 2244 default: 2245 #ifdef DEBUG 2246 printf("%s: invalid link state %d\n", 2247 ifp->if_xname, link_state); 2248 #endif 2249 return; 2250 } 2251 2252 IF_LINK_STATE_CHANGE_LOCK(ifp); 2253 2254 /* Find the last unset event in the queue. */ 2255 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2256 2257 /* 2258 * Ensure link_state doesn't match the last event in the queue. 2259 * ifp->if_link_state is not checked and set here because 2260 * that would present an inconsistent picture to the system. 2261 */ 2262 if (idx != 0 && 2263 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state) 2264 goto out; 2265 2266 /* Handle queue overflow. */ 2267 if (idx == LQ_MAX(ifp->if_link_queue)) { 2268 uint8_t lost; 2269 2270 /* 2271 * The DOWN state must be protected from being pushed off 2272 * the queue to ensure that userland will always be 2273 * in a sane state. 2274 * Because DOWN is protected, there is no need to protect 2275 * UNKNOWN. 2276 * It should be invalid to change from any other state to 2277 * UNKNOWN anyway ... 2278 */ 2279 lost = LQ_ITEM(ifp->if_link_queue, 0); 2280 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2281 if (lost == LINK_STATE_DOWN) { 2282 lost = LQ_ITEM(ifp->if_link_queue, 0); 2283 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2284 } 2285 printf("%s: lost link state change %s\n", 2286 ifp->if_xname, 2287 lost == LINK_STATE_UP ? "UP" : 2288 lost == LINK_STATE_DOWN ? "DOWN" : 2289 "UNKNOWN"); 2290 } else 2291 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2292 2293 softint_schedule(ifp->if_link_si); 2294 2295 out: 2296 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2297 } 2298 2299 /* 2300 * Handle interface link state change notifications. 2301 */ 2302 void 2303 if_link_state_change_softint(struct ifnet *ifp, int link_state) 2304 { 2305 struct domain *dp; 2306 int s = splnet(); 2307 bool notify; 2308 2309 KASSERT(!cpu_intr_p()); 2310 2311 IF_LINK_STATE_CHANGE_LOCK(ifp); 2312 2313 /* Ensure the change is still valid. */ 2314 if (ifp->if_link_state == link_state) { 2315 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2316 return; 2317 } 2318 2319 #ifdef DEBUG 2320 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2321 link_state == LINK_STATE_UP ? "UP" : 2322 link_state == LINK_STATE_DOWN ? "DOWN" : 2323 "UNKNOWN", 2324 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2325 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2326 "UNKNOWN"); 2327 #endif 2328 2329 /* 2330 * When going from UNKNOWN to UP, we need to mark existing 2331 * addresses as tentative and restart DAD as we may have 2332 * erroneously not found a duplicate. 2333 * 2334 * This needs to happen before rt_ifmsg to avoid a race where 2335 * listeners would have an address and expect it to work right 2336 * away. 2337 */ 2338 notify = (link_state == LINK_STATE_UP && 2339 ifp->if_link_state == LINK_STATE_UNKNOWN); 2340 ifp->if_link_state = link_state; 2341 /* The following routines may sleep so release the spin mutex */ 2342 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2343 2344 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2345 if (notify) { 2346 DOMAIN_FOREACH(dp) { 2347 if (dp->dom_if_link_state_change != NULL) 2348 dp->dom_if_link_state_change(ifp, 2349 LINK_STATE_DOWN); 2350 } 2351 } 2352 2353 /* Notify that the link state has changed. */ 2354 rt_ifmsg(ifp); 2355 2356 #if NCARP > 0 2357 if (ifp->if_carp) 2358 carp_carpdev_state(ifp); 2359 #endif 2360 2361 DOMAIN_FOREACH(dp) { 2362 if (dp->dom_if_link_state_change != NULL) 2363 dp->dom_if_link_state_change(ifp, link_state); 2364 } 2365 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2366 splx(s); 2367 } 2368 2369 /* 2370 * Process the interface link state change queue. 2371 */ 2372 static void 2373 if_link_state_change_si(void *arg) 2374 { 2375 struct ifnet *ifp = arg; 2376 int s; 2377 uint8_t state; 2378 bool schedule; 2379 2380 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2381 s = splnet(); 2382 2383 /* Pop a link state change from the queue and process it. */ 2384 IF_LINK_STATE_CHANGE_LOCK(ifp); 2385 LQ_POP(ifp->if_link_queue, state); 2386 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2387 2388 if_link_state_change_softint(ifp, state); 2389 2390 /* If there is a link state change to come, schedule it. */ 2391 IF_LINK_STATE_CHANGE_LOCK(ifp); 2392 schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET); 2393 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2394 if (schedule) 2395 softint_schedule(ifp->if_link_si); 2396 2397 splx(s); 2398 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2399 } 2400 2401 /* 2402 * Default action when installing a local route on a point-to-point 2403 * interface. 2404 */ 2405 void 2406 p2p_rtrequest(int req, struct rtentry *rt, 2407 __unused const struct rt_addrinfo *info) 2408 { 2409 struct ifnet *ifp = rt->rt_ifp; 2410 struct ifaddr *ifa, *lo0ifa; 2411 int s = pserialize_read_enter(); 2412 2413 switch (req) { 2414 case RTM_ADD: 2415 if ((rt->rt_flags & RTF_LOCAL) == 0) 2416 break; 2417 2418 rt->rt_ifp = lo0ifp; 2419 2420 IFADDR_READER_FOREACH(ifa, ifp) { 2421 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2422 break; 2423 } 2424 if (ifa == NULL) 2425 break; 2426 2427 /* 2428 * Ensure lo0 has an address of the same family. 2429 */ 2430 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2431 if (lo0ifa->ifa_addr->sa_family == 2432 ifa->ifa_addr->sa_family) 2433 break; 2434 } 2435 if (lo0ifa == NULL) 2436 break; 2437 2438 /* 2439 * Make sure to set rt->rt_ifa to the interface 2440 * address we are using, otherwise we will have trouble 2441 * with source address selection. 2442 */ 2443 if (ifa != rt->rt_ifa) 2444 rt_replace_ifa(rt, ifa); 2445 break; 2446 case RTM_DELETE: 2447 default: 2448 break; 2449 } 2450 pserialize_read_exit(s); 2451 } 2452 2453 static void 2454 _if_down(struct ifnet *ifp) 2455 { 2456 struct ifaddr *ifa; 2457 struct domain *dp; 2458 int s, bound; 2459 struct psref psref; 2460 2461 ifp->if_flags &= ~IFF_UP; 2462 nanotime(&ifp->if_lastchange); 2463 2464 bound = curlwp_bind(); 2465 s = pserialize_read_enter(); 2466 IFADDR_READER_FOREACH(ifa, ifp) { 2467 ifa_acquire(ifa, &psref); 2468 pserialize_read_exit(s); 2469 2470 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2471 2472 s = pserialize_read_enter(); 2473 ifa_release(ifa, &psref); 2474 } 2475 pserialize_read_exit(s); 2476 curlwp_bindx(bound); 2477 2478 IFQ_PURGE(&ifp->if_snd); 2479 #if NCARP > 0 2480 if (ifp->if_carp) 2481 carp_carpdev_state(ifp); 2482 #endif 2483 rt_ifmsg(ifp); 2484 DOMAIN_FOREACH(dp) { 2485 if (dp->dom_if_down) 2486 dp->dom_if_down(ifp); 2487 } 2488 } 2489 2490 static void 2491 if_down_deactivated(struct ifnet *ifp) 2492 { 2493 2494 KASSERT(if_is_deactivated(ifp)); 2495 _if_down(ifp); 2496 } 2497 2498 void 2499 if_down_locked(struct ifnet *ifp) 2500 { 2501 2502 KASSERT(IFNET_LOCKED(ifp)); 2503 _if_down(ifp); 2504 } 2505 2506 /* 2507 * Mark an interface down and notify protocols of 2508 * the transition. 2509 * NOTE: must be called at splsoftnet or equivalent. 2510 */ 2511 void 2512 if_down(struct ifnet *ifp) 2513 { 2514 2515 IFNET_LOCK(ifp); 2516 if_down_locked(ifp); 2517 IFNET_UNLOCK(ifp); 2518 } 2519 2520 /* 2521 * Must be called with holding if_ioctl_lock. 2522 */ 2523 static void 2524 if_up_locked(struct ifnet *ifp) 2525 { 2526 #ifdef notyet 2527 struct ifaddr *ifa; 2528 #endif 2529 struct domain *dp; 2530 2531 KASSERT(IFNET_LOCKED(ifp)); 2532 2533 KASSERT(!if_is_deactivated(ifp)); 2534 ifp->if_flags |= IFF_UP; 2535 nanotime(&ifp->if_lastchange); 2536 #ifdef notyet 2537 /* this has no effect on IP, and will kill all ISO connections XXX */ 2538 IFADDR_READER_FOREACH(ifa, ifp) 2539 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2540 #endif 2541 #if NCARP > 0 2542 if (ifp->if_carp) 2543 carp_carpdev_state(ifp); 2544 #endif 2545 rt_ifmsg(ifp); 2546 DOMAIN_FOREACH(dp) { 2547 if (dp->dom_if_up) 2548 dp->dom_if_up(ifp); 2549 } 2550 } 2551 2552 /* 2553 * Handle interface slowtimo timer routine. Called 2554 * from softclock, we decrement timer (if set) and 2555 * call the appropriate interface routine on expiration. 2556 */ 2557 static void 2558 if_slowtimo(void *arg) 2559 { 2560 void (*slowtimo)(struct ifnet *); 2561 struct ifnet *ifp = arg; 2562 int s; 2563 2564 slowtimo = ifp->if_slowtimo; 2565 if (__predict_false(slowtimo == NULL)) 2566 return; 2567 2568 s = splnet(); 2569 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2570 (*slowtimo)(ifp); 2571 2572 splx(s); 2573 2574 if (__predict_true(ifp->if_slowtimo != NULL)) 2575 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ); 2576 } 2577 2578 /* 2579 * Mark an interface up and notify protocols of 2580 * the transition. 2581 * NOTE: must be called at splsoftnet or equivalent. 2582 */ 2583 void 2584 if_up(struct ifnet *ifp) 2585 { 2586 2587 IFNET_LOCK(ifp); 2588 if_up_locked(ifp); 2589 IFNET_UNLOCK(ifp); 2590 } 2591 2592 /* 2593 * Set/clear promiscuous mode on interface ifp based on the truth value 2594 * of pswitch. The calls are reference counted so that only the first 2595 * "on" request actually has an effect, as does the final "off" request. 2596 * Results are undefined if the "off" and "on" requests are not matched. 2597 */ 2598 int 2599 ifpromisc_locked(struct ifnet *ifp, int pswitch) 2600 { 2601 int pcount, ret = 0; 2602 short nflags; 2603 2604 KASSERT(IFNET_LOCKED(ifp)); 2605 2606 pcount = ifp->if_pcount; 2607 if (pswitch) { 2608 /* 2609 * Allow the device to be "placed" into promiscuous 2610 * mode even if it is not configured up. It will 2611 * consult IFF_PROMISC when it is brought up. 2612 */ 2613 if (ifp->if_pcount++ != 0) 2614 goto out; 2615 nflags = ifp->if_flags | IFF_PROMISC; 2616 } else { 2617 if (--ifp->if_pcount > 0) 2618 goto out; 2619 nflags = ifp->if_flags & ~IFF_PROMISC; 2620 } 2621 ret = if_flags_set(ifp, nflags); 2622 /* Restore interface state if not successful. */ 2623 if (ret != 0) { 2624 ifp->if_pcount = pcount; 2625 } 2626 out: 2627 return ret; 2628 } 2629 2630 int 2631 ifpromisc(struct ifnet *ifp, int pswitch) 2632 { 2633 int e; 2634 2635 IFNET_LOCK(ifp); 2636 e = ifpromisc_locked(ifp, pswitch); 2637 IFNET_UNLOCK(ifp); 2638 2639 return e; 2640 } 2641 2642 /* 2643 * Map interface name to 2644 * interface structure pointer. 2645 */ 2646 struct ifnet * 2647 ifunit(const char *name) 2648 { 2649 struct ifnet *ifp; 2650 const char *cp = name; 2651 u_int unit = 0; 2652 u_int i; 2653 int s; 2654 2655 /* 2656 * If the entire name is a number, treat it as an ifindex. 2657 */ 2658 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2659 unit = unit * 10 + (*cp - '0'); 2660 } 2661 2662 /* 2663 * If the number took all of the name, then it's a valid ifindex. 2664 */ 2665 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2666 return if_byindex(unit); 2667 2668 ifp = NULL; 2669 s = pserialize_read_enter(); 2670 IFNET_READER_FOREACH(ifp) { 2671 if (if_is_deactivated(ifp)) 2672 continue; 2673 if (strcmp(ifp->if_xname, name) == 0) 2674 goto out; 2675 } 2676 out: 2677 pserialize_read_exit(s); 2678 return ifp; 2679 } 2680 2681 /* 2682 * Get a reference of an ifnet object by an interface name. 2683 * The returned reference is protected by psref(9). The caller 2684 * must release a returned reference by if_put after use. 2685 */ 2686 struct ifnet * 2687 if_get(const char *name, struct psref *psref) 2688 { 2689 struct ifnet *ifp; 2690 const char *cp = name; 2691 u_int unit = 0; 2692 u_int i; 2693 int s; 2694 2695 /* 2696 * If the entire name is a number, treat it as an ifindex. 2697 */ 2698 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2699 unit = unit * 10 + (*cp - '0'); 2700 } 2701 2702 /* 2703 * If the number took all of the name, then it's a valid ifindex. 2704 */ 2705 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2706 return if_get_byindex(unit, psref); 2707 2708 ifp = NULL; 2709 s = pserialize_read_enter(); 2710 IFNET_READER_FOREACH(ifp) { 2711 if (if_is_deactivated(ifp)) 2712 continue; 2713 if (strcmp(ifp->if_xname, name) == 0) { 2714 psref_acquire(psref, &ifp->if_psref, 2715 ifnet_psref_class); 2716 goto out; 2717 } 2718 } 2719 out: 2720 pserialize_read_exit(s); 2721 return ifp; 2722 } 2723 2724 /* 2725 * Release a reference of an ifnet object given by if_get, if_get_byindex 2726 * or if_get_bylla. 2727 */ 2728 void 2729 if_put(const struct ifnet *ifp, struct psref *psref) 2730 { 2731 2732 if (ifp == NULL) 2733 return; 2734 2735 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2736 } 2737 2738 /* 2739 * Return ifp having idx. Return NULL if not found. Normally if_byindex 2740 * should be used. 2741 */ 2742 ifnet_t * 2743 _if_byindex(u_int idx) 2744 { 2745 2746 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2747 } 2748 2749 /* 2750 * Return ifp having idx. Return NULL if not found or the found ifp is 2751 * already deactivated. 2752 */ 2753 ifnet_t * 2754 if_byindex(u_int idx) 2755 { 2756 ifnet_t *ifp; 2757 2758 ifp = _if_byindex(idx); 2759 if (ifp != NULL && if_is_deactivated(ifp)) 2760 ifp = NULL; 2761 return ifp; 2762 } 2763 2764 /* 2765 * Get a reference of an ifnet object by an interface index. 2766 * The returned reference is protected by psref(9). The caller 2767 * must release a returned reference by if_put after use. 2768 */ 2769 ifnet_t * 2770 if_get_byindex(u_int idx, struct psref *psref) 2771 { 2772 ifnet_t *ifp; 2773 int s; 2774 2775 s = pserialize_read_enter(); 2776 ifp = if_byindex(idx); 2777 if (__predict_true(ifp != NULL)) 2778 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2779 pserialize_read_exit(s); 2780 2781 return ifp; 2782 } 2783 2784 ifnet_t * 2785 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref) 2786 { 2787 ifnet_t *ifp; 2788 int s; 2789 2790 s = pserialize_read_enter(); 2791 IFNET_READER_FOREACH(ifp) { 2792 if (if_is_deactivated(ifp)) 2793 continue; 2794 if (ifp->if_addrlen != lla_len) 2795 continue; 2796 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) { 2797 psref_acquire(psref, &ifp->if_psref, 2798 ifnet_psref_class); 2799 break; 2800 } 2801 } 2802 pserialize_read_exit(s); 2803 2804 return ifp; 2805 } 2806 2807 /* 2808 * Note that it's safe only if the passed ifp is guaranteed to not be freed, 2809 * for example using pserialize or the ifp is already held or some other 2810 * object is held which guarantes the ifp to not be freed indirectly. 2811 */ 2812 void 2813 if_acquire(struct ifnet *ifp, struct psref *psref) 2814 { 2815 2816 KASSERT(ifp->if_index != 0); 2817 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2818 } 2819 2820 bool 2821 if_held(struct ifnet *ifp) 2822 { 2823 2824 return psref_held(&ifp->if_psref, ifnet_psref_class); 2825 } 2826 2827 /* 2828 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4. 2829 * Check the tunnel nesting count. 2830 * Return > 0, if tunnel nesting count is more than limit. 2831 * Return 0, if tunnel nesting count is equal or less than limit. 2832 */ 2833 int 2834 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit) 2835 { 2836 struct m_tag *mtag; 2837 int *count; 2838 2839 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO, NULL); 2840 if (mtag != NULL) { 2841 count = (int *)(mtag + 1); 2842 if (++(*count) > limit) { 2843 log(LOG_NOTICE, 2844 "%s: recursively called too many times(%d)\n", 2845 ifp->if_xname, *count); 2846 return EIO; 2847 } 2848 } else { 2849 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count), 2850 M_NOWAIT); 2851 if (mtag != NULL) { 2852 m_tag_prepend(m, mtag); 2853 count = (int *)(mtag + 1); 2854 *count = 0; 2855 } else { 2856 log(LOG_DEBUG, 2857 "%s: m_tag_get() failed, recursion calls are not prevented.\n", 2858 ifp->if_xname); 2859 } 2860 } 2861 2862 return 0; 2863 } 2864 2865 /* common */ 2866 int 2867 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 2868 { 2869 int s; 2870 struct ifreq *ifr; 2871 struct ifcapreq *ifcr; 2872 struct ifdatareq *ifdr; 2873 2874 switch (cmd) { 2875 case SIOCSIFCAP: 2876 ifcr = data; 2877 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 2878 return EINVAL; 2879 2880 if (ifcr->ifcr_capenable == ifp->if_capenable) 2881 return 0; 2882 2883 ifp->if_capenable = ifcr->ifcr_capenable; 2884 2885 /* Pre-compute the checksum flags mask. */ 2886 ifp->if_csum_flags_tx = 0; 2887 ifp->if_csum_flags_rx = 0; 2888 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) { 2889 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 2890 } 2891 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { 2892 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 2893 } 2894 2895 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) { 2896 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 2897 } 2898 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) { 2899 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 2900 } 2901 2902 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) { 2903 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 2904 } 2905 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) { 2906 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 2907 } 2908 2909 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) { 2910 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 2911 } 2912 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) { 2913 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 2914 } 2915 2916 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) { 2917 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 2918 } 2919 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) { 2920 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 2921 } 2922 if (ifp->if_flags & IFF_UP) 2923 return ENETRESET; 2924 return 0; 2925 case SIOCSIFFLAGS: 2926 ifr = data; 2927 /* 2928 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up 2929 * and if_down aren't MP-safe yet, so we must hold the lock. 2930 */ 2931 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 2932 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 2933 s = splsoftnet(); 2934 if_down_locked(ifp); 2935 splx(s); 2936 } 2937 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 2938 s = splsoftnet(); 2939 if_up_locked(ifp); 2940 splx(s); 2941 } 2942 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 2943 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2944 (ifr->ifr_flags &~ IFF_CANTCHANGE); 2945 break; 2946 case SIOCGIFFLAGS: 2947 ifr = data; 2948 ifr->ifr_flags = ifp->if_flags; 2949 break; 2950 2951 case SIOCGIFMETRIC: 2952 ifr = data; 2953 ifr->ifr_metric = ifp->if_metric; 2954 break; 2955 2956 case SIOCGIFMTU: 2957 ifr = data; 2958 ifr->ifr_mtu = ifp->if_mtu; 2959 break; 2960 2961 case SIOCGIFDLT: 2962 ifr = data; 2963 ifr->ifr_dlt = ifp->if_dlt; 2964 break; 2965 2966 case SIOCGIFCAP: 2967 ifcr = data; 2968 ifcr->ifcr_capabilities = ifp->if_capabilities; 2969 ifcr->ifcr_capenable = ifp->if_capenable; 2970 break; 2971 2972 case SIOCSIFMETRIC: 2973 ifr = data; 2974 ifp->if_metric = ifr->ifr_metric; 2975 break; 2976 2977 case SIOCGIFDATA: 2978 ifdr = data; 2979 ifdr->ifdr_data = ifp->if_data; 2980 break; 2981 2982 case SIOCGIFINDEX: 2983 ifr = data; 2984 ifr->ifr_index = ifp->if_index; 2985 break; 2986 2987 case SIOCZIFDATA: 2988 ifdr = data; 2989 ifdr->ifdr_data = ifp->if_data; 2990 /* 2991 * Assumes that the volatile counters that can be 2992 * zero'ed are at the end of if_data. 2993 */ 2994 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) - 2995 offsetof(struct if_data, ifi_ipackets)); 2996 /* 2997 * The memset() clears to the bottm of if_data. In the area, 2998 * if_lastchange is included. Please be careful if new entry 2999 * will be added into if_data or rewite this. 3000 * 3001 * And also, update if_lastchnage. 3002 */ 3003 getnanotime(&ifp->if_lastchange); 3004 break; 3005 case SIOCSIFMTU: 3006 ifr = data; 3007 if (ifp->if_mtu == ifr->ifr_mtu) 3008 break; 3009 ifp->if_mtu = ifr->ifr_mtu; 3010 /* 3011 * If the link MTU changed, do network layer specific procedure. 3012 */ 3013 #ifdef INET6 3014 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3015 if (in6_present) 3016 nd6_setmtu(ifp); 3017 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3018 #endif 3019 return ENETRESET; 3020 default: 3021 return ENOTTY; 3022 } 3023 return 0; 3024 } 3025 3026 int 3027 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 3028 { 3029 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 3030 struct ifaddr *ifa; 3031 const struct sockaddr *any, *sa; 3032 union { 3033 struct sockaddr sa; 3034 struct sockaddr_storage ss; 3035 } u, v; 3036 int s, error = 0; 3037 3038 switch (cmd) { 3039 case SIOCSIFADDRPREF: 3040 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, 3041 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 3042 NULL) != 0) 3043 return EPERM; 3044 case SIOCGIFADDRPREF: 3045 break; 3046 default: 3047 return EOPNOTSUPP; 3048 } 3049 3050 /* sanity checks */ 3051 if (data == NULL || ifp == NULL) { 3052 panic("invalid argument to %s", __func__); 3053 /*NOTREACHED*/ 3054 } 3055 3056 /* address must be specified on ADD and DELETE */ 3057 sa = sstocsa(&ifap->ifap_addr); 3058 if (sa->sa_family != sofamily(so)) 3059 return EINVAL; 3060 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 3061 return EINVAL; 3062 3063 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 3064 3065 s = pserialize_read_enter(); 3066 IFADDR_READER_FOREACH(ifa, ifp) { 3067 if (ifa->ifa_addr->sa_family != sa->sa_family) 3068 continue; 3069 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 3070 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 3071 break; 3072 } 3073 if (ifa == NULL) { 3074 error = EADDRNOTAVAIL; 3075 goto out; 3076 } 3077 3078 switch (cmd) { 3079 case SIOCSIFADDRPREF: 3080 ifa->ifa_preference = ifap->ifap_preference; 3081 goto out; 3082 case SIOCGIFADDRPREF: 3083 /* fill in the if_laddrreq structure */ 3084 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 3085 sizeof(ifap->ifap_addr), ifa->ifa_addr); 3086 ifap->ifap_preference = ifa->ifa_preference; 3087 goto out; 3088 default: 3089 error = EOPNOTSUPP; 3090 } 3091 out: 3092 pserialize_read_exit(s); 3093 return error; 3094 } 3095 3096 /* 3097 * Interface ioctls. 3098 */ 3099 static int 3100 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 3101 { 3102 struct ifnet *ifp; 3103 struct ifreq *ifr; 3104 int error = 0; 3105 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ) 3106 u_long ocmd = cmd; 3107 #endif 3108 short oif_flags; 3109 #ifdef COMPAT_OIFREQ 3110 struct ifreq ifrb; 3111 struct oifreq *oifr = NULL; 3112 #endif 3113 int r; 3114 struct psref psref; 3115 int bound; 3116 3117 switch (cmd) { 3118 #ifdef COMPAT_OIFREQ 3119 case OSIOCGIFCONF: 3120 case OOSIOCGIFCONF: 3121 return compat_ifconf(cmd, data); 3122 #endif 3123 #ifdef COMPAT_OIFDATA 3124 case OSIOCGIFDATA: 3125 case OSIOCZIFDATA: 3126 return compat_ifdatareq(l, cmd, data); 3127 #endif 3128 case SIOCGIFCONF: 3129 return ifconf(cmd, data); 3130 case SIOCINITIFADDR: 3131 return EPERM; 3132 } 3133 3134 #ifdef COMPAT_OIFREQ 3135 cmd = (*vec_compat_cvtcmd)(cmd); 3136 if (cmd != ocmd) { 3137 oifr = data; 3138 data = ifr = &ifrb; 3139 ifreqo2n(oifr, ifr); 3140 } else 3141 #endif 3142 ifr = data; 3143 3144 switch (cmd) { 3145 case SIOCIFCREATE: 3146 case SIOCIFDESTROY: 3147 bound = curlwp_bind(); 3148 if (l != NULL) { 3149 ifp = if_get(ifr->ifr_name, &psref); 3150 error = kauth_authorize_network(l->l_cred, 3151 KAUTH_NETWORK_INTERFACE, 3152 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3153 (void *)cmd, NULL); 3154 if (ifp != NULL) 3155 if_put(ifp, &psref); 3156 if (error != 0) { 3157 curlwp_bindx(bound); 3158 return error; 3159 } 3160 } 3161 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3162 mutex_enter(&if_clone_mtx); 3163 r = (cmd == SIOCIFCREATE) ? 3164 if_clone_create(ifr->ifr_name) : 3165 if_clone_destroy(ifr->ifr_name); 3166 mutex_exit(&if_clone_mtx); 3167 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3168 curlwp_bindx(bound); 3169 return r; 3170 3171 case SIOCIFGCLONERS: 3172 { 3173 struct if_clonereq *req = (struct if_clonereq *)data; 3174 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 3175 &req->ifcr_total); 3176 } 3177 } 3178 3179 bound = curlwp_bind(); 3180 ifp = if_get(ifr->ifr_name, &psref); 3181 if (ifp == NULL) { 3182 curlwp_bindx(bound); 3183 return ENXIO; 3184 } 3185 3186 switch (cmd) { 3187 case SIOCALIFADDR: 3188 case SIOCDLIFADDR: 3189 case SIOCSIFADDRPREF: 3190 case SIOCSIFFLAGS: 3191 case SIOCSIFCAP: 3192 case SIOCSIFMETRIC: 3193 case SIOCZIFDATA: 3194 case SIOCSIFMTU: 3195 case SIOCSIFPHYADDR: 3196 case SIOCDIFPHYADDR: 3197 #ifdef INET6 3198 case SIOCSIFPHYADDR_IN6: 3199 #endif 3200 case SIOCSLIFPHYADDR: 3201 case SIOCADDMULTI: 3202 case SIOCDELMULTI: 3203 case SIOCSIFMEDIA: 3204 case SIOCSDRVSPEC: 3205 case SIOCG80211: 3206 case SIOCS80211: 3207 case SIOCS80211NWID: 3208 case SIOCS80211NWKEY: 3209 case SIOCS80211POWER: 3210 case SIOCS80211BSSID: 3211 case SIOCS80211CHANNEL: 3212 case SIOCSLINKSTR: 3213 if (l != NULL) { 3214 error = kauth_authorize_network(l->l_cred, 3215 KAUTH_NETWORK_INTERFACE, 3216 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3217 (void *)cmd, NULL); 3218 if (error != 0) 3219 goto out; 3220 } 3221 } 3222 3223 oif_flags = ifp->if_flags; 3224 3225 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); 3226 IFNET_LOCK(ifp); 3227 3228 error = (*ifp->if_ioctl)(ifp, cmd, data); 3229 if (error != ENOTTY) 3230 ; 3231 else if (so->so_proto == NULL) 3232 error = EOPNOTSUPP; 3233 else { 3234 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3235 #ifdef COMPAT_OSOCK 3236 if (vec_compat_ifioctl != NULL) 3237 error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l); 3238 else 3239 #endif 3240 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 3241 cmd, data, ifp); 3242 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3243 } 3244 3245 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 3246 if ((ifp->if_flags & IFF_UP) != 0) { 3247 int s = splsoftnet(); 3248 if_up_locked(ifp); 3249 splx(s); 3250 } 3251 } 3252 #ifdef COMPAT_OIFREQ 3253 if (cmd != ocmd) 3254 ifreqn2o(oifr, ifr); 3255 #endif 3256 3257 IFNET_UNLOCK(ifp); 3258 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); 3259 out: 3260 if_put(ifp, &psref); 3261 curlwp_bindx(bound); 3262 return error; 3263 } 3264 3265 /* 3266 * Return interface configuration 3267 * of system. List may be used 3268 * in later ioctl's (above) to get 3269 * other information. 3270 * 3271 * Each record is a struct ifreq. Before the addition of 3272 * sockaddr_storage, the API rule was that sockaddr flavors that did 3273 * not fit would extend beyond the struct ifreq, with the next struct 3274 * ifreq starting sa_len beyond the struct sockaddr. Because the 3275 * union in struct ifreq includes struct sockaddr_storage, every kind 3276 * of sockaddr must fit. Thus, there are no longer any overlength 3277 * records. 3278 * 3279 * Records are added to the user buffer if they fit, and ifc_len is 3280 * adjusted to the length that was written. Thus, the user is only 3281 * assured of getting the complete list if ifc_len on return is at 3282 * least sizeof(struct ifreq) less than it was on entry. 3283 * 3284 * If the user buffer pointer is NULL, this routine copies no data and 3285 * returns the amount of space that would be needed. 3286 * 3287 * Invariants: 3288 * ifrp points to the next part of the user's buffer to be used. If 3289 * ifrp != NULL, space holds the number of bytes remaining that we may 3290 * write at ifrp. Otherwise, space holds the number of bytes that 3291 * would have been written had there been adequate space. 3292 */ 3293 /*ARGSUSED*/ 3294 static int 3295 ifconf(u_long cmd, void *data) 3296 { 3297 struct ifconf *ifc = (struct ifconf *)data; 3298 struct ifnet *ifp; 3299 struct ifaddr *ifa; 3300 struct ifreq ifr, *ifrp = NULL; 3301 int space = 0, error = 0; 3302 const int sz = (int)sizeof(struct ifreq); 3303 const bool docopy = ifc->ifc_req != NULL; 3304 int s; 3305 int bound; 3306 struct psref psref; 3307 3308 if (docopy) { 3309 space = ifc->ifc_len; 3310 ifrp = ifc->ifc_req; 3311 } 3312 3313 bound = curlwp_bind(); 3314 s = pserialize_read_enter(); 3315 IFNET_READER_FOREACH(ifp) { 3316 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3317 pserialize_read_exit(s); 3318 3319 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3320 sizeof(ifr.ifr_name)); 3321 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3322 error = ENAMETOOLONG; 3323 goto release_exit; 3324 } 3325 if (IFADDR_READER_EMPTY(ifp)) { 3326 /* Interface with no addresses - send zero sockaddr. */ 3327 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3328 if (!docopy) { 3329 space += sz; 3330 goto next; 3331 } 3332 if (space >= sz) { 3333 error = copyout(&ifr, ifrp, sz); 3334 if (error != 0) 3335 goto release_exit; 3336 ifrp++; 3337 space -= sz; 3338 } 3339 } 3340 3341 s = pserialize_read_enter(); 3342 IFADDR_READER_FOREACH(ifa, ifp) { 3343 struct sockaddr *sa = ifa->ifa_addr; 3344 /* all sockaddrs must fit in sockaddr_storage */ 3345 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3346 3347 if (!docopy) { 3348 space += sz; 3349 continue; 3350 } 3351 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3352 pserialize_read_exit(s); 3353 3354 if (space >= sz) { 3355 error = copyout(&ifr, ifrp, sz); 3356 if (error != 0) 3357 goto release_exit; 3358 ifrp++; space -= sz; 3359 } 3360 s = pserialize_read_enter(); 3361 } 3362 pserialize_read_exit(s); 3363 3364 next: 3365 s = pserialize_read_enter(); 3366 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3367 } 3368 pserialize_read_exit(s); 3369 curlwp_bindx(bound); 3370 3371 if (docopy) { 3372 KASSERT(0 <= space && space <= ifc->ifc_len); 3373 ifc->ifc_len -= space; 3374 } else { 3375 KASSERT(space >= 0); 3376 ifc->ifc_len = space; 3377 } 3378 return (0); 3379 3380 release_exit: 3381 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3382 curlwp_bindx(bound); 3383 return error; 3384 } 3385 3386 int 3387 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3388 { 3389 uint8_t len; 3390 #ifdef COMPAT_OIFREQ 3391 struct ifreq ifrb; 3392 struct oifreq *oifr = NULL; 3393 u_long ocmd = cmd; 3394 cmd = (*vec_compat_cvtcmd)(cmd); 3395 if (cmd != ocmd) { 3396 oifr = (struct oifreq *)(void *)ifr; 3397 ifr = &ifrb; 3398 ifreqo2n(oifr, ifr); 3399 len = sizeof(oifr->ifr_addr); 3400 } else 3401 #endif 3402 len = sizeof(ifr->ifr_ifru.ifru_space); 3403 3404 if (len < sa->sa_len) 3405 return EFBIG; 3406 3407 memset(&ifr->ifr_addr, 0, len); 3408 sockaddr_copy(&ifr->ifr_addr, len, sa); 3409 3410 #ifdef COMPAT_OIFREQ 3411 if (cmd != ocmd) 3412 ifreqn2o(oifr, ifr); 3413 #endif 3414 return 0; 3415 } 3416 3417 /* 3418 * wrapper function for the drivers which doesn't have if_transmit(). 3419 */ 3420 static int 3421 if_transmit(struct ifnet *ifp, struct mbuf *m) 3422 { 3423 int s, error; 3424 size_t pktlen = m->m_pkthdr.len; 3425 bool mcast = (m->m_flags & M_MCAST) != 0; 3426 3427 s = splnet(); 3428 3429 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3430 if (error != 0) { 3431 /* mbuf is already freed */ 3432 goto out; 3433 } 3434 3435 ifp->if_obytes += pktlen; 3436 if (mcast) 3437 ifp->if_omcasts++; 3438 3439 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3440 if_start_lock(ifp); 3441 out: 3442 splx(s); 3443 3444 return error; 3445 } 3446 3447 int 3448 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3449 { 3450 int error; 3451 3452 #ifdef ALTQ 3453 KERNEL_LOCK(1, NULL); 3454 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3455 error = if_transmit(ifp, m); 3456 KERNEL_UNLOCK_ONE(NULL); 3457 } else { 3458 KERNEL_UNLOCK_ONE(NULL); 3459 error = (*ifp->if_transmit)(ifp, m); 3460 /* mbuf is alredy freed */ 3461 } 3462 #else /* !ALTQ */ 3463 error = (*ifp->if_transmit)(ifp, m); 3464 /* mbuf is alredy freed */ 3465 #endif /* !ALTQ */ 3466 3467 return error; 3468 } 3469 3470 /* 3471 * Queue message on interface, and start output if interface 3472 * not yet active. 3473 */ 3474 int 3475 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3476 { 3477 3478 return if_transmit_lock(ifp, m); 3479 } 3480 3481 /* 3482 * Queue message on interface, possibly using a second fast queue 3483 */ 3484 int 3485 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3486 { 3487 int error = 0; 3488 3489 if (ifq != NULL 3490 #ifdef ALTQ 3491 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3492 #endif 3493 ) { 3494 if (IF_QFULL(ifq)) { 3495 IF_DROP(&ifp->if_snd); 3496 m_freem(m); 3497 if (error == 0) 3498 error = ENOBUFS; 3499 } else 3500 IF_ENQUEUE(ifq, m); 3501 } else 3502 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3503 if (error != 0) { 3504 ++ifp->if_oerrors; 3505 return error; 3506 } 3507 return 0; 3508 } 3509 3510 int 3511 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3512 { 3513 int rc; 3514 3515 KASSERT(IFNET_LOCKED(ifp)); 3516 if (ifp->if_initaddr != NULL) 3517 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3518 else if (src || 3519 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3520 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); 3521 3522 return rc; 3523 } 3524 3525 int 3526 if_do_dad(struct ifnet *ifp) 3527 { 3528 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3529 return 0; 3530 3531 switch (ifp->if_type) { 3532 case IFT_FAITH: 3533 /* 3534 * These interfaces do not have the IFF_LOOPBACK flag, 3535 * but loop packets back. We do not have to do DAD on such 3536 * interfaces. We should even omit it, because loop-backed 3537 * responses would confuse the DAD procedure. 3538 */ 3539 return 0; 3540 default: 3541 /* 3542 * Our DAD routine requires the interface up and running. 3543 * However, some interfaces can be up before the RUNNING 3544 * status. Additionaly, users may try to assign addresses 3545 * before the interface becomes up (or running). 3546 * We simply skip DAD in such a case as a work around. 3547 * XXX: we should rather mark "tentative" on such addresses, 3548 * and do DAD after the interface becomes ready. 3549 */ 3550 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 3551 (IFF_UP|IFF_RUNNING)) 3552 return 0; 3553 3554 return 1; 3555 } 3556 } 3557 3558 int 3559 if_flags_set(ifnet_t *ifp, const short flags) 3560 { 3561 int rc; 3562 3563 KASSERT(IFNET_LOCKED(ifp)); 3564 3565 if (ifp->if_setflags != NULL) 3566 rc = (*ifp->if_setflags)(ifp, flags); 3567 else { 3568 short cantflags, chgdflags; 3569 struct ifreq ifr; 3570 3571 chgdflags = ifp->if_flags ^ flags; 3572 cantflags = chgdflags & IFF_CANTCHANGE; 3573 3574 if (cantflags != 0) 3575 ifp->if_flags ^= cantflags; 3576 3577 /* Traditionally, we do not call if_ioctl after 3578 * setting/clearing only IFF_PROMISC if the interface 3579 * isn't IFF_UP. Uphold that tradition. 3580 */ 3581 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3582 return 0; 3583 3584 memset(&ifr, 0, sizeof(ifr)); 3585 3586 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3587 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); 3588 3589 if (rc != 0 && cantflags != 0) 3590 ifp->if_flags ^= cantflags; 3591 } 3592 3593 return rc; 3594 } 3595 3596 int 3597 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3598 { 3599 int rc; 3600 struct ifreq ifr; 3601 3602 /* CARP and MROUTING still don't deal with the lock yet */ 3603 #if (!defined(NCARP) || (NCARP == 0)) && !defined(MROUTING) 3604 KASSERT(IFNET_LOCKED(ifp)); 3605 #endif 3606 if (ifp->if_mcastop != NULL) 3607 rc = (*ifp->if_mcastop)(ifp, cmd, sa); 3608 else { 3609 ifreq_setaddr(cmd, &ifr, sa); 3610 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); 3611 } 3612 3613 return rc; 3614 } 3615 3616 static void 3617 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3618 struct ifaltq *ifq) 3619 { 3620 const struct sysctlnode *cnode, *rnode; 3621 3622 if (sysctl_createv(clog, 0, NULL, &rnode, 3623 CTLFLAG_PERMANENT, 3624 CTLTYPE_NODE, "interfaces", 3625 SYSCTL_DESCR("Per-interface controls"), 3626 NULL, 0, NULL, 0, 3627 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 3628 goto bad; 3629 3630 if (sysctl_createv(clog, 0, &rnode, &rnode, 3631 CTLFLAG_PERMANENT, 3632 CTLTYPE_NODE, ifname, 3633 SYSCTL_DESCR("Interface controls"), 3634 NULL, 0, NULL, 0, 3635 CTL_CREATE, CTL_EOL) != 0) 3636 goto bad; 3637 3638 if (sysctl_createv(clog, 0, &rnode, &rnode, 3639 CTLFLAG_PERMANENT, 3640 CTLTYPE_NODE, "sndq", 3641 SYSCTL_DESCR("Interface output queue controls"), 3642 NULL, 0, NULL, 0, 3643 CTL_CREATE, CTL_EOL) != 0) 3644 goto bad; 3645 3646 if (sysctl_createv(clog, 0, &rnode, &cnode, 3647 CTLFLAG_PERMANENT, 3648 CTLTYPE_INT, "len", 3649 SYSCTL_DESCR("Current output queue length"), 3650 NULL, 0, &ifq->ifq_len, 0, 3651 CTL_CREATE, CTL_EOL) != 0) 3652 goto bad; 3653 3654 if (sysctl_createv(clog, 0, &rnode, &cnode, 3655 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3656 CTLTYPE_INT, "maxlen", 3657 SYSCTL_DESCR("Maximum allowed output queue length"), 3658 NULL, 0, &ifq->ifq_maxlen, 0, 3659 CTL_CREATE, CTL_EOL) != 0) 3660 goto bad; 3661 3662 if (sysctl_createv(clog, 0, &rnode, &cnode, 3663 CTLFLAG_PERMANENT, 3664 CTLTYPE_INT, "drops", 3665 SYSCTL_DESCR("Packets dropped due to full output queue"), 3666 NULL, 0, &ifq->ifq_drops, 0, 3667 CTL_CREATE, CTL_EOL) != 0) 3668 goto bad; 3669 3670 return; 3671 bad: 3672 printf("%s: could not attach sysctl nodes\n", ifname); 3673 return; 3674 } 3675 3676 #if defined(INET) || defined(INET6) 3677 3678 #define SYSCTL_NET_PKTQ(q, cn, c) \ 3679 static int \ 3680 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \ 3681 { \ 3682 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \ 3683 } 3684 3685 #if defined(INET) 3686 static int 3687 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS) 3688 { 3689 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq); 3690 } 3691 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS) 3692 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS) 3693 #endif 3694 3695 #if defined(INET6) 3696 static int 3697 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS) 3698 { 3699 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq); 3700 } 3701 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS) 3702 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS) 3703 #endif 3704 3705 static void 3706 sysctl_net_pktq_setup(struct sysctllog **clog, int pf) 3707 { 3708 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL; 3709 const char *pfname = NULL, *ipname = NULL; 3710 int ipn = 0, qid = 0; 3711 3712 switch (pf) { 3713 #if defined(INET) 3714 case PF_INET: 3715 len_func = sysctl_net_ip_pktq_items; 3716 maxlen_func = sysctl_net_ip_pktq_maxlen; 3717 drops_func = sysctl_net_ip_pktq_drops; 3718 pfname = "inet", ipn = IPPROTO_IP; 3719 ipname = "ip", qid = IPCTL_IFQ; 3720 break; 3721 #endif 3722 #if defined(INET6) 3723 case PF_INET6: 3724 len_func = sysctl_net_ip6_pktq_items; 3725 maxlen_func = sysctl_net_ip6_pktq_maxlen; 3726 drops_func = sysctl_net_ip6_pktq_drops; 3727 pfname = "inet6", ipn = IPPROTO_IPV6; 3728 ipname = "ip6", qid = IPV6CTL_IFQ; 3729 break; 3730 #endif 3731 default: 3732 KASSERT(false); 3733 } 3734 3735 sysctl_createv(clog, 0, NULL, NULL, 3736 CTLFLAG_PERMANENT, 3737 CTLTYPE_NODE, pfname, NULL, 3738 NULL, 0, NULL, 0, 3739 CTL_NET, pf, CTL_EOL); 3740 sysctl_createv(clog, 0, NULL, NULL, 3741 CTLFLAG_PERMANENT, 3742 CTLTYPE_NODE, ipname, NULL, 3743 NULL, 0, NULL, 0, 3744 CTL_NET, pf, ipn, CTL_EOL); 3745 sysctl_createv(clog, 0, NULL, NULL, 3746 CTLFLAG_PERMANENT, 3747 CTLTYPE_NODE, "ifq", 3748 SYSCTL_DESCR("Protocol input queue controls"), 3749 NULL, 0, NULL, 0, 3750 CTL_NET, pf, ipn, qid, CTL_EOL); 3751 3752 sysctl_createv(clog, 0, NULL, NULL, 3753 CTLFLAG_PERMANENT, 3754 CTLTYPE_INT, "len", 3755 SYSCTL_DESCR("Current input queue length"), 3756 len_func, 0, NULL, 0, 3757 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); 3758 sysctl_createv(clog, 0, NULL, NULL, 3759 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3760 CTLTYPE_INT, "maxlen", 3761 SYSCTL_DESCR("Maximum allowed input queue length"), 3762 maxlen_func, 0, NULL, 0, 3763 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); 3764 sysctl_createv(clog, 0, NULL, NULL, 3765 CTLFLAG_PERMANENT, 3766 CTLTYPE_INT, "drops", 3767 SYSCTL_DESCR("Packets dropped due to full input queue"), 3768 drops_func, 0, NULL, 0, 3769 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); 3770 } 3771 #endif /* INET || INET6 */ 3772 3773 static int 3774 if_sdl_sysctl(SYSCTLFN_ARGS) 3775 { 3776 struct ifnet *ifp; 3777 const struct sockaddr_dl *sdl; 3778 struct psref psref; 3779 int error = 0; 3780 int bound; 3781 3782 if (namelen != 1) 3783 return EINVAL; 3784 3785 bound = curlwp_bind(); 3786 ifp = if_get_byindex(name[0], &psref); 3787 if (ifp == NULL) { 3788 error = ENODEV; 3789 goto out0; 3790 } 3791 3792 sdl = ifp->if_sadl; 3793 if (sdl == NULL) { 3794 *oldlenp = 0; 3795 goto out1; 3796 } 3797 3798 if (oldp == NULL) { 3799 *oldlenp = sdl->sdl_alen; 3800 goto out1; 3801 } 3802 3803 if (*oldlenp >= sdl->sdl_alen) 3804 *oldlenp = sdl->sdl_alen; 3805 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp); 3806 out1: 3807 if_put(ifp, &psref); 3808 out0: 3809 curlwp_bindx(bound); 3810 return error; 3811 } 3812 3813 static void 3814 if_sysctl_setup(struct sysctllog **clog) 3815 { 3816 const struct sysctlnode *rnode = NULL; 3817 3818 sysctl_createv(clog, 0, NULL, &rnode, 3819 CTLFLAG_PERMANENT, 3820 CTLTYPE_NODE, "sdl", 3821 SYSCTL_DESCR("Get active link-layer address"), 3822 if_sdl_sysctl, 0, NULL, 0, 3823 CTL_NET, CTL_CREATE, CTL_EOL); 3824 3825 #if defined(INET) 3826 sysctl_net_pktq_setup(NULL, PF_INET); 3827 #endif 3828 #ifdef INET6 3829 if (in6_present) 3830 sysctl_net_pktq_setup(NULL, PF_INET6); 3831 #endif 3832 } 3833