1 /* $NetBSD: if.c,v 1.419 2018/01/30 10:40:02 ozaki-r Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.419 2018/01/30 10:40:02 ozaki-r Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 #include "opt_atalk.h" 99 #include "opt_natm.h" 100 #include "opt_wlan.h" 101 #include "opt_net_mpsafe.h" 102 #include "opt_mrouting.h" 103 #endif 104 105 #include <sys/param.h> 106 #include <sys/mbuf.h> 107 #include <sys/systm.h> 108 #include <sys/callout.h> 109 #include <sys/proc.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/domain.h> 113 #include <sys/protosw.h> 114 #include <sys/kernel.h> 115 #include <sys/ioctl.h> 116 #include <sys/sysctl.h> 117 #include <sys/syslog.h> 118 #include <sys/kauth.h> 119 #include <sys/kmem.h> 120 #include <sys/xcall.h> 121 #include <sys/cpu.h> 122 #include <sys/intr.h> 123 124 #include <net/if.h> 125 #include <net/if_dl.h> 126 #include <net/if_ether.h> 127 #include <net/if_media.h> 128 #include <net80211/ieee80211.h> 129 #include <net80211/ieee80211_ioctl.h> 130 #include <net/if_types.h> 131 #include <net/route.h> 132 #include <net/netisr.h> 133 #include <sys/module.h> 134 #ifdef NETATALK 135 #include <netatalk/at_extern.h> 136 #include <netatalk/at.h> 137 #endif 138 #include <net/pfil.h> 139 #include <netinet/in.h> 140 #include <netinet/in_var.h> 141 #include <netinet/ip_encap.h> 142 #include <net/bpf.h> 143 144 #ifdef INET6 145 #include <netinet6/in6_var.h> 146 #include <netinet6/nd6.h> 147 #endif 148 149 #include "ether.h" 150 #include "fddi.h" 151 #include "token.h" 152 153 #include "carp.h" 154 #if NCARP > 0 155 #include <netinet/ip_carp.h> 156 #endif 157 158 #include <compat/sys/sockio.h> 159 #include <compat/sys/socket.h> 160 161 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 162 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 163 164 /* 165 * Global list of interfaces. 166 */ 167 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 168 struct ifnet_head ifnet_list; 169 170 struct pslist_head ifnet_pslist; 171 static ifnet_t ** ifindex2ifnet = NULL; 172 static u_int if_index = 1; 173 static size_t if_indexlim = 0; 174 static uint64_t index_gen; 175 /* Mutex to protect the above objects. */ 176 kmutex_t ifnet_mtx __cacheline_aligned; 177 static struct psref_class *ifnet_psref_class __read_mostly; 178 static pserialize_t ifnet_psz; 179 180 static kmutex_t if_clone_mtx; 181 182 struct ifnet *lo0ifp; 183 int ifqmaxlen = IFQ_MAXLEN; 184 185 struct psref_class *ifa_psref_class __read_mostly; 186 187 static int if_delroute_matcher(struct rtentry *, void *); 188 189 static bool if_is_unit(const char *); 190 static struct if_clone *if_clone_lookup(const char *, int *); 191 192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 193 static int if_cloners_count; 194 195 /* Packet filtering hook for interfaces. */ 196 pfil_head_t * if_pfil __read_mostly; 197 198 static kauth_listener_t if_listener; 199 200 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 201 static void if_detach_queues(struct ifnet *, struct ifqueue *); 202 static void sysctl_sndq_setup(struct sysctllog **, const char *, 203 struct ifaltq *); 204 static void if_slowtimo(void *); 205 static void if_free_sadl(struct ifnet *); 206 static void if_attachdomain1(struct ifnet *); 207 static int ifconf(u_long, void *); 208 static int if_transmit(struct ifnet *, struct mbuf *); 209 static int if_clone_create(const char *); 210 static int if_clone_destroy(const char *); 211 static void if_link_state_change_si(void *); 212 static void if_up_locked(struct ifnet *); 213 static void _if_down(struct ifnet *); 214 static void if_down_deactivated(struct ifnet *); 215 216 struct if_percpuq { 217 struct ifnet *ipq_ifp; 218 void *ipq_si; 219 struct percpu *ipq_ifqs; /* struct ifqueue */ 220 }; 221 222 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 223 224 static void if_percpuq_drops(void *, void *, struct cpu_info *); 225 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 226 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 227 struct if_percpuq *); 228 229 struct if_deferred_start { 230 struct ifnet *ids_ifp; 231 void (*ids_if_start)(struct ifnet *); 232 void *ids_si; 233 }; 234 235 static void if_deferred_start_softint(void *); 236 static void if_deferred_start_common(struct ifnet *); 237 static void if_deferred_start_destroy(struct ifnet *); 238 239 #if defined(INET) || defined(INET6) 240 static void sysctl_net_pktq_setup(struct sysctllog **, int); 241 #endif 242 243 static void if_sysctl_setup(struct sysctllog **); 244 245 /* 246 * Pointer to stub or real compat_cvtcmd() depending on presence of 247 * the compat module 248 */ 249 u_long stub_compat_cvtcmd(u_long); 250 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd; 251 252 /* Similarly, pointer to compat_ifioctl() if it is present */ 253 254 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *, 255 struct lwp *) = NULL; 256 257 /* The stub version of compat_cvtcmd() */ 258 u_long stub_compat_cvtcmd(u_long cmd) 259 { 260 261 return cmd; 262 } 263 264 static int 265 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 266 void *arg0, void *arg1, void *arg2, void *arg3) 267 { 268 int result; 269 enum kauth_network_req req; 270 271 result = KAUTH_RESULT_DEFER; 272 req = (enum kauth_network_req)arg1; 273 274 if (action != KAUTH_NETWORK_INTERFACE) 275 return result; 276 277 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 278 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 279 result = KAUTH_RESULT_ALLOW; 280 281 return result; 282 } 283 284 /* 285 * Network interface utility routines. 286 * 287 * Routines with ifa_ifwith* names take sockaddr *'s as 288 * parameters. 289 */ 290 void 291 ifinit(void) 292 { 293 294 if_sysctl_setup(NULL); 295 296 #if (defined(INET) || defined(INET6)) 297 encapinit(); 298 #endif 299 300 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 301 if_listener_cb, NULL); 302 303 /* interfaces are available, inform socket code */ 304 ifioctl = doifioctl; 305 } 306 307 /* 308 * XXX Initialization before configure(). 309 * XXX hack to get pfil_add_hook working in autoconf. 310 */ 311 void 312 ifinit1(void) 313 { 314 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 315 316 TAILQ_INIT(&ifnet_list); 317 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 318 ifnet_psz = pserialize_create(); 319 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 320 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 321 PSLIST_INIT(&ifnet_pslist); 322 323 if_indexlim = 8; 324 325 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 326 KASSERT(if_pfil != NULL); 327 328 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN) 329 etherinit(); 330 #endif 331 } 332 333 ifnet_t * 334 if_alloc(u_char type) 335 { 336 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 337 } 338 339 void 340 if_free(ifnet_t *ifp) 341 { 342 kmem_free(ifp, sizeof(ifnet_t)); 343 } 344 345 void 346 if_initname(struct ifnet *ifp, const char *name, int unit) 347 { 348 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 349 "%s%d", name, unit); 350 } 351 352 /* 353 * Null routines used while an interface is going away. These routines 354 * just return an error. 355 */ 356 357 int 358 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 359 const struct sockaddr *so, const struct rtentry *rt) 360 { 361 362 return ENXIO; 363 } 364 365 void 366 if_nullinput(struct ifnet *ifp, struct mbuf *m) 367 { 368 369 /* Nothing. */ 370 } 371 372 void 373 if_nullstart(struct ifnet *ifp) 374 { 375 376 /* Nothing. */ 377 } 378 379 int 380 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 381 { 382 383 m_freem(m); 384 return ENXIO; 385 } 386 387 int 388 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 389 { 390 391 return ENXIO; 392 } 393 394 int 395 if_nullinit(struct ifnet *ifp) 396 { 397 398 return ENXIO; 399 } 400 401 void 402 if_nullstop(struct ifnet *ifp, int disable) 403 { 404 405 /* Nothing. */ 406 } 407 408 void 409 if_nullslowtimo(struct ifnet *ifp) 410 { 411 412 /* Nothing. */ 413 } 414 415 void 416 if_nulldrain(struct ifnet *ifp) 417 { 418 419 /* Nothing. */ 420 } 421 422 void 423 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 424 { 425 struct ifaddr *ifa; 426 struct sockaddr_dl *sdl; 427 428 ifp->if_addrlen = addrlen; 429 if_alloc_sadl(ifp); 430 ifa = ifp->if_dl; 431 sdl = satosdl(ifa->ifa_addr); 432 433 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 434 if (factory) { 435 ifp->if_hwdl = ifp->if_dl; 436 ifaref(ifp->if_hwdl); 437 } 438 /* TBD routing socket */ 439 } 440 441 struct ifaddr * 442 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 443 { 444 unsigned socksize, ifasize; 445 int addrlen, namelen; 446 struct sockaddr_dl *mask, *sdl; 447 struct ifaddr *ifa; 448 449 namelen = strlen(ifp->if_xname); 450 addrlen = ifp->if_addrlen; 451 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 452 ifasize = sizeof(*ifa) + 2 * socksize; 453 ifa = malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO); 454 455 sdl = (struct sockaddr_dl *)(ifa + 1); 456 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 457 458 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 459 ifp->if_xname, namelen, NULL, addrlen); 460 mask->sdl_family = AF_LINK; 461 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 462 memset(&mask->sdl_data[0], 0xff, namelen); 463 ifa->ifa_rtrequest = link_rtrequest; 464 ifa->ifa_addr = (struct sockaddr *)sdl; 465 ifa->ifa_netmask = (struct sockaddr *)mask; 466 ifa_psref_init(ifa); 467 468 *sdlp = sdl; 469 470 return ifa; 471 } 472 473 static void 474 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 475 { 476 const struct sockaddr_dl *sdl; 477 478 ifp->if_dl = ifa; 479 ifaref(ifa); 480 sdl = satosdl(ifa->ifa_addr); 481 ifp->if_sadl = sdl; 482 } 483 484 /* 485 * Allocate the link level name for the specified interface. This 486 * is an attachment helper. It must be called after ifp->if_addrlen 487 * is initialized, which may not be the case when if_attach() is 488 * called. 489 */ 490 void 491 if_alloc_sadl(struct ifnet *ifp) 492 { 493 struct ifaddr *ifa; 494 const struct sockaddr_dl *sdl; 495 496 /* 497 * If the interface already has a link name, release it 498 * now. This is useful for interfaces that can change 499 * link types, and thus switch link names often. 500 */ 501 if (ifp->if_sadl != NULL) 502 if_free_sadl(ifp); 503 504 ifa = if_dl_create(ifp, &sdl); 505 506 ifa_insert(ifp, ifa); 507 if_sadl_setrefs(ifp, ifa); 508 } 509 510 static void 511 if_deactivate_sadl(struct ifnet *ifp) 512 { 513 struct ifaddr *ifa; 514 515 KASSERT(ifp->if_dl != NULL); 516 517 ifa = ifp->if_dl; 518 519 ifp->if_sadl = NULL; 520 521 ifp->if_dl = NULL; 522 ifafree(ifa); 523 } 524 525 static void 526 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa) 527 { 528 struct ifaddr *old; 529 530 KASSERT(ifp->if_dl != NULL); 531 532 old = ifp->if_dl; 533 534 ifaref(ifa); 535 /* XXX Update if_dl and if_sadl atomically */ 536 ifp->if_dl = ifa; 537 ifp->if_sadl = satosdl(ifa->ifa_addr); 538 539 ifafree(old); 540 } 541 542 void 543 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 544 const struct sockaddr_dl *sdl) 545 { 546 int s, ss; 547 struct ifaddr *ifa; 548 int bound = curlwp_bind(); 549 550 KASSERT(ifa_held(ifa0)); 551 552 s = splsoftnet(); 553 554 if_replace_sadl(ifp, ifa0); 555 556 ss = pserialize_read_enter(); 557 IFADDR_READER_FOREACH(ifa, ifp) { 558 struct psref psref; 559 ifa_acquire(ifa, &psref); 560 pserialize_read_exit(ss); 561 562 rtinit(ifa, RTM_LLINFO_UPD, 0); 563 564 ss = pserialize_read_enter(); 565 ifa_release(ifa, &psref); 566 } 567 pserialize_read_exit(ss); 568 569 splx(s); 570 curlwp_bindx(bound); 571 } 572 573 /* 574 * Free the link level name for the specified interface. This is 575 * a detach helper. This is called from if_detach(). 576 */ 577 static void 578 if_free_sadl(struct ifnet *ifp) 579 { 580 struct ifaddr *ifa; 581 int s; 582 583 ifa = ifp->if_dl; 584 if (ifa == NULL) { 585 KASSERT(ifp->if_sadl == NULL); 586 return; 587 } 588 589 KASSERT(ifp->if_sadl != NULL); 590 591 s = splsoftnet(); 592 rtinit(ifa, RTM_DELETE, 0); 593 ifa_remove(ifp, ifa); 594 if_deactivate_sadl(ifp); 595 if (ifp->if_hwdl == ifa) { 596 ifafree(ifa); 597 ifp->if_hwdl = NULL; 598 } 599 splx(s); 600 } 601 602 static void 603 if_getindex(ifnet_t *ifp) 604 { 605 bool hitlimit = false; 606 607 ifp->if_index_gen = index_gen++; 608 609 ifp->if_index = if_index; 610 if (ifindex2ifnet == NULL) { 611 if_index++; 612 goto skip; 613 } 614 while (if_byindex(ifp->if_index)) { 615 /* 616 * If we hit USHRT_MAX, we skip back to 0 since 617 * there are a number of places where the value 618 * of if_index or if_index itself is compared 619 * to or stored in an unsigned short. By 620 * jumping back, we won't botch those assignments 621 * or comparisons. 622 */ 623 if (++if_index == 0) { 624 if_index = 1; 625 } else if (if_index == USHRT_MAX) { 626 /* 627 * However, if we have to jump back to 628 * zero *twice* without finding an empty 629 * slot in ifindex2ifnet[], then there 630 * there are too many (>65535) interfaces. 631 */ 632 if (hitlimit) { 633 panic("too many interfaces"); 634 } 635 hitlimit = true; 636 if_index = 1; 637 } 638 ifp->if_index = if_index; 639 } 640 skip: 641 /* 642 * ifindex2ifnet is indexed by if_index. Since if_index will 643 * grow dynamically, it should grow too. 644 */ 645 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 646 size_t m, n, oldlim; 647 void *q; 648 649 oldlim = if_indexlim; 650 while (ifp->if_index >= if_indexlim) 651 if_indexlim <<= 1; 652 653 /* grow ifindex2ifnet */ 654 m = oldlim * sizeof(struct ifnet *); 655 n = if_indexlim * sizeof(struct ifnet *); 656 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); 657 if (ifindex2ifnet != NULL) { 658 memcpy(q, ifindex2ifnet, m); 659 free(ifindex2ifnet, M_IFADDR); 660 } 661 ifindex2ifnet = (struct ifnet **)q; 662 } 663 ifindex2ifnet[ifp->if_index] = ifp; 664 } 665 666 /* 667 * Initialize an interface and assign an index for it. 668 * 669 * It must be called prior to a device specific attach routine 670 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 671 * and be followed by if_register: 672 * 673 * if_initialize(ifp); 674 * ether_ifattach(ifp, enaddr); 675 * if_register(ifp); 676 */ 677 int 678 if_initialize(ifnet_t *ifp) 679 { 680 int rv = 0; 681 682 KASSERT(if_indexlim > 0); 683 TAILQ_INIT(&ifp->if_addrlist); 684 685 /* 686 * Link level name is allocated later by a separate call to 687 * if_alloc_sadl(). 688 */ 689 690 if (ifp->if_snd.ifq_maxlen == 0) 691 ifp->if_snd.ifq_maxlen = ifqmaxlen; 692 693 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 694 695 ifp->if_link_state = LINK_STATE_UNKNOWN; 696 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 697 698 ifp->if_capenable = 0; 699 ifp->if_csum_flags_tx = 0; 700 ifp->if_csum_flags_rx = 0; 701 702 #ifdef ALTQ 703 ifp->if_snd.altq_type = 0; 704 ifp->if_snd.altq_disc = NULL; 705 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 706 ifp->if_snd.altq_tbr = NULL; 707 ifp->if_snd.altq_ifp = ifp; 708 #endif 709 710 IFQ_LOCK_INIT(&ifp->if_snd); 711 712 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 713 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); 714 715 IF_AFDATA_LOCK_INIT(ifp); 716 717 if (if_is_link_state_changeable(ifp)) { 718 u_int flags = SOFTINT_NET; 719 flags |= ISSET(ifp->if_extflags, IFEF_MPSAFE) ? 720 SOFTINT_MPSAFE : 0; 721 ifp->if_link_si = softint_establish(flags, 722 if_link_state_change_si, ifp); 723 if (ifp->if_link_si == NULL) { 724 rv = ENOMEM; 725 goto fail; 726 } 727 } 728 729 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 730 PSLIST_INIT(&ifp->if_addr_pslist); 731 psref_target_init(&ifp->if_psref, ifnet_psref_class); 732 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 733 LIST_INIT(&ifp->if_multiaddrs); 734 735 IFNET_GLOBAL_LOCK(); 736 if_getindex(ifp); 737 IFNET_GLOBAL_UNLOCK(); 738 739 return 0; 740 741 fail: 742 IF_AFDATA_LOCK_DESTROY(ifp); 743 744 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 745 (void)pfil_head_destroy(ifp->if_pfil); 746 747 IFQ_LOCK_DESTROY(&ifp->if_snd); 748 749 return rv; 750 } 751 752 /* 753 * Register an interface to the list of "active" interfaces. 754 */ 755 void 756 if_register(ifnet_t *ifp) 757 { 758 /* 759 * If the driver has not supplied its own if_ioctl, then 760 * supply the default. 761 */ 762 if (ifp->if_ioctl == NULL) 763 ifp->if_ioctl = ifioctl_common; 764 765 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 766 767 if (!STAILQ_EMPTY(&domains)) 768 if_attachdomain1(ifp); 769 770 /* Announce the interface. */ 771 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 772 773 if (ifp->if_slowtimo != NULL) { 774 ifp->if_slowtimo_ch = 775 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP); 776 callout_init(ifp->if_slowtimo_ch, 0); 777 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp); 778 if_slowtimo(ifp); 779 } 780 781 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 782 ifp->if_transmit = if_transmit; 783 784 IFNET_GLOBAL_LOCK(); 785 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 786 IFNET_WRITER_INSERT_TAIL(ifp); 787 IFNET_GLOBAL_UNLOCK(); 788 } 789 790 /* 791 * The if_percpuq framework 792 * 793 * It allows network device drivers to execute the network stack 794 * in softint (so called softint-based if_input). It utilizes 795 * softint and percpu ifqueue. It doesn't distribute any packets 796 * between CPUs, unlike pktqueue(9). 797 * 798 * Currently we support two options for device drivers to apply the framework: 799 * - Use it implicitly with less changes 800 * - If you use if_attach in driver's _attach function and if_input in 801 * driver's Rx interrupt handler, a packet is queued and a softint handles 802 * the packet implicitly 803 * - Use it explicitly in each driver (recommended) 804 * - You can use if_percpuq_* directly in your driver 805 * - In this case, you need to allocate struct if_percpuq in driver's softc 806 * - See wm(4) as a reference implementation 807 */ 808 809 static void 810 if_percpuq_softint(void *arg) 811 { 812 struct if_percpuq *ipq = arg; 813 struct ifnet *ifp = ipq->ipq_ifp; 814 struct mbuf *m; 815 816 while ((m = if_percpuq_dequeue(ipq)) != NULL) { 817 ifp->if_ipackets++; 818 bpf_mtap(ifp, m); 819 820 ifp->_if_input(ifp, m); 821 } 822 } 823 824 static void 825 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 826 { 827 struct ifqueue *const ifq = p; 828 829 memset(ifq, 0, sizeof(*ifq)); 830 ifq->ifq_maxlen = IFQ_MAXLEN; 831 } 832 833 struct if_percpuq * 834 if_percpuq_create(struct ifnet *ifp) 835 { 836 struct if_percpuq *ipq; 837 838 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 839 ipq->ipq_ifp = ifp; 840 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, 841 if_percpuq_softint, ipq); 842 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 843 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 844 845 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 846 847 return ipq; 848 } 849 850 static struct mbuf * 851 if_percpuq_dequeue(struct if_percpuq *ipq) 852 { 853 struct mbuf *m; 854 struct ifqueue *ifq; 855 int s; 856 857 s = splnet(); 858 ifq = percpu_getref(ipq->ipq_ifqs); 859 IF_DEQUEUE(ifq, m); 860 percpu_putref(ipq->ipq_ifqs); 861 splx(s); 862 863 return m; 864 } 865 866 static void 867 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 868 { 869 struct ifqueue *const ifq = p; 870 871 IF_PURGE(ifq); 872 } 873 874 void 875 if_percpuq_destroy(struct if_percpuq *ipq) 876 { 877 878 /* if_detach may already destroy it */ 879 if (ipq == NULL) 880 return; 881 882 softint_disestablish(ipq->ipq_si); 883 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 884 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 885 kmem_free(ipq, sizeof(*ipq)); 886 } 887 888 void 889 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 890 { 891 struct ifqueue *ifq; 892 int s; 893 894 KASSERT(ipq != NULL); 895 896 s = splnet(); 897 ifq = percpu_getref(ipq->ipq_ifqs); 898 if (IF_QFULL(ifq)) { 899 IF_DROP(ifq); 900 percpu_putref(ipq->ipq_ifqs); 901 m_freem(m); 902 goto out; 903 } 904 IF_ENQUEUE(ifq, m); 905 percpu_putref(ipq->ipq_ifqs); 906 907 softint_schedule(ipq->ipq_si); 908 out: 909 splx(s); 910 } 911 912 static void 913 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 914 { 915 struct ifqueue *const ifq = p; 916 int *sum = arg; 917 918 *sum += ifq->ifq_drops; 919 } 920 921 static int 922 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 923 { 924 struct sysctlnode node; 925 struct if_percpuq *ipq; 926 int sum = 0; 927 int error; 928 929 node = *rnode; 930 ipq = node.sysctl_data; 931 932 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 933 934 node.sysctl_data = ∑ 935 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 936 if (error != 0 || newp == NULL) 937 return error; 938 939 return 0; 940 } 941 942 static void 943 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 944 struct if_percpuq *ipq) 945 { 946 const struct sysctlnode *cnode, *rnode; 947 948 if (sysctl_createv(clog, 0, NULL, &rnode, 949 CTLFLAG_PERMANENT, 950 CTLTYPE_NODE, "interfaces", 951 SYSCTL_DESCR("Per-interface controls"), 952 NULL, 0, NULL, 0, 953 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 954 goto bad; 955 956 if (sysctl_createv(clog, 0, &rnode, &rnode, 957 CTLFLAG_PERMANENT, 958 CTLTYPE_NODE, ifname, 959 SYSCTL_DESCR("Interface controls"), 960 NULL, 0, NULL, 0, 961 CTL_CREATE, CTL_EOL) != 0) 962 goto bad; 963 964 if (sysctl_createv(clog, 0, &rnode, &rnode, 965 CTLFLAG_PERMANENT, 966 CTLTYPE_NODE, "rcvq", 967 SYSCTL_DESCR("Interface input queue controls"), 968 NULL, 0, NULL, 0, 969 CTL_CREATE, CTL_EOL) != 0) 970 goto bad; 971 972 #ifdef NOTYET 973 /* XXX Should show each per-CPU queue length? */ 974 if (sysctl_createv(clog, 0, &rnode, &rnode, 975 CTLFLAG_PERMANENT, 976 CTLTYPE_INT, "len", 977 SYSCTL_DESCR("Current input queue length"), 978 sysctl_percpuq_len, 0, NULL, 0, 979 CTL_CREATE, CTL_EOL) != 0) 980 goto bad; 981 982 if (sysctl_createv(clog, 0, &rnode, &cnode, 983 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 984 CTLTYPE_INT, "maxlen", 985 SYSCTL_DESCR("Maximum allowed input queue length"), 986 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 987 CTL_CREATE, CTL_EOL) != 0) 988 goto bad; 989 #endif 990 991 if (sysctl_createv(clog, 0, &rnode, &cnode, 992 CTLFLAG_PERMANENT, 993 CTLTYPE_INT, "drops", 994 SYSCTL_DESCR("Total packets dropped due to full input queue"), 995 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 996 CTL_CREATE, CTL_EOL) != 0) 997 goto bad; 998 999 return; 1000 bad: 1001 printf("%s: could not attach sysctl nodes\n", ifname); 1002 return; 1003 } 1004 1005 /* 1006 * The deferred if_start framework 1007 * 1008 * The common APIs to defer if_start to softint when if_start is requested 1009 * from a device driver running in hardware interrupt context. 1010 */ 1011 /* 1012 * Call ifp->if_start (or equivalent) in a dedicated softint for 1013 * deferred if_start. 1014 */ 1015 static void 1016 if_deferred_start_softint(void *arg) 1017 { 1018 struct if_deferred_start *ids = arg; 1019 struct ifnet *ifp = ids->ids_ifp; 1020 1021 ids->ids_if_start(ifp); 1022 } 1023 1024 /* 1025 * The default callback function for deferred if_start. 1026 */ 1027 static void 1028 if_deferred_start_common(struct ifnet *ifp) 1029 { 1030 int s; 1031 1032 s = splnet(); 1033 if_start_lock(ifp); 1034 splx(s); 1035 } 1036 1037 static inline bool 1038 if_snd_is_used(struct ifnet *ifp) 1039 { 1040 1041 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit || 1042 ALTQ_IS_ENABLED(&ifp->if_snd); 1043 } 1044 1045 /* 1046 * Schedule deferred if_start. 1047 */ 1048 void 1049 if_schedule_deferred_start(struct ifnet *ifp) 1050 { 1051 1052 KASSERT(ifp->if_deferred_start != NULL); 1053 1054 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1055 return; 1056 1057 softint_schedule(ifp->if_deferred_start->ids_si); 1058 } 1059 1060 /* 1061 * Create an instance of deferred if_start. A driver should call the function 1062 * only if the driver needs deferred if_start. Drivers can setup their own 1063 * deferred if_start function via 2nd argument. 1064 */ 1065 void 1066 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1067 { 1068 struct if_deferred_start *ids; 1069 1070 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1071 ids->ids_ifp = ifp; 1072 ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, 1073 if_deferred_start_softint, ids); 1074 if (func != NULL) 1075 ids->ids_if_start = func; 1076 else 1077 ids->ids_if_start = if_deferred_start_common; 1078 1079 ifp->if_deferred_start = ids; 1080 } 1081 1082 static void 1083 if_deferred_start_destroy(struct ifnet *ifp) 1084 { 1085 1086 if (ifp->if_deferred_start == NULL) 1087 return; 1088 1089 softint_disestablish(ifp->if_deferred_start->ids_si); 1090 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1091 ifp->if_deferred_start = NULL; 1092 } 1093 1094 /* 1095 * The common interface input routine that is called by device drivers, 1096 * which should be used only when the driver's rx handler already runs 1097 * in softint. 1098 */ 1099 void 1100 if_input(struct ifnet *ifp, struct mbuf *m) 1101 { 1102 1103 KASSERT(ifp->if_percpuq == NULL); 1104 KASSERT(!cpu_intr_p()); 1105 1106 ifp->if_ipackets++; 1107 bpf_mtap(ifp, m); 1108 1109 ifp->_if_input(ifp, m); 1110 } 1111 1112 /* 1113 * DEPRECATED. Use if_initialize and if_register instead. 1114 * See the above comment of if_initialize. 1115 * 1116 * Note that it implicitly enables if_percpuq to make drivers easy to 1117 * migrate softint-based if_input without much changes. If you don't 1118 * want to enable it, use if_initialize instead. 1119 */ 1120 int 1121 if_attach(ifnet_t *ifp) 1122 { 1123 int rv; 1124 1125 rv = if_initialize(ifp); 1126 if (rv != 0) 1127 return rv; 1128 1129 ifp->if_percpuq = if_percpuq_create(ifp); 1130 if_register(ifp); 1131 1132 return 0; 1133 } 1134 1135 void 1136 if_attachdomain(void) 1137 { 1138 struct ifnet *ifp; 1139 int s; 1140 int bound = curlwp_bind(); 1141 1142 s = pserialize_read_enter(); 1143 IFNET_READER_FOREACH(ifp) { 1144 struct psref psref; 1145 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1146 pserialize_read_exit(s); 1147 if_attachdomain1(ifp); 1148 s = pserialize_read_enter(); 1149 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1150 } 1151 pserialize_read_exit(s); 1152 curlwp_bindx(bound); 1153 } 1154 1155 static void 1156 if_attachdomain1(struct ifnet *ifp) 1157 { 1158 struct domain *dp; 1159 int s; 1160 1161 s = splsoftnet(); 1162 1163 /* address family dependent data region */ 1164 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1165 DOMAIN_FOREACH(dp) { 1166 if (dp->dom_ifattach != NULL) 1167 ifp->if_afdata[dp->dom_family] = 1168 (*dp->dom_ifattach)(ifp); 1169 } 1170 1171 splx(s); 1172 } 1173 1174 /* 1175 * Deactivate an interface. This points all of the procedure 1176 * handles at error stubs. May be called from interrupt context. 1177 */ 1178 void 1179 if_deactivate(struct ifnet *ifp) 1180 { 1181 int s; 1182 1183 s = splsoftnet(); 1184 1185 ifp->if_output = if_nulloutput; 1186 ifp->_if_input = if_nullinput; 1187 ifp->if_start = if_nullstart; 1188 ifp->if_transmit = if_nulltransmit; 1189 ifp->if_ioctl = if_nullioctl; 1190 ifp->if_init = if_nullinit; 1191 ifp->if_stop = if_nullstop; 1192 ifp->if_slowtimo = if_nullslowtimo; 1193 ifp->if_drain = if_nulldrain; 1194 1195 /* No more packets may be enqueued. */ 1196 ifp->if_snd.ifq_maxlen = 0; 1197 1198 splx(s); 1199 } 1200 1201 bool 1202 if_is_deactivated(const struct ifnet *ifp) 1203 { 1204 1205 return ifp->if_output == if_nulloutput; 1206 } 1207 1208 void 1209 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 1210 { 1211 struct ifaddr *ifa, *nifa; 1212 int s; 1213 1214 s = pserialize_read_enter(); 1215 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1216 nifa = IFADDR_READER_NEXT(ifa); 1217 if (ifa->ifa_addr->sa_family != family) 1218 continue; 1219 pserialize_read_exit(s); 1220 1221 (*purgeaddr)(ifa); 1222 1223 s = pserialize_read_enter(); 1224 } 1225 pserialize_read_exit(s); 1226 } 1227 1228 #ifdef IFAREF_DEBUG 1229 static struct ifaddr **ifa_list; 1230 static int ifa_list_size; 1231 1232 /* Depends on only one if_attach runs at once */ 1233 static void 1234 if_build_ifa_list(struct ifnet *ifp) 1235 { 1236 struct ifaddr *ifa; 1237 int i; 1238 1239 KASSERT(ifa_list == NULL); 1240 KASSERT(ifa_list_size == 0); 1241 1242 IFADDR_READER_FOREACH(ifa, ifp) 1243 ifa_list_size++; 1244 1245 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1246 i = 0; 1247 IFADDR_READER_FOREACH(ifa, ifp) { 1248 ifa_list[i++] = ifa; 1249 ifaref(ifa); 1250 } 1251 } 1252 1253 static void 1254 if_check_and_free_ifa_list(struct ifnet *ifp) 1255 { 1256 int i; 1257 struct ifaddr *ifa; 1258 1259 if (ifa_list == NULL) 1260 return; 1261 1262 for (i = 0; i < ifa_list_size; i++) { 1263 char buf[64]; 1264 1265 ifa = ifa_list[i]; 1266 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1267 if (ifa->ifa_refcnt > 1) { 1268 log(LOG_WARNING, 1269 "ifa(%s) still referenced (refcnt=%d)\n", 1270 buf, ifa->ifa_refcnt - 1); 1271 } else 1272 log(LOG_DEBUG, 1273 "ifa(%s) not referenced (refcnt=%d)\n", 1274 buf, ifa->ifa_refcnt - 1); 1275 ifafree(ifa); 1276 } 1277 1278 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1279 ifa_list = NULL; 1280 ifa_list_size = 0; 1281 } 1282 #endif 1283 1284 /* 1285 * Detach an interface from the list of "active" interfaces, 1286 * freeing any resources as we go along. 1287 * 1288 * NOTE: This routine must be called with a valid thread context, 1289 * as it may block. 1290 */ 1291 void 1292 if_detach(struct ifnet *ifp) 1293 { 1294 struct socket so; 1295 struct ifaddr *ifa; 1296 #ifdef IFAREF_DEBUG 1297 struct ifaddr *last_ifa = NULL; 1298 #endif 1299 struct domain *dp; 1300 const struct protosw *pr; 1301 int s, i, family, purged; 1302 uint64_t xc; 1303 1304 #ifdef IFAREF_DEBUG 1305 if_build_ifa_list(ifp); 1306 #endif 1307 /* 1308 * XXX It's kind of lame that we have to have the 1309 * XXX socket structure... 1310 */ 1311 memset(&so, 0, sizeof(so)); 1312 1313 s = splnet(); 1314 1315 sysctl_teardown(&ifp->if_sysctl_log); 1316 IFNET_LOCK(ifp); 1317 if_deactivate(ifp); 1318 IFNET_UNLOCK(ifp); 1319 1320 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) { 1321 ifp->if_slowtimo = NULL; 1322 callout_halt(ifp->if_slowtimo_ch, NULL); 1323 callout_destroy(ifp->if_slowtimo_ch); 1324 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch)); 1325 } 1326 if_deferred_start_destroy(ifp); 1327 1328 /* 1329 * Do an if_down() to give protocols a chance to do something. 1330 */ 1331 if_down_deactivated(ifp); 1332 1333 #ifdef ALTQ 1334 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1335 altq_disable(&ifp->if_snd); 1336 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1337 altq_detach(&ifp->if_snd); 1338 #endif 1339 1340 #if NCARP > 0 1341 /* Remove the interface from any carp group it is a part of. */ 1342 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1343 carp_ifdetach(ifp); 1344 #endif 1345 1346 /* 1347 * Rip all the addresses off the interface. This should make 1348 * all of the routes go away. 1349 * 1350 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1351 * from the list, including our "cursor", ifa. For safety, 1352 * and to honor the TAILQ abstraction, I just restart the 1353 * loop after each removal. Note that the loop will exit 1354 * when all of the remaining ifaddrs belong to the AF_LINK 1355 * family. I am counting on the historical fact that at 1356 * least one pr_usrreq in each address domain removes at 1357 * least one ifaddr. 1358 */ 1359 again: 1360 /* 1361 * At this point, no other one tries to remove ifa in the list, 1362 * so we don't need to take a lock or psref. Avoid using 1363 * IFADDR_READER_FOREACH to pass over an inspection of contract 1364 * violations of pserialize. 1365 */ 1366 IFADDR_WRITER_FOREACH(ifa, ifp) { 1367 family = ifa->ifa_addr->sa_family; 1368 #ifdef IFAREF_DEBUG 1369 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1370 ifa, family, ifa->ifa_refcnt); 1371 if (last_ifa != NULL && ifa == last_ifa) 1372 panic("if_detach: loop detected"); 1373 last_ifa = ifa; 1374 #endif 1375 if (family == AF_LINK) 1376 continue; 1377 dp = pffinddomain(family); 1378 KASSERTMSG(dp != NULL, "no domain for AF %d", family); 1379 /* 1380 * XXX These PURGEIF calls are redundant with the 1381 * purge-all-families calls below, but are left in for 1382 * now both to make a smaller change, and to avoid 1383 * unplanned interactions with clearing of 1384 * ifp->if_addrlist. 1385 */ 1386 purged = 0; 1387 for (pr = dp->dom_protosw; 1388 pr < dp->dom_protoswNPROTOSW; pr++) { 1389 so.so_proto = pr; 1390 if (pr->pr_usrreqs) { 1391 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1392 purged = 1; 1393 } 1394 } 1395 if (purged == 0) { 1396 /* 1397 * XXX What's really the best thing to do 1398 * XXX here? --thorpej@NetBSD.org 1399 */ 1400 printf("if_detach: WARNING: AF %d not purged\n", 1401 family); 1402 ifa_remove(ifp, ifa); 1403 } 1404 goto again; 1405 } 1406 1407 if_free_sadl(ifp); 1408 1409 /* Delete stray routes from the routing table. */ 1410 for (i = 0; i <= AF_MAX; i++) 1411 rt_delete_matched_entries(i, if_delroute_matcher, ifp); 1412 1413 DOMAIN_FOREACH(dp) { 1414 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1415 { 1416 void *p = ifp->if_afdata[dp->dom_family]; 1417 if (p) { 1418 ifp->if_afdata[dp->dom_family] = NULL; 1419 (*dp->dom_ifdetach)(ifp, p); 1420 } 1421 } 1422 1423 /* 1424 * One would expect multicast memberships (INET and 1425 * INET6) on UDP sockets to be purged by the PURGEIF 1426 * calls above, but if all addresses were removed from 1427 * the interface prior to destruction, the calls will 1428 * not be made (e.g. ppp, for which pppd(8) generally 1429 * removes addresses before destroying the interface). 1430 * Because there is no invariant that multicast 1431 * memberships only exist for interfaces with IPv4 1432 * addresses, we must call PURGEIF regardless of 1433 * addresses. (Protocols which might store ifnet 1434 * pointers are marked with PR_PURGEIF.) 1435 */ 1436 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 1437 so.so_proto = pr; 1438 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1439 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1440 } 1441 } 1442 1443 /* Wait for all readers to drain before freeing. */ 1444 IFNET_GLOBAL_LOCK(); 1445 ifindex2ifnet[ifp->if_index] = NULL; 1446 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1447 IFNET_WRITER_REMOVE(ifp); 1448 pserialize_perform(ifnet_psz); 1449 IFNET_GLOBAL_UNLOCK(); 1450 1451 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1452 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1453 1454 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 1455 (void)pfil_head_destroy(ifp->if_pfil); 1456 1457 /* Announce that the interface is gone. */ 1458 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1459 1460 IF_AFDATA_LOCK_DESTROY(ifp); 1461 1462 if (if_is_link_state_changeable(ifp)) { 1463 softint_disestablish(ifp->if_link_si); 1464 ifp->if_link_si = NULL; 1465 } 1466 1467 /* 1468 * remove packets that came from ifp, from software interrupt queues. 1469 */ 1470 DOMAIN_FOREACH(dp) { 1471 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { 1472 struct ifqueue *iq = dp->dom_ifqueues[i]; 1473 if (iq == NULL) 1474 break; 1475 dp->dom_ifqueues[i] = NULL; 1476 if_detach_queues(ifp, iq); 1477 } 1478 } 1479 1480 /* 1481 * IP queues have to be processed separately: net-queue barrier 1482 * ensures that the packets are dequeued while a cross-call will 1483 * ensure that the interrupts have completed. FIXME: not quite.. 1484 */ 1485 #ifdef INET 1486 pktq_barrier(ip_pktq); 1487 #endif 1488 #ifdef INET6 1489 if (in6_present) 1490 pktq_barrier(ip6_pktq); 1491 #endif 1492 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 1493 xc_wait(xc); 1494 1495 if (ifp->if_percpuq != NULL) { 1496 if_percpuq_destroy(ifp->if_percpuq); 1497 ifp->if_percpuq = NULL; 1498 } 1499 1500 mutex_obj_free(ifp->if_ioctl_lock); 1501 ifp->if_ioctl_lock = NULL; 1502 mutex_obj_free(ifp->if_snd.ifq_lock); 1503 1504 splx(s); 1505 1506 #ifdef IFAREF_DEBUG 1507 if_check_and_free_ifa_list(ifp); 1508 #endif 1509 } 1510 1511 static void 1512 if_detach_queues(struct ifnet *ifp, struct ifqueue *q) 1513 { 1514 struct mbuf *m, *prev, *next; 1515 1516 prev = NULL; 1517 for (m = q->ifq_head; m != NULL; m = next) { 1518 KASSERT((m->m_flags & M_PKTHDR) != 0); 1519 1520 next = m->m_nextpkt; 1521 if (m->m_pkthdr.rcvif_index != ifp->if_index) { 1522 prev = m; 1523 continue; 1524 } 1525 1526 if (prev != NULL) 1527 prev->m_nextpkt = m->m_nextpkt; 1528 else 1529 q->ifq_head = m->m_nextpkt; 1530 if (q->ifq_tail == m) 1531 q->ifq_tail = prev; 1532 q->ifq_len--; 1533 1534 m->m_nextpkt = NULL; 1535 m_freem(m); 1536 IF_DROP(q); 1537 } 1538 } 1539 1540 /* 1541 * Callback for a radix tree walk to delete all references to an 1542 * ifnet. 1543 */ 1544 static int 1545 if_delroute_matcher(struct rtentry *rt, void *v) 1546 { 1547 struct ifnet *ifp = (struct ifnet *)v; 1548 1549 if (rt->rt_ifp == ifp) 1550 return 1; 1551 else 1552 return 0; 1553 } 1554 1555 /* 1556 * Create a clone network interface. 1557 */ 1558 static int 1559 if_clone_create(const char *name) 1560 { 1561 struct if_clone *ifc; 1562 int unit; 1563 struct ifnet *ifp; 1564 struct psref psref; 1565 1566 KASSERT(mutex_owned(&if_clone_mtx)); 1567 1568 ifc = if_clone_lookup(name, &unit); 1569 if (ifc == NULL) 1570 return EINVAL; 1571 1572 ifp = if_get(name, &psref); 1573 if (ifp != NULL) { 1574 if_put(ifp, &psref); 1575 return EEXIST; 1576 } 1577 1578 return (*ifc->ifc_create)(ifc, unit); 1579 } 1580 1581 /* 1582 * Destroy a clone network interface. 1583 */ 1584 static int 1585 if_clone_destroy(const char *name) 1586 { 1587 struct if_clone *ifc; 1588 struct ifnet *ifp; 1589 struct psref psref; 1590 1591 KASSERT(mutex_owned(&if_clone_mtx)); 1592 1593 ifc = if_clone_lookup(name, NULL); 1594 if (ifc == NULL) 1595 return EINVAL; 1596 1597 if (ifc->ifc_destroy == NULL) 1598 return EOPNOTSUPP; 1599 1600 ifp = if_get(name, &psref); 1601 if (ifp == NULL) 1602 return ENXIO; 1603 1604 /* We have to disable ioctls here */ 1605 IFNET_LOCK(ifp); 1606 ifp->if_ioctl = if_nullioctl; 1607 IFNET_UNLOCK(ifp); 1608 1609 /* 1610 * We cannot call ifc_destroy with holding ifp. 1611 * Releasing ifp here is safe thanks to if_clone_mtx. 1612 */ 1613 if_put(ifp, &psref); 1614 1615 return (*ifc->ifc_destroy)(ifp); 1616 } 1617 1618 static bool 1619 if_is_unit(const char *name) 1620 { 1621 1622 while(*name != '\0') { 1623 if (*name < '0' || *name > '9') 1624 return false; 1625 name++; 1626 } 1627 1628 return true; 1629 } 1630 1631 /* 1632 * Look up a network interface cloner. 1633 */ 1634 static struct if_clone * 1635 if_clone_lookup(const char *name, int *unitp) 1636 { 1637 struct if_clone *ifc; 1638 const char *cp; 1639 char *dp, ifname[IFNAMSIZ + 3]; 1640 int unit; 1641 1642 KASSERT(mutex_owned(&if_clone_mtx)); 1643 1644 strcpy(ifname, "if_"); 1645 /* separate interface name from unit */ 1646 /* TODO: search unit number from backward */ 1647 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1648 *cp && !if_is_unit(cp);) 1649 *dp++ = *cp++; 1650 1651 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1652 return NULL; /* No name or unit number */ 1653 *dp++ = '\0'; 1654 1655 again: 1656 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1657 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1658 break; 1659 } 1660 1661 if (ifc == NULL) { 1662 int error; 1663 if (*ifname == '\0') 1664 return NULL; 1665 mutex_exit(&if_clone_mtx); 1666 error = module_autoload(ifname, MODULE_CLASS_DRIVER); 1667 mutex_enter(&if_clone_mtx); 1668 if (error) 1669 return NULL; 1670 *ifname = '\0'; 1671 goto again; 1672 } 1673 1674 unit = 0; 1675 while (cp - name < IFNAMSIZ && *cp) { 1676 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1677 /* Bogus unit number. */ 1678 return NULL; 1679 } 1680 unit = (unit * 10) + (*cp++ - '0'); 1681 } 1682 1683 if (unitp != NULL) 1684 *unitp = unit; 1685 return ifc; 1686 } 1687 1688 /* 1689 * Register a network interface cloner. 1690 */ 1691 void 1692 if_clone_attach(struct if_clone *ifc) 1693 { 1694 1695 mutex_enter(&if_clone_mtx); 1696 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1697 if_cloners_count++; 1698 mutex_exit(&if_clone_mtx); 1699 } 1700 1701 /* 1702 * Unregister a network interface cloner. 1703 */ 1704 void 1705 if_clone_detach(struct if_clone *ifc) 1706 { 1707 1708 mutex_enter(&if_clone_mtx); 1709 LIST_REMOVE(ifc, ifc_list); 1710 if_cloners_count--; 1711 mutex_exit(&if_clone_mtx); 1712 } 1713 1714 /* 1715 * Provide list of interface cloners to userspace. 1716 */ 1717 int 1718 if_clone_list(int buf_count, char *buffer, int *total) 1719 { 1720 char outbuf[IFNAMSIZ], *dst; 1721 struct if_clone *ifc; 1722 int count, error = 0; 1723 1724 mutex_enter(&if_clone_mtx); 1725 *total = if_cloners_count; 1726 if ((dst = buffer) == NULL) { 1727 /* Just asking how many there are. */ 1728 goto out; 1729 } 1730 1731 if (buf_count < 0) { 1732 error = EINVAL; 1733 goto out; 1734 } 1735 1736 count = (if_cloners_count < buf_count) ? 1737 if_cloners_count : buf_count; 1738 1739 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1740 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1741 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1742 if (outbuf[sizeof(outbuf) - 1] != '\0') { 1743 error = ENAMETOOLONG; 1744 goto out; 1745 } 1746 error = copyout(outbuf, dst, sizeof(outbuf)); 1747 if (error != 0) 1748 break; 1749 } 1750 1751 out: 1752 mutex_exit(&if_clone_mtx); 1753 return error; 1754 } 1755 1756 void 1757 ifa_psref_init(struct ifaddr *ifa) 1758 { 1759 1760 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1761 } 1762 1763 void 1764 ifaref(struct ifaddr *ifa) 1765 { 1766 KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING)); 1767 ifa->ifa_refcnt++; 1768 } 1769 1770 void 1771 ifafree(struct ifaddr *ifa) 1772 { 1773 KASSERT(ifa != NULL); 1774 KASSERT(ifa->ifa_refcnt > 0); 1775 1776 if (--ifa->ifa_refcnt == 0) { 1777 free(ifa, M_IFADDR); 1778 } 1779 } 1780 1781 bool 1782 ifa_is_destroying(struct ifaddr *ifa) 1783 { 1784 1785 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1786 } 1787 1788 void 1789 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1790 { 1791 1792 ifa->ifa_ifp = ifp; 1793 1794 /* 1795 * Check MP-safety for IFEF_MPSAFE drivers. 1796 * Check !IFF_RUNNING for initialization routines that normally don't 1797 * take IFNET_LOCK but it's safe because there is no competitor. 1798 * XXX there are false positive cases because IFF_RUNNING can be off on 1799 * if_stop. 1800 */ 1801 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) || 1802 IFNET_LOCKED(ifp)); 1803 1804 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1805 IFADDR_ENTRY_INIT(ifa); 1806 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1807 1808 ifaref(ifa); 1809 } 1810 1811 void 1812 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1813 { 1814 1815 KASSERT(ifa->ifa_ifp == ifp); 1816 /* 1817 * Check MP-safety for IFEF_MPSAFE drivers. 1818 * if_is_deactivated indicates ifa_remove is called form if_detach 1819 * where is safe even if IFNET_LOCK isn't held. 1820 */ 1821 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp)); 1822 1823 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1824 IFADDR_WRITER_REMOVE(ifa); 1825 #ifdef NET_MPSAFE 1826 IFNET_GLOBAL_LOCK(); 1827 pserialize_perform(ifnet_psz); 1828 IFNET_GLOBAL_UNLOCK(); 1829 #endif 1830 1831 #ifdef NET_MPSAFE 1832 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1833 #endif 1834 IFADDR_ENTRY_DESTROY(ifa); 1835 ifafree(ifa); 1836 } 1837 1838 void 1839 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1840 { 1841 1842 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1843 } 1844 1845 void 1846 ifa_release(struct ifaddr *ifa, struct psref *psref) 1847 { 1848 1849 if (ifa == NULL) 1850 return; 1851 1852 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1853 } 1854 1855 bool 1856 ifa_held(struct ifaddr *ifa) 1857 { 1858 1859 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1860 } 1861 1862 static inline int 1863 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1864 { 1865 return sockaddr_cmp(sa1, sa2) == 0; 1866 } 1867 1868 /* 1869 * Locate an interface based on a complete address. 1870 */ 1871 /*ARGSUSED*/ 1872 struct ifaddr * 1873 ifa_ifwithaddr(const struct sockaddr *addr) 1874 { 1875 struct ifnet *ifp; 1876 struct ifaddr *ifa; 1877 1878 IFNET_READER_FOREACH(ifp) { 1879 if (if_is_deactivated(ifp)) 1880 continue; 1881 IFADDR_READER_FOREACH(ifa, ifp) { 1882 if (ifa->ifa_addr->sa_family != addr->sa_family) 1883 continue; 1884 if (equal(addr, ifa->ifa_addr)) 1885 return ifa; 1886 if ((ifp->if_flags & IFF_BROADCAST) && 1887 ifa->ifa_broadaddr && 1888 /* IP6 doesn't have broadcast */ 1889 ifa->ifa_broadaddr->sa_len != 0 && 1890 equal(ifa->ifa_broadaddr, addr)) 1891 return ifa; 1892 } 1893 } 1894 return NULL; 1895 } 1896 1897 struct ifaddr * 1898 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1899 { 1900 struct ifaddr *ifa; 1901 int s = pserialize_read_enter(); 1902 1903 ifa = ifa_ifwithaddr(addr); 1904 if (ifa != NULL) 1905 ifa_acquire(ifa, psref); 1906 pserialize_read_exit(s); 1907 1908 return ifa; 1909 } 1910 1911 /* 1912 * Locate the point to point interface with a given destination address. 1913 */ 1914 /*ARGSUSED*/ 1915 struct ifaddr * 1916 ifa_ifwithdstaddr(const struct sockaddr *addr) 1917 { 1918 struct ifnet *ifp; 1919 struct ifaddr *ifa; 1920 1921 IFNET_READER_FOREACH(ifp) { 1922 if (if_is_deactivated(ifp)) 1923 continue; 1924 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1925 continue; 1926 IFADDR_READER_FOREACH(ifa, ifp) { 1927 if (ifa->ifa_addr->sa_family != addr->sa_family || 1928 ifa->ifa_dstaddr == NULL) 1929 continue; 1930 if (equal(addr, ifa->ifa_dstaddr)) 1931 return ifa; 1932 } 1933 } 1934 1935 return NULL; 1936 } 1937 1938 struct ifaddr * 1939 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 1940 { 1941 struct ifaddr *ifa; 1942 int s; 1943 1944 s = pserialize_read_enter(); 1945 ifa = ifa_ifwithdstaddr(addr); 1946 if (ifa != NULL) 1947 ifa_acquire(ifa, psref); 1948 pserialize_read_exit(s); 1949 1950 return ifa; 1951 } 1952 1953 /* 1954 * Find an interface on a specific network. If many, choice 1955 * is most specific found. 1956 */ 1957 struct ifaddr * 1958 ifa_ifwithnet(const struct sockaddr *addr) 1959 { 1960 struct ifnet *ifp; 1961 struct ifaddr *ifa, *ifa_maybe = NULL; 1962 const struct sockaddr_dl *sdl; 1963 u_int af = addr->sa_family; 1964 const char *addr_data = addr->sa_data, *cplim; 1965 1966 if (af == AF_LINK) { 1967 sdl = satocsdl(addr); 1968 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1969 ifindex2ifnet[sdl->sdl_index] && 1970 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 1971 return ifindex2ifnet[sdl->sdl_index]->if_dl; 1972 } 1973 } 1974 #ifdef NETATALK 1975 if (af == AF_APPLETALK) { 1976 const struct sockaddr_at *sat, *sat2; 1977 sat = (const struct sockaddr_at *)addr; 1978 IFNET_READER_FOREACH(ifp) { 1979 if (if_is_deactivated(ifp)) 1980 continue; 1981 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 1982 if (ifa == NULL) 1983 continue; 1984 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 1985 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 1986 return ifa; /* exact match */ 1987 if (ifa_maybe == NULL) { 1988 /* else keep the if with the right range */ 1989 ifa_maybe = ifa; 1990 } 1991 } 1992 return ifa_maybe; 1993 } 1994 #endif 1995 IFNET_READER_FOREACH(ifp) { 1996 if (if_is_deactivated(ifp)) 1997 continue; 1998 IFADDR_READER_FOREACH(ifa, ifp) { 1999 const char *cp, *cp2, *cp3; 2000 2001 if (ifa->ifa_addr->sa_family != af || 2002 ifa->ifa_netmask == NULL) 2003 next: continue; 2004 cp = addr_data; 2005 cp2 = ifa->ifa_addr->sa_data; 2006 cp3 = ifa->ifa_netmask->sa_data; 2007 cplim = (const char *)ifa->ifa_netmask + 2008 ifa->ifa_netmask->sa_len; 2009 while (cp3 < cplim) { 2010 if ((*cp++ ^ *cp2++) & *cp3++) { 2011 /* want to continue for() loop */ 2012 goto next; 2013 } 2014 } 2015 if (ifa_maybe == NULL || 2016 rt_refines(ifa->ifa_netmask, 2017 ifa_maybe->ifa_netmask)) 2018 ifa_maybe = ifa; 2019 } 2020 } 2021 return ifa_maybe; 2022 } 2023 2024 struct ifaddr * 2025 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 2026 { 2027 struct ifaddr *ifa; 2028 int s; 2029 2030 s = pserialize_read_enter(); 2031 ifa = ifa_ifwithnet(addr); 2032 if (ifa != NULL) 2033 ifa_acquire(ifa, psref); 2034 pserialize_read_exit(s); 2035 2036 return ifa; 2037 } 2038 2039 /* 2040 * Find the interface of the addresss. 2041 */ 2042 struct ifaddr * 2043 ifa_ifwithladdr(const struct sockaddr *addr) 2044 { 2045 struct ifaddr *ia; 2046 2047 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 2048 (ia = ifa_ifwithnet(addr))) 2049 return ia; 2050 return NULL; 2051 } 2052 2053 struct ifaddr * 2054 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 2055 { 2056 struct ifaddr *ifa; 2057 int s; 2058 2059 s = pserialize_read_enter(); 2060 ifa = ifa_ifwithladdr(addr); 2061 if (ifa != NULL) 2062 ifa_acquire(ifa, psref); 2063 pserialize_read_exit(s); 2064 2065 return ifa; 2066 } 2067 2068 /* 2069 * Find an interface using a specific address family 2070 */ 2071 struct ifaddr * 2072 ifa_ifwithaf(int af) 2073 { 2074 struct ifnet *ifp; 2075 struct ifaddr *ifa = NULL; 2076 int s; 2077 2078 s = pserialize_read_enter(); 2079 IFNET_READER_FOREACH(ifp) { 2080 if (if_is_deactivated(ifp)) 2081 continue; 2082 IFADDR_READER_FOREACH(ifa, ifp) { 2083 if (ifa->ifa_addr->sa_family == af) 2084 goto out; 2085 } 2086 } 2087 out: 2088 pserialize_read_exit(s); 2089 return ifa; 2090 } 2091 2092 /* 2093 * Find an interface address specific to an interface best matching 2094 * a given address. 2095 */ 2096 struct ifaddr * 2097 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2098 { 2099 struct ifaddr *ifa; 2100 const char *cp, *cp2, *cp3; 2101 const char *cplim; 2102 struct ifaddr *ifa_maybe = 0; 2103 u_int af = addr->sa_family; 2104 2105 if (if_is_deactivated(ifp)) 2106 return NULL; 2107 2108 if (af >= AF_MAX) 2109 return NULL; 2110 2111 IFADDR_READER_FOREACH(ifa, ifp) { 2112 if (ifa->ifa_addr->sa_family != af) 2113 continue; 2114 ifa_maybe = ifa; 2115 if (ifa->ifa_netmask == NULL) { 2116 if (equal(addr, ifa->ifa_addr) || 2117 (ifa->ifa_dstaddr && 2118 equal(addr, ifa->ifa_dstaddr))) 2119 return ifa; 2120 continue; 2121 } 2122 cp = addr->sa_data; 2123 cp2 = ifa->ifa_addr->sa_data; 2124 cp3 = ifa->ifa_netmask->sa_data; 2125 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2126 for (; cp3 < cplim; cp3++) { 2127 if ((*cp++ ^ *cp2++) & *cp3) 2128 break; 2129 } 2130 if (cp3 == cplim) 2131 return ifa; 2132 } 2133 return ifa_maybe; 2134 } 2135 2136 struct ifaddr * 2137 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2138 struct psref *psref) 2139 { 2140 struct ifaddr *ifa; 2141 int s; 2142 2143 s = pserialize_read_enter(); 2144 ifa = ifaof_ifpforaddr(addr, ifp); 2145 if (ifa != NULL) 2146 ifa_acquire(ifa, psref); 2147 pserialize_read_exit(s); 2148 2149 return ifa; 2150 } 2151 2152 /* 2153 * Default action when installing a route with a Link Level gateway. 2154 * Lookup an appropriate real ifa to point to. 2155 * This should be moved to /sys/net/link.c eventually. 2156 */ 2157 void 2158 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2159 { 2160 struct ifaddr *ifa; 2161 const struct sockaddr *dst; 2162 struct ifnet *ifp; 2163 struct psref psref; 2164 2165 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 2166 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL) 2167 return; 2168 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2169 rt_replace_ifa(rt, ifa); 2170 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2171 ifa->ifa_rtrequest(cmd, rt, info); 2172 ifa_release(ifa, &psref); 2173 } 2174 } 2175 2176 /* 2177 * bitmask macros to manage a densely packed link_state change queue. 2178 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2179 * LINK_STATE_UP(2) we need 2 bits for each state change. 2180 * As a state change to store is 0, treat all bits set as an unset item. 2181 */ 2182 #define LQ_ITEM_BITS 2 2183 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2184 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2185 #define LINK_STATE_UNSET LQ_ITEM_MASK 2186 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2187 #define LQ_STORE(q, i, v) \ 2188 do { \ 2189 (q) &= ~LQ_MASK((i)); \ 2190 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2191 } while (0 /* CONSTCOND */) 2192 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2193 #define LQ_POP(q, v) \ 2194 do { \ 2195 (v) = LQ_ITEM((q), 0); \ 2196 (q) >>= LQ_ITEM_BITS; \ 2197 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2198 } while (0 /* CONSTCOND */) 2199 #define LQ_PUSH(q, v) \ 2200 do { \ 2201 (q) >>= LQ_ITEM_BITS; \ 2202 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2203 } while (0 /* CONSTCOND */) 2204 #define LQ_FIND_UNSET(q, i) \ 2205 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2206 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2207 break; \ 2208 } 2209 2210 /* 2211 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex 2212 * for each ifnet. It doesn't matter because: 2213 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on 2214 * ifq_lock don't happen 2215 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock 2216 * because if_snd, if_link_state_change and if_link_state_change_softint 2217 * are all called with KERNEL_LOCK 2218 */ 2219 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \ 2220 mutex_enter((ifp)->if_snd.ifq_lock) 2221 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \ 2222 mutex_exit((ifp)->if_snd.ifq_lock) 2223 2224 /* 2225 * Handle a change in the interface link state and 2226 * queue notifications. 2227 */ 2228 void 2229 if_link_state_change(struct ifnet *ifp, int link_state) 2230 { 2231 int idx; 2232 2233 KASSERTMSG(if_is_link_state_changeable(ifp), 2234 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x", 2235 ifp->if_xname, ifp->if_extflags); 2236 2237 /* Ensure change is to a valid state */ 2238 switch (link_state) { 2239 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2240 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2241 case LINK_STATE_UP: 2242 break; 2243 default: 2244 #ifdef DEBUG 2245 printf("%s: invalid link state %d\n", 2246 ifp->if_xname, link_state); 2247 #endif 2248 return; 2249 } 2250 2251 IF_LINK_STATE_CHANGE_LOCK(ifp); 2252 2253 /* Find the last unset event in the queue. */ 2254 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2255 2256 /* 2257 * Ensure link_state doesn't match the last event in the queue. 2258 * ifp->if_link_state is not checked and set here because 2259 * that would present an inconsistent picture to the system. 2260 */ 2261 if (idx != 0 && 2262 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state) 2263 goto out; 2264 2265 /* Handle queue overflow. */ 2266 if (idx == LQ_MAX(ifp->if_link_queue)) { 2267 uint8_t lost; 2268 2269 /* 2270 * The DOWN state must be protected from being pushed off 2271 * the queue to ensure that userland will always be 2272 * in a sane state. 2273 * Because DOWN is protected, there is no need to protect 2274 * UNKNOWN. 2275 * It should be invalid to change from any other state to 2276 * UNKNOWN anyway ... 2277 */ 2278 lost = LQ_ITEM(ifp->if_link_queue, 0); 2279 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2280 if (lost == LINK_STATE_DOWN) { 2281 lost = LQ_ITEM(ifp->if_link_queue, 0); 2282 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2283 } 2284 printf("%s: lost link state change %s\n", 2285 ifp->if_xname, 2286 lost == LINK_STATE_UP ? "UP" : 2287 lost == LINK_STATE_DOWN ? "DOWN" : 2288 "UNKNOWN"); 2289 } else 2290 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2291 2292 softint_schedule(ifp->if_link_si); 2293 2294 out: 2295 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2296 } 2297 2298 /* 2299 * Handle interface link state change notifications. 2300 */ 2301 void 2302 if_link_state_change_softint(struct ifnet *ifp, int link_state) 2303 { 2304 struct domain *dp; 2305 int s = splnet(); 2306 bool notify; 2307 2308 KASSERT(!cpu_intr_p()); 2309 2310 IF_LINK_STATE_CHANGE_LOCK(ifp); 2311 2312 /* Ensure the change is still valid. */ 2313 if (ifp->if_link_state == link_state) { 2314 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2315 return; 2316 } 2317 2318 #ifdef DEBUG 2319 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2320 link_state == LINK_STATE_UP ? "UP" : 2321 link_state == LINK_STATE_DOWN ? "DOWN" : 2322 "UNKNOWN", 2323 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2324 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2325 "UNKNOWN"); 2326 #endif 2327 2328 /* 2329 * When going from UNKNOWN to UP, we need to mark existing 2330 * addresses as tentative and restart DAD as we may have 2331 * erroneously not found a duplicate. 2332 * 2333 * This needs to happen before rt_ifmsg to avoid a race where 2334 * listeners would have an address and expect it to work right 2335 * away. 2336 */ 2337 notify = (link_state == LINK_STATE_UP && 2338 ifp->if_link_state == LINK_STATE_UNKNOWN); 2339 ifp->if_link_state = link_state; 2340 /* The following routines may sleep so release the spin mutex */ 2341 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2342 2343 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2344 if (notify) { 2345 DOMAIN_FOREACH(dp) { 2346 if (dp->dom_if_link_state_change != NULL) 2347 dp->dom_if_link_state_change(ifp, 2348 LINK_STATE_DOWN); 2349 } 2350 } 2351 2352 /* Notify that the link state has changed. */ 2353 rt_ifmsg(ifp); 2354 2355 #if NCARP > 0 2356 if (ifp->if_carp) 2357 carp_carpdev_state(ifp); 2358 #endif 2359 2360 DOMAIN_FOREACH(dp) { 2361 if (dp->dom_if_link_state_change != NULL) 2362 dp->dom_if_link_state_change(ifp, link_state); 2363 } 2364 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2365 splx(s); 2366 } 2367 2368 /* 2369 * Process the interface link state change queue. 2370 */ 2371 static void 2372 if_link_state_change_si(void *arg) 2373 { 2374 struct ifnet *ifp = arg; 2375 int s; 2376 uint8_t state; 2377 bool schedule; 2378 2379 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2380 s = splnet(); 2381 2382 /* Pop a link state change from the queue and process it. */ 2383 IF_LINK_STATE_CHANGE_LOCK(ifp); 2384 LQ_POP(ifp->if_link_queue, state); 2385 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2386 2387 if_link_state_change_softint(ifp, state); 2388 2389 /* If there is a link state change to come, schedule it. */ 2390 IF_LINK_STATE_CHANGE_LOCK(ifp); 2391 schedule = (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET); 2392 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2393 if (schedule) 2394 softint_schedule(ifp->if_link_si); 2395 2396 splx(s); 2397 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2398 } 2399 2400 /* 2401 * Default action when installing a local route on a point-to-point 2402 * interface. 2403 */ 2404 void 2405 p2p_rtrequest(int req, struct rtentry *rt, 2406 __unused const struct rt_addrinfo *info) 2407 { 2408 struct ifnet *ifp = rt->rt_ifp; 2409 struct ifaddr *ifa, *lo0ifa; 2410 int s = pserialize_read_enter(); 2411 2412 switch (req) { 2413 case RTM_ADD: 2414 if ((rt->rt_flags & RTF_LOCAL) == 0) 2415 break; 2416 2417 rt->rt_ifp = lo0ifp; 2418 2419 IFADDR_READER_FOREACH(ifa, ifp) { 2420 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2421 break; 2422 } 2423 if (ifa == NULL) 2424 break; 2425 2426 /* 2427 * Ensure lo0 has an address of the same family. 2428 */ 2429 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2430 if (lo0ifa->ifa_addr->sa_family == 2431 ifa->ifa_addr->sa_family) 2432 break; 2433 } 2434 if (lo0ifa == NULL) 2435 break; 2436 2437 /* 2438 * Make sure to set rt->rt_ifa to the interface 2439 * address we are using, otherwise we will have trouble 2440 * with source address selection. 2441 */ 2442 if (ifa != rt->rt_ifa) 2443 rt_replace_ifa(rt, ifa); 2444 break; 2445 case RTM_DELETE: 2446 default: 2447 break; 2448 } 2449 pserialize_read_exit(s); 2450 } 2451 2452 static void 2453 _if_down(struct ifnet *ifp) 2454 { 2455 struct ifaddr *ifa; 2456 struct domain *dp; 2457 int s, bound; 2458 struct psref psref; 2459 2460 ifp->if_flags &= ~IFF_UP; 2461 nanotime(&ifp->if_lastchange); 2462 2463 bound = curlwp_bind(); 2464 s = pserialize_read_enter(); 2465 IFADDR_READER_FOREACH(ifa, ifp) { 2466 ifa_acquire(ifa, &psref); 2467 pserialize_read_exit(s); 2468 2469 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2470 2471 s = pserialize_read_enter(); 2472 ifa_release(ifa, &psref); 2473 } 2474 pserialize_read_exit(s); 2475 curlwp_bindx(bound); 2476 2477 IFQ_PURGE(&ifp->if_snd); 2478 #if NCARP > 0 2479 if (ifp->if_carp) 2480 carp_carpdev_state(ifp); 2481 #endif 2482 rt_ifmsg(ifp); 2483 DOMAIN_FOREACH(dp) { 2484 if (dp->dom_if_down) 2485 dp->dom_if_down(ifp); 2486 } 2487 } 2488 2489 static void 2490 if_down_deactivated(struct ifnet *ifp) 2491 { 2492 2493 KASSERT(if_is_deactivated(ifp)); 2494 _if_down(ifp); 2495 } 2496 2497 void 2498 if_down_locked(struct ifnet *ifp) 2499 { 2500 2501 KASSERT(IFNET_LOCKED(ifp)); 2502 _if_down(ifp); 2503 } 2504 2505 /* 2506 * Mark an interface down and notify protocols of 2507 * the transition. 2508 * NOTE: must be called at splsoftnet or equivalent. 2509 */ 2510 void 2511 if_down(struct ifnet *ifp) 2512 { 2513 2514 IFNET_LOCK(ifp); 2515 if_down_locked(ifp); 2516 IFNET_UNLOCK(ifp); 2517 } 2518 2519 /* 2520 * Must be called with holding if_ioctl_lock. 2521 */ 2522 static void 2523 if_up_locked(struct ifnet *ifp) 2524 { 2525 #ifdef notyet 2526 struct ifaddr *ifa; 2527 #endif 2528 struct domain *dp; 2529 2530 KASSERT(IFNET_LOCKED(ifp)); 2531 2532 KASSERT(!if_is_deactivated(ifp)); 2533 ifp->if_flags |= IFF_UP; 2534 nanotime(&ifp->if_lastchange); 2535 #ifdef notyet 2536 /* this has no effect on IP, and will kill all ISO connections XXX */ 2537 IFADDR_READER_FOREACH(ifa, ifp) 2538 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2539 #endif 2540 #if NCARP > 0 2541 if (ifp->if_carp) 2542 carp_carpdev_state(ifp); 2543 #endif 2544 rt_ifmsg(ifp); 2545 DOMAIN_FOREACH(dp) { 2546 if (dp->dom_if_up) 2547 dp->dom_if_up(ifp); 2548 } 2549 } 2550 2551 /* 2552 * Handle interface slowtimo timer routine. Called 2553 * from softclock, we decrement timer (if set) and 2554 * call the appropriate interface routine on expiration. 2555 */ 2556 static void 2557 if_slowtimo(void *arg) 2558 { 2559 void (*slowtimo)(struct ifnet *); 2560 struct ifnet *ifp = arg; 2561 int s; 2562 2563 slowtimo = ifp->if_slowtimo; 2564 if (__predict_false(slowtimo == NULL)) 2565 return; 2566 2567 s = splnet(); 2568 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2569 (*slowtimo)(ifp); 2570 2571 splx(s); 2572 2573 if (__predict_true(ifp->if_slowtimo != NULL)) 2574 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ); 2575 } 2576 2577 /* 2578 * Mark an interface up and notify protocols of 2579 * the transition. 2580 * NOTE: must be called at splsoftnet or equivalent. 2581 */ 2582 void 2583 if_up(struct ifnet *ifp) 2584 { 2585 2586 IFNET_LOCK(ifp); 2587 if_up_locked(ifp); 2588 IFNET_UNLOCK(ifp); 2589 } 2590 2591 /* 2592 * Set/clear promiscuous mode on interface ifp based on the truth value 2593 * of pswitch. The calls are reference counted so that only the first 2594 * "on" request actually has an effect, as does the final "off" request. 2595 * Results are undefined if the "off" and "on" requests are not matched. 2596 */ 2597 int 2598 ifpromisc_locked(struct ifnet *ifp, int pswitch) 2599 { 2600 int pcount, ret = 0; 2601 short nflags; 2602 2603 KASSERT(IFNET_LOCKED(ifp)); 2604 2605 pcount = ifp->if_pcount; 2606 if (pswitch) { 2607 /* 2608 * Allow the device to be "placed" into promiscuous 2609 * mode even if it is not configured up. It will 2610 * consult IFF_PROMISC when it is brought up. 2611 */ 2612 if (ifp->if_pcount++ != 0) 2613 goto out; 2614 nflags = ifp->if_flags | IFF_PROMISC; 2615 } else { 2616 if (--ifp->if_pcount > 0) 2617 goto out; 2618 nflags = ifp->if_flags & ~IFF_PROMISC; 2619 } 2620 ret = if_flags_set(ifp, nflags); 2621 /* Restore interface state if not successful. */ 2622 if (ret != 0) { 2623 ifp->if_pcount = pcount; 2624 } 2625 out: 2626 return ret; 2627 } 2628 2629 int 2630 ifpromisc(struct ifnet *ifp, int pswitch) 2631 { 2632 int e; 2633 2634 IFNET_LOCK(ifp); 2635 e = ifpromisc_locked(ifp, pswitch); 2636 IFNET_UNLOCK(ifp); 2637 2638 return e; 2639 } 2640 2641 /* 2642 * Map interface name to 2643 * interface structure pointer. 2644 */ 2645 struct ifnet * 2646 ifunit(const char *name) 2647 { 2648 struct ifnet *ifp; 2649 const char *cp = name; 2650 u_int unit = 0; 2651 u_int i; 2652 int s; 2653 2654 /* 2655 * If the entire name is a number, treat it as an ifindex. 2656 */ 2657 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2658 unit = unit * 10 + (*cp - '0'); 2659 } 2660 2661 /* 2662 * If the number took all of the name, then it's a valid ifindex. 2663 */ 2664 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2665 return if_byindex(unit); 2666 2667 ifp = NULL; 2668 s = pserialize_read_enter(); 2669 IFNET_READER_FOREACH(ifp) { 2670 if (if_is_deactivated(ifp)) 2671 continue; 2672 if (strcmp(ifp->if_xname, name) == 0) 2673 goto out; 2674 } 2675 out: 2676 pserialize_read_exit(s); 2677 return ifp; 2678 } 2679 2680 /* 2681 * Get a reference of an ifnet object by an interface name. 2682 * The returned reference is protected by psref(9). The caller 2683 * must release a returned reference by if_put after use. 2684 */ 2685 struct ifnet * 2686 if_get(const char *name, struct psref *psref) 2687 { 2688 struct ifnet *ifp; 2689 const char *cp = name; 2690 u_int unit = 0; 2691 u_int i; 2692 int s; 2693 2694 /* 2695 * If the entire name is a number, treat it as an ifindex. 2696 */ 2697 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2698 unit = unit * 10 + (*cp - '0'); 2699 } 2700 2701 /* 2702 * If the number took all of the name, then it's a valid ifindex. 2703 */ 2704 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2705 return if_get_byindex(unit, psref); 2706 2707 ifp = NULL; 2708 s = pserialize_read_enter(); 2709 IFNET_READER_FOREACH(ifp) { 2710 if (if_is_deactivated(ifp)) 2711 continue; 2712 if (strcmp(ifp->if_xname, name) == 0) { 2713 psref_acquire(psref, &ifp->if_psref, 2714 ifnet_psref_class); 2715 goto out; 2716 } 2717 } 2718 out: 2719 pserialize_read_exit(s); 2720 return ifp; 2721 } 2722 2723 /* 2724 * Release a reference of an ifnet object given by if_get, if_get_byindex 2725 * or if_get_bylla. 2726 */ 2727 void 2728 if_put(const struct ifnet *ifp, struct psref *psref) 2729 { 2730 2731 if (ifp == NULL) 2732 return; 2733 2734 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2735 } 2736 2737 /* 2738 * Return ifp having idx. Return NULL if not found. Normally if_byindex 2739 * should be used. 2740 */ 2741 ifnet_t * 2742 _if_byindex(u_int idx) 2743 { 2744 2745 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2746 } 2747 2748 /* 2749 * Return ifp having idx. Return NULL if not found or the found ifp is 2750 * already deactivated. 2751 */ 2752 ifnet_t * 2753 if_byindex(u_int idx) 2754 { 2755 ifnet_t *ifp; 2756 2757 ifp = _if_byindex(idx); 2758 if (ifp != NULL && if_is_deactivated(ifp)) 2759 ifp = NULL; 2760 return ifp; 2761 } 2762 2763 /* 2764 * Get a reference of an ifnet object by an interface index. 2765 * The returned reference is protected by psref(9). The caller 2766 * must release a returned reference by if_put after use. 2767 */ 2768 ifnet_t * 2769 if_get_byindex(u_int idx, struct psref *psref) 2770 { 2771 ifnet_t *ifp; 2772 int s; 2773 2774 s = pserialize_read_enter(); 2775 ifp = if_byindex(idx); 2776 if (__predict_true(ifp != NULL)) 2777 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2778 pserialize_read_exit(s); 2779 2780 return ifp; 2781 } 2782 2783 ifnet_t * 2784 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref) 2785 { 2786 ifnet_t *ifp; 2787 int s; 2788 2789 s = pserialize_read_enter(); 2790 IFNET_READER_FOREACH(ifp) { 2791 if (if_is_deactivated(ifp)) 2792 continue; 2793 if (ifp->if_addrlen != lla_len) 2794 continue; 2795 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) { 2796 psref_acquire(psref, &ifp->if_psref, 2797 ifnet_psref_class); 2798 break; 2799 } 2800 } 2801 pserialize_read_exit(s); 2802 2803 return ifp; 2804 } 2805 2806 /* 2807 * Note that it's safe only if the passed ifp is guaranteed to not be freed, 2808 * for example using pserialize or the ifp is already held or some other 2809 * object is held which guarantes the ifp to not be freed indirectly. 2810 */ 2811 void 2812 if_acquire(struct ifnet *ifp, struct psref *psref) 2813 { 2814 2815 KASSERT(ifp->if_index != 0); 2816 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2817 } 2818 2819 bool 2820 if_held(struct ifnet *ifp) 2821 { 2822 2823 return psref_held(&ifp->if_psref, ifnet_psref_class); 2824 } 2825 2826 /* 2827 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4. 2828 * Check the tunnel nesting count. 2829 * Return > 0, if tunnel nesting count is more than limit. 2830 * Return 0, if tunnel nesting count is equal or less than limit. 2831 */ 2832 int 2833 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit) 2834 { 2835 struct m_tag *mtag; 2836 int *count; 2837 2838 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO, NULL); 2839 if (mtag != NULL) { 2840 count = (int *)(mtag + 1); 2841 if (++(*count) > limit) { 2842 log(LOG_NOTICE, 2843 "%s: recursively called too many times(%d)\n", 2844 ifp->if_xname, *count); 2845 return EIO; 2846 } 2847 } else { 2848 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count), 2849 M_NOWAIT); 2850 if (mtag != NULL) { 2851 m_tag_prepend(m, mtag); 2852 count = (int *)(mtag + 1); 2853 *count = 0; 2854 } else { 2855 log(LOG_DEBUG, 2856 "%s: m_tag_get() failed, recursion calls are not prevented.\n", 2857 ifp->if_xname); 2858 } 2859 } 2860 2861 return 0; 2862 } 2863 2864 /* common */ 2865 int 2866 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 2867 { 2868 int s; 2869 struct ifreq *ifr; 2870 struct ifcapreq *ifcr; 2871 struct ifdatareq *ifdr; 2872 2873 switch (cmd) { 2874 case SIOCSIFCAP: 2875 ifcr = data; 2876 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 2877 return EINVAL; 2878 2879 if (ifcr->ifcr_capenable == ifp->if_capenable) 2880 return 0; 2881 2882 ifp->if_capenable = ifcr->ifcr_capenable; 2883 2884 /* Pre-compute the checksum flags mask. */ 2885 ifp->if_csum_flags_tx = 0; 2886 ifp->if_csum_flags_rx = 0; 2887 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) { 2888 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 2889 } 2890 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { 2891 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 2892 } 2893 2894 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) { 2895 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 2896 } 2897 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) { 2898 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 2899 } 2900 2901 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) { 2902 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 2903 } 2904 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) { 2905 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 2906 } 2907 2908 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) { 2909 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 2910 } 2911 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) { 2912 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 2913 } 2914 2915 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) { 2916 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 2917 } 2918 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) { 2919 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 2920 } 2921 if (ifp->if_flags & IFF_UP) 2922 return ENETRESET; 2923 return 0; 2924 case SIOCSIFFLAGS: 2925 ifr = data; 2926 /* 2927 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up 2928 * and if_down aren't MP-safe yet, so we must hold the lock. 2929 */ 2930 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 2931 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 2932 s = splsoftnet(); 2933 if_down_locked(ifp); 2934 splx(s); 2935 } 2936 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 2937 s = splsoftnet(); 2938 if_up_locked(ifp); 2939 splx(s); 2940 } 2941 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 2942 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2943 (ifr->ifr_flags &~ IFF_CANTCHANGE); 2944 break; 2945 case SIOCGIFFLAGS: 2946 ifr = data; 2947 ifr->ifr_flags = ifp->if_flags; 2948 break; 2949 2950 case SIOCGIFMETRIC: 2951 ifr = data; 2952 ifr->ifr_metric = ifp->if_metric; 2953 break; 2954 2955 case SIOCGIFMTU: 2956 ifr = data; 2957 ifr->ifr_mtu = ifp->if_mtu; 2958 break; 2959 2960 case SIOCGIFDLT: 2961 ifr = data; 2962 ifr->ifr_dlt = ifp->if_dlt; 2963 break; 2964 2965 case SIOCGIFCAP: 2966 ifcr = data; 2967 ifcr->ifcr_capabilities = ifp->if_capabilities; 2968 ifcr->ifcr_capenable = ifp->if_capenable; 2969 break; 2970 2971 case SIOCSIFMETRIC: 2972 ifr = data; 2973 ifp->if_metric = ifr->ifr_metric; 2974 break; 2975 2976 case SIOCGIFDATA: 2977 ifdr = data; 2978 ifdr->ifdr_data = ifp->if_data; 2979 break; 2980 2981 case SIOCGIFINDEX: 2982 ifr = data; 2983 ifr->ifr_index = ifp->if_index; 2984 break; 2985 2986 case SIOCZIFDATA: 2987 ifdr = data; 2988 ifdr->ifdr_data = ifp->if_data; 2989 /* 2990 * Assumes that the volatile counters that can be 2991 * zero'ed are at the end of if_data. 2992 */ 2993 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) - 2994 offsetof(struct if_data, ifi_ipackets)); 2995 /* 2996 * The memset() clears to the bottm of if_data. In the area, 2997 * if_lastchange is included. Please be careful if new entry 2998 * will be added into if_data or rewite this. 2999 * 3000 * And also, update if_lastchnage. 3001 */ 3002 getnanotime(&ifp->if_lastchange); 3003 break; 3004 case SIOCSIFMTU: 3005 ifr = data; 3006 if (ifp->if_mtu == ifr->ifr_mtu) 3007 break; 3008 ifp->if_mtu = ifr->ifr_mtu; 3009 /* 3010 * If the link MTU changed, do network layer specific procedure. 3011 */ 3012 #ifdef INET6 3013 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3014 if (in6_present) 3015 nd6_setmtu(ifp); 3016 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3017 #endif 3018 return ENETRESET; 3019 default: 3020 return ENOTTY; 3021 } 3022 return 0; 3023 } 3024 3025 int 3026 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 3027 { 3028 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 3029 struct ifaddr *ifa; 3030 const struct sockaddr *any, *sa; 3031 union { 3032 struct sockaddr sa; 3033 struct sockaddr_storage ss; 3034 } u, v; 3035 int s, error = 0; 3036 3037 switch (cmd) { 3038 case SIOCSIFADDRPREF: 3039 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, 3040 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 3041 NULL) != 0) 3042 return EPERM; 3043 case SIOCGIFADDRPREF: 3044 break; 3045 default: 3046 return EOPNOTSUPP; 3047 } 3048 3049 /* sanity checks */ 3050 if (data == NULL || ifp == NULL) { 3051 panic("invalid argument to %s", __func__); 3052 /*NOTREACHED*/ 3053 } 3054 3055 /* address must be specified on ADD and DELETE */ 3056 sa = sstocsa(&ifap->ifap_addr); 3057 if (sa->sa_family != sofamily(so)) 3058 return EINVAL; 3059 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 3060 return EINVAL; 3061 3062 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 3063 3064 s = pserialize_read_enter(); 3065 IFADDR_READER_FOREACH(ifa, ifp) { 3066 if (ifa->ifa_addr->sa_family != sa->sa_family) 3067 continue; 3068 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 3069 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 3070 break; 3071 } 3072 if (ifa == NULL) { 3073 error = EADDRNOTAVAIL; 3074 goto out; 3075 } 3076 3077 switch (cmd) { 3078 case SIOCSIFADDRPREF: 3079 ifa->ifa_preference = ifap->ifap_preference; 3080 goto out; 3081 case SIOCGIFADDRPREF: 3082 /* fill in the if_laddrreq structure */ 3083 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 3084 sizeof(ifap->ifap_addr), ifa->ifa_addr); 3085 ifap->ifap_preference = ifa->ifa_preference; 3086 goto out; 3087 default: 3088 error = EOPNOTSUPP; 3089 } 3090 out: 3091 pserialize_read_exit(s); 3092 return error; 3093 } 3094 3095 /* 3096 * Interface ioctls. 3097 */ 3098 static int 3099 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 3100 { 3101 struct ifnet *ifp; 3102 struct ifreq *ifr; 3103 int error = 0; 3104 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ) 3105 u_long ocmd = cmd; 3106 #endif 3107 short oif_flags; 3108 #ifdef COMPAT_OIFREQ 3109 struct ifreq ifrb; 3110 struct oifreq *oifr = NULL; 3111 #endif 3112 int r; 3113 struct psref psref; 3114 int bound; 3115 3116 switch (cmd) { 3117 #ifdef COMPAT_OIFREQ 3118 case OSIOCGIFCONF: 3119 case OOSIOCGIFCONF: 3120 return compat_ifconf(cmd, data); 3121 #endif 3122 #ifdef COMPAT_OIFDATA 3123 case OSIOCGIFDATA: 3124 case OSIOCZIFDATA: 3125 return compat_ifdatareq(l, cmd, data); 3126 #endif 3127 case SIOCGIFCONF: 3128 return ifconf(cmd, data); 3129 case SIOCINITIFADDR: 3130 return EPERM; 3131 } 3132 3133 #ifdef COMPAT_OIFREQ 3134 cmd = (*vec_compat_cvtcmd)(cmd); 3135 if (cmd != ocmd) { 3136 oifr = data; 3137 data = ifr = &ifrb; 3138 ifreqo2n(oifr, ifr); 3139 } else 3140 #endif 3141 ifr = data; 3142 3143 switch (cmd) { 3144 case SIOCIFCREATE: 3145 case SIOCIFDESTROY: 3146 bound = curlwp_bind(); 3147 if (l != NULL) { 3148 ifp = if_get(ifr->ifr_name, &psref); 3149 error = kauth_authorize_network(l->l_cred, 3150 KAUTH_NETWORK_INTERFACE, 3151 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3152 (void *)cmd, NULL); 3153 if (ifp != NULL) 3154 if_put(ifp, &psref); 3155 if (error != 0) { 3156 curlwp_bindx(bound); 3157 return error; 3158 } 3159 } 3160 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3161 mutex_enter(&if_clone_mtx); 3162 r = (cmd == SIOCIFCREATE) ? 3163 if_clone_create(ifr->ifr_name) : 3164 if_clone_destroy(ifr->ifr_name); 3165 mutex_exit(&if_clone_mtx); 3166 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3167 curlwp_bindx(bound); 3168 return r; 3169 3170 case SIOCIFGCLONERS: 3171 { 3172 struct if_clonereq *req = (struct if_clonereq *)data; 3173 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 3174 &req->ifcr_total); 3175 } 3176 } 3177 3178 bound = curlwp_bind(); 3179 ifp = if_get(ifr->ifr_name, &psref); 3180 if (ifp == NULL) { 3181 curlwp_bindx(bound); 3182 return ENXIO; 3183 } 3184 3185 switch (cmd) { 3186 case SIOCALIFADDR: 3187 case SIOCDLIFADDR: 3188 case SIOCSIFADDRPREF: 3189 case SIOCSIFFLAGS: 3190 case SIOCSIFCAP: 3191 case SIOCSIFMETRIC: 3192 case SIOCZIFDATA: 3193 case SIOCSIFMTU: 3194 case SIOCSIFPHYADDR: 3195 case SIOCDIFPHYADDR: 3196 #ifdef INET6 3197 case SIOCSIFPHYADDR_IN6: 3198 #endif 3199 case SIOCSLIFPHYADDR: 3200 case SIOCADDMULTI: 3201 case SIOCDELMULTI: 3202 case SIOCSIFMEDIA: 3203 case SIOCSDRVSPEC: 3204 case SIOCG80211: 3205 case SIOCS80211: 3206 case SIOCS80211NWID: 3207 case SIOCS80211NWKEY: 3208 case SIOCS80211POWER: 3209 case SIOCS80211BSSID: 3210 case SIOCS80211CHANNEL: 3211 case SIOCSLINKSTR: 3212 if (l != NULL) { 3213 error = kauth_authorize_network(l->l_cred, 3214 KAUTH_NETWORK_INTERFACE, 3215 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3216 (void *)cmd, NULL); 3217 if (error != 0) 3218 goto out; 3219 } 3220 } 3221 3222 oif_flags = ifp->if_flags; 3223 3224 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); 3225 IFNET_LOCK(ifp); 3226 3227 error = (*ifp->if_ioctl)(ifp, cmd, data); 3228 if (error != ENOTTY) 3229 ; 3230 else if (so->so_proto == NULL) 3231 error = EOPNOTSUPP; 3232 else { 3233 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3234 #ifdef COMPAT_OSOCK 3235 if (vec_compat_ifioctl != NULL) 3236 error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l); 3237 else 3238 #endif 3239 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 3240 cmd, data, ifp); 3241 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3242 } 3243 3244 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 3245 if ((ifp->if_flags & IFF_UP) != 0) { 3246 int s = splsoftnet(); 3247 if_up_locked(ifp); 3248 splx(s); 3249 } 3250 } 3251 #ifdef COMPAT_OIFREQ 3252 if (cmd != ocmd) 3253 ifreqn2o(oifr, ifr); 3254 #endif 3255 3256 IFNET_UNLOCK(ifp); 3257 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); 3258 out: 3259 if_put(ifp, &psref); 3260 curlwp_bindx(bound); 3261 return error; 3262 } 3263 3264 /* 3265 * Return interface configuration 3266 * of system. List may be used 3267 * in later ioctl's (above) to get 3268 * other information. 3269 * 3270 * Each record is a struct ifreq. Before the addition of 3271 * sockaddr_storage, the API rule was that sockaddr flavors that did 3272 * not fit would extend beyond the struct ifreq, with the next struct 3273 * ifreq starting sa_len beyond the struct sockaddr. Because the 3274 * union in struct ifreq includes struct sockaddr_storage, every kind 3275 * of sockaddr must fit. Thus, there are no longer any overlength 3276 * records. 3277 * 3278 * Records are added to the user buffer if they fit, and ifc_len is 3279 * adjusted to the length that was written. Thus, the user is only 3280 * assured of getting the complete list if ifc_len on return is at 3281 * least sizeof(struct ifreq) less than it was on entry. 3282 * 3283 * If the user buffer pointer is NULL, this routine copies no data and 3284 * returns the amount of space that would be needed. 3285 * 3286 * Invariants: 3287 * ifrp points to the next part of the user's buffer to be used. If 3288 * ifrp != NULL, space holds the number of bytes remaining that we may 3289 * write at ifrp. Otherwise, space holds the number of bytes that 3290 * would have been written had there been adequate space. 3291 */ 3292 /*ARGSUSED*/ 3293 static int 3294 ifconf(u_long cmd, void *data) 3295 { 3296 struct ifconf *ifc = (struct ifconf *)data; 3297 struct ifnet *ifp; 3298 struct ifaddr *ifa; 3299 struct ifreq ifr, *ifrp = NULL; 3300 int space = 0, error = 0; 3301 const int sz = (int)sizeof(struct ifreq); 3302 const bool docopy = ifc->ifc_req != NULL; 3303 int s; 3304 int bound; 3305 struct psref psref; 3306 3307 if (docopy) { 3308 space = ifc->ifc_len; 3309 ifrp = ifc->ifc_req; 3310 } 3311 3312 bound = curlwp_bind(); 3313 s = pserialize_read_enter(); 3314 IFNET_READER_FOREACH(ifp) { 3315 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3316 pserialize_read_exit(s); 3317 3318 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3319 sizeof(ifr.ifr_name)); 3320 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3321 error = ENAMETOOLONG; 3322 goto release_exit; 3323 } 3324 if (IFADDR_READER_EMPTY(ifp)) { 3325 /* Interface with no addresses - send zero sockaddr. */ 3326 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3327 if (!docopy) { 3328 space += sz; 3329 goto next; 3330 } 3331 if (space >= sz) { 3332 error = copyout(&ifr, ifrp, sz); 3333 if (error != 0) 3334 goto release_exit; 3335 ifrp++; 3336 space -= sz; 3337 } 3338 } 3339 3340 s = pserialize_read_enter(); 3341 IFADDR_READER_FOREACH(ifa, ifp) { 3342 struct sockaddr *sa = ifa->ifa_addr; 3343 /* all sockaddrs must fit in sockaddr_storage */ 3344 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3345 3346 if (!docopy) { 3347 space += sz; 3348 continue; 3349 } 3350 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3351 pserialize_read_exit(s); 3352 3353 if (space >= sz) { 3354 error = copyout(&ifr, ifrp, sz); 3355 if (error != 0) 3356 goto release_exit; 3357 ifrp++; space -= sz; 3358 } 3359 s = pserialize_read_enter(); 3360 } 3361 pserialize_read_exit(s); 3362 3363 next: 3364 s = pserialize_read_enter(); 3365 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3366 } 3367 pserialize_read_exit(s); 3368 curlwp_bindx(bound); 3369 3370 if (docopy) { 3371 KASSERT(0 <= space && space <= ifc->ifc_len); 3372 ifc->ifc_len -= space; 3373 } else { 3374 KASSERT(space >= 0); 3375 ifc->ifc_len = space; 3376 } 3377 return (0); 3378 3379 release_exit: 3380 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3381 curlwp_bindx(bound); 3382 return error; 3383 } 3384 3385 int 3386 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3387 { 3388 uint8_t len; 3389 #ifdef COMPAT_OIFREQ 3390 struct ifreq ifrb; 3391 struct oifreq *oifr = NULL; 3392 u_long ocmd = cmd; 3393 cmd = (*vec_compat_cvtcmd)(cmd); 3394 if (cmd != ocmd) { 3395 oifr = (struct oifreq *)(void *)ifr; 3396 ifr = &ifrb; 3397 ifreqo2n(oifr, ifr); 3398 len = sizeof(oifr->ifr_addr); 3399 } else 3400 #endif 3401 len = sizeof(ifr->ifr_ifru.ifru_space); 3402 3403 if (len < sa->sa_len) 3404 return EFBIG; 3405 3406 memset(&ifr->ifr_addr, 0, len); 3407 sockaddr_copy(&ifr->ifr_addr, len, sa); 3408 3409 #ifdef COMPAT_OIFREQ 3410 if (cmd != ocmd) 3411 ifreqn2o(oifr, ifr); 3412 #endif 3413 return 0; 3414 } 3415 3416 /* 3417 * wrapper function for the drivers which doesn't have if_transmit(). 3418 */ 3419 static int 3420 if_transmit(struct ifnet *ifp, struct mbuf *m) 3421 { 3422 int s, error; 3423 size_t pktlen = m->m_pkthdr.len; 3424 bool mcast = (m->m_flags & M_MCAST) != 0; 3425 3426 s = splnet(); 3427 3428 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3429 if (error != 0) { 3430 /* mbuf is already freed */ 3431 goto out; 3432 } 3433 3434 ifp->if_obytes += pktlen; 3435 if (mcast) 3436 ifp->if_omcasts++; 3437 3438 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3439 if_start_lock(ifp); 3440 out: 3441 splx(s); 3442 3443 return error; 3444 } 3445 3446 int 3447 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3448 { 3449 int error; 3450 3451 #ifdef ALTQ 3452 KERNEL_LOCK(1, NULL); 3453 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3454 error = if_transmit(ifp, m); 3455 KERNEL_UNLOCK_ONE(NULL); 3456 } else { 3457 KERNEL_UNLOCK_ONE(NULL); 3458 error = (*ifp->if_transmit)(ifp, m); 3459 /* mbuf is alredy freed */ 3460 } 3461 #else /* !ALTQ */ 3462 error = (*ifp->if_transmit)(ifp, m); 3463 /* mbuf is alredy freed */ 3464 #endif /* !ALTQ */ 3465 3466 return error; 3467 } 3468 3469 /* 3470 * Queue message on interface, and start output if interface 3471 * not yet active. 3472 */ 3473 int 3474 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3475 { 3476 3477 return if_transmit_lock(ifp, m); 3478 } 3479 3480 /* 3481 * Queue message on interface, possibly using a second fast queue 3482 */ 3483 int 3484 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3485 { 3486 int error = 0; 3487 3488 if (ifq != NULL 3489 #ifdef ALTQ 3490 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3491 #endif 3492 ) { 3493 if (IF_QFULL(ifq)) { 3494 IF_DROP(&ifp->if_snd); 3495 m_freem(m); 3496 if (error == 0) 3497 error = ENOBUFS; 3498 } else 3499 IF_ENQUEUE(ifq, m); 3500 } else 3501 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3502 if (error != 0) { 3503 ++ifp->if_oerrors; 3504 return error; 3505 } 3506 return 0; 3507 } 3508 3509 int 3510 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3511 { 3512 int rc; 3513 3514 KASSERT(IFNET_LOCKED(ifp)); 3515 if (ifp->if_initaddr != NULL) 3516 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3517 else if (src || 3518 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3519 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); 3520 3521 return rc; 3522 } 3523 3524 int 3525 if_do_dad(struct ifnet *ifp) 3526 { 3527 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3528 return 0; 3529 3530 switch (ifp->if_type) { 3531 case IFT_FAITH: 3532 /* 3533 * These interfaces do not have the IFF_LOOPBACK flag, 3534 * but loop packets back. We do not have to do DAD on such 3535 * interfaces. We should even omit it, because loop-backed 3536 * responses would confuse the DAD procedure. 3537 */ 3538 return 0; 3539 default: 3540 /* 3541 * Our DAD routine requires the interface up and running. 3542 * However, some interfaces can be up before the RUNNING 3543 * status. Additionaly, users may try to assign addresses 3544 * before the interface becomes up (or running). 3545 * We simply skip DAD in such a case as a work around. 3546 * XXX: we should rather mark "tentative" on such addresses, 3547 * and do DAD after the interface becomes ready. 3548 */ 3549 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 3550 (IFF_UP|IFF_RUNNING)) 3551 return 0; 3552 3553 return 1; 3554 } 3555 } 3556 3557 int 3558 if_flags_set(ifnet_t *ifp, const short flags) 3559 { 3560 int rc; 3561 3562 KASSERT(IFNET_LOCKED(ifp)); 3563 3564 if (ifp->if_setflags != NULL) 3565 rc = (*ifp->if_setflags)(ifp, flags); 3566 else { 3567 short cantflags, chgdflags; 3568 struct ifreq ifr; 3569 3570 chgdflags = ifp->if_flags ^ flags; 3571 cantflags = chgdflags & IFF_CANTCHANGE; 3572 3573 if (cantflags != 0) 3574 ifp->if_flags ^= cantflags; 3575 3576 /* Traditionally, we do not call if_ioctl after 3577 * setting/clearing only IFF_PROMISC if the interface 3578 * isn't IFF_UP. Uphold that tradition. 3579 */ 3580 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3581 return 0; 3582 3583 memset(&ifr, 0, sizeof(ifr)); 3584 3585 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3586 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); 3587 3588 if (rc != 0 && cantflags != 0) 3589 ifp->if_flags ^= cantflags; 3590 } 3591 3592 return rc; 3593 } 3594 3595 int 3596 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3597 { 3598 int rc; 3599 struct ifreq ifr; 3600 3601 /* CARP and MROUTING still don't deal with the lock yet */ 3602 #if (!defined(NCARP) || (NCARP == 0)) && !defined(MROUTING) 3603 KASSERT(IFNET_LOCKED(ifp)); 3604 #endif 3605 if (ifp->if_mcastop != NULL) 3606 rc = (*ifp->if_mcastop)(ifp, cmd, sa); 3607 else { 3608 ifreq_setaddr(cmd, &ifr, sa); 3609 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); 3610 } 3611 3612 return rc; 3613 } 3614 3615 static void 3616 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3617 struct ifaltq *ifq) 3618 { 3619 const struct sysctlnode *cnode, *rnode; 3620 3621 if (sysctl_createv(clog, 0, NULL, &rnode, 3622 CTLFLAG_PERMANENT, 3623 CTLTYPE_NODE, "interfaces", 3624 SYSCTL_DESCR("Per-interface controls"), 3625 NULL, 0, NULL, 0, 3626 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 3627 goto bad; 3628 3629 if (sysctl_createv(clog, 0, &rnode, &rnode, 3630 CTLFLAG_PERMANENT, 3631 CTLTYPE_NODE, ifname, 3632 SYSCTL_DESCR("Interface controls"), 3633 NULL, 0, NULL, 0, 3634 CTL_CREATE, CTL_EOL) != 0) 3635 goto bad; 3636 3637 if (sysctl_createv(clog, 0, &rnode, &rnode, 3638 CTLFLAG_PERMANENT, 3639 CTLTYPE_NODE, "sndq", 3640 SYSCTL_DESCR("Interface output queue controls"), 3641 NULL, 0, NULL, 0, 3642 CTL_CREATE, CTL_EOL) != 0) 3643 goto bad; 3644 3645 if (sysctl_createv(clog, 0, &rnode, &cnode, 3646 CTLFLAG_PERMANENT, 3647 CTLTYPE_INT, "len", 3648 SYSCTL_DESCR("Current output queue length"), 3649 NULL, 0, &ifq->ifq_len, 0, 3650 CTL_CREATE, CTL_EOL) != 0) 3651 goto bad; 3652 3653 if (sysctl_createv(clog, 0, &rnode, &cnode, 3654 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3655 CTLTYPE_INT, "maxlen", 3656 SYSCTL_DESCR("Maximum allowed output queue length"), 3657 NULL, 0, &ifq->ifq_maxlen, 0, 3658 CTL_CREATE, CTL_EOL) != 0) 3659 goto bad; 3660 3661 if (sysctl_createv(clog, 0, &rnode, &cnode, 3662 CTLFLAG_PERMANENT, 3663 CTLTYPE_INT, "drops", 3664 SYSCTL_DESCR("Packets dropped due to full output queue"), 3665 NULL, 0, &ifq->ifq_drops, 0, 3666 CTL_CREATE, CTL_EOL) != 0) 3667 goto bad; 3668 3669 return; 3670 bad: 3671 printf("%s: could not attach sysctl nodes\n", ifname); 3672 return; 3673 } 3674 3675 #if defined(INET) || defined(INET6) 3676 3677 #define SYSCTL_NET_PKTQ(q, cn, c) \ 3678 static int \ 3679 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \ 3680 { \ 3681 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \ 3682 } 3683 3684 #if defined(INET) 3685 static int 3686 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS) 3687 { 3688 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq); 3689 } 3690 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS) 3691 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS) 3692 #endif 3693 3694 #if defined(INET6) 3695 static int 3696 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS) 3697 { 3698 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq); 3699 } 3700 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS) 3701 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS) 3702 #endif 3703 3704 static void 3705 sysctl_net_pktq_setup(struct sysctllog **clog, int pf) 3706 { 3707 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL; 3708 const char *pfname = NULL, *ipname = NULL; 3709 int ipn = 0, qid = 0; 3710 3711 switch (pf) { 3712 #if defined(INET) 3713 case PF_INET: 3714 len_func = sysctl_net_ip_pktq_items; 3715 maxlen_func = sysctl_net_ip_pktq_maxlen; 3716 drops_func = sysctl_net_ip_pktq_drops; 3717 pfname = "inet", ipn = IPPROTO_IP; 3718 ipname = "ip", qid = IPCTL_IFQ; 3719 break; 3720 #endif 3721 #if defined(INET6) 3722 case PF_INET6: 3723 len_func = sysctl_net_ip6_pktq_items; 3724 maxlen_func = sysctl_net_ip6_pktq_maxlen; 3725 drops_func = sysctl_net_ip6_pktq_drops; 3726 pfname = "inet6", ipn = IPPROTO_IPV6; 3727 ipname = "ip6", qid = IPV6CTL_IFQ; 3728 break; 3729 #endif 3730 default: 3731 KASSERT(false); 3732 } 3733 3734 sysctl_createv(clog, 0, NULL, NULL, 3735 CTLFLAG_PERMANENT, 3736 CTLTYPE_NODE, pfname, NULL, 3737 NULL, 0, NULL, 0, 3738 CTL_NET, pf, CTL_EOL); 3739 sysctl_createv(clog, 0, NULL, NULL, 3740 CTLFLAG_PERMANENT, 3741 CTLTYPE_NODE, ipname, NULL, 3742 NULL, 0, NULL, 0, 3743 CTL_NET, pf, ipn, CTL_EOL); 3744 sysctl_createv(clog, 0, NULL, NULL, 3745 CTLFLAG_PERMANENT, 3746 CTLTYPE_NODE, "ifq", 3747 SYSCTL_DESCR("Protocol input queue controls"), 3748 NULL, 0, NULL, 0, 3749 CTL_NET, pf, ipn, qid, CTL_EOL); 3750 3751 sysctl_createv(clog, 0, NULL, NULL, 3752 CTLFLAG_PERMANENT, 3753 CTLTYPE_INT, "len", 3754 SYSCTL_DESCR("Current input queue length"), 3755 len_func, 0, NULL, 0, 3756 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); 3757 sysctl_createv(clog, 0, NULL, NULL, 3758 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3759 CTLTYPE_INT, "maxlen", 3760 SYSCTL_DESCR("Maximum allowed input queue length"), 3761 maxlen_func, 0, NULL, 0, 3762 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); 3763 sysctl_createv(clog, 0, NULL, NULL, 3764 CTLFLAG_PERMANENT, 3765 CTLTYPE_INT, "drops", 3766 SYSCTL_DESCR("Packets dropped due to full input queue"), 3767 drops_func, 0, NULL, 0, 3768 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); 3769 } 3770 #endif /* INET || INET6 */ 3771 3772 static int 3773 if_sdl_sysctl(SYSCTLFN_ARGS) 3774 { 3775 struct ifnet *ifp; 3776 const struct sockaddr_dl *sdl; 3777 struct psref psref; 3778 int error = 0; 3779 int bound; 3780 3781 if (namelen != 1) 3782 return EINVAL; 3783 3784 bound = curlwp_bind(); 3785 ifp = if_get_byindex(name[0], &psref); 3786 if (ifp == NULL) { 3787 error = ENODEV; 3788 goto out0; 3789 } 3790 3791 sdl = ifp->if_sadl; 3792 if (sdl == NULL) { 3793 *oldlenp = 0; 3794 goto out1; 3795 } 3796 3797 if (oldp == NULL) { 3798 *oldlenp = sdl->sdl_alen; 3799 goto out1; 3800 } 3801 3802 if (*oldlenp >= sdl->sdl_alen) 3803 *oldlenp = sdl->sdl_alen; 3804 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp); 3805 out1: 3806 if_put(ifp, &psref); 3807 out0: 3808 curlwp_bindx(bound); 3809 return error; 3810 } 3811 3812 static void 3813 if_sysctl_setup(struct sysctllog **clog) 3814 { 3815 const struct sysctlnode *rnode = NULL; 3816 3817 sysctl_createv(clog, 0, NULL, &rnode, 3818 CTLFLAG_PERMANENT, 3819 CTLTYPE_NODE, "sdl", 3820 SYSCTL_DESCR("Get active link-layer address"), 3821 if_sdl_sysctl, 0, NULL, 0, 3822 CTL_NET, CTL_CREATE, CTL_EOL); 3823 3824 #if defined(INET) 3825 sysctl_net_pktq_setup(NULL, PF_INET); 3826 #endif 3827 #ifdef INET6 3828 if (in6_present) 3829 sysctl_net_pktq_setup(NULL, PF_INET6); 3830 #endif 3831 } 3832