1 /* $NetBSD: if.c,v 1.484 2020/10/15 10:20:44 roy Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.484 2020/10/15 10:20:44 roy Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 #include "opt_atalk.h" 99 #include "opt_wlan.h" 100 #include "opt_net_mpsafe.h" 101 #include "opt_mrouting.h" 102 #endif 103 104 #include <sys/param.h> 105 #include <sys/mbuf.h> 106 #include <sys/systm.h> 107 #include <sys/callout.h> 108 #include <sys/proc.h> 109 #include <sys/socket.h> 110 #include <sys/socketvar.h> 111 #include <sys/domain.h> 112 #include <sys/protosw.h> 113 #include <sys/kernel.h> 114 #include <sys/ioctl.h> 115 #include <sys/sysctl.h> 116 #include <sys/syslog.h> 117 #include <sys/kauth.h> 118 #include <sys/kmem.h> 119 #include <sys/xcall.h> 120 #include <sys/cpu.h> 121 #include <sys/intr.h> 122 #include <sys/module_hook.h> 123 #include <sys/compat_stub.h> 124 #include <sys/msan.h> 125 126 #include <net/if.h> 127 #include <net/if_dl.h> 128 #include <net/if_ether.h> 129 #include <net/if_media.h> 130 #include <net80211/ieee80211.h> 131 #include <net80211/ieee80211_ioctl.h> 132 #include <net/if_types.h> 133 #include <net/route.h> 134 #include <net/netisr.h> 135 #include <sys/module.h> 136 #ifdef NETATALK 137 #include <netatalk/at_extern.h> 138 #include <netatalk/at.h> 139 #endif 140 #include <net/pfil.h> 141 #include <netinet/in.h> 142 #include <netinet/in_var.h> 143 #include <netinet/ip_encap.h> 144 #include <net/bpf.h> 145 146 #ifdef INET6 147 #include <netinet6/in6_var.h> 148 #include <netinet6/nd6.h> 149 #endif 150 151 #include "ether.h" 152 153 #include "bridge.h" 154 #if NBRIDGE > 0 155 #include <net/if_bridgevar.h> 156 #endif 157 158 #include "carp.h" 159 #if NCARP > 0 160 #include <netinet/ip_carp.h> 161 #endif 162 163 #include <compat/sys/sockio.h> 164 165 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 166 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 167 168 /* 169 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex 170 * for each ifnet. It doesn't matter because: 171 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on 172 * ifq_lock don't happen 173 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock 174 * because if_snd, if_link_state_change and if_link_state_change_process 175 * are all called with KERNEL_LOCK 176 */ 177 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \ 178 mutex_enter((ifp)->if_snd.ifq_lock) 179 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \ 180 mutex_exit((ifp)->if_snd.ifq_lock) 181 182 /* 183 * Global list of interfaces. 184 */ 185 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 186 struct ifnet_head ifnet_list; 187 188 struct pslist_head ifnet_pslist; 189 static ifnet_t ** ifindex2ifnet = NULL; 190 static u_int if_index = 1; 191 static size_t if_indexlim = 0; 192 static uint64_t index_gen; 193 /* Mutex to protect the above objects. */ 194 kmutex_t ifnet_mtx __cacheline_aligned; 195 static struct psref_class *ifnet_psref_class __read_mostly; 196 static pserialize_t ifnet_psz; 197 static struct workqueue *ifnet_link_state_wq __read_mostly; 198 199 static kmutex_t if_clone_mtx; 200 201 struct ifnet *lo0ifp; 202 int ifqmaxlen = IFQ_MAXLEN; 203 204 struct psref_class *ifa_psref_class __read_mostly; 205 206 static int if_delroute_matcher(struct rtentry *, void *); 207 208 static bool if_is_unit(const char *); 209 static struct if_clone *if_clone_lookup(const char *, int *); 210 211 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 212 static int if_cloners_count; 213 214 /* Packet filtering hook for interfaces. */ 215 pfil_head_t * if_pfil __read_mostly; 216 217 static kauth_listener_t if_listener; 218 219 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 220 static void if_detach_queues(struct ifnet *, struct ifqueue *); 221 static void sysctl_sndq_setup(struct sysctllog **, const char *, 222 struct ifaltq *); 223 static void if_slowtimo(void *); 224 static void if_attachdomain1(struct ifnet *); 225 static int ifconf(u_long, void *); 226 static int if_transmit(struct ifnet *, struct mbuf *); 227 static int if_clone_create(const char *); 228 static int if_clone_destroy(const char *); 229 static void if_link_state_change_work(struct work *, void *); 230 static void if_up_locked(struct ifnet *); 231 static void _if_down(struct ifnet *); 232 static void if_down_deactivated(struct ifnet *); 233 234 struct if_percpuq { 235 struct ifnet *ipq_ifp; 236 void *ipq_si; 237 struct percpu *ipq_ifqs; /* struct ifqueue */ 238 }; 239 240 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 241 242 static void if_percpuq_drops(void *, void *, struct cpu_info *); 243 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 244 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 245 struct if_percpuq *); 246 247 struct if_deferred_start { 248 struct ifnet *ids_ifp; 249 void (*ids_if_start)(struct ifnet *); 250 void *ids_si; 251 }; 252 253 static void if_deferred_start_softint(void *); 254 static void if_deferred_start_common(struct ifnet *); 255 static void if_deferred_start_destroy(struct ifnet *); 256 257 #if defined(INET) || defined(INET6) 258 static void sysctl_net_pktq_setup(struct sysctllog **, int); 259 #endif 260 261 /* 262 * Hook for if_vlan - needed by if_agr 263 */ 264 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook; 265 266 static void if_sysctl_setup(struct sysctllog **); 267 268 static int 269 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 270 void *arg0, void *arg1, void *arg2, void *arg3) 271 { 272 int result; 273 enum kauth_network_req req; 274 275 result = KAUTH_RESULT_DEFER; 276 req = (enum kauth_network_req)(uintptr_t)arg1; 277 278 if (action != KAUTH_NETWORK_INTERFACE) 279 return result; 280 281 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 282 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 283 result = KAUTH_RESULT_ALLOW; 284 285 return result; 286 } 287 288 /* 289 * Network interface utility routines. 290 * 291 * Routines with ifa_ifwith* names take sockaddr *'s as 292 * parameters. 293 */ 294 void 295 ifinit(void) 296 { 297 298 #if (defined(INET) || defined(INET6)) 299 encapinit(); 300 #endif 301 302 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 303 if_listener_cb, NULL); 304 305 /* interfaces are available, inform socket code */ 306 ifioctl = doifioctl; 307 } 308 309 /* 310 * XXX Initialization before configure(). 311 * XXX hack to get pfil_add_hook working in autoconf. 312 */ 313 void 314 ifinit1(void) 315 { 316 int error __diagused; 317 318 #ifdef NET_MPSAFE 319 printf("NET_MPSAFE enabled\n"); 320 #endif 321 322 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 323 324 TAILQ_INIT(&ifnet_list); 325 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 326 ifnet_psz = pserialize_create(); 327 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 328 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 329 error = workqueue_create(&ifnet_link_state_wq, "iflnkst", 330 if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET, 331 WQ_MPSAFE); 332 KASSERT(error == 0); 333 PSLIST_INIT(&ifnet_pslist); 334 335 if_indexlim = 8; 336 337 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 338 KASSERT(if_pfil != NULL); 339 340 #if NETHER > 0 || defined(NETATALK) || defined(WLAN) 341 etherinit(); 342 #endif 343 } 344 345 /* XXX must be after domaininit() */ 346 void 347 ifinit_post(void) 348 { 349 350 if_sysctl_setup(NULL); 351 } 352 353 ifnet_t * 354 if_alloc(u_char type) 355 { 356 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 357 } 358 359 void 360 if_free(ifnet_t *ifp) 361 { 362 kmem_free(ifp, sizeof(ifnet_t)); 363 } 364 365 void 366 if_initname(struct ifnet *ifp, const char *name, int unit) 367 { 368 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 369 "%s%d", name, unit); 370 } 371 372 /* 373 * Null routines used while an interface is going away. These routines 374 * just return an error. 375 */ 376 377 int 378 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 379 const struct sockaddr *so, const struct rtentry *rt) 380 { 381 382 return ENXIO; 383 } 384 385 void 386 if_nullinput(struct ifnet *ifp, struct mbuf *m) 387 { 388 389 /* Nothing. */ 390 } 391 392 void 393 if_nullstart(struct ifnet *ifp) 394 { 395 396 /* Nothing. */ 397 } 398 399 int 400 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 401 { 402 403 m_freem(m); 404 return ENXIO; 405 } 406 407 int 408 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 409 { 410 411 return ENXIO; 412 } 413 414 int 415 if_nullinit(struct ifnet *ifp) 416 { 417 418 return ENXIO; 419 } 420 421 void 422 if_nullstop(struct ifnet *ifp, int disable) 423 { 424 425 /* Nothing. */ 426 } 427 428 void 429 if_nullslowtimo(struct ifnet *ifp) 430 { 431 432 /* Nothing. */ 433 } 434 435 void 436 if_nulldrain(struct ifnet *ifp) 437 { 438 439 /* Nothing. */ 440 } 441 442 void 443 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 444 { 445 struct ifaddr *ifa; 446 struct sockaddr_dl *sdl; 447 448 ifp->if_addrlen = addrlen; 449 if_alloc_sadl(ifp); 450 ifa = ifp->if_dl; 451 sdl = satosdl(ifa->ifa_addr); 452 453 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 454 if (factory) { 455 KASSERT(ifp->if_hwdl == NULL); 456 ifp->if_hwdl = ifp->if_dl; 457 ifaref(ifp->if_hwdl); 458 } 459 /* TBD routing socket */ 460 } 461 462 struct ifaddr * 463 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 464 { 465 unsigned socksize, ifasize; 466 int addrlen, namelen; 467 struct sockaddr_dl *mask, *sdl; 468 struct ifaddr *ifa; 469 470 namelen = strlen(ifp->if_xname); 471 addrlen = ifp->if_addrlen; 472 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 473 ifasize = sizeof(*ifa) + 2 * socksize; 474 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO); 475 476 sdl = (struct sockaddr_dl *)(ifa + 1); 477 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 478 479 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 480 ifp->if_xname, namelen, NULL, addrlen); 481 mask->sdl_family = AF_LINK; 482 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 483 memset(&mask->sdl_data[0], 0xff, namelen); 484 ifa->ifa_rtrequest = link_rtrequest; 485 ifa->ifa_addr = (struct sockaddr *)sdl; 486 ifa->ifa_netmask = (struct sockaddr *)mask; 487 ifa_psref_init(ifa); 488 489 *sdlp = sdl; 490 491 return ifa; 492 } 493 494 static void 495 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 496 { 497 const struct sockaddr_dl *sdl; 498 499 ifp->if_dl = ifa; 500 ifaref(ifa); 501 sdl = satosdl(ifa->ifa_addr); 502 ifp->if_sadl = sdl; 503 } 504 505 /* 506 * Allocate the link level name for the specified interface. This 507 * is an attachment helper. It must be called after ifp->if_addrlen 508 * is initialized, which may not be the case when if_attach() is 509 * called. 510 */ 511 void 512 if_alloc_sadl(struct ifnet *ifp) 513 { 514 struct ifaddr *ifa; 515 const struct sockaddr_dl *sdl; 516 517 /* 518 * If the interface already has a link name, release it 519 * now. This is useful for interfaces that can change 520 * link types, and thus switch link names often. 521 */ 522 if (ifp->if_sadl != NULL) 523 if_free_sadl(ifp, 0); 524 525 ifa = if_dl_create(ifp, &sdl); 526 527 ifa_insert(ifp, ifa); 528 if_sadl_setrefs(ifp, ifa); 529 } 530 531 static void 532 if_deactivate_sadl(struct ifnet *ifp) 533 { 534 struct ifaddr *ifa; 535 536 KASSERT(ifp->if_dl != NULL); 537 538 ifa = ifp->if_dl; 539 540 ifp->if_sadl = NULL; 541 542 ifp->if_dl = NULL; 543 ifafree(ifa); 544 } 545 546 static void 547 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa) 548 { 549 struct ifaddr *old; 550 551 KASSERT(ifp->if_dl != NULL); 552 553 old = ifp->if_dl; 554 555 ifaref(ifa); 556 /* XXX Update if_dl and if_sadl atomically */ 557 ifp->if_dl = ifa; 558 ifp->if_sadl = satosdl(ifa->ifa_addr); 559 560 ifafree(old); 561 } 562 563 void 564 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 565 const struct sockaddr_dl *sdl) 566 { 567 int s, ss; 568 struct ifaddr *ifa; 569 int bound = curlwp_bind(); 570 571 KASSERT(ifa_held(ifa0)); 572 573 s = splsoftnet(); 574 575 if_replace_sadl(ifp, ifa0); 576 577 ss = pserialize_read_enter(); 578 IFADDR_READER_FOREACH(ifa, ifp) { 579 struct psref psref; 580 ifa_acquire(ifa, &psref); 581 pserialize_read_exit(ss); 582 583 rtinit(ifa, RTM_LLINFO_UPD, 0); 584 585 ss = pserialize_read_enter(); 586 ifa_release(ifa, &psref); 587 } 588 pserialize_read_exit(ss); 589 590 splx(s); 591 curlwp_bindx(bound); 592 } 593 594 /* 595 * Free the link level name for the specified interface. This is 596 * a detach helper. This is called from if_detach(). 597 */ 598 void 599 if_free_sadl(struct ifnet *ifp, int factory) 600 { 601 struct ifaddr *ifa; 602 int s; 603 604 if (factory && ifp->if_hwdl != NULL) { 605 ifa = ifp->if_hwdl; 606 ifp->if_hwdl = NULL; 607 ifafree(ifa); 608 } 609 610 ifa = ifp->if_dl; 611 if (ifa == NULL) { 612 KASSERT(ifp->if_sadl == NULL); 613 return; 614 } 615 616 KASSERT(ifp->if_sadl != NULL); 617 618 s = splsoftnet(); 619 KASSERT(ifa->ifa_addr->sa_family == AF_LINK); 620 ifa_remove(ifp, ifa); 621 if_deactivate_sadl(ifp); 622 splx(s); 623 } 624 625 static void 626 if_getindex(ifnet_t *ifp) 627 { 628 bool hitlimit = false; 629 630 ifp->if_index_gen = index_gen++; 631 632 ifp->if_index = if_index; 633 if (ifindex2ifnet == NULL) { 634 if_index++; 635 goto skip; 636 } 637 while (if_byindex(ifp->if_index)) { 638 /* 639 * If we hit USHRT_MAX, we skip back to 0 since 640 * there are a number of places where the value 641 * of if_index or if_index itself is compared 642 * to or stored in an unsigned short. By 643 * jumping back, we won't botch those assignments 644 * or comparisons. 645 */ 646 if (++if_index == 0) { 647 if_index = 1; 648 } else if (if_index == USHRT_MAX) { 649 /* 650 * However, if we have to jump back to 651 * zero *twice* without finding an empty 652 * slot in ifindex2ifnet[], then there 653 * there are too many (>65535) interfaces. 654 */ 655 if (hitlimit) { 656 panic("too many interfaces"); 657 } 658 hitlimit = true; 659 if_index = 1; 660 } 661 ifp->if_index = if_index; 662 } 663 skip: 664 /* 665 * ifindex2ifnet is indexed by if_index. Since if_index will 666 * grow dynamically, it should grow too. 667 */ 668 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 669 size_t m, n, oldlim; 670 void *q; 671 672 oldlim = if_indexlim; 673 while (ifp->if_index >= if_indexlim) 674 if_indexlim <<= 1; 675 676 /* grow ifindex2ifnet */ 677 m = oldlim * sizeof(struct ifnet *); 678 n = if_indexlim * sizeof(struct ifnet *); 679 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO); 680 if (ifindex2ifnet != NULL) { 681 memcpy(q, ifindex2ifnet, m); 682 free(ifindex2ifnet, M_IFADDR); 683 } 684 ifindex2ifnet = (struct ifnet **)q; 685 } 686 ifindex2ifnet[ifp->if_index] = ifp; 687 } 688 689 /* 690 * Initialize an interface and assign an index for it. 691 * 692 * It must be called prior to a device specific attach routine 693 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 694 * and be followed by if_register: 695 * 696 * if_initialize(ifp); 697 * ether_ifattach(ifp, enaddr); 698 * if_register(ifp); 699 */ 700 int 701 if_initialize(ifnet_t *ifp) 702 { 703 int rv = 0; 704 705 KASSERT(if_indexlim > 0); 706 TAILQ_INIT(&ifp->if_addrlist); 707 708 /* 709 * Link level name is allocated later by a separate call to 710 * if_alloc_sadl(). 711 */ 712 713 if (ifp->if_snd.ifq_maxlen == 0) 714 ifp->if_snd.ifq_maxlen = ifqmaxlen; 715 716 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 717 718 ifp->if_link_state = LINK_STATE_UNKNOWN; 719 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 720 ifp->if_link_scheduled = false; 721 722 ifp->if_capenable = 0; 723 ifp->if_csum_flags_tx = 0; 724 ifp->if_csum_flags_rx = 0; 725 726 #ifdef ALTQ 727 ifp->if_snd.altq_type = 0; 728 ifp->if_snd.altq_disc = NULL; 729 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 730 ifp->if_snd.altq_tbr = NULL; 731 ifp->if_snd.altq_ifp = ifp; 732 #endif 733 734 IFQ_LOCK_INIT(&ifp->if_snd); 735 736 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 737 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); 738 739 IF_AFDATA_LOCK_INIT(ifp); 740 741 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 742 PSLIST_INIT(&ifp->if_addr_pslist); 743 psref_target_init(&ifp->if_psref, ifnet_psref_class); 744 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 745 LIST_INIT(&ifp->if_multiaddrs); 746 if ((rv = if_stats_init(ifp)) != 0) { 747 goto fail; 748 } 749 750 IFNET_GLOBAL_LOCK(); 751 if_getindex(ifp); 752 IFNET_GLOBAL_UNLOCK(); 753 754 return 0; 755 756 fail: 757 IF_AFDATA_LOCK_DESTROY(ifp); 758 759 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 760 (void)pfil_head_destroy(ifp->if_pfil); 761 762 IFQ_LOCK_DESTROY(&ifp->if_snd); 763 764 return rv; 765 } 766 767 /* 768 * Register an interface to the list of "active" interfaces. 769 */ 770 void 771 if_register(ifnet_t *ifp) 772 { 773 /* 774 * If the driver has not supplied its own if_ioctl, then 775 * supply the default. 776 */ 777 if (ifp->if_ioctl == NULL) 778 ifp->if_ioctl = ifioctl_common; 779 780 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 781 782 if (!STAILQ_EMPTY(&domains)) 783 if_attachdomain1(ifp); 784 785 /* Announce the interface. */ 786 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 787 788 if (ifp->if_slowtimo != NULL) { 789 ifp->if_slowtimo_ch = 790 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP); 791 callout_init(ifp->if_slowtimo_ch, 0); 792 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp); 793 if_slowtimo(ifp); 794 } 795 796 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 797 ifp->if_transmit = if_transmit; 798 799 IFNET_GLOBAL_LOCK(); 800 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 801 IFNET_WRITER_INSERT_TAIL(ifp); 802 IFNET_GLOBAL_UNLOCK(); 803 } 804 805 /* 806 * The if_percpuq framework 807 * 808 * It allows network device drivers to execute the network stack 809 * in softint (so called softint-based if_input). It utilizes 810 * softint and percpu ifqueue. It doesn't distribute any packets 811 * between CPUs, unlike pktqueue(9). 812 * 813 * Currently we support two options for device drivers to apply the framework: 814 * - Use it implicitly with less changes 815 * - If you use if_attach in driver's _attach function and if_input in 816 * driver's Rx interrupt handler, a packet is queued and a softint handles 817 * the packet implicitly 818 * - Use it explicitly in each driver (recommended) 819 * - You can use if_percpuq_* directly in your driver 820 * - In this case, you need to allocate struct if_percpuq in driver's softc 821 * - See wm(4) as a reference implementation 822 */ 823 824 static void 825 if_percpuq_softint(void *arg) 826 { 827 struct if_percpuq *ipq = arg; 828 struct ifnet *ifp = ipq->ipq_ifp; 829 struct mbuf *m; 830 831 while ((m = if_percpuq_dequeue(ipq)) != NULL) { 832 if_statinc(ifp, if_ipackets); 833 bpf_mtap(ifp, m, BPF_D_IN); 834 835 ifp->_if_input(ifp, m); 836 } 837 } 838 839 static void 840 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 841 { 842 struct ifqueue *const ifq = p; 843 844 memset(ifq, 0, sizeof(*ifq)); 845 ifq->ifq_maxlen = IFQ_MAXLEN; 846 } 847 848 struct if_percpuq * 849 if_percpuq_create(struct ifnet *ifp) 850 { 851 struct if_percpuq *ipq; 852 u_int flags = SOFTINT_NET; 853 854 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 855 856 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 857 ipq->ipq_ifp = ifp; 858 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq); 859 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 860 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 861 862 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 863 864 return ipq; 865 } 866 867 static struct mbuf * 868 if_percpuq_dequeue(struct if_percpuq *ipq) 869 { 870 struct mbuf *m; 871 struct ifqueue *ifq; 872 int s; 873 874 s = splnet(); 875 ifq = percpu_getref(ipq->ipq_ifqs); 876 IF_DEQUEUE(ifq, m); 877 percpu_putref(ipq->ipq_ifqs); 878 splx(s); 879 880 return m; 881 } 882 883 static void 884 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 885 { 886 struct ifqueue *const ifq = p; 887 888 IF_PURGE(ifq); 889 } 890 891 void 892 if_percpuq_destroy(struct if_percpuq *ipq) 893 { 894 895 /* if_detach may already destroy it */ 896 if (ipq == NULL) 897 return; 898 899 softint_disestablish(ipq->ipq_si); 900 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 901 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 902 kmem_free(ipq, sizeof(*ipq)); 903 } 904 905 void 906 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 907 { 908 struct ifqueue *ifq; 909 int s; 910 911 KASSERT(ipq != NULL); 912 913 s = splnet(); 914 ifq = percpu_getref(ipq->ipq_ifqs); 915 if (IF_QFULL(ifq)) { 916 IF_DROP(ifq); 917 percpu_putref(ipq->ipq_ifqs); 918 m_freem(m); 919 goto out; 920 } 921 IF_ENQUEUE(ifq, m); 922 percpu_putref(ipq->ipq_ifqs); 923 924 softint_schedule(ipq->ipq_si); 925 out: 926 splx(s); 927 } 928 929 static void 930 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 931 { 932 struct ifqueue *const ifq = p; 933 int *sum = arg; 934 935 *sum += ifq->ifq_drops; 936 } 937 938 static int 939 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 940 { 941 struct sysctlnode node; 942 struct if_percpuq *ipq; 943 int sum = 0; 944 int error; 945 946 node = *rnode; 947 ipq = node.sysctl_data; 948 949 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 950 951 node.sysctl_data = ∑ 952 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 953 if (error != 0 || newp == NULL) 954 return error; 955 956 return 0; 957 } 958 959 static void 960 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 961 struct if_percpuq *ipq) 962 { 963 const struct sysctlnode *cnode, *rnode; 964 965 if (sysctl_createv(clog, 0, NULL, &rnode, 966 CTLFLAG_PERMANENT, 967 CTLTYPE_NODE, "interfaces", 968 SYSCTL_DESCR("Per-interface controls"), 969 NULL, 0, NULL, 0, 970 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 971 goto bad; 972 973 if (sysctl_createv(clog, 0, &rnode, &rnode, 974 CTLFLAG_PERMANENT, 975 CTLTYPE_NODE, ifname, 976 SYSCTL_DESCR("Interface controls"), 977 NULL, 0, NULL, 0, 978 CTL_CREATE, CTL_EOL) != 0) 979 goto bad; 980 981 if (sysctl_createv(clog, 0, &rnode, &rnode, 982 CTLFLAG_PERMANENT, 983 CTLTYPE_NODE, "rcvq", 984 SYSCTL_DESCR("Interface input queue controls"), 985 NULL, 0, NULL, 0, 986 CTL_CREATE, CTL_EOL) != 0) 987 goto bad; 988 989 #ifdef NOTYET 990 /* XXX Should show each per-CPU queue length? */ 991 if (sysctl_createv(clog, 0, &rnode, &rnode, 992 CTLFLAG_PERMANENT, 993 CTLTYPE_INT, "len", 994 SYSCTL_DESCR("Current input queue length"), 995 sysctl_percpuq_len, 0, NULL, 0, 996 CTL_CREATE, CTL_EOL) != 0) 997 goto bad; 998 999 if (sysctl_createv(clog, 0, &rnode, &cnode, 1000 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1001 CTLTYPE_INT, "maxlen", 1002 SYSCTL_DESCR("Maximum allowed input queue length"), 1003 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 1004 CTL_CREATE, CTL_EOL) != 0) 1005 goto bad; 1006 #endif 1007 1008 if (sysctl_createv(clog, 0, &rnode, &cnode, 1009 CTLFLAG_PERMANENT, 1010 CTLTYPE_INT, "drops", 1011 SYSCTL_DESCR("Total packets dropped due to full input queue"), 1012 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 1013 CTL_CREATE, CTL_EOL) != 0) 1014 goto bad; 1015 1016 return; 1017 bad: 1018 printf("%s: could not attach sysctl nodes\n", ifname); 1019 return; 1020 } 1021 1022 /* 1023 * The deferred if_start framework 1024 * 1025 * The common APIs to defer if_start to softint when if_start is requested 1026 * from a device driver running in hardware interrupt context. 1027 */ 1028 /* 1029 * Call ifp->if_start (or equivalent) in a dedicated softint for 1030 * deferred if_start. 1031 */ 1032 static void 1033 if_deferred_start_softint(void *arg) 1034 { 1035 struct if_deferred_start *ids = arg; 1036 struct ifnet *ifp = ids->ids_ifp; 1037 1038 ids->ids_if_start(ifp); 1039 } 1040 1041 /* 1042 * The default callback function for deferred if_start. 1043 */ 1044 static void 1045 if_deferred_start_common(struct ifnet *ifp) 1046 { 1047 int s; 1048 1049 s = splnet(); 1050 if_start_lock(ifp); 1051 splx(s); 1052 } 1053 1054 static inline bool 1055 if_snd_is_used(struct ifnet *ifp) 1056 { 1057 1058 return ALTQ_IS_ENABLED(&ifp->if_snd) || 1059 ifp->if_transmit == if_transmit || 1060 ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit; 1061 } 1062 1063 /* 1064 * Schedule deferred if_start. 1065 */ 1066 void 1067 if_schedule_deferred_start(struct ifnet *ifp) 1068 { 1069 1070 KASSERT(ifp->if_deferred_start != NULL); 1071 1072 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1073 return; 1074 1075 softint_schedule(ifp->if_deferred_start->ids_si); 1076 } 1077 1078 /* 1079 * Create an instance of deferred if_start. A driver should call the function 1080 * only if the driver needs deferred if_start. Drivers can setup their own 1081 * deferred if_start function via 2nd argument. 1082 */ 1083 void 1084 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1085 { 1086 struct if_deferred_start *ids; 1087 u_int flags = SOFTINT_NET; 1088 1089 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 1090 1091 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1092 ids->ids_ifp = ifp; 1093 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids); 1094 if (func != NULL) 1095 ids->ids_if_start = func; 1096 else 1097 ids->ids_if_start = if_deferred_start_common; 1098 1099 ifp->if_deferred_start = ids; 1100 } 1101 1102 static void 1103 if_deferred_start_destroy(struct ifnet *ifp) 1104 { 1105 1106 if (ifp->if_deferred_start == NULL) 1107 return; 1108 1109 softint_disestablish(ifp->if_deferred_start->ids_si); 1110 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1111 ifp->if_deferred_start = NULL; 1112 } 1113 1114 /* 1115 * The common interface input routine that is called by device drivers, 1116 * which should be used only when the driver's rx handler already runs 1117 * in softint. 1118 */ 1119 void 1120 if_input(struct ifnet *ifp, struct mbuf *m) 1121 { 1122 1123 KASSERT(ifp->if_percpuq == NULL); 1124 KASSERT(!cpu_intr_p()); 1125 1126 if_statinc(ifp, if_ipackets); 1127 bpf_mtap(ifp, m, BPF_D_IN); 1128 1129 ifp->_if_input(ifp, m); 1130 } 1131 1132 /* 1133 * DEPRECATED. Use if_initialize and if_register instead. 1134 * See the above comment of if_initialize. 1135 * 1136 * Note that it implicitly enables if_percpuq to make drivers easy to 1137 * migrate softint-based if_input without much changes. If you don't 1138 * want to enable it, use if_initialize instead. 1139 */ 1140 int 1141 if_attach(ifnet_t *ifp) 1142 { 1143 int rv; 1144 1145 rv = if_initialize(ifp); 1146 if (rv != 0) 1147 return rv; 1148 1149 ifp->if_percpuq = if_percpuq_create(ifp); 1150 if_register(ifp); 1151 1152 return 0; 1153 } 1154 1155 void 1156 if_attachdomain(void) 1157 { 1158 struct ifnet *ifp; 1159 int s; 1160 int bound = curlwp_bind(); 1161 1162 s = pserialize_read_enter(); 1163 IFNET_READER_FOREACH(ifp) { 1164 struct psref psref; 1165 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1166 pserialize_read_exit(s); 1167 if_attachdomain1(ifp); 1168 s = pserialize_read_enter(); 1169 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1170 } 1171 pserialize_read_exit(s); 1172 curlwp_bindx(bound); 1173 } 1174 1175 static void 1176 if_attachdomain1(struct ifnet *ifp) 1177 { 1178 struct domain *dp; 1179 int s; 1180 1181 s = splsoftnet(); 1182 1183 /* address family dependent data region */ 1184 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1185 DOMAIN_FOREACH(dp) { 1186 if (dp->dom_ifattach != NULL) 1187 ifp->if_afdata[dp->dom_family] = 1188 (*dp->dom_ifattach)(ifp); 1189 } 1190 1191 splx(s); 1192 } 1193 1194 /* 1195 * Deactivate an interface. This points all of the procedure 1196 * handles at error stubs. May be called from interrupt context. 1197 */ 1198 void 1199 if_deactivate(struct ifnet *ifp) 1200 { 1201 int s; 1202 1203 s = splsoftnet(); 1204 1205 ifp->if_output = if_nulloutput; 1206 ifp->_if_input = if_nullinput; 1207 ifp->if_start = if_nullstart; 1208 ifp->if_transmit = if_nulltransmit; 1209 ifp->if_ioctl = if_nullioctl; 1210 ifp->if_init = if_nullinit; 1211 ifp->if_stop = if_nullstop; 1212 ifp->if_slowtimo = if_nullslowtimo; 1213 ifp->if_drain = if_nulldrain; 1214 1215 ifp->if_link_state_changed = NULL; 1216 1217 /* No more packets may be enqueued. */ 1218 ifp->if_snd.ifq_maxlen = 0; 1219 1220 splx(s); 1221 } 1222 1223 bool 1224 if_is_deactivated(const struct ifnet *ifp) 1225 { 1226 1227 return ifp->if_output == if_nulloutput; 1228 } 1229 1230 void 1231 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 1232 { 1233 struct ifaddr *ifa, *nifa; 1234 int s; 1235 1236 s = pserialize_read_enter(); 1237 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1238 nifa = IFADDR_READER_NEXT(ifa); 1239 if (ifa->ifa_addr->sa_family != family) 1240 continue; 1241 pserialize_read_exit(s); 1242 1243 (*purgeaddr)(ifa); 1244 1245 s = pserialize_read_enter(); 1246 } 1247 pserialize_read_exit(s); 1248 } 1249 1250 #ifdef IFAREF_DEBUG 1251 static struct ifaddr **ifa_list; 1252 static int ifa_list_size; 1253 1254 /* Depends on only one if_attach runs at once */ 1255 static void 1256 if_build_ifa_list(struct ifnet *ifp) 1257 { 1258 struct ifaddr *ifa; 1259 int i; 1260 1261 KASSERT(ifa_list == NULL); 1262 KASSERT(ifa_list_size == 0); 1263 1264 IFADDR_READER_FOREACH(ifa, ifp) 1265 ifa_list_size++; 1266 1267 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1268 i = 0; 1269 IFADDR_READER_FOREACH(ifa, ifp) { 1270 ifa_list[i++] = ifa; 1271 ifaref(ifa); 1272 } 1273 } 1274 1275 static void 1276 if_check_and_free_ifa_list(struct ifnet *ifp) 1277 { 1278 int i; 1279 struct ifaddr *ifa; 1280 1281 if (ifa_list == NULL) 1282 return; 1283 1284 for (i = 0; i < ifa_list_size; i++) { 1285 char buf[64]; 1286 1287 ifa = ifa_list[i]; 1288 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1289 if (ifa->ifa_refcnt > 1) { 1290 log(LOG_WARNING, 1291 "ifa(%s) still referenced (refcnt=%d)\n", 1292 buf, ifa->ifa_refcnt - 1); 1293 } else 1294 log(LOG_DEBUG, 1295 "ifa(%s) not referenced (refcnt=%d)\n", 1296 buf, ifa->ifa_refcnt - 1); 1297 ifafree(ifa); 1298 } 1299 1300 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1301 ifa_list = NULL; 1302 ifa_list_size = 0; 1303 } 1304 #endif 1305 1306 /* 1307 * Detach an interface from the list of "active" interfaces, 1308 * freeing any resources as we go along. 1309 * 1310 * NOTE: This routine must be called with a valid thread context, 1311 * as it may block. 1312 */ 1313 void 1314 if_detach(struct ifnet *ifp) 1315 { 1316 struct socket so; 1317 struct ifaddr *ifa; 1318 #ifdef IFAREF_DEBUG 1319 struct ifaddr *last_ifa = NULL; 1320 #endif 1321 struct domain *dp; 1322 const struct protosw *pr; 1323 int s, i, family, purged; 1324 1325 #ifdef IFAREF_DEBUG 1326 if_build_ifa_list(ifp); 1327 #endif 1328 /* 1329 * XXX It's kind of lame that we have to have the 1330 * XXX socket structure... 1331 */ 1332 memset(&so, 0, sizeof(so)); 1333 1334 s = splnet(); 1335 1336 sysctl_teardown(&ifp->if_sysctl_log); 1337 1338 IFNET_LOCK(ifp); 1339 1340 /* 1341 * Unset all queued link states and pretend a 1342 * link state change is scheduled. 1343 * This stops any more link state changes occuring for this 1344 * interface while it's being detached so it's safe 1345 * to drain the workqueue. 1346 */ 1347 IF_LINK_STATE_CHANGE_LOCK(ifp); 1348 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 1349 ifp->if_link_scheduled = true; 1350 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 1351 workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work); 1352 1353 if_deactivate(ifp); 1354 IFNET_UNLOCK(ifp); 1355 1356 /* 1357 * Unlink from the list and wait for all readers to leave 1358 * from pserialize read sections. Note that we can't do 1359 * psref_target_destroy here. See below. 1360 */ 1361 IFNET_GLOBAL_LOCK(); 1362 ifindex2ifnet[ifp->if_index] = NULL; 1363 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1364 IFNET_WRITER_REMOVE(ifp); 1365 pserialize_perform(ifnet_psz); 1366 IFNET_GLOBAL_UNLOCK(); 1367 1368 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) { 1369 ifp->if_slowtimo = NULL; 1370 callout_halt(ifp->if_slowtimo_ch, NULL); 1371 callout_destroy(ifp->if_slowtimo_ch); 1372 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch)); 1373 } 1374 if_deferred_start_destroy(ifp); 1375 1376 /* 1377 * Do an if_down() to give protocols a chance to do something. 1378 */ 1379 if_down_deactivated(ifp); 1380 1381 #ifdef ALTQ 1382 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1383 altq_disable(&ifp->if_snd); 1384 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1385 altq_detach(&ifp->if_snd); 1386 #endif 1387 1388 #if NCARP > 0 1389 /* Remove the interface from any carp group it is a part of. */ 1390 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1391 carp_ifdetach(ifp); 1392 #endif 1393 1394 /* 1395 * Rip all the addresses off the interface. This should make 1396 * all of the routes go away. 1397 * 1398 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1399 * from the list, including our "cursor", ifa. For safety, 1400 * and to honor the TAILQ abstraction, I just restart the 1401 * loop after each removal. Note that the loop will exit 1402 * when all of the remaining ifaddrs belong to the AF_LINK 1403 * family. I am counting on the historical fact that at 1404 * least one pr_usrreq in each address domain removes at 1405 * least one ifaddr. 1406 */ 1407 again: 1408 /* 1409 * At this point, no other one tries to remove ifa in the list, 1410 * so we don't need to take a lock or psref. Avoid using 1411 * IFADDR_READER_FOREACH to pass over an inspection of contract 1412 * violations of pserialize. 1413 */ 1414 IFADDR_WRITER_FOREACH(ifa, ifp) { 1415 family = ifa->ifa_addr->sa_family; 1416 #ifdef IFAREF_DEBUG 1417 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1418 ifa, family, ifa->ifa_refcnt); 1419 if (last_ifa != NULL && ifa == last_ifa) 1420 panic("if_detach: loop detected"); 1421 last_ifa = ifa; 1422 #endif 1423 if (family == AF_LINK) 1424 continue; 1425 dp = pffinddomain(family); 1426 KASSERTMSG(dp != NULL, "no domain for AF %d", family); 1427 /* 1428 * XXX These PURGEIF calls are redundant with the 1429 * purge-all-families calls below, but are left in for 1430 * now both to make a smaller change, and to avoid 1431 * unplanned interactions with clearing of 1432 * ifp->if_addrlist. 1433 */ 1434 purged = 0; 1435 for (pr = dp->dom_protosw; 1436 pr < dp->dom_protoswNPROTOSW; pr++) { 1437 so.so_proto = pr; 1438 if (pr->pr_usrreqs) { 1439 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1440 purged = 1; 1441 } 1442 } 1443 if (purged == 0) { 1444 /* 1445 * XXX What's really the best thing to do 1446 * XXX here? --thorpej@NetBSD.org 1447 */ 1448 printf("if_detach: WARNING: AF %d not purged\n", 1449 family); 1450 ifa_remove(ifp, ifa); 1451 } 1452 goto again; 1453 } 1454 1455 if_free_sadl(ifp, 1); 1456 1457 restart: 1458 IFADDR_WRITER_FOREACH(ifa, ifp) { 1459 family = ifa->ifa_addr->sa_family; 1460 KASSERT(family == AF_LINK); 1461 ifa_remove(ifp, ifa); 1462 goto restart; 1463 } 1464 1465 /* Delete stray routes from the routing table. */ 1466 for (i = 0; i <= AF_MAX; i++) 1467 rt_delete_matched_entries(i, if_delroute_matcher, ifp); 1468 1469 DOMAIN_FOREACH(dp) { 1470 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1471 { 1472 void *p = ifp->if_afdata[dp->dom_family]; 1473 if (p) { 1474 ifp->if_afdata[dp->dom_family] = NULL; 1475 (*dp->dom_ifdetach)(ifp, p); 1476 } 1477 } 1478 1479 /* 1480 * One would expect multicast memberships (INET and 1481 * INET6) on UDP sockets to be purged by the PURGEIF 1482 * calls above, but if all addresses were removed from 1483 * the interface prior to destruction, the calls will 1484 * not be made (e.g. ppp, for which pppd(8) generally 1485 * removes addresses before destroying the interface). 1486 * Because there is no invariant that multicast 1487 * memberships only exist for interfaces with IPv4 1488 * addresses, we must call PURGEIF regardless of 1489 * addresses. (Protocols which might store ifnet 1490 * pointers are marked with PR_PURGEIF.) 1491 */ 1492 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 1493 so.so_proto = pr; 1494 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1495 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1496 } 1497 } 1498 1499 /* 1500 * Must be done after the above pr_purgeif because if_psref may be 1501 * still used in pr_purgeif. 1502 */ 1503 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1504 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1505 1506 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 1507 (void)pfil_head_destroy(ifp->if_pfil); 1508 1509 /* Announce that the interface is gone. */ 1510 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1511 1512 IF_AFDATA_LOCK_DESTROY(ifp); 1513 1514 /* 1515 * remove packets that came from ifp, from software interrupt queues. 1516 */ 1517 DOMAIN_FOREACH(dp) { 1518 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { 1519 struct ifqueue *iq = dp->dom_ifqueues[i]; 1520 if (iq == NULL) 1521 break; 1522 dp->dom_ifqueues[i] = NULL; 1523 if_detach_queues(ifp, iq); 1524 } 1525 } 1526 1527 /* 1528 * IP queues have to be processed separately: net-queue barrier 1529 * ensures that the packets are dequeued while a cross-call will 1530 * ensure that the interrupts have completed. FIXME: not quite.. 1531 */ 1532 #ifdef INET 1533 pktq_barrier(ip_pktq); 1534 #endif 1535 #ifdef INET6 1536 if (in6_present) 1537 pktq_barrier(ip6_pktq); 1538 #endif 1539 xc_barrier(0); 1540 1541 if (ifp->if_percpuq != NULL) { 1542 if_percpuq_destroy(ifp->if_percpuq); 1543 ifp->if_percpuq = NULL; 1544 } 1545 1546 mutex_obj_free(ifp->if_ioctl_lock); 1547 ifp->if_ioctl_lock = NULL; 1548 mutex_obj_free(ifp->if_snd.ifq_lock); 1549 if_stats_fini(ifp); 1550 1551 splx(s); 1552 1553 #ifdef IFAREF_DEBUG 1554 if_check_and_free_ifa_list(ifp); 1555 #endif 1556 } 1557 1558 static void 1559 if_detach_queues(struct ifnet *ifp, struct ifqueue *q) 1560 { 1561 struct mbuf *m, *prev, *next; 1562 1563 prev = NULL; 1564 for (m = q->ifq_head; m != NULL; m = next) { 1565 KASSERT((m->m_flags & M_PKTHDR) != 0); 1566 1567 next = m->m_nextpkt; 1568 if (m->m_pkthdr.rcvif_index != ifp->if_index) { 1569 prev = m; 1570 continue; 1571 } 1572 1573 if (prev != NULL) 1574 prev->m_nextpkt = m->m_nextpkt; 1575 else 1576 q->ifq_head = m->m_nextpkt; 1577 if (q->ifq_tail == m) 1578 q->ifq_tail = prev; 1579 q->ifq_len--; 1580 1581 m->m_nextpkt = NULL; 1582 m_freem(m); 1583 IF_DROP(q); 1584 } 1585 } 1586 1587 /* 1588 * Callback for a radix tree walk to delete all references to an 1589 * ifnet. 1590 */ 1591 static int 1592 if_delroute_matcher(struct rtentry *rt, void *v) 1593 { 1594 struct ifnet *ifp = (struct ifnet *)v; 1595 1596 if (rt->rt_ifp == ifp) 1597 return 1; 1598 else 1599 return 0; 1600 } 1601 1602 /* 1603 * Create a clone network interface. 1604 */ 1605 static int 1606 if_clone_create(const char *name) 1607 { 1608 struct if_clone *ifc; 1609 int unit; 1610 struct ifnet *ifp; 1611 struct psref psref; 1612 1613 KASSERT(mutex_owned(&if_clone_mtx)); 1614 1615 ifc = if_clone_lookup(name, &unit); 1616 if (ifc == NULL) 1617 return EINVAL; 1618 1619 ifp = if_get(name, &psref); 1620 if (ifp != NULL) { 1621 if_put(ifp, &psref); 1622 return EEXIST; 1623 } 1624 1625 return (*ifc->ifc_create)(ifc, unit); 1626 } 1627 1628 /* 1629 * Destroy a clone network interface. 1630 */ 1631 static int 1632 if_clone_destroy(const char *name) 1633 { 1634 struct if_clone *ifc; 1635 struct ifnet *ifp; 1636 struct psref psref; 1637 int error; 1638 int (*if_ioctl)(struct ifnet *, u_long, void *); 1639 1640 KASSERT(mutex_owned(&if_clone_mtx)); 1641 1642 ifc = if_clone_lookup(name, NULL); 1643 if (ifc == NULL) 1644 return EINVAL; 1645 1646 if (ifc->ifc_destroy == NULL) 1647 return EOPNOTSUPP; 1648 1649 ifp = if_get(name, &psref); 1650 if (ifp == NULL) 1651 return ENXIO; 1652 1653 /* We have to disable ioctls here */ 1654 IFNET_LOCK(ifp); 1655 if_ioctl = ifp->if_ioctl; 1656 ifp->if_ioctl = if_nullioctl; 1657 IFNET_UNLOCK(ifp); 1658 1659 /* 1660 * We cannot call ifc_destroy with holding ifp. 1661 * Releasing ifp here is safe thanks to if_clone_mtx. 1662 */ 1663 if_put(ifp, &psref); 1664 1665 error = (*ifc->ifc_destroy)(ifp); 1666 1667 if (error != 0) { 1668 /* We have to restore if_ioctl on error */ 1669 IFNET_LOCK(ifp); 1670 ifp->if_ioctl = if_ioctl; 1671 IFNET_UNLOCK(ifp); 1672 } 1673 1674 return error; 1675 } 1676 1677 static bool 1678 if_is_unit(const char *name) 1679 { 1680 1681 while (*name != '\0') { 1682 if (*name < '0' || *name > '9') 1683 return false; 1684 name++; 1685 } 1686 1687 return true; 1688 } 1689 1690 /* 1691 * Look up a network interface cloner. 1692 */ 1693 static struct if_clone * 1694 if_clone_lookup(const char *name, int *unitp) 1695 { 1696 struct if_clone *ifc; 1697 const char *cp; 1698 char *dp, ifname[IFNAMSIZ + 3]; 1699 int unit; 1700 1701 KASSERT(mutex_owned(&if_clone_mtx)); 1702 1703 strcpy(ifname, "if_"); 1704 /* separate interface name from unit */ 1705 /* TODO: search unit number from backward */ 1706 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1707 *cp && !if_is_unit(cp);) 1708 *dp++ = *cp++; 1709 1710 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1711 return NULL; /* No name or unit number */ 1712 *dp++ = '\0'; 1713 1714 again: 1715 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1716 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1717 break; 1718 } 1719 1720 if (ifc == NULL) { 1721 int error; 1722 if (*ifname == '\0') 1723 return NULL; 1724 mutex_exit(&if_clone_mtx); 1725 error = module_autoload(ifname, MODULE_CLASS_DRIVER); 1726 mutex_enter(&if_clone_mtx); 1727 if (error) 1728 return NULL; 1729 *ifname = '\0'; 1730 goto again; 1731 } 1732 1733 unit = 0; 1734 while (cp - name < IFNAMSIZ && *cp) { 1735 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1736 /* Bogus unit number. */ 1737 return NULL; 1738 } 1739 unit = (unit * 10) + (*cp++ - '0'); 1740 } 1741 1742 if (unitp != NULL) 1743 *unitp = unit; 1744 return ifc; 1745 } 1746 1747 /* 1748 * Register a network interface cloner. 1749 */ 1750 void 1751 if_clone_attach(struct if_clone *ifc) 1752 { 1753 1754 mutex_enter(&if_clone_mtx); 1755 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1756 if_cloners_count++; 1757 mutex_exit(&if_clone_mtx); 1758 } 1759 1760 /* 1761 * Unregister a network interface cloner. 1762 */ 1763 void 1764 if_clone_detach(struct if_clone *ifc) 1765 { 1766 1767 mutex_enter(&if_clone_mtx); 1768 LIST_REMOVE(ifc, ifc_list); 1769 if_cloners_count--; 1770 mutex_exit(&if_clone_mtx); 1771 } 1772 1773 /* 1774 * Provide list of interface cloners to userspace. 1775 */ 1776 int 1777 if_clone_list(int buf_count, char *buffer, int *total) 1778 { 1779 char outbuf[IFNAMSIZ], *dst; 1780 struct if_clone *ifc; 1781 int count, error = 0; 1782 1783 mutex_enter(&if_clone_mtx); 1784 *total = if_cloners_count; 1785 if ((dst = buffer) == NULL) { 1786 /* Just asking how many there are. */ 1787 goto out; 1788 } 1789 1790 if (buf_count < 0) { 1791 error = EINVAL; 1792 goto out; 1793 } 1794 1795 count = (if_cloners_count < buf_count) ? 1796 if_cloners_count : buf_count; 1797 1798 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1799 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1800 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1801 if (outbuf[sizeof(outbuf) - 1] != '\0') { 1802 error = ENAMETOOLONG; 1803 goto out; 1804 } 1805 error = copyout(outbuf, dst, sizeof(outbuf)); 1806 if (error != 0) 1807 break; 1808 } 1809 1810 out: 1811 mutex_exit(&if_clone_mtx); 1812 return error; 1813 } 1814 1815 void 1816 ifa_psref_init(struct ifaddr *ifa) 1817 { 1818 1819 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1820 } 1821 1822 void 1823 ifaref(struct ifaddr *ifa) 1824 { 1825 1826 atomic_inc_uint(&ifa->ifa_refcnt); 1827 } 1828 1829 void 1830 ifafree(struct ifaddr *ifa) 1831 { 1832 KASSERT(ifa != NULL); 1833 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt); 1834 1835 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) { 1836 free(ifa, M_IFADDR); 1837 } 1838 } 1839 1840 bool 1841 ifa_is_destroying(struct ifaddr *ifa) 1842 { 1843 1844 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1845 } 1846 1847 void 1848 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1849 { 1850 1851 ifa->ifa_ifp = ifp; 1852 1853 /* 1854 * Check MP-safety for IFEF_MPSAFE drivers. 1855 * Check !IFF_RUNNING for initialization routines that normally don't 1856 * take IFNET_LOCK but it's safe because there is no competitor. 1857 * XXX there are false positive cases because IFF_RUNNING can be off on 1858 * if_stop. 1859 */ 1860 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) || 1861 IFNET_LOCKED(ifp)); 1862 1863 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1864 IFADDR_ENTRY_INIT(ifa); 1865 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1866 1867 ifaref(ifa); 1868 } 1869 1870 void 1871 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1872 { 1873 1874 KASSERT(ifa->ifa_ifp == ifp); 1875 /* 1876 * Check MP-safety for IFEF_MPSAFE drivers. 1877 * if_is_deactivated indicates ifa_remove is called form if_detach 1878 * where is safe even if IFNET_LOCK isn't held. 1879 */ 1880 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp)); 1881 1882 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1883 IFADDR_WRITER_REMOVE(ifa); 1884 #ifdef NET_MPSAFE 1885 IFNET_GLOBAL_LOCK(); 1886 pserialize_perform(ifnet_psz); 1887 IFNET_GLOBAL_UNLOCK(); 1888 #endif 1889 1890 #ifdef NET_MPSAFE 1891 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1892 #endif 1893 IFADDR_ENTRY_DESTROY(ifa); 1894 ifafree(ifa); 1895 } 1896 1897 void 1898 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1899 { 1900 1901 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 1902 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1903 } 1904 1905 void 1906 ifa_release(struct ifaddr *ifa, struct psref *psref) 1907 { 1908 1909 if (ifa == NULL) 1910 return; 1911 1912 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1913 } 1914 1915 bool 1916 ifa_held(struct ifaddr *ifa) 1917 { 1918 1919 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1920 } 1921 1922 static inline int 1923 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1924 { 1925 return sockaddr_cmp(sa1, sa2) == 0; 1926 } 1927 1928 /* 1929 * Locate an interface based on a complete address. 1930 */ 1931 /*ARGSUSED*/ 1932 struct ifaddr * 1933 ifa_ifwithaddr(const struct sockaddr *addr) 1934 { 1935 struct ifnet *ifp; 1936 struct ifaddr *ifa; 1937 1938 IFNET_READER_FOREACH(ifp) { 1939 if (if_is_deactivated(ifp)) 1940 continue; 1941 IFADDR_READER_FOREACH(ifa, ifp) { 1942 if (ifa->ifa_addr->sa_family != addr->sa_family) 1943 continue; 1944 if (equal(addr, ifa->ifa_addr)) 1945 return ifa; 1946 if ((ifp->if_flags & IFF_BROADCAST) && 1947 ifa->ifa_broadaddr && 1948 /* IP6 doesn't have broadcast */ 1949 ifa->ifa_broadaddr->sa_len != 0 && 1950 equal(ifa->ifa_broadaddr, addr)) 1951 return ifa; 1952 } 1953 } 1954 return NULL; 1955 } 1956 1957 struct ifaddr * 1958 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1959 { 1960 struct ifaddr *ifa; 1961 int s = pserialize_read_enter(); 1962 1963 ifa = ifa_ifwithaddr(addr); 1964 if (ifa != NULL) 1965 ifa_acquire(ifa, psref); 1966 pserialize_read_exit(s); 1967 1968 return ifa; 1969 } 1970 1971 /* 1972 * Locate the point to point interface with a given destination address. 1973 */ 1974 /*ARGSUSED*/ 1975 struct ifaddr * 1976 ifa_ifwithdstaddr(const struct sockaddr *addr) 1977 { 1978 struct ifnet *ifp; 1979 struct ifaddr *ifa; 1980 1981 IFNET_READER_FOREACH(ifp) { 1982 if (if_is_deactivated(ifp)) 1983 continue; 1984 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1985 continue; 1986 IFADDR_READER_FOREACH(ifa, ifp) { 1987 if (ifa->ifa_addr->sa_family != addr->sa_family || 1988 ifa->ifa_dstaddr == NULL) 1989 continue; 1990 if (equal(addr, ifa->ifa_dstaddr)) 1991 return ifa; 1992 } 1993 } 1994 1995 return NULL; 1996 } 1997 1998 struct ifaddr * 1999 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 2000 { 2001 struct ifaddr *ifa; 2002 int s; 2003 2004 s = pserialize_read_enter(); 2005 ifa = ifa_ifwithdstaddr(addr); 2006 if (ifa != NULL) 2007 ifa_acquire(ifa, psref); 2008 pserialize_read_exit(s); 2009 2010 return ifa; 2011 } 2012 2013 /* 2014 * Find an interface on a specific network. If many, choice 2015 * is most specific found. 2016 */ 2017 struct ifaddr * 2018 ifa_ifwithnet(const struct sockaddr *addr) 2019 { 2020 struct ifnet *ifp; 2021 struct ifaddr *ifa, *ifa_maybe = NULL; 2022 const struct sockaddr_dl *sdl; 2023 u_int af = addr->sa_family; 2024 const char *addr_data = addr->sa_data, *cplim; 2025 2026 if (af == AF_LINK) { 2027 sdl = satocsdl(addr); 2028 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 2029 ifindex2ifnet[sdl->sdl_index] && 2030 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 2031 return ifindex2ifnet[sdl->sdl_index]->if_dl; 2032 } 2033 } 2034 #ifdef NETATALK 2035 if (af == AF_APPLETALK) { 2036 const struct sockaddr_at *sat, *sat2; 2037 sat = (const struct sockaddr_at *)addr; 2038 IFNET_READER_FOREACH(ifp) { 2039 if (if_is_deactivated(ifp)) 2040 continue; 2041 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 2042 if (ifa == NULL) 2043 continue; 2044 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 2045 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 2046 return ifa; /* exact match */ 2047 if (ifa_maybe == NULL) { 2048 /* else keep the if with the right range */ 2049 ifa_maybe = ifa; 2050 } 2051 } 2052 return ifa_maybe; 2053 } 2054 #endif 2055 IFNET_READER_FOREACH(ifp) { 2056 if (if_is_deactivated(ifp)) 2057 continue; 2058 IFADDR_READER_FOREACH(ifa, ifp) { 2059 const char *cp, *cp2, *cp3; 2060 2061 if (ifa->ifa_addr->sa_family != af || 2062 ifa->ifa_netmask == NULL) 2063 next: continue; 2064 cp = addr_data; 2065 cp2 = ifa->ifa_addr->sa_data; 2066 cp3 = ifa->ifa_netmask->sa_data; 2067 cplim = (const char *)ifa->ifa_netmask + 2068 ifa->ifa_netmask->sa_len; 2069 while (cp3 < cplim) { 2070 if ((*cp++ ^ *cp2++) & *cp3++) { 2071 /* want to continue for() loop */ 2072 goto next; 2073 } 2074 } 2075 if (ifa_maybe == NULL || 2076 rt_refines(ifa->ifa_netmask, 2077 ifa_maybe->ifa_netmask)) 2078 ifa_maybe = ifa; 2079 } 2080 } 2081 return ifa_maybe; 2082 } 2083 2084 struct ifaddr * 2085 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 2086 { 2087 struct ifaddr *ifa; 2088 int s; 2089 2090 s = pserialize_read_enter(); 2091 ifa = ifa_ifwithnet(addr); 2092 if (ifa != NULL) 2093 ifa_acquire(ifa, psref); 2094 pserialize_read_exit(s); 2095 2096 return ifa; 2097 } 2098 2099 /* 2100 * Find the interface of the addresss. 2101 */ 2102 struct ifaddr * 2103 ifa_ifwithladdr(const struct sockaddr *addr) 2104 { 2105 struct ifaddr *ia; 2106 2107 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 2108 (ia = ifa_ifwithnet(addr))) 2109 return ia; 2110 return NULL; 2111 } 2112 2113 struct ifaddr * 2114 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 2115 { 2116 struct ifaddr *ifa; 2117 int s; 2118 2119 s = pserialize_read_enter(); 2120 ifa = ifa_ifwithladdr(addr); 2121 if (ifa != NULL) 2122 ifa_acquire(ifa, psref); 2123 pserialize_read_exit(s); 2124 2125 return ifa; 2126 } 2127 2128 /* 2129 * Find an interface using a specific address family 2130 */ 2131 struct ifaddr * 2132 ifa_ifwithaf(int af) 2133 { 2134 struct ifnet *ifp; 2135 struct ifaddr *ifa = NULL; 2136 int s; 2137 2138 s = pserialize_read_enter(); 2139 IFNET_READER_FOREACH(ifp) { 2140 if (if_is_deactivated(ifp)) 2141 continue; 2142 IFADDR_READER_FOREACH(ifa, ifp) { 2143 if (ifa->ifa_addr->sa_family == af) 2144 goto out; 2145 } 2146 } 2147 out: 2148 pserialize_read_exit(s); 2149 return ifa; 2150 } 2151 2152 /* 2153 * Find an interface address specific to an interface best matching 2154 * a given address. 2155 */ 2156 struct ifaddr * 2157 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2158 { 2159 struct ifaddr *ifa; 2160 const char *cp, *cp2, *cp3; 2161 const char *cplim; 2162 struct ifaddr *ifa_maybe = 0; 2163 u_int af = addr->sa_family; 2164 2165 if (if_is_deactivated(ifp)) 2166 return NULL; 2167 2168 if (af >= AF_MAX) 2169 return NULL; 2170 2171 IFADDR_READER_FOREACH(ifa, ifp) { 2172 if (ifa->ifa_addr->sa_family != af) 2173 continue; 2174 ifa_maybe = ifa; 2175 if (ifa->ifa_netmask == NULL) { 2176 if (equal(addr, ifa->ifa_addr) || 2177 (ifa->ifa_dstaddr && 2178 equal(addr, ifa->ifa_dstaddr))) 2179 return ifa; 2180 continue; 2181 } 2182 cp = addr->sa_data; 2183 cp2 = ifa->ifa_addr->sa_data; 2184 cp3 = ifa->ifa_netmask->sa_data; 2185 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2186 for (; cp3 < cplim; cp3++) { 2187 if ((*cp++ ^ *cp2++) & *cp3) 2188 break; 2189 } 2190 if (cp3 == cplim) 2191 return ifa; 2192 } 2193 return ifa_maybe; 2194 } 2195 2196 struct ifaddr * 2197 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2198 struct psref *psref) 2199 { 2200 struct ifaddr *ifa; 2201 int s; 2202 2203 s = pserialize_read_enter(); 2204 ifa = ifaof_ifpforaddr(addr, ifp); 2205 if (ifa != NULL) 2206 ifa_acquire(ifa, psref); 2207 pserialize_read_exit(s); 2208 2209 return ifa; 2210 } 2211 2212 /* 2213 * Default action when installing a route with a Link Level gateway. 2214 * Lookup an appropriate real ifa to point to. 2215 * This should be moved to /sys/net/link.c eventually. 2216 */ 2217 void 2218 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2219 { 2220 struct ifaddr *ifa; 2221 const struct sockaddr *dst; 2222 struct ifnet *ifp; 2223 struct psref psref; 2224 2225 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2226 return; 2227 ifp = rt->rt_ifa->ifa_ifp; 2228 dst = rt_getkey(rt); 2229 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2230 rt_replace_ifa(rt, ifa); 2231 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2232 ifa->ifa_rtrequest(cmd, rt, info); 2233 ifa_release(ifa, &psref); 2234 } 2235 } 2236 2237 /* 2238 * bitmask macros to manage a densely packed link_state change queue. 2239 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2240 * LINK_STATE_UP(2) we need 2 bits for each state change. 2241 * As a state change to store is 0, treat all bits set as an unset item. 2242 */ 2243 #define LQ_ITEM_BITS 2 2244 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2245 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2246 #define LINK_STATE_UNSET LQ_ITEM_MASK 2247 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2248 #define LQ_STORE(q, i, v) \ 2249 do { \ 2250 (q) &= ~LQ_MASK((i)); \ 2251 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2252 } while (0 /* CONSTCOND */) 2253 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2254 #define LQ_POP(q, v) \ 2255 do { \ 2256 (v) = LQ_ITEM((q), 0); \ 2257 (q) >>= LQ_ITEM_BITS; \ 2258 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2259 } while (0 /* CONSTCOND */) 2260 #define LQ_PUSH(q, v) \ 2261 do { \ 2262 (q) >>= LQ_ITEM_BITS; \ 2263 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2264 } while (0 /* CONSTCOND */) 2265 #define LQ_FIND_UNSET(q, i) \ 2266 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2267 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2268 break; \ 2269 } 2270 2271 /* 2272 * Handle a change in the interface link state and 2273 * queue notifications. 2274 */ 2275 void 2276 if_link_state_change(struct ifnet *ifp, int link_state) 2277 { 2278 int idx; 2279 2280 /* Ensure change is to a valid state */ 2281 switch (link_state) { 2282 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2283 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2284 case LINK_STATE_UP: 2285 break; 2286 default: 2287 #ifdef DEBUG 2288 printf("%s: invalid link state %d\n", 2289 ifp->if_xname, link_state); 2290 #endif 2291 return; 2292 } 2293 2294 IF_LINK_STATE_CHANGE_LOCK(ifp); 2295 2296 /* Find the last unset event in the queue. */ 2297 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2298 2299 if (idx == 0) { 2300 /* 2301 * There is no queue of link state changes. 2302 * As we have the lock we can safely compare against the 2303 * current link state and return if the same. 2304 * Otherwise, if scheduled is true then the interface is being 2305 * detached and the queue is being drained so we need 2306 * to avoid queuing more work. 2307 */ 2308 if (ifp->if_link_state == link_state || ifp->if_link_scheduled) 2309 goto out; 2310 } else { 2311 /* Ensure link_state doesn't match the last queued state. */ 2312 if (LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state) 2313 goto out; 2314 } 2315 2316 /* Handle queue overflow. */ 2317 if (idx == LQ_MAX(ifp->if_link_queue)) { 2318 uint8_t lost; 2319 2320 /* 2321 * The DOWN state must be protected from being pushed off 2322 * the queue to ensure that userland will always be 2323 * in a sane state. 2324 * Because DOWN is protected, there is no need to protect 2325 * UNKNOWN. 2326 * It should be invalid to change from any other state to 2327 * UNKNOWN anyway ... 2328 */ 2329 lost = LQ_ITEM(ifp->if_link_queue, 0); 2330 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2331 if (lost == LINK_STATE_DOWN) { 2332 lost = LQ_ITEM(ifp->if_link_queue, 0); 2333 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2334 } 2335 printf("%s: lost link state change %s\n", 2336 ifp->if_xname, 2337 lost == LINK_STATE_UP ? "UP" : 2338 lost == LINK_STATE_DOWN ? "DOWN" : 2339 "UNKNOWN"); 2340 } else 2341 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2342 2343 if (ifp->if_link_scheduled) 2344 goto out; 2345 2346 ifp->if_link_scheduled = true; 2347 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL); 2348 2349 out: 2350 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2351 } 2352 2353 /* 2354 * Handle interface link state change notifications. 2355 */ 2356 static void 2357 if_link_state_change_process(struct ifnet *ifp, int link_state) 2358 { 2359 struct domain *dp; 2360 int s = splnet(); 2361 bool notify; 2362 2363 KASSERT(!cpu_intr_p()); 2364 2365 IF_LINK_STATE_CHANGE_LOCK(ifp); 2366 2367 /* Ensure the change is still valid. */ 2368 if (ifp->if_link_state == link_state) { 2369 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2370 splx(s); 2371 return; 2372 } 2373 2374 #ifdef DEBUG 2375 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2376 link_state == LINK_STATE_UP ? "UP" : 2377 link_state == LINK_STATE_DOWN ? "DOWN" : 2378 "UNKNOWN", 2379 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2380 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2381 "UNKNOWN"); 2382 #endif 2383 2384 /* 2385 * When going from UNKNOWN to UP, we need to mark existing 2386 * addresses as tentative and restart DAD as we may have 2387 * erroneously not found a duplicate. 2388 * 2389 * This needs to happen before rt_ifmsg to avoid a race where 2390 * listeners would have an address and expect it to work right 2391 * away. 2392 */ 2393 notify = (link_state == LINK_STATE_UP && 2394 ifp->if_link_state == LINK_STATE_UNKNOWN); 2395 ifp->if_link_state = link_state; 2396 /* The following routines may sleep so release the spin mutex */ 2397 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2398 2399 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2400 if (notify) { 2401 DOMAIN_FOREACH(dp) { 2402 if (dp->dom_if_link_state_change != NULL) 2403 dp->dom_if_link_state_change(ifp, 2404 LINK_STATE_DOWN); 2405 } 2406 } 2407 2408 /* Notify that the link state has changed. */ 2409 rt_ifmsg(ifp); 2410 2411 #if NCARP > 0 2412 if (ifp->if_carp) 2413 carp_carpdev_state(ifp); 2414 #endif 2415 2416 if (ifp->if_link_state_changed != NULL) 2417 ifp->if_link_state_changed(ifp, link_state); 2418 2419 #if NBRIDGE > 0 2420 if (ifp->if_bridge != NULL) 2421 bridge_calc_link_state(ifp->if_bridge); 2422 #endif 2423 2424 DOMAIN_FOREACH(dp) { 2425 if (dp->dom_if_link_state_change != NULL) 2426 dp->dom_if_link_state_change(ifp, link_state); 2427 } 2428 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2429 splx(s); 2430 } 2431 2432 /* 2433 * Process the interface link state change queue. 2434 */ 2435 static void 2436 if_link_state_change_work(struct work *work, void *arg) 2437 { 2438 struct ifnet *ifp = container_of(work, struct ifnet, if_link_work); 2439 int s; 2440 uint8_t state; 2441 2442 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2443 s = splnet(); 2444 2445 /* Pop a link state change from the queue and process it. 2446 * If there is nothing to process then if_detach() has been called. 2447 * We keep if_link_scheduled = true so the queue can safely drain 2448 * without more work being queued. */ 2449 IF_LINK_STATE_CHANGE_LOCK(ifp); 2450 LQ_POP(ifp->if_link_queue, state); 2451 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2452 if (state == LINK_STATE_UNSET) 2453 goto out; 2454 2455 if_link_state_change_process(ifp, state); 2456 2457 /* If there is a link state change to come, schedule it. */ 2458 IF_LINK_STATE_CHANGE_LOCK(ifp); 2459 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) { 2460 ifp->if_link_scheduled = true; 2461 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL); 2462 } else 2463 ifp->if_link_scheduled = false; 2464 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2465 2466 out: 2467 splx(s); 2468 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2469 } 2470 2471 /* 2472 * Used to mark addresses on an interface as DETATCHED or TENTATIVE 2473 * and thus start Duplicate Address Detection without changing the 2474 * real link state. 2475 */ 2476 void 2477 if_domain_link_state_change(struct ifnet *ifp, int link_state) 2478 { 2479 struct domain *dp; 2480 int s = splnet(); 2481 2482 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2483 2484 DOMAIN_FOREACH(dp) { 2485 if (dp->dom_if_link_state_change != NULL) 2486 dp->dom_if_link_state_change(ifp, link_state); 2487 } 2488 2489 splx(s); 2490 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2491 } 2492 2493 /* 2494 * Default action when installing a local route on a point-to-point 2495 * interface. 2496 */ 2497 void 2498 p2p_rtrequest(int req, struct rtentry *rt, 2499 __unused const struct rt_addrinfo *info) 2500 { 2501 struct ifnet *ifp = rt->rt_ifp; 2502 struct ifaddr *ifa, *lo0ifa; 2503 int s = pserialize_read_enter(); 2504 2505 switch (req) { 2506 case RTM_ADD: 2507 if ((rt->rt_flags & RTF_LOCAL) == 0) 2508 break; 2509 2510 rt->rt_ifp = lo0ifp; 2511 2512 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2513 break; 2514 2515 IFADDR_READER_FOREACH(ifa, ifp) { 2516 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2517 break; 2518 } 2519 if (ifa == NULL) 2520 break; 2521 2522 /* 2523 * Ensure lo0 has an address of the same family. 2524 */ 2525 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2526 if (lo0ifa->ifa_addr->sa_family == 2527 ifa->ifa_addr->sa_family) 2528 break; 2529 } 2530 if (lo0ifa == NULL) 2531 break; 2532 2533 /* 2534 * Make sure to set rt->rt_ifa to the interface 2535 * address we are using, otherwise we will have trouble 2536 * with source address selection. 2537 */ 2538 if (ifa != rt->rt_ifa) 2539 rt_replace_ifa(rt, ifa); 2540 break; 2541 case RTM_DELETE: 2542 default: 2543 break; 2544 } 2545 pserialize_read_exit(s); 2546 } 2547 2548 static void 2549 _if_down(struct ifnet *ifp) 2550 { 2551 struct ifaddr *ifa; 2552 struct domain *dp; 2553 int s, bound; 2554 struct psref psref; 2555 2556 ifp->if_flags &= ~IFF_UP; 2557 nanotime(&ifp->if_lastchange); 2558 2559 bound = curlwp_bind(); 2560 s = pserialize_read_enter(); 2561 IFADDR_READER_FOREACH(ifa, ifp) { 2562 ifa_acquire(ifa, &psref); 2563 pserialize_read_exit(s); 2564 2565 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2566 2567 s = pserialize_read_enter(); 2568 ifa_release(ifa, &psref); 2569 } 2570 pserialize_read_exit(s); 2571 curlwp_bindx(bound); 2572 2573 IFQ_PURGE(&ifp->if_snd); 2574 #if NCARP > 0 2575 if (ifp->if_carp) 2576 carp_carpdev_state(ifp); 2577 #endif 2578 rt_ifmsg(ifp); 2579 DOMAIN_FOREACH(dp) { 2580 if (dp->dom_if_down) 2581 dp->dom_if_down(ifp); 2582 } 2583 } 2584 2585 static void 2586 if_down_deactivated(struct ifnet *ifp) 2587 { 2588 2589 KASSERT(if_is_deactivated(ifp)); 2590 _if_down(ifp); 2591 } 2592 2593 void 2594 if_down_locked(struct ifnet *ifp) 2595 { 2596 2597 KASSERT(IFNET_LOCKED(ifp)); 2598 _if_down(ifp); 2599 } 2600 2601 /* 2602 * Mark an interface down and notify protocols of 2603 * the transition. 2604 * NOTE: must be called at splsoftnet or equivalent. 2605 */ 2606 void 2607 if_down(struct ifnet *ifp) 2608 { 2609 2610 IFNET_LOCK(ifp); 2611 if_down_locked(ifp); 2612 IFNET_UNLOCK(ifp); 2613 } 2614 2615 /* 2616 * Must be called with holding if_ioctl_lock. 2617 */ 2618 static void 2619 if_up_locked(struct ifnet *ifp) 2620 { 2621 #ifdef notyet 2622 struct ifaddr *ifa; 2623 #endif 2624 struct domain *dp; 2625 2626 KASSERT(IFNET_LOCKED(ifp)); 2627 2628 KASSERT(!if_is_deactivated(ifp)); 2629 ifp->if_flags |= IFF_UP; 2630 nanotime(&ifp->if_lastchange); 2631 #ifdef notyet 2632 /* this has no effect on IP, and will kill all ISO connections XXX */ 2633 IFADDR_READER_FOREACH(ifa, ifp) 2634 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2635 #endif 2636 #if NCARP > 0 2637 if (ifp->if_carp) 2638 carp_carpdev_state(ifp); 2639 #endif 2640 rt_ifmsg(ifp); 2641 DOMAIN_FOREACH(dp) { 2642 if (dp->dom_if_up) 2643 dp->dom_if_up(ifp); 2644 } 2645 } 2646 2647 /* 2648 * Handle interface slowtimo timer routine. Called 2649 * from softclock, we decrement timer (if set) and 2650 * call the appropriate interface routine on expiration. 2651 */ 2652 static void 2653 if_slowtimo(void *arg) 2654 { 2655 void (*slowtimo)(struct ifnet *); 2656 struct ifnet *ifp = arg; 2657 int s; 2658 2659 slowtimo = ifp->if_slowtimo; 2660 if (__predict_false(slowtimo == NULL)) 2661 return; 2662 2663 s = splnet(); 2664 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2665 (*slowtimo)(ifp); 2666 2667 splx(s); 2668 2669 if (__predict_true(ifp->if_slowtimo != NULL)) 2670 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ); 2671 } 2672 2673 /* 2674 * Mark an interface up and notify protocols of 2675 * the transition. 2676 * NOTE: must be called at splsoftnet or equivalent. 2677 */ 2678 void 2679 if_up(struct ifnet *ifp) 2680 { 2681 2682 IFNET_LOCK(ifp); 2683 if_up_locked(ifp); 2684 IFNET_UNLOCK(ifp); 2685 } 2686 2687 /* 2688 * Set/clear promiscuous mode on interface ifp based on the truth value 2689 * of pswitch. The calls are reference counted so that only the first 2690 * "on" request actually has an effect, as does the final "off" request. 2691 * Results are undefined if the "off" and "on" requests are not matched. 2692 */ 2693 int 2694 ifpromisc_locked(struct ifnet *ifp, int pswitch) 2695 { 2696 int pcount, ret = 0; 2697 u_short nflags; 2698 2699 KASSERT(IFNET_LOCKED(ifp)); 2700 2701 pcount = ifp->if_pcount; 2702 if (pswitch) { 2703 /* 2704 * Allow the device to be "placed" into promiscuous 2705 * mode even if it is not configured up. It will 2706 * consult IFF_PROMISC when it is brought up. 2707 */ 2708 if (ifp->if_pcount++ != 0) 2709 goto out; 2710 nflags = ifp->if_flags | IFF_PROMISC; 2711 } else { 2712 if (--ifp->if_pcount > 0) 2713 goto out; 2714 nflags = ifp->if_flags & ~IFF_PROMISC; 2715 } 2716 ret = if_flags_set(ifp, nflags); 2717 /* Restore interface state if not successful. */ 2718 if (ret != 0) { 2719 ifp->if_pcount = pcount; 2720 } 2721 out: 2722 return ret; 2723 } 2724 2725 int 2726 ifpromisc(struct ifnet *ifp, int pswitch) 2727 { 2728 int e; 2729 2730 IFNET_LOCK(ifp); 2731 e = ifpromisc_locked(ifp, pswitch); 2732 IFNET_UNLOCK(ifp); 2733 2734 return e; 2735 } 2736 2737 /* 2738 * Map interface name to 2739 * interface structure pointer. 2740 */ 2741 struct ifnet * 2742 ifunit(const char *name) 2743 { 2744 struct ifnet *ifp; 2745 const char *cp = name; 2746 u_int unit = 0; 2747 u_int i; 2748 int s; 2749 2750 /* 2751 * If the entire name is a number, treat it as an ifindex. 2752 */ 2753 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2754 unit = unit * 10 + (*cp - '0'); 2755 } 2756 2757 /* 2758 * If the number took all of the name, then it's a valid ifindex. 2759 */ 2760 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2761 return if_byindex(unit); 2762 2763 ifp = NULL; 2764 s = pserialize_read_enter(); 2765 IFNET_READER_FOREACH(ifp) { 2766 if (if_is_deactivated(ifp)) 2767 continue; 2768 if (strcmp(ifp->if_xname, name) == 0) 2769 goto out; 2770 } 2771 out: 2772 pserialize_read_exit(s); 2773 return ifp; 2774 } 2775 2776 /* 2777 * Get a reference of an ifnet object by an interface name. 2778 * The returned reference is protected by psref(9). The caller 2779 * must release a returned reference by if_put after use. 2780 */ 2781 struct ifnet * 2782 if_get(const char *name, struct psref *psref) 2783 { 2784 struct ifnet *ifp; 2785 const char *cp = name; 2786 u_int unit = 0; 2787 u_int i; 2788 int s; 2789 2790 /* 2791 * If the entire name is a number, treat it as an ifindex. 2792 */ 2793 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2794 unit = unit * 10 + (*cp - '0'); 2795 } 2796 2797 /* 2798 * If the number took all of the name, then it's a valid ifindex. 2799 */ 2800 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2801 return if_get_byindex(unit, psref); 2802 2803 ifp = NULL; 2804 s = pserialize_read_enter(); 2805 IFNET_READER_FOREACH(ifp) { 2806 if (if_is_deactivated(ifp)) 2807 continue; 2808 if (strcmp(ifp->if_xname, name) == 0) { 2809 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 2810 psref_acquire(psref, &ifp->if_psref, 2811 ifnet_psref_class); 2812 goto out; 2813 } 2814 } 2815 out: 2816 pserialize_read_exit(s); 2817 return ifp; 2818 } 2819 2820 /* 2821 * Release a reference of an ifnet object given by if_get, if_get_byindex 2822 * or if_get_bylla. 2823 */ 2824 void 2825 if_put(const struct ifnet *ifp, struct psref *psref) 2826 { 2827 2828 if (ifp == NULL) 2829 return; 2830 2831 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2832 } 2833 2834 /* 2835 * Return ifp having idx. Return NULL if not found. Normally if_byindex 2836 * should be used. 2837 */ 2838 ifnet_t * 2839 _if_byindex(u_int idx) 2840 { 2841 2842 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2843 } 2844 2845 /* 2846 * Return ifp having idx. Return NULL if not found or the found ifp is 2847 * already deactivated. 2848 */ 2849 ifnet_t * 2850 if_byindex(u_int idx) 2851 { 2852 ifnet_t *ifp; 2853 2854 ifp = _if_byindex(idx); 2855 if (ifp != NULL && if_is_deactivated(ifp)) 2856 ifp = NULL; 2857 return ifp; 2858 } 2859 2860 /* 2861 * Get a reference of an ifnet object by an interface index. 2862 * The returned reference is protected by psref(9). The caller 2863 * must release a returned reference by if_put after use. 2864 */ 2865 ifnet_t * 2866 if_get_byindex(u_int idx, struct psref *psref) 2867 { 2868 ifnet_t *ifp; 2869 int s; 2870 2871 s = pserialize_read_enter(); 2872 ifp = if_byindex(idx); 2873 if (__predict_true(ifp != NULL)) { 2874 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 2875 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2876 } 2877 pserialize_read_exit(s); 2878 2879 return ifp; 2880 } 2881 2882 ifnet_t * 2883 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref) 2884 { 2885 ifnet_t *ifp; 2886 int s; 2887 2888 s = pserialize_read_enter(); 2889 IFNET_READER_FOREACH(ifp) { 2890 if (if_is_deactivated(ifp)) 2891 continue; 2892 if (ifp->if_addrlen != lla_len) 2893 continue; 2894 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) { 2895 psref_acquire(psref, &ifp->if_psref, 2896 ifnet_psref_class); 2897 break; 2898 } 2899 } 2900 pserialize_read_exit(s); 2901 2902 return ifp; 2903 } 2904 2905 /* 2906 * Note that it's safe only if the passed ifp is guaranteed to not be freed, 2907 * for example using pserialize or the ifp is already held or some other 2908 * object is held which guarantes the ifp to not be freed indirectly. 2909 */ 2910 void 2911 if_acquire(struct ifnet *ifp, struct psref *psref) 2912 { 2913 2914 KASSERT(ifp->if_index != 0); 2915 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2916 } 2917 2918 bool 2919 if_held(struct ifnet *ifp) 2920 { 2921 2922 return psref_held(&ifp->if_psref, ifnet_psref_class); 2923 } 2924 2925 /* 2926 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4. 2927 * Check the tunnel nesting count. 2928 * Return > 0, if tunnel nesting count is more than limit. 2929 * Return 0, if tunnel nesting count is equal or less than limit. 2930 */ 2931 int 2932 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit) 2933 { 2934 struct m_tag *mtag; 2935 int *count; 2936 2937 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO); 2938 if (mtag != NULL) { 2939 count = (int *)(mtag + 1); 2940 if (++(*count) > limit) { 2941 log(LOG_NOTICE, 2942 "%s: recursively called too many times(%d)\n", 2943 ifp->if_xname, *count); 2944 return EIO; 2945 } 2946 } else { 2947 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count), 2948 M_NOWAIT); 2949 if (mtag != NULL) { 2950 m_tag_prepend(m, mtag); 2951 count = (int *)(mtag + 1); 2952 *count = 0; 2953 } else { 2954 log(LOG_DEBUG, 2955 "%s: m_tag_get() failed, recursion calls are not prevented.\n", 2956 ifp->if_xname); 2957 } 2958 } 2959 2960 return 0; 2961 } 2962 2963 static void 2964 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 2965 { 2966 struct tunnel_ro *tro = p; 2967 2968 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP); 2969 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 2970 } 2971 2972 static void 2973 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 2974 { 2975 struct tunnel_ro *tro = p; 2976 2977 rtcache_free(tro->tr_ro); 2978 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro)); 2979 2980 mutex_obj_free(tro->tr_lock); 2981 } 2982 2983 percpu_t * 2984 if_tunnel_alloc_ro_percpu(void) 2985 { 2986 2987 return percpu_create(sizeof(struct tunnel_ro), 2988 if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL); 2989 } 2990 2991 void 2992 if_tunnel_free_ro_percpu(percpu_t *ro_percpu) 2993 { 2994 2995 percpu_free(ro_percpu, sizeof(struct tunnel_ro)); 2996 } 2997 2998 2999 static void 3000 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 3001 { 3002 struct tunnel_ro *tro = p; 3003 3004 mutex_enter(tro->tr_lock); 3005 rtcache_free(tro->tr_ro); 3006 mutex_exit(tro->tr_lock); 3007 } 3008 3009 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu) 3010 { 3011 3012 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL); 3013 } 3014 3015 void 3016 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats) 3017 { 3018 3019 /* Collet the volatile stats first; this zeros *ifi. */ 3020 if_stats_to_if_data(ifp, ifi, zero_stats); 3021 3022 ifi->ifi_type = ifp->if_type; 3023 ifi->ifi_addrlen = ifp->if_addrlen; 3024 ifi->ifi_hdrlen = ifp->if_hdrlen; 3025 ifi->ifi_link_state = ifp->if_link_state; 3026 ifi->ifi_mtu = ifp->if_mtu; 3027 ifi->ifi_metric = ifp->if_metric; 3028 ifi->ifi_baudrate = ifp->if_baudrate; 3029 ifi->ifi_lastchange = ifp->if_lastchange; 3030 } 3031 3032 /* common */ 3033 int 3034 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 3035 { 3036 int s; 3037 struct ifreq *ifr; 3038 struct ifcapreq *ifcr; 3039 struct ifdatareq *ifdr; 3040 unsigned short flags; 3041 char *descr; 3042 int error; 3043 3044 switch (cmd) { 3045 case SIOCSIFCAP: 3046 ifcr = data; 3047 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 3048 return EINVAL; 3049 3050 if (ifcr->ifcr_capenable == ifp->if_capenable) 3051 return 0; 3052 3053 ifp->if_capenable = ifcr->ifcr_capenable; 3054 3055 /* Pre-compute the checksum flags mask. */ 3056 ifp->if_csum_flags_tx = 0; 3057 ifp->if_csum_flags_rx = 0; 3058 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) 3059 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 3060 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 3061 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 3062 3063 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) 3064 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 3065 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) 3066 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 3067 3068 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) 3069 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 3070 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) 3071 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 3072 3073 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) 3074 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 3075 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) 3076 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 3077 3078 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) 3079 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 3080 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) 3081 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 3082 3083 if (ifp->if_capenable & IFCAP_TSOv4) 3084 ifp->if_csum_flags_tx |= M_CSUM_TSOv4; 3085 if (ifp->if_capenable & IFCAP_TSOv6) 3086 ifp->if_csum_flags_tx |= M_CSUM_TSOv6; 3087 3088 #if NBRIDGE > 0 3089 if (ifp->if_bridge != NULL) 3090 bridge_calc_csum_flags(ifp->if_bridge); 3091 #endif 3092 3093 if (ifp->if_flags & IFF_UP) 3094 return ENETRESET; 3095 return 0; 3096 case SIOCSIFFLAGS: 3097 ifr = data; 3098 /* 3099 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up 3100 * and if_down aren't MP-safe yet, so we must hold the lock. 3101 */ 3102 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3103 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 3104 s = splsoftnet(); 3105 if_down_locked(ifp); 3106 splx(s); 3107 } 3108 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 3109 s = splsoftnet(); 3110 if_up_locked(ifp); 3111 splx(s); 3112 } 3113 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3114 flags = (ifp->if_flags & IFF_CANTCHANGE) | 3115 (ifr->ifr_flags &~ IFF_CANTCHANGE); 3116 if (ifp->if_flags != flags) { 3117 ifp->if_flags = flags; 3118 /* Notify that the flags have changed. */ 3119 rt_ifmsg(ifp); 3120 } 3121 break; 3122 case SIOCGIFFLAGS: 3123 ifr = data; 3124 ifr->ifr_flags = ifp->if_flags; 3125 break; 3126 3127 case SIOCGIFMETRIC: 3128 ifr = data; 3129 ifr->ifr_metric = ifp->if_metric; 3130 break; 3131 3132 case SIOCGIFMTU: 3133 ifr = data; 3134 ifr->ifr_mtu = ifp->if_mtu; 3135 break; 3136 3137 case SIOCGIFDLT: 3138 ifr = data; 3139 ifr->ifr_dlt = ifp->if_dlt; 3140 break; 3141 3142 case SIOCGIFCAP: 3143 ifcr = data; 3144 ifcr->ifcr_capabilities = ifp->if_capabilities; 3145 ifcr->ifcr_capenable = ifp->if_capenable; 3146 break; 3147 3148 case SIOCSIFMETRIC: 3149 ifr = data; 3150 ifp->if_metric = ifr->ifr_metric; 3151 break; 3152 3153 case SIOCGIFDATA: 3154 ifdr = data; 3155 if_export_if_data(ifp, &ifdr->ifdr_data, false); 3156 break; 3157 3158 case SIOCGIFINDEX: 3159 ifr = data; 3160 ifr->ifr_index = ifp->if_index; 3161 break; 3162 3163 case SIOCZIFDATA: 3164 ifdr = data; 3165 if_export_if_data(ifp, &ifdr->ifdr_data, true); 3166 getnanotime(&ifp->if_lastchange); 3167 break; 3168 case SIOCSIFMTU: 3169 ifr = data; 3170 if (ifp->if_mtu == ifr->ifr_mtu) 3171 break; 3172 ifp->if_mtu = ifr->ifr_mtu; 3173 return ENETRESET; 3174 case SIOCSIFDESCR: 3175 error = kauth_authorize_network(curlwp->l_cred, 3176 KAUTH_NETWORK_INTERFACE, 3177 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3178 NULL); 3179 if (error) 3180 return error; 3181 3182 ifr = data; 3183 3184 if (ifr->ifr_buflen > IFDESCRSIZE) 3185 return ENAMETOOLONG; 3186 3187 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) { 3188 /* unset description */ 3189 descr = NULL; 3190 } else { 3191 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP); 3192 /* 3193 * copy (IFDESCRSIZE - 1) bytes to ensure 3194 * terminating nul 3195 */ 3196 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1); 3197 if (error) { 3198 kmem_free(descr, IFDESCRSIZE); 3199 return error; 3200 } 3201 } 3202 3203 if (ifp->if_description != NULL) 3204 kmem_free(ifp->if_description, IFDESCRSIZE); 3205 3206 ifp->if_description = descr; 3207 break; 3208 3209 case SIOCGIFDESCR: 3210 ifr = data; 3211 descr = ifp->if_description; 3212 3213 if (descr == NULL) 3214 return ENOMSG; 3215 3216 if (ifr->ifr_buflen < IFDESCRSIZE) 3217 return EINVAL; 3218 3219 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE); 3220 if (error) 3221 return error; 3222 break; 3223 3224 default: 3225 return ENOTTY; 3226 } 3227 return 0; 3228 } 3229 3230 int 3231 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 3232 { 3233 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 3234 struct ifaddr *ifa; 3235 const struct sockaddr *any, *sa; 3236 union { 3237 struct sockaddr sa; 3238 struct sockaddr_storage ss; 3239 } u, v; 3240 int s, error = 0; 3241 3242 switch (cmd) { 3243 case SIOCSIFADDRPREF: 3244 error = kauth_authorize_network(curlwp->l_cred, 3245 KAUTH_NETWORK_INTERFACE, 3246 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3247 NULL); 3248 if (error) 3249 return error; 3250 break; 3251 case SIOCGIFADDRPREF: 3252 break; 3253 default: 3254 return EOPNOTSUPP; 3255 } 3256 3257 /* sanity checks */ 3258 if (data == NULL || ifp == NULL) { 3259 panic("invalid argument to %s", __func__); 3260 /*NOTREACHED*/ 3261 } 3262 3263 /* address must be specified on ADD and DELETE */ 3264 sa = sstocsa(&ifap->ifap_addr); 3265 if (sa->sa_family != sofamily(so)) 3266 return EINVAL; 3267 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 3268 return EINVAL; 3269 3270 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 3271 3272 s = pserialize_read_enter(); 3273 IFADDR_READER_FOREACH(ifa, ifp) { 3274 if (ifa->ifa_addr->sa_family != sa->sa_family) 3275 continue; 3276 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 3277 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 3278 break; 3279 } 3280 if (ifa == NULL) { 3281 error = EADDRNOTAVAIL; 3282 goto out; 3283 } 3284 3285 switch (cmd) { 3286 case SIOCSIFADDRPREF: 3287 ifa->ifa_preference = ifap->ifap_preference; 3288 goto out; 3289 case SIOCGIFADDRPREF: 3290 /* fill in the if_laddrreq structure */ 3291 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 3292 sizeof(ifap->ifap_addr), ifa->ifa_addr); 3293 ifap->ifap_preference = ifa->ifa_preference; 3294 goto out; 3295 default: 3296 error = EOPNOTSUPP; 3297 } 3298 out: 3299 pserialize_read_exit(s); 3300 return error; 3301 } 3302 3303 /* 3304 * Interface ioctls. 3305 */ 3306 static int 3307 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 3308 { 3309 struct ifnet *ifp; 3310 struct ifreq *ifr; 3311 int error = 0; 3312 u_long ocmd = cmd; 3313 u_short oif_flags; 3314 struct ifreq ifrb; 3315 struct oifreq *oifr = NULL; 3316 int r; 3317 struct psref psref; 3318 int bound; 3319 bool do_if43_post = false; 3320 bool do_ifm80_post = false; 3321 3322 switch (cmd) { 3323 case SIOCGIFCONF: 3324 return ifconf(cmd, data); 3325 case SIOCINITIFADDR: 3326 return EPERM; 3327 default: 3328 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(), 3329 error); 3330 if (error != ENOSYS) 3331 return error; 3332 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data), 3333 enosys(), error); 3334 if (error != ENOSYS) 3335 return error; 3336 error = 0; 3337 break; 3338 } 3339 3340 ifr = data; 3341 /* Pre-conversion */ 3342 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error); 3343 if (cmd != ocmd) { 3344 oifr = data; 3345 data = ifr = &ifrb; 3346 IFREQO2N_43(oifr, ifr); 3347 do_if43_post = true; 3348 } 3349 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post), 3350 enosys(), error); 3351 3352 switch (cmd) { 3353 case SIOCIFCREATE: 3354 case SIOCIFDESTROY: 3355 bound = curlwp_bind(); 3356 if (l != NULL) { 3357 ifp = if_get(ifr->ifr_name, &psref); 3358 error = kauth_authorize_network(l->l_cred, 3359 KAUTH_NETWORK_INTERFACE, 3360 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3361 KAUTH_ARG(cmd), NULL); 3362 if (ifp != NULL) 3363 if_put(ifp, &psref); 3364 if (error != 0) { 3365 curlwp_bindx(bound); 3366 return error; 3367 } 3368 } 3369 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3370 mutex_enter(&if_clone_mtx); 3371 r = (cmd == SIOCIFCREATE) ? 3372 if_clone_create(ifr->ifr_name) : 3373 if_clone_destroy(ifr->ifr_name); 3374 mutex_exit(&if_clone_mtx); 3375 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3376 curlwp_bindx(bound); 3377 return r; 3378 3379 case SIOCIFGCLONERS: 3380 { 3381 struct if_clonereq *req = (struct if_clonereq *)data; 3382 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 3383 &req->ifcr_total); 3384 } 3385 } 3386 3387 bound = curlwp_bind(); 3388 ifp = if_get(ifr->ifr_name, &psref); 3389 if (ifp == NULL) { 3390 curlwp_bindx(bound); 3391 return ENXIO; 3392 } 3393 3394 switch (cmd) { 3395 case SIOCALIFADDR: 3396 case SIOCDLIFADDR: 3397 case SIOCSIFADDRPREF: 3398 case SIOCSIFFLAGS: 3399 case SIOCSIFCAP: 3400 case SIOCSIFMETRIC: 3401 case SIOCZIFDATA: 3402 case SIOCSIFMTU: 3403 case SIOCSIFPHYADDR: 3404 case SIOCDIFPHYADDR: 3405 #ifdef INET6 3406 case SIOCSIFPHYADDR_IN6: 3407 #endif 3408 case SIOCSLIFPHYADDR: 3409 case SIOCADDMULTI: 3410 case SIOCDELMULTI: 3411 case SIOCSETHERCAP: 3412 case SIOCSIFMEDIA: 3413 case SIOCSDRVSPEC: 3414 case SIOCG80211: 3415 case SIOCS80211: 3416 case SIOCS80211NWID: 3417 case SIOCS80211NWKEY: 3418 case SIOCS80211POWER: 3419 case SIOCS80211BSSID: 3420 case SIOCS80211CHANNEL: 3421 case SIOCSLINKSTR: 3422 if (l != NULL) { 3423 error = kauth_authorize_network(l->l_cred, 3424 KAUTH_NETWORK_INTERFACE, 3425 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3426 KAUTH_ARG(cmd), NULL); 3427 if (error != 0) 3428 goto out; 3429 } 3430 } 3431 3432 oif_flags = ifp->if_flags; 3433 3434 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); 3435 IFNET_LOCK(ifp); 3436 3437 error = (*ifp->if_ioctl)(ifp, cmd, data); 3438 if (error != ENOTTY) 3439 ; 3440 else if (so->so_proto == NULL) 3441 error = EOPNOTSUPP; 3442 else { 3443 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3444 MODULE_HOOK_CALL(if_ifioctl_43_hook, 3445 (so, ocmd, cmd, data, l), enosys(), error); 3446 if (error == ENOSYS) 3447 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 3448 cmd, data, ifp); 3449 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3450 } 3451 3452 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 3453 if ((ifp->if_flags & IFF_UP) != 0) { 3454 int s = splsoftnet(); 3455 if_up_locked(ifp); 3456 splx(s); 3457 } 3458 } 3459 3460 /* Post-conversion */ 3461 if (do_ifm80_post && (error == 0)) 3462 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd), 3463 enosys(), error); 3464 if (do_if43_post) 3465 IFREQN2O_43(oifr, ifr); 3466 3467 IFNET_UNLOCK(ifp); 3468 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); 3469 out: 3470 if_put(ifp, &psref); 3471 curlwp_bindx(bound); 3472 return error; 3473 } 3474 3475 /* 3476 * Return interface configuration 3477 * of system. List may be used 3478 * in later ioctl's (above) to get 3479 * other information. 3480 * 3481 * Each record is a struct ifreq. Before the addition of 3482 * sockaddr_storage, the API rule was that sockaddr flavors that did 3483 * not fit would extend beyond the struct ifreq, with the next struct 3484 * ifreq starting sa_len beyond the struct sockaddr. Because the 3485 * union in struct ifreq includes struct sockaddr_storage, every kind 3486 * of sockaddr must fit. Thus, there are no longer any overlength 3487 * records. 3488 * 3489 * Records are added to the user buffer if they fit, and ifc_len is 3490 * adjusted to the length that was written. Thus, the user is only 3491 * assured of getting the complete list if ifc_len on return is at 3492 * least sizeof(struct ifreq) less than it was on entry. 3493 * 3494 * If the user buffer pointer is NULL, this routine copies no data and 3495 * returns the amount of space that would be needed. 3496 * 3497 * Invariants: 3498 * ifrp points to the next part of the user's buffer to be used. If 3499 * ifrp != NULL, space holds the number of bytes remaining that we may 3500 * write at ifrp. Otherwise, space holds the number of bytes that 3501 * would have been written had there been adequate space. 3502 */ 3503 /*ARGSUSED*/ 3504 static int 3505 ifconf(u_long cmd, void *data) 3506 { 3507 struct ifconf *ifc = (struct ifconf *)data; 3508 struct ifnet *ifp; 3509 struct ifaddr *ifa; 3510 struct ifreq ifr, *ifrp = NULL; 3511 int space = 0, error = 0; 3512 const int sz = (int)sizeof(struct ifreq); 3513 const bool docopy = ifc->ifc_req != NULL; 3514 int s; 3515 int bound; 3516 struct psref psref; 3517 3518 if (docopy) { 3519 if (ifc->ifc_len < 0) 3520 return EINVAL; 3521 3522 space = ifc->ifc_len; 3523 ifrp = ifc->ifc_req; 3524 } 3525 memset(&ifr, 0, sizeof(ifr)); 3526 3527 bound = curlwp_bind(); 3528 s = pserialize_read_enter(); 3529 IFNET_READER_FOREACH(ifp) { 3530 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3531 pserialize_read_exit(s); 3532 3533 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3534 sizeof(ifr.ifr_name)); 3535 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3536 error = ENAMETOOLONG; 3537 goto release_exit; 3538 } 3539 if (IFADDR_READER_EMPTY(ifp)) { 3540 /* Interface with no addresses - send zero sockaddr. */ 3541 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3542 if (!docopy) { 3543 space += sz; 3544 goto next; 3545 } 3546 if (space >= sz) { 3547 error = copyout(&ifr, ifrp, sz); 3548 if (error != 0) 3549 goto release_exit; 3550 ifrp++; 3551 space -= sz; 3552 } 3553 } 3554 3555 s = pserialize_read_enter(); 3556 IFADDR_READER_FOREACH(ifa, ifp) { 3557 struct sockaddr *sa = ifa->ifa_addr; 3558 /* all sockaddrs must fit in sockaddr_storage */ 3559 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3560 3561 if (!docopy) { 3562 space += sz; 3563 continue; 3564 } 3565 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3566 pserialize_read_exit(s); 3567 3568 if (space >= sz) { 3569 error = copyout(&ifr, ifrp, sz); 3570 if (error != 0) 3571 goto release_exit; 3572 ifrp++; space -= sz; 3573 } 3574 s = pserialize_read_enter(); 3575 } 3576 pserialize_read_exit(s); 3577 3578 next: 3579 s = pserialize_read_enter(); 3580 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3581 } 3582 pserialize_read_exit(s); 3583 curlwp_bindx(bound); 3584 3585 if (docopy) { 3586 KASSERT(0 <= space && space <= ifc->ifc_len); 3587 ifc->ifc_len -= space; 3588 } else { 3589 KASSERT(space >= 0); 3590 ifc->ifc_len = space; 3591 } 3592 return (0); 3593 3594 release_exit: 3595 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3596 curlwp_bindx(bound); 3597 return error; 3598 } 3599 3600 int 3601 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3602 { 3603 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space); 3604 struct ifreq ifrb; 3605 struct oifreq *oifr = NULL; 3606 u_long ocmd = cmd; 3607 int hook; 3608 3609 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook); 3610 if (hook != ENOSYS) { 3611 if (cmd != ocmd) { 3612 oifr = (struct oifreq *)(void *)ifr; 3613 ifr = &ifrb; 3614 IFREQO2N_43(oifr, ifr); 3615 len = sizeof(oifr->ifr_addr); 3616 } 3617 } 3618 3619 if (len < sa->sa_len) 3620 return EFBIG; 3621 3622 memset(&ifr->ifr_addr, 0, len); 3623 sockaddr_copy(&ifr->ifr_addr, len, sa); 3624 3625 if (cmd != ocmd) 3626 IFREQN2O_43(oifr, ifr); 3627 return 0; 3628 } 3629 3630 /* 3631 * wrapper function for the drivers which doesn't have if_transmit(). 3632 */ 3633 static int 3634 if_transmit(struct ifnet *ifp, struct mbuf *m) 3635 { 3636 int s, error; 3637 size_t pktlen = m->m_pkthdr.len; 3638 bool mcast = (m->m_flags & M_MCAST) != 0; 3639 3640 s = splnet(); 3641 3642 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3643 if (error != 0) { 3644 /* mbuf is already freed */ 3645 goto out; 3646 } 3647 3648 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 3649 if_statadd_ref(nsr, if_obytes, pktlen); 3650 if (mcast) 3651 if_statinc_ref(nsr, if_omcasts); 3652 IF_STAT_PUTREF(ifp); 3653 3654 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3655 if_start_lock(ifp); 3656 out: 3657 splx(s); 3658 3659 return error; 3660 } 3661 3662 int 3663 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3664 { 3665 int error; 3666 3667 kmsan_check_mbuf(m); 3668 3669 #ifdef ALTQ 3670 KERNEL_LOCK(1, NULL); 3671 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3672 error = if_transmit(ifp, m); 3673 KERNEL_UNLOCK_ONE(NULL); 3674 } else { 3675 KERNEL_UNLOCK_ONE(NULL); 3676 error = (*ifp->if_transmit)(ifp, m); 3677 /* mbuf is alredy freed */ 3678 } 3679 #else /* !ALTQ */ 3680 error = (*ifp->if_transmit)(ifp, m); 3681 /* mbuf is alredy freed */ 3682 #endif /* !ALTQ */ 3683 3684 return error; 3685 } 3686 3687 /* 3688 * Queue message on interface, and start output if interface 3689 * not yet active. 3690 */ 3691 int 3692 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3693 { 3694 3695 return if_transmit_lock(ifp, m); 3696 } 3697 3698 /* 3699 * Queue message on interface, possibly using a second fast queue 3700 */ 3701 int 3702 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3703 { 3704 int error = 0; 3705 3706 if (ifq != NULL 3707 #ifdef ALTQ 3708 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3709 #endif 3710 ) { 3711 if (IF_QFULL(ifq)) { 3712 IF_DROP(&ifp->if_snd); 3713 m_freem(m); 3714 if (error == 0) 3715 error = ENOBUFS; 3716 } else 3717 IF_ENQUEUE(ifq, m); 3718 } else 3719 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3720 if (error != 0) { 3721 if_statinc(ifp, if_oerrors); 3722 return error; 3723 } 3724 return 0; 3725 } 3726 3727 int 3728 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3729 { 3730 int rc; 3731 3732 KASSERT(IFNET_LOCKED(ifp)); 3733 if (ifp->if_initaddr != NULL) 3734 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3735 else if (src || 3736 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3737 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); 3738 3739 return rc; 3740 } 3741 3742 int 3743 if_do_dad(struct ifnet *ifp) 3744 { 3745 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3746 return 0; 3747 3748 switch (ifp->if_type) { 3749 case IFT_FAITH: 3750 /* 3751 * These interfaces do not have the IFF_LOOPBACK flag, 3752 * but loop packets back. We do not have to do DAD on such 3753 * interfaces. We should even omit it, because loop-backed 3754 * responses would confuse the DAD procedure. 3755 */ 3756 return 0; 3757 default: 3758 /* 3759 * Our DAD routine requires the interface up and running. 3760 * However, some interfaces can be up before the RUNNING 3761 * status. Additionaly, users may try to assign addresses 3762 * before the interface becomes up (or running). 3763 * We simply skip DAD in such a case as a work around. 3764 * XXX: we should rather mark "tentative" on such addresses, 3765 * and do DAD after the interface becomes ready. 3766 */ 3767 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 3768 (IFF_UP | IFF_RUNNING)) 3769 return 0; 3770 3771 return 1; 3772 } 3773 } 3774 3775 int 3776 if_flags_set(ifnet_t *ifp, const u_short flags) 3777 { 3778 int rc; 3779 3780 KASSERT(IFNET_LOCKED(ifp)); 3781 3782 if (ifp->if_setflags != NULL) 3783 rc = (*ifp->if_setflags)(ifp, flags); 3784 else { 3785 u_short cantflags, chgdflags; 3786 struct ifreq ifr; 3787 3788 chgdflags = ifp->if_flags ^ flags; 3789 cantflags = chgdflags & IFF_CANTCHANGE; 3790 3791 if (cantflags != 0) 3792 ifp->if_flags ^= cantflags; 3793 3794 /* Traditionally, we do not call if_ioctl after 3795 * setting/clearing only IFF_PROMISC if the interface 3796 * isn't IFF_UP. Uphold that tradition. 3797 */ 3798 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3799 return 0; 3800 3801 memset(&ifr, 0, sizeof(ifr)); 3802 3803 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3804 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); 3805 3806 if (rc != 0 && cantflags != 0) 3807 ifp->if_flags ^= cantflags; 3808 } 3809 3810 return rc; 3811 } 3812 3813 int 3814 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3815 { 3816 int rc; 3817 struct ifreq ifr; 3818 3819 /* 3820 * XXX NOMPSAFE - this calls if_ioctl without holding IFNET_LOCK() 3821 * in some cases - e.g. when called from vlan/netinet/netinet6 code 3822 * directly rather than via doifoictl() 3823 */ 3824 ifreq_setaddr(cmd, &ifr, sa); 3825 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); 3826 3827 return rc; 3828 } 3829 3830 static void 3831 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3832 struct ifaltq *ifq) 3833 { 3834 const struct sysctlnode *cnode, *rnode; 3835 3836 if (sysctl_createv(clog, 0, NULL, &rnode, 3837 CTLFLAG_PERMANENT, 3838 CTLTYPE_NODE, "interfaces", 3839 SYSCTL_DESCR("Per-interface controls"), 3840 NULL, 0, NULL, 0, 3841 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 3842 goto bad; 3843 3844 if (sysctl_createv(clog, 0, &rnode, &rnode, 3845 CTLFLAG_PERMANENT, 3846 CTLTYPE_NODE, ifname, 3847 SYSCTL_DESCR("Interface controls"), 3848 NULL, 0, NULL, 0, 3849 CTL_CREATE, CTL_EOL) != 0) 3850 goto bad; 3851 3852 if (sysctl_createv(clog, 0, &rnode, &rnode, 3853 CTLFLAG_PERMANENT, 3854 CTLTYPE_NODE, "sndq", 3855 SYSCTL_DESCR("Interface output queue controls"), 3856 NULL, 0, NULL, 0, 3857 CTL_CREATE, CTL_EOL) != 0) 3858 goto bad; 3859 3860 if (sysctl_createv(clog, 0, &rnode, &cnode, 3861 CTLFLAG_PERMANENT, 3862 CTLTYPE_INT, "len", 3863 SYSCTL_DESCR("Current output queue length"), 3864 NULL, 0, &ifq->ifq_len, 0, 3865 CTL_CREATE, CTL_EOL) != 0) 3866 goto bad; 3867 3868 if (sysctl_createv(clog, 0, &rnode, &cnode, 3869 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 3870 CTLTYPE_INT, "maxlen", 3871 SYSCTL_DESCR("Maximum allowed output queue length"), 3872 NULL, 0, &ifq->ifq_maxlen, 0, 3873 CTL_CREATE, CTL_EOL) != 0) 3874 goto bad; 3875 3876 if (sysctl_createv(clog, 0, &rnode, &cnode, 3877 CTLFLAG_PERMANENT, 3878 CTLTYPE_INT, "drops", 3879 SYSCTL_DESCR("Packets dropped due to full output queue"), 3880 NULL, 0, &ifq->ifq_drops, 0, 3881 CTL_CREATE, CTL_EOL) != 0) 3882 goto bad; 3883 3884 return; 3885 bad: 3886 printf("%s: could not attach sysctl nodes\n", ifname); 3887 return; 3888 } 3889 3890 #if defined(INET) || defined(INET6) 3891 3892 #define SYSCTL_NET_PKTQ(q, cn, c) \ 3893 static int \ 3894 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \ 3895 { \ 3896 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \ 3897 } 3898 3899 #if defined(INET) 3900 static int 3901 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS) 3902 { 3903 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq); 3904 } 3905 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS) 3906 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS) 3907 #endif 3908 3909 #if defined(INET6) 3910 static int 3911 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS) 3912 { 3913 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq); 3914 } 3915 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS) 3916 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS) 3917 #endif 3918 3919 static void 3920 sysctl_net_pktq_setup(struct sysctllog **clog, int pf) 3921 { 3922 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL; 3923 const char *pfname = NULL, *ipname = NULL; 3924 int ipn = 0, qid = 0; 3925 3926 switch (pf) { 3927 #if defined(INET) 3928 case PF_INET: 3929 len_func = sysctl_net_ip_pktq_items; 3930 maxlen_func = sysctl_net_ip_pktq_maxlen; 3931 drops_func = sysctl_net_ip_pktq_drops; 3932 pfname = "inet", ipn = IPPROTO_IP; 3933 ipname = "ip", qid = IPCTL_IFQ; 3934 break; 3935 #endif 3936 #if defined(INET6) 3937 case PF_INET6: 3938 len_func = sysctl_net_ip6_pktq_items; 3939 maxlen_func = sysctl_net_ip6_pktq_maxlen; 3940 drops_func = sysctl_net_ip6_pktq_drops; 3941 pfname = "inet6", ipn = IPPROTO_IPV6; 3942 ipname = "ip6", qid = IPV6CTL_IFQ; 3943 break; 3944 #endif 3945 default: 3946 KASSERT(false); 3947 } 3948 3949 sysctl_createv(clog, 0, NULL, NULL, 3950 CTLFLAG_PERMANENT, 3951 CTLTYPE_NODE, pfname, NULL, 3952 NULL, 0, NULL, 0, 3953 CTL_NET, pf, CTL_EOL); 3954 sysctl_createv(clog, 0, NULL, NULL, 3955 CTLFLAG_PERMANENT, 3956 CTLTYPE_NODE, ipname, NULL, 3957 NULL, 0, NULL, 0, 3958 CTL_NET, pf, ipn, CTL_EOL); 3959 sysctl_createv(clog, 0, NULL, NULL, 3960 CTLFLAG_PERMANENT, 3961 CTLTYPE_NODE, "ifq", 3962 SYSCTL_DESCR("Protocol input queue controls"), 3963 NULL, 0, NULL, 0, 3964 CTL_NET, pf, ipn, qid, CTL_EOL); 3965 3966 sysctl_createv(clog, 0, NULL, NULL, 3967 CTLFLAG_PERMANENT, 3968 CTLTYPE_QUAD, "len", 3969 SYSCTL_DESCR("Current input queue length"), 3970 len_func, 0, NULL, 0, 3971 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); 3972 sysctl_createv(clog, 0, NULL, NULL, 3973 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 3974 CTLTYPE_INT, "maxlen", 3975 SYSCTL_DESCR("Maximum allowed input queue length"), 3976 maxlen_func, 0, NULL, 0, 3977 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); 3978 sysctl_createv(clog, 0, NULL, NULL, 3979 CTLFLAG_PERMANENT, 3980 CTLTYPE_QUAD, "drops", 3981 SYSCTL_DESCR("Packets dropped due to full input queue"), 3982 drops_func, 0, NULL, 0, 3983 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); 3984 } 3985 #endif /* INET || INET6 */ 3986 3987 static int 3988 if_sdl_sysctl(SYSCTLFN_ARGS) 3989 { 3990 struct ifnet *ifp; 3991 const struct sockaddr_dl *sdl; 3992 struct psref psref; 3993 int error = 0; 3994 int bound; 3995 3996 if (namelen != 1) 3997 return EINVAL; 3998 3999 bound = curlwp_bind(); 4000 ifp = if_get_byindex(name[0], &psref); 4001 if (ifp == NULL) { 4002 error = ENODEV; 4003 goto out0; 4004 } 4005 4006 sdl = ifp->if_sadl; 4007 if (sdl == NULL) { 4008 *oldlenp = 0; 4009 goto out1; 4010 } 4011 4012 if (oldp == NULL) { 4013 *oldlenp = sdl->sdl_alen; 4014 goto out1; 4015 } 4016 4017 if (*oldlenp >= sdl->sdl_alen) 4018 *oldlenp = sdl->sdl_alen; 4019 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp); 4020 out1: 4021 if_put(ifp, &psref); 4022 out0: 4023 curlwp_bindx(bound); 4024 return error; 4025 } 4026 4027 static void 4028 if_sysctl_setup(struct sysctllog **clog) 4029 { 4030 const struct sysctlnode *rnode = NULL; 4031 4032 sysctl_createv(clog, 0, NULL, &rnode, 4033 CTLFLAG_PERMANENT, 4034 CTLTYPE_NODE, "sdl", 4035 SYSCTL_DESCR("Get active link-layer address"), 4036 if_sdl_sysctl, 0, NULL, 0, 4037 CTL_NET, CTL_CREATE, CTL_EOL); 4038 4039 #if defined(INET) 4040 sysctl_net_pktq_setup(NULL, PF_INET); 4041 #endif 4042 #ifdef INET6 4043 if (in6_present) 4044 sysctl_net_pktq_setup(NULL, PF_INET6); 4045 #endif 4046 } 4047