1 /* $NetBSD: if.c,v 1.485 2021/05/17 04:07:43 yamaguchi Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.485 2021/05/17 04:07:43 yamaguchi Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 #include "opt_atalk.h" 99 #include "opt_wlan.h" 100 #include "opt_net_mpsafe.h" 101 #include "opt_mrouting.h" 102 #endif 103 104 #include <sys/param.h> 105 #include <sys/mbuf.h> 106 #include <sys/systm.h> 107 #include <sys/callout.h> 108 #include <sys/proc.h> 109 #include <sys/socket.h> 110 #include <sys/socketvar.h> 111 #include <sys/domain.h> 112 #include <sys/protosw.h> 113 #include <sys/kernel.h> 114 #include <sys/ioctl.h> 115 #include <sys/sysctl.h> 116 #include <sys/syslog.h> 117 #include <sys/kauth.h> 118 #include <sys/kmem.h> 119 #include <sys/xcall.h> 120 #include <sys/cpu.h> 121 #include <sys/intr.h> 122 #include <sys/module_hook.h> 123 #include <sys/compat_stub.h> 124 #include <sys/msan.h> 125 126 #include <net/if.h> 127 #include <net/if_dl.h> 128 #include <net/if_ether.h> 129 #include <net/if_media.h> 130 #include <net80211/ieee80211.h> 131 #include <net80211/ieee80211_ioctl.h> 132 #include <net/if_types.h> 133 #include <net/route.h> 134 #include <net/netisr.h> 135 #include <sys/module.h> 136 #ifdef NETATALK 137 #include <netatalk/at_extern.h> 138 #include <netatalk/at.h> 139 #endif 140 #include <net/pfil.h> 141 #include <netinet/in.h> 142 #include <netinet/in_var.h> 143 #include <netinet/ip_encap.h> 144 #include <net/bpf.h> 145 146 #ifdef INET6 147 #include <netinet6/in6_var.h> 148 #include <netinet6/nd6.h> 149 #endif 150 151 #include "ether.h" 152 153 #include "bridge.h" 154 #if NBRIDGE > 0 155 #include <net/if_bridgevar.h> 156 #endif 157 158 #include "carp.h" 159 #if NCARP > 0 160 #include <netinet/ip_carp.h> 161 #endif 162 163 #include "lagg.h" 164 #if NLAGG > 0 165 #include <net/lagg/if_laggvar.h> 166 #endif 167 168 #include <compat/sys/sockio.h> 169 170 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 171 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 172 173 /* 174 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex 175 * for each ifnet. It doesn't matter because: 176 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on 177 * ifq_lock don't happen 178 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock 179 * because if_snd, if_link_state_change and if_link_state_change_process 180 * are all called with KERNEL_LOCK 181 */ 182 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \ 183 mutex_enter((ifp)->if_snd.ifq_lock) 184 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \ 185 mutex_exit((ifp)->if_snd.ifq_lock) 186 187 /* 188 * Global list of interfaces. 189 */ 190 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 191 struct ifnet_head ifnet_list; 192 193 struct pslist_head ifnet_pslist; 194 static ifnet_t ** ifindex2ifnet = NULL; 195 static u_int if_index = 1; 196 static size_t if_indexlim = 0; 197 static uint64_t index_gen; 198 /* Mutex to protect the above objects. */ 199 kmutex_t ifnet_mtx __cacheline_aligned; 200 static struct psref_class *ifnet_psref_class __read_mostly; 201 static pserialize_t ifnet_psz; 202 static struct workqueue *ifnet_link_state_wq __read_mostly; 203 204 static kmutex_t if_clone_mtx; 205 206 struct ifnet *lo0ifp; 207 int ifqmaxlen = IFQ_MAXLEN; 208 209 struct psref_class *ifa_psref_class __read_mostly; 210 211 static int if_delroute_matcher(struct rtentry *, void *); 212 213 static bool if_is_unit(const char *); 214 static struct if_clone *if_clone_lookup(const char *, int *); 215 216 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 217 static int if_cloners_count; 218 219 /* Packet filtering hook for interfaces. */ 220 pfil_head_t * if_pfil __read_mostly; 221 222 static kauth_listener_t if_listener; 223 224 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 225 static void if_detach_queues(struct ifnet *, struct ifqueue *); 226 static void sysctl_sndq_setup(struct sysctllog **, const char *, 227 struct ifaltq *); 228 static void if_slowtimo(void *); 229 static void if_attachdomain1(struct ifnet *); 230 static int ifconf(u_long, void *); 231 static int if_transmit(struct ifnet *, struct mbuf *); 232 static int if_clone_create(const char *); 233 static int if_clone_destroy(const char *); 234 static void if_link_state_change_work(struct work *, void *); 235 static void if_up_locked(struct ifnet *); 236 static void _if_down(struct ifnet *); 237 static void if_down_deactivated(struct ifnet *); 238 239 struct if_percpuq { 240 struct ifnet *ipq_ifp; 241 void *ipq_si; 242 struct percpu *ipq_ifqs; /* struct ifqueue */ 243 }; 244 245 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 246 247 static void if_percpuq_drops(void *, void *, struct cpu_info *); 248 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 249 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 250 struct if_percpuq *); 251 252 struct if_deferred_start { 253 struct ifnet *ids_ifp; 254 void (*ids_if_start)(struct ifnet *); 255 void *ids_si; 256 }; 257 258 static void if_deferred_start_softint(void *); 259 static void if_deferred_start_common(struct ifnet *); 260 static void if_deferred_start_destroy(struct ifnet *); 261 262 #if defined(INET) || defined(INET6) 263 static void sysctl_net_pktq_setup(struct sysctllog **, int); 264 #endif 265 266 /* 267 * Hook for if_vlan - needed by if_agr 268 */ 269 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook; 270 271 static void if_sysctl_setup(struct sysctllog **); 272 273 static int 274 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 275 void *arg0, void *arg1, void *arg2, void *arg3) 276 { 277 int result; 278 enum kauth_network_req req; 279 280 result = KAUTH_RESULT_DEFER; 281 req = (enum kauth_network_req)(uintptr_t)arg1; 282 283 if (action != KAUTH_NETWORK_INTERFACE) 284 return result; 285 286 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 287 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 288 result = KAUTH_RESULT_ALLOW; 289 290 return result; 291 } 292 293 /* 294 * Network interface utility routines. 295 * 296 * Routines with ifa_ifwith* names take sockaddr *'s as 297 * parameters. 298 */ 299 void 300 ifinit(void) 301 { 302 303 #if (defined(INET) || defined(INET6)) 304 encapinit(); 305 #endif 306 307 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 308 if_listener_cb, NULL); 309 310 /* interfaces are available, inform socket code */ 311 ifioctl = doifioctl; 312 } 313 314 /* 315 * XXX Initialization before configure(). 316 * XXX hack to get pfil_add_hook working in autoconf. 317 */ 318 void 319 ifinit1(void) 320 { 321 int error __diagused; 322 323 #ifdef NET_MPSAFE 324 printf("NET_MPSAFE enabled\n"); 325 #endif 326 327 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 328 329 TAILQ_INIT(&ifnet_list); 330 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 331 ifnet_psz = pserialize_create(); 332 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 333 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 334 error = workqueue_create(&ifnet_link_state_wq, "iflnkst", 335 if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET, 336 WQ_MPSAFE); 337 KASSERT(error == 0); 338 PSLIST_INIT(&ifnet_pslist); 339 340 if_indexlim = 8; 341 342 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 343 KASSERT(if_pfil != NULL); 344 345 #if NETHER > 0 || defined(NETATALK) || defined(WLAN) 346 etherinit(); 347 #endif 348 } 349 350 /* XXX must be after domaininit() */ 351 void 352 ifinit_post(void) 353 { 354 355 if_sysctl_setup(NULL); 356 } 357 358 ifnet_t * 359 if_alloc(u_char type) 360 { 361 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 362 } 363 364 void 365 if_free(ifnet_t *ifp) 366 { 367 kmem_free(ifp, sizeof(ifnet_t)); 368 } 369 370 void 371 if_initname(struct ifnet *ifp, const char *name, int unit) 372 { 373 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 374 "%s%d", name, unit); 375 } 376 377 /* 378 * Null routines used while an interface is going away. These routines 379 * just return an error. 380 */ 381 382 int 383 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 384 const struct sockaddr *so, const struct rtentry *rt) 385 { 386 387 return ENXIO; 388 } 389 390 void 391 if_nullinput(struct ifnet *ifp, struct mbuf *m) 392 { 393 394 /* Nothing. */ 395 } 396 397 void 398 if_nullstart(struct ifnet *ifp) 399 { 400 401 /* Nothing. */ 402 } 403 404 int 405 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 406 { 407 408 m_freem(m); 409 return ENXIO; 410 } 411 412 int 413 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 414 { 415 416 return ENXIO; 417 } 418 419 int 420 if_nullinit(struct ifnet *ifp) 421 { 422 423 return ENXIO; 424 } 425 426 void 427 if_nullstop(struct ifnet *ifp, int disable) 428 { 429 430 /* Nothing. */ 431 } 432 433 void 434 if_nullslowtimo(struct ifnet *ifp) 435 { 436 437 /* Nothing. */ 438 } 439 440 void 441 if_nulldrain(struct ifnet *ifp) 442 { 443 444 /* Nothing. */ 445 } 446 447 void 448 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 449 { 450 struct ifaddr *ifa; 451 struct sockaddr_dl *sdl; 452 453 ifp->if_addrlen = addrlen; 454 if_alloc_sadl(ifp); 455 ifa = ifp->if_dl; 456 sdl = satosdl(ifa->ifa_addr); 457 458 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 459 if (factory) { 460 KASSERT(ifp->if_hwdl == NULL); 461 ifp->if_hwdl = ifp->if_dl; 462 ifaref(ifp->if_hwdl); 463 } 464 /* TBD routing socket */ 465 } 466 467 struct ifaddr * 468 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 469 { 470 unsigned socksize, ifasize; 471 int addrlen, namelen; 472 struct sockaddr_dl *mask, *sdl; 473 struct ifaddr *ifa; 474 475 namelen = strlen(ifp->if_xname); 476 addrlen = ifp->if_addrlen; 477 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 478 ifasize = sizeof(*ifa) + 2 * socksize; 479 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO); 480 481 sdl = (struct sockaddr_dl *)(ifa + 1); 482 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 483 484 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 485 ifp->if_xname, namelen, NULL, addrlen); 486 mask->sdl_family = AF_LINK; 487 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 488 memset(&mask->sdl_data[0], 0xff, namelen); 489 ifa->ifa_rtrequest = link_rtrequest; 490 ifa->ifa_addr = (struct sockaddr *)sdl; 491 ifa->ifa_netmask = (struct sockaddr *)mask; 492 ifa_psref_init(ifa); 493 494 *sdlp = sdl; 495 496 return ifa; 497 } 498 499 static void 500 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 501 { 502 const struct sockaddr_dl *sdl; 503 504 ifp->if_dl = ifa; 505 ifaref(ifa); 506 sdl = satosdl(ifa->ifa_addr); 507 ifp->if_sadl = sdl; 508 } 509 510 /* 511 * Allocate the link level name for the specified interface. This 512 * is an attachment helper. It must be called after ifp->if_addrlen 513 * is initialized, which may not be the case when if_attach() is 514 * called. 515 */ 516 void 517 if_alloc_sadl(struct ifnet *ifp) 518 { 519 struct ifaddr *ifa; 520 const struct sockaddr_dl *sdl; 521 522 /* 523 * If the interface already has a link name, release it 524 * now. This is useful for interfaces that can change 525 * link types, and thus switch link names often. 526 */ 527 if (ifp->if_sadl != NULL) 528 if_free_sadl(ifp, 0); 529 530 ifa = if_dl_create(ifp, &sdl); 531 532 ifa_insert(ifp, ifa); 533 if_sadl_setrefs(ifp, ifa); 534 } 535 536 static void 537 if_deactivate_sadl(struct ifnet *ifp) 538 { 539 struct ifaddr *ifa; 540 541 KASSERT(ifp->if_dl != NULL); 542 543 ifa = ifp->if_dl; 544 545 ifp->if_sadl = NULL; 546 547 ifp->if_dl = NULL; 548 ifafree(ifa); 549 } 550 551 static void 552 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa) 553 { 554 struct ifaddr *old; 555 556 KASSERT(ifp->if_dl != NULL); 557 558 old = ifp->if_dl; 559 560 ifaref(ifa); 561 /* XXX Update if_dl and if_sadl atomically */ 562 ifp->if_dl = ifa; 563 ifp->if_sadl = satosdl(ifa->ifa_addr); 564 565 ifafree(old); 566 } 567 568 void 569 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 570 const struct sockaddr_dl *sdl) 571 { 572 int s, ss; 573 struct ifaddr *ifa; 574 int bound = curlwp_bind(); 575 576 KASSERT(ifa_held(ifa0)); 577 578 s = splsoftnet(); 579 580 if_replace_sadl(ifp, ifa0); 581 582 ss = pserialize_read_enter(); 583 IFADDR_READER_FOREACH(ifa, ifp) { 584 struct psref psref; 585 ifa_acquire(ifa, &psref); 586 pserialize_read_exit(ss); 587 588 rtinit(ifa, RTM_LLINFO_UPD, 0); 589 590 ss = pserialize_read_enter(); 591 ifa_release(ifa, &psref); 592 } 593 pserialize_read_exit(ss); 594 595 splx(s); 596 curlwp_bindx(bound); 597 } 598 599 /* 600 * Free the link level name for the specified interface. This is 601 * a detach helper. This is called from if_detach(). 602 */ 603 void 604 if_free_sadl(struct ifnet *ifp, int factory) 605 { 606 struct ifaddr *ifa; 607 int s; 608 609 if (factory && ifp->if_hwdl != NULL) { 610 ifa = ifp->if_hwdl; 611 ifp->if_hwdl = NULL; 612 ifafree(ifa); 613 } 614 615 ifa = ifp->if_dl; 616 if (ifa == NULL) { 617 KASSERT(ifp->if_sadl == NULL); 618 return; 619 } 620 621 KASSERT(ifp->if_sadl != NULL); 622 623 s = splsoftnet(); 624 KASSERT(ifa->ifa_addr->sa_family == AF_LINK); 625 ifa_remove(ifp, ifa); 626 if_deactivate_sadl(ifp); 627 splx(s); 628 } 629 630 static void 631 if_getindex(ifnet_t *ifp) 632 { 633 bool hitlimit = false; 634 635 ifp->if_index_gen = index_gen++; 636 637 ifp->if_index = if_index; 638 if (ifindex2ifnet == NULL) { 639 if_index++; 640 goto skip; 641 } 642 while (if_byindex(ifp->if_index)) { 643 /* 644 * If we hit USHRT_MAX, we skip back to 0 since 645 * there are a number of places where the value 646 * of if_index or if_index itself is compared 647 * to or stored in an unsigned short. By 648 * jumping back, we won't botch those assignments 649 * or comparisons. 650 */ 651 if (++if_index == 0) { 652 if_index = 1; 653 } else if (if_index == USHRT_MAX) { 654 /* 655 * However, if we have to jump back to 656 * zero *twice* without finding an empty 657 * slot in ifindex2ifnet[], then there 658 * there are too many (>65535) interfaces. 659 */ 660 if (hitlimit) { 661 panic("too many interfaces"); 662 } 663 hitlimit = true; 664 if_index = 1; 665 } 666 ifp->if_index = if_index; 667 } 668 skip: 669 /* 670 * ifindex2ifnet is indexed by if_index. Since if_index will 671 * grow dynamically, it should grow too. 672 */ 673 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 674 size_t m, n, oldlim; 675 void *q; 676 677 oldlim = if_indexlim; 678 while (ifp->if_index >= if_indexlim) 679 if_indexlim <<= 1; 680 681 /* grow ifindex2ifnet */ 682 m = oldlim * sizeof(struct ifnet *); 683 n = if_indexlim * sizeof(struct ifnet *); 684 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO); 685 if (ifindex2ifnet != NULL) { 686 memcpy(q, ifindex2ifnet, m); 687 free(ifindex2ifnet, M_IFADDR); 688 } 689 ifindex2ifnet = (struct ifnet **)q; 690 } 691 ifindex2ifnet[ifp->if_index] = ifp; 692 } 693 694 /* 695 * Initialize an interface and assign an index for it. 696 * 697 * It must be called prior to a device specific attach routine 698 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 699 * and be followed by if_register: 700 * 701 * if_initialize(ifp); 702 * ether_ifattach(ifp, enaddr); 703 * if_register(ifp); 704 */ 705 int 706 if_initialize(ifnet_t *ifp) 707 { 708 int rv = 0; 709 710 KASSERT(if_indexlim > 0); 711 TAILQ_INIT(&ifp->if_addrlist); 712 713 /* 714 * Link level name is allocated later by a separate call to 715 * if_alloc_sadl(). 716 */ 717 718 if (ifp->if_snd.ifq_maxlen == 0) 719 ifp->if_snd.ifq_maxlen = ifqmaxlen; 720 721 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 722 723 ifp->if_link_state = LINK_STATE_UNKNOWN; 724 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 725 ifp->if_link_scheduled = false; 726 727 ifp->if_capenable = 0; 728 ifp->if_csum_flags_tx = 0; 729 ifp->if_csum_flags_rx = 0; 730 731 #ifdef ALTQ 732 ifp->if_snd.altq_type = 0; 733 ifp->if_snd.altq_disc = NULL; 734 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 735 ifp->if_snd.altq_tbr = NULL; 736 ifp->if_snd.altq_ifp = ifp; 737 #endif 738 739 IFQ_LOCK_INIT(&ifp->if_snd); 740 741 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 742 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); 743 744 IF_AFDATA_LOCK_INIT(ifp); 745 746 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 747 PSLIST_INIT(&ifp->if_addr_pslist); 748 psref_target_init(&ifp->if_psref, ifnet_psref_class); 749 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 750 LIST_INIT(&ifp->if_multiaddrs); 751 if ((rv = if_stats_init(ifp)) != 0) { 752 goto fail; 753 } 754 755 IFNET_GLOBAL_LOCK(); 756 if_getindex(ifp); 757 IFNET_GLOBAL_UNLOCK(); 758 759 return 0; 760 761 fail: 762 IF_AFDATA_LOCK_DESTROY(ifp); 763 764 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 765 (void)pfil_head_destroy(ifp->if_pfil); 766 767 IFQ_LOCK_DESTROY(&ifp->if_snd); 768 769 return rv; 770 } 771 772 /* 773 * Register an interface to the list of "active" interfaces. 774 */ 775 void 776 if_register(ifnet_t *ifp) 777 { 778 /* 779 * If the driver has not supplied its own if_ioctl, then 780 * supply the default. 781 */ 782 if (ifp->if_ioctl == NULL) 783 ifp->if_ioctl = ifioctl_common; 784 785 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 786 787 if (!STAILQ_EMPTY(&domains)) 788 if_attachdomain1(ifp); 789 790 /* Announce the interface. */ 791 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 792 793 if (ifp->if_slowtimo != NULL) { 794 ifp->if_slowtimo_ch = 795 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP); 796 callout_init(ifp->if_slowtimo_ch, 0); 797 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp); 798 if_slowtimo(ifp); 799 } 800 801 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 802 ifp->if_transmit = if_transmit; 803 804 IFNET_GLOBAL_LOCK(); 805 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 806 IFNET_WRITER_INSERT_TAIL(ifp); 807 IFNET_GLOBAL_UNLOCK(); 808 } 809 810 /* 811 * The if_percpuq framework 812 * 813 * It allows network device drivers to execute the network stack 814 * in softint (so called softint-based if_input). It utilizes 815 * softint and percpu ifqueue. It doesn't distribute any packets 816 * between CPUs, unlike pktqueue(9). 817 * 818 * Currently we support two options for device drivers to apply the framework: 819 * - Use it implicitly with less changes 820 * - If you use if_attach in driver's _attach function and if_input in 821 * driver's Rx interrupt handler, a packet is queued and a softint handles 822 * the packet implicitly 823 * - Use it explicitly in each driver (recommended) 824 * - You can use if_percpuq_* directly in your driver 825 * - In this case, you need to allocate struct if_percpuq in driver's softc 826 * - See wm(4) as a reference implementation 827 */ 828 829 static void 830 if_percpuq_softint(void *arg) 831 { 832 struct if_percpuq *ipq = arg; 833 struct ifnet *ifp = ipq->ipq_ifp; 834 struct mbuf *m; 835 836 while ((m = if_percpuq_dequeue(ipq)) != NULL) { 837 if_statinc(ifp, if_ipackets); 838 bpf_mtap(ifp, m, BPF_D_IN); 839 840 ifp->_if_input(ifp, m); 841 } 842 } 843 844 static void 845 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 846 { 847 struct ifqueue *const ifq = p; 848 849 memset(ifq, 0, sizeof(*ifq)); 850 ifq->ifq_maxlen = IFQ_MAXLEN; 851 } 852 853 struct if_percpuq * 854 if_percpuq_create(struct ifnet *ifp) 855 { 856 struct if_percpuq *ipq; 857 u_int flags = SOFTINT_NET; 858 859 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 860 861 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 862 ipq->ipq_ifp = ifp; 863 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq); 864 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 865 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 866 867 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 868 869 return ipq; 870 } 871 872 static struct mbuf * 873 if_percpuq_dequeue(struct if_percpuq *ipq) 874 { 875 struct mbuf *m; 876 struct ifqueue *ifq; 877 int s; 878 879 s = splnet(); 880 ifq = percpu_getref(ipq->ipq_ifqs); 881 IF_DEQUEUE(ifq, m); 882 percpu_putref(ipq->ipq_ifqs); 883 splx(s); 884 885 return m; 886 } 887 888 static void 889 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 890 { 891 struct ifqueue *const ifq = p; 892 893 IF_PURGE(ifq); 894 } 895 896 void 897 if_percpuq_destroy(struct if_percpuq *ipq) 898 { 899 900 /* if_detach may already destroy it */ 901 if (ipq == NULL) 902 return; 903 904 softint_disestablish(ipq->ipq_si); 905 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 906 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 907 kmem_free(ipq, sizeof(*ipq)); 908 } 909 910 void 911 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 912 { 913 struct ifqueue *ifq; 914 int s; 915 916 KASSERT(ipq != NULL); 917 918 s = splnet(); 919 ifq = percpu_getref(ipq->ipq_ifqs); 920 if (IF_QFULL(ifq)) { 921 IF_DROP(ifq); 922 percpu_putref(ipq->ipq_ifqs); 923 m_freem(m); 924 goto out; 925 } 926 IF_ENQUEUE(ifq, m); 927 percpu_putref(ipq->ipq_ifqs); 928 929 softint_schedule(ipq->ipq_si); 930 out: 931 splx(s); 932 } 933 934 static void 935 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 936 { 937 struct ifqueue *const ifq = p; 938 int *sum = arg; 939 940 *sum += ifq->ifq_drops; 941 } 942 943 static int 944 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 945 { 946 struct sysctlnode node; 947 struct if_percpuq *ipq; 948 int sum = 0; 949 int error; 950 951 node = *rnode; 952 ipq = node.sysctl_data; 953 954 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 955 956 node.sysctl_data = ∑ 957 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 958 if (error != 0 || newp == NULL) 959 return error; 960 961 return 0; 962 } 963 964 static void 965 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 966 struct if_percpuq *ipq) 967 { 968 const struct sysctlnode *cnode, *rnode; 969 970 if (sysctl_createv(clog, 0, NULL, &rnode, 971 CTLFLAG_PERMANENT, 972 CTLTYPE_NODE, "interfaces", 973 SYSCTL_DESCR("Per-interface controls"), 974 NULL, 0, NULL, 0, 975 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 976 goto bad; 977 978 if (sysctl_createv(clog, 0, &rnode, &rnode, 979 CTLFLAG_PERMANENT, 980 CTLTYPE_NODE, ifname, 981 SYSCTL_DESCR("Interface controls"), 982 NULL, 0, NULL, 0, 983 CTL_CREATE, CTL_EOL) != 0) 984 goto bad; 985 986 if (sysctl_createv(clog, 0, &rnode, &rnode, 987 CTLFLAG_PERMANENT, 988 CTLTYPE_NODE, "rcvq", 989 SYSCTL_DESCR("Interface input queue controls"), 990 NULL, 0, NULL, 0, 991 CTL_CREATE, CTL_EOL) != 0) 992 goto bad; 993 994 #ifdef NOTYET 995 /* XXX Should show each per-CPU queue length? */ 996 if (sysctl_createv(clog, 0, &rnode, &rnode, 997 CTLFLAG_PERMANENT, 998 CTLTYPE_INT, "len", 999 SYSCTL_DESCR("Current input queue length"), 1000 sysctl_percpuq_len, 0, NULL, 0, 1001 CTL_CREATE, CTL_EOL) != 0) 1002 goto bad; 1003 1004 if (sysctl_createv(clog, 0, &rnode, &cnode, 1005 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1006 CTLTYPE_INT, "maxlen", 1007 SYSCTL_DESCR("Maximum allowed input queue length"), 1008 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 1009 CTL_CREATE, CTL_EOL) != 0) 1010 goto bad; 1011 #endif 1012 1013 if (sysctl_createv(clog, 0, &rnode, &cnode, 1014 CTLFLAG_PERMANENT, 1015 CTLTYPE_INT, "drops", 1016 SYSCTL_DESCR("Total packets dropped due to full input queue"), 1017 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 1018 CTL_CREATE, CTL_EOL) != 0) 1019 goto bad; 1020 1021 return; 1022 bad: 1023 printf("%s: could not attach sysctl nodes\n", ifname); 1024 return; 1025 } 1026 1027 /* 1028 * The deferred if_start framework 1029 * 1030 * The common APIs to defer if_start to softint when if_start is requested 1031 * from a device driver running in hardware interrupt context. 1032 */ 1033 /* 1034 * Call ifp->if_start (or equivalent) in a dedicated softint for 1035 * deferred if_start. 1036 */ 1037 static void 1038 if_deferred_start_softint(void *arg) 1039 { 1040 struct if_deferred_start *ids = arg; 1041 struct ifnet *ifp = ids->ids_ifp; 1042 1043 ids->ids_if_start(ifp); 1044 } 1045 1046 /* 1047 * The default callback function for deferred if_start. 1048 */ 1049 static void 1050 if_deferred_start_common(struct ifnet *ifp) 1051 { 1052 int s; 1053 1054 s = splnet(); 1055 if_start_lock(ifp); 1056 splx(s); 1057 } 1058 1059 static inline bool 1060 if_snd_is_used(struct ifnet *ifp) 1061 { 1062 1063 return ALTQ_IS_ENABLED(&ifp->if_snd) || 1064 ifp->if_transmit == if_transmit || 1065 ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit; 1066 } 1067 1068 /* 1069 * Schedule deferred if_start. 1070 */ 1071 void 1072 if_schedule_deferred_start(struct ifnet *ifp) 1073 { 1074 1075 KASSERT(ifp->if_deferred_start != NULL); 1076 1077 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1078 return; 1079 1080 softint_schedule(ifp->if_deferred_start->ids_si); 1081 } 1082 1083 /* 1084 * Create an instance of deferred if_start. A driver should call the function 1085 * only if the driver needs deferred if_start. Drivers can setup their own 1086 * deferred if_start function via 2nd argument. 1087 */ 1088 void 1089 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1090 { 1091 struct if_deferred_start *ids; 1092 u_int flags = SOFTINT_NET; 1093 1094 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0; 1095 1096 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1097 ids->ids_ifp = ifp; 1098 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids); 1099 if (func != NULL) 1100 ids->ids_if_start = func; 1101 else 1102 ids->ids_if_start = if_deferred_start_common; 1103 1104 ifp->if_deferred_start = ids; 1105 } 1106 1107 static void 1108 if_deferred_start_destroy(struct ifnet *ifp) 1109 { 1110 1111 if (ifp->if_deferred_start == NULL) 1112 return; 1113 1114 softint_disestablish(ifp->if_deferred_start->ids_si); 1115 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1116 ifp->if_deferred_start = NULL; 1117 } 1118 1119 /* 1120 * The common interface input routine that is called by device drivers, 1121 * which should be used only when the driver's rx handler already runs 1122 * in softint. 1123 */ 1124 void 1125 if_input(struct ifnet *ifp, struct mbuf *m) 1126 { 1127 1128 KASSERT(ifp->if_percpuq == NULL); 1129 KASSERT(!cpu_intr_p()); 1130 1131 if_statinc(ifp, if_ipackets); 1132 bpf_mtap(ifp, m, BPF_D_IN); 1133 1134 ifp->_if_input(ifp, m); 1135 } 1136 1137 /* 1138 * DEPRECATED. Use if_initialize and if_register instead. 1139 * See the above comment of if_initialize. 1140 * 1141 * Note that it implicitly enables if_percpuq to make drivers easy to 1142 * migrate softint-based if_input without much changes. If you don't 1143 * want to enable it, use if_initialize instead. 1144 */ 1145 int 1146 if_attach(ifnet_t *ifp) 1147 { 1148 int rv; 1149 1150 rv = if_initialize(ifp); 1151 if (rv != 0) 1152 return rv; 1153 1154 ifp->if_percpuq = if_percpuq_create(ifp); 1155 if_register(ifp); 1156 1157 return 0; 1158 } 1159 1160 void 1161 if_attachdomain(void) 1162 { 1163 struct ifnet *ifp; 1164 int s; 1165 int bound = curlwp_bind(); 1166 1167 s = pserialize_read_enter(); 1168 IFNET_READER_FOREACH(ifp) { 1169 struct psref psref; 1170 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1171 pserialize_read_exit(s); 1172 if_attachdomain1(ifp); 1173 s = pserialize_read_enter(); 1174 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1175 } 1176 pserialize_read_exit(s); 1177 curlwp_bindx(bound); 1178 } 1179 1180 static void 1181 if_attachdomain1(struct ifnet *ifp) 1182 { 1183 struct domain *dp; 1184 int s; 1185 1186 s = splsoftnet(); 1187 1188 /* address family dependent data region */ 1189 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1190 DOMAIN_FOREACH(dp) { 1191 if (dp->dom_ifattach != NULL) 1192 ifp->if_afdata[dp->dom_family] = 1193 (*dp->dom_ifattach)(ifp); 1194 } 1195 1196 splx(s); 1197 } 1198 1199 /* 1200 * Deactivate an interface. This points all of the procedure 1201 * handles at error stubs. May be called from interrupt context. 1202 */ 1203 void 1204 if_deactivate(struct ifnet *ifp) 1205 { 1206 int s; 1207 1208 s = splsoftnet(); 1209 1210 ifp->if_output = if_nulloutput; 1211 ifp->_if_input = if_nullinput; 1212 ifp->if_start = if_nullstart; 1213 ifp->if_transmit = if_nulltransmit; 1214 ifp->if_ioctl = if_nullioctl; 1215 ifp->if_init = if_nullinit; 1216 ifp->if_stop = if_nullstop; 1217 ifp->if_slowtimo = if_nullslowtimo; 1218 ifp->if_drain = if_nulldrain; 1219 1220 ifp->if_link_state_changed = NULL; 1221 1222 /* No more packets may be enqueued. */ 1223 ifp->if_snd.ifq_maxlen = 0; 1224 1225 splx(s); 1226 } 1227 1228 bool 1229 if_is_deactivated(const struct ifnet *ifp) 1230 { 1231 1232 return ifp->if_output == if_nulloutput; 1233 } 1234 1235 void 1236 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 1237 { 1238 struct ifaddr *ifa, *nifa; 1239 int s; 1240 1241 s = pserialize_read_enter(); 1242 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1243 nifa = IFADDR_READER_NEXT(ifa); 1244 if (ifa->ifa_addr->sa_family != family) 1245 continue; 1246 pserialize_read_exit(s); 1247 1248 (*purgeaddr)(ifa); 1249 1250 s = pserialize_read_enter(); 1251 } 1252 pserialize_read_exit(s); 1253 } 1254 1255 #ifdef IFAREF_DEBUG 1256 static struct ifaddr **ifa_list; 1257 static int ifa_list_size; 1258 1259 /* Depends on only one if_attach runs at once */ 1260 static void 1261 if_build_ifa_list(struct ifnet *ifp) 1262 { 1263 struct ifaddr *ifa; 1264 int i; 1265 1266 KASSERT(ifa_list == NULL); 1267 KASSERT(ifa_list_size == 0); 1268 1269 IFADDR_READER_FOREACH(ifa, ifp) 1270 ifa_list_size++; 1271 1272 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1273 i = 0; 1274 IFADDR_READER_FOREACH(ifa, ifp) { 1275 ifa_list[i++] = ifa; 1276 ifaref(ifa); 1277 } 1278 } 1279 1280 static void 1281 if_check_and_free_ifa_list(struct ifnet *ifp) 1282 { 1283 int i; 1284 struct ifaddr *ifa; 1285 1286 if (ifa_list == NULL) 1287 return; 1288 1289 for (i = 0; i < ifa_list_size; i++) { 1290 char buf[64]; 1291 1292 ifa = ifa_list[i]; 1293 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1294 if (ifa->ifa_refcnt > 1) { 1295 log(LOG_WARNING, 1296 "ifa(%s) still referenced (refcnt=%d)\n", 1297 buf, ifa->ifa_refcnt - 1); 1298 } else 1299 log(LOG_DEBUG, 1300 "ifa(%s) not referenced (refcnt=%d)\n", 1301 buf, ifa->ifa_refcnt - 1); 1302 ifafree(ifa); 1303 } 1304 1305 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1306 ifa_list = NULL; 1307 ifa_list_size = 0; 1308 } 1309 #endif 1310 1311 /* 1312 * Detach an interface from the list of "active" interfaces, 1313 * freeing any resources as we go along. 1314 * 1315 * NOTE: This routine must be called with a valid thread context, 1316 * as it may block. 1317 */ 1318 void 1319 if_detach(struct ifnet *ifp) 1320 { 1321 struct socket so; 1322 struct ifaddr *ifa; 1323 #ifdef IFAREF_DEBUG 1324 struct ifaddr *last_ifa = NULL; 1325 #endif 1326 struct domain *dp; 1327 const struct protosw *pr; 1328 int s, i, family, purged; 1329 1330 #ifdef IFAREF_DEBUG 1331 if_build_ifa_list(ifp); 1332 #endif 1333 /* 1334 * XXX It's kind of lame that we have to have the 1335 * XXX socket structure... 1336 */ 1337 memset(&so, 0, sizeof(so)); 1338 1339 s = splnet(); 1340 1341 sysctl_teardown(&ifp->if_sysctl_log); 1342 1343 IFNET_LOCK(ifp); 1344 1345 /* 1346 * Unset all queued link states and pretend a 1347 * link state change is scheduled. 1348 * This stops any more link state changes occuring for this 1349 * interface while it's being detached so it's safe 1350 * to drain the workqueue. 1351 */ 1352 IF_LINK_STATE_CHANGE_LOCK(ifp); 1353 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 1354 ifp->if_link_scheduled = true; 1355 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 1356 workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work); 1357 1358 if_deactivate(ifp); 1359 IFNET_UNLOCK(ifp); 1360 1361 /* 1362 * Unlink from the list and wait for all readers to leave 1363 * from pserialize read sections. Note that we can't do 1364 * psref_target_destroy here. See below. 1365 */ 1366 IFNET_GLOBAL_LOCK(); 1367 ifindex2ifnet[ifp->if_index] = NULL; 1368 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1369 IFNET_WRITER_REMOVE(ifp); 1370 pserialize_perform(ifnet_psz); 1371 IFNET_GLOBAL_UNLOCK(); 1372 1373 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) { 1374 ifp->if_slowtimo = NULL; 1375 callout_halt(ifp->if_slowtimo_ch, NULL); 1376 callout_destroy(ifp->if_slowtimo_ch); 1377 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch)); 1378 } 1379 if_deferred_start_destroy(ifp); 1380 1381 /* 1382 * Do an if_down() to give protocols a chance to do something. 1383 */ 1384 if_down_deactivated(ifp); 1385 1386 #ifdef ALTQ 1387 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1388 altq_disable(&ifp->if_snd); 1389 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1390 altq_detach(&ifp->if_snd); 1391 #endif 1392 1393 #if NCARP > 0 1394 /* Remove the interface from any carp group it is a part of. */ 1395 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1396 carp_ifdetach(ifp); 1397 #endif 1398 1399 /* 1400 * Rip all the addresses off the interface. This should make 1401 * all of the routes go away. 1402 * 1403 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1404 * from the list, including our "cursor", ifa. For safety, 1405 * and to honor the TAILQ abstraction, I just restart the 1406 * loop after each removal. Note that the loop will exit 1407 * when all of the remaining ifaddrs belong to the AF_LINK 1408 * family. I am counting on the historical fact that at 1409 * least one pr_usrreq in each address domain removes at 1410 * least one ifaddr. 1411 */ 1412 again: 1413 /* 1414 * At this point, no other one tries to remove ifa in the list, 1415 * so we don't need to take a lock or psref. Avoid using 1416 * IFADDR_READER_FOREACH to pass over an inspection of contract 1417 * violations of pserialize. 1418 */ 1419 IFADDR_WRITER_FOREACH(ifa, ifp) { 1420 family = ifa->ifa_addr->sa_family; 1421 #ifdef IFAREF_DEBUG 1422 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1423 ifa, family, ifa->ifa_refcnt); 1424 if (last_ifa != NULL && ifa == last_ifa) 1425 panic("if_detach: loop detected"); 1426 last_ifa = ifa; 1427 #endif 1428 if (family == AF_LINK) 1429 continue; 1430 dp = pffinddomain(family); 1431 KASSERTMSG(dp != NULL, "no domain for AF %d", family); 1432 /* 1433 * XXX These PURGEIF calls are redundant with the 1434 * purge-all-families calls below, but are left in for 1435 * now both to make a smaller change, and to avoid 1436 * unplanned interactions with clearing of 1437 * ifp->if_addrlist. 1438 */ 1439 purged = 0; 1440 for (pr = dp->dom_protosw; 1441 pr < dp->dom_protoswNPROTOSW; pr++) { 1442 so.so_proto = pr; 1443 if (pr->pr_usrreqs) { 1444 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1445 purged = 1; 1446 } 1447 } 1448 if (purged == 0) { 1449 /* 1450 * XXX What's really the best thing to do 1451 * XXX here? --thorpej@NetBSD.org 1452 */ 1453 printf("if_detach: WARNING: AF %d not purged\n", 1454 family); 1455 ifa_remove(ifp, ifa); 1456 } 1457 goto again; 1458 } 1459 1460 if_free_sadl(ifp, 1); 1461 1462 restart: 1463 IFADDR_WRITER_FOREACH(ifa, ifp) { 1464 family = ifa->ifa_addr->sa_family; 1465 KASSERT(family == AF_LINK); 1466 ifa_remove(ifp, ifa); 1467 goto restart; 1468 } 1469 1470 /* Delete stray routes from the routing table. */ 1471 for (i = 0; i <= AF_MAX; i++) 1472 rt_delete_matched_entries(i, if_delroute_matcher, ifp); 1473 1474 DOMAIN_FOREACH(dp) { 1475 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1476 { 1477 void *p = ifp->if_afdata[dp->dom_family]; 1478 if (p) { 1479 ifp->if_afdata[dp->dom_family] = NULL; 1480 (*dp->dom_ifdetach)(ifp, p); 1481 } 1482 } 1483 1484 /* 1485 * One would expect multicast memberships (INET and 1486 * INET6) on UDP sockets to be purged by the PURGEIF 1487 * calls above, but if all addresses were removed from 1488 * the interface prior to destruction, the calls will 1489 * not be made (e.g. ppp, for which pppd(8) generally 1490 * removes addresses before destroying the interface). 1491 * Because there is no invariant that multicast 1492 * memberships only exist for interfaces with IPv4 1493 * addresses, we must call PURGEIF regardless of 1494 * addresses. (Protocols which might store ifnet 1495 * pointers are marked with PR_PURGEIF.) 1496 */ 1497 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 1498 so.so_proto = pr; 1499 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1500 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1501 } 1502 } 1503 1504 /* 1505 * Must be done after the above pr_purgeif because if_psref may be 1506 * still used in pr_purgeif. 1507 */ 1508 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1509 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1510 1511 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 1512 (void)pfil_head_destroy(ifp->if_pfil); 1513 1514 /* Announce that the interface is gone. */ 1515 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1516 1517 IF_AFDATA_LOCK_DESTROY(ifp); 1518 1519 /* 1520 * remove packets that came from ifp, from software interrupt queues. 1521 */ 1522 DOMAIN_FOREACH(dp) { 1523 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { 1524 struct ifqueue *iq = dp->dom_ifqueues[i]; 1525 if (iq == NULL) 1526 break; 1527 dp->dom_ifqueues[i] = NULL; 1528 if_detach_queues(ifp, iq); 1529 } 1530 } 1531 1532 /* 1533 * IP queues have to be processed separately: net-queue barrier 1534 * ensures that the packets are dequeued while a cross-call will 1535 * ensure that the interrupts have completed. FIXME: not quite.. 1536 */ 1537 #ifdef INET 1538 pktq_barrier(ip_pktq); 1539 #endif 1540 #ifdef INET6 1541 if (in6_present) 1542 pktq_barrier(ip6_pktq); 1543 #endif 1544 xc_barrier(0); 1545 1546 if (ifp->if_percpuq != NULL) { 1547 if_percpuq_destroy(ifp->if_percpuq); 1548 ifp->if_percpuq = NULL; 1549 } 1550 1551 mutex_obj_free(ifp->if_ioctl_lock); 1552 ifp->if_ioctl_lock = NULL; 1553 mutex_obj_free(ifp->if_snd.ifq_lock); 1554 if_stats_fini(ifp); 1555 1556 splx(s); 1557 1558 #ifdef IFAREF_DEBUG 1559 if_check_and_free_ifa_list(ifp); 1560 #endif 1561 } 1562 1563 static void 1564 if_detach_queues(struct ifnet *ifp, struct ifqueue *q) 1565 { 1566 struct mbuf *m, *prev, *next; 1567 1568 prev = NULL; 1569 for (m = q->ifq_head; m != NULL; m = next) { 1570 KASSERT((m->m_flags & M_PKTHDR) != 0); 1571 1572 next = m->m_nextpkt; 1573 if (m->m_pkthdr.rcvif_index != ifp->if_index) { 1574 prev = m; 1575 continue; 1576 } 1577 1578 if (prev != NULL) 1579 prev->m_nextpkt = m->m_nextpkt; 1580 else 1581 q->ifq_head = m->m_nextpkt; 1582 if (q->ifq_tail == m) 1583 q->ifq_tail = prev; 1584 q->ifq_len--; 1585 1586 m->m_nextpkt = NULL; 1587 m_freem(m); 1588 IF_DROP(q); 1589 } 1590 } 1591 1592 /* 1593 * Callback for a radix tree walk to delete all references to an 1594 * ifnet. 1595 */ 1596 static int 1597 if_delroute_matcher(struct rtentry *rt, void *v) 1598 { 1599 struct ifnet *ifp = (struct ifnet *)v; 1600 1601 if (rt->rt_ifp == ifp) 1602 return 1; 1603 else 1604 return 0; 1605 } 1606 1607 /* 1608 * Create a clone network interface. 1609 */ 1610 static int 1611 if_clone_create(const char *name) 1612 { 1613 struct if_clone *ifc; 1614 int unit; 1615 struct ifnet *ifp; 1616 struct psref psref; 1617 1618 KASSERT(mutex_owned(&if_clone_mtx)); 1619 1620 ifc = if_clone_lookup(name, &unit); 1621 if (ifc == NULL) 1622 return EINVAL; 1623 1624 ifp = if_get(name, &psref); 1625 if (ifp != NULL) { 1626 if_put(ifp, &psref); 1627 return EEXIST; 1628 } 1629 1630 return (*ifc->ifc_create)(ifc, unit); 1631 } 1632 1633 /* 1634 * Destroy a clone network interface. 1635 */ 1636 static int 1637 if_clone_destroy(const char *name) 1638 { 1639 struct if_clone *ifc; 1640 struct ifnet *ifp; 1641 struct psref psref; 1642 int error; 1643 int (*if_ioctl)(struct ifnet *, u_long, void *); 1644 1645 KASSERT(mutex_owned(&if_clone_mtx)); 1646 1647 ifc = if_clone_lookup(name, NULL); 1648 if (ifc == NULL) 1649 return EINVAL; 1650 1651 if (ifc->ifc_destroy == NULL) 1652 return EOPNOTSUPP; 1653 1654 ifp = if_get(name, &psref); 1655 if (ifp == NULL) 1656 return ENXIO; 1657 1658 /* We have to disable ioctls here */ 1659 IFNET_LOCK(ifp); 1660 if_ioctl = ifp->if_ioctl; 1661 ifp->if_ioctl = if_nullioctl; 1662 IFNET_UNLOCK(ifp); 1663 1664 /* 1665 * We cannot call ifc_destroy with holding ifp. 1666 * Releasing ifp here is safe thanks to if_clone_mtx. 1667 */ 1668 if_put(ifp, &psref); 1669 1670 error = (*ifc->ifc_destroy)(ifp); 1671 1672 if (error != 0) { 1673 /* We have to restore if_ioctl on error */ 1674 IFNET_LOCK(ifp); 1675 ifp->if_ioctl = if_ioctl; 1676 IFNET_UNLOCK(ifp); 1677 } 1678 1679 return error; 1680 } 1681 1682 static bool 1683 if_is_unit(const char *name) 1684 { 1685 1686 while (*name != '\0') { 1687 if (*name < '0' || *name > '9') 1688 return false; 1689 name++; 1690 } 1691 1692 return true; 1693 } 1694 1695 /* 1696 * Look up a network interface cloner. 1697 */ 1698 static struct if_clone * 1699 if_clone_lookup(const char *name, int *unitp) 1700 { 1701 struct if_clone *ifc; 1702 const char *cp; 1703 char *dp, ifname[IFNAMSIZ + 3]; 1704 int unit; 1705 1706 KASSERT(mutex_owned(&if_clone_mtx)); 1707 1708 strcpy(ifname, "if_"); 1709 /* separate interface name from unit */ 1710 /* TODO: search unit number from backward */ 1711 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1712 *cp && !if_is_unit(cp);) 1713 *dp++ = *cp++; 1714 1715 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1716 return NULL; /* No name or unit number */ 1717 *dp++ = '\0'; 1718 1719 again: 1720 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1721 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1722 break; 1723 } 1724 1725 if (ifc == NULL) { 1726 int error; 1727 if (*ifname == '\0') 1728 return NULL; 1729 mutex_exit(&if_clone_mtx); 1730 error = module_autoload(ifname, MODULE_CLASS_DRIVER); 1731 mutex_enter(&if_clone_mtx); 1732 if (error) 1733 return NULL; 1734 *ifname = '\0'; 1735 goto again; 1736 } 1737 1738 unit = 0; 1739 while (cp - name < IFNAMSIZ && *cp) { 1740 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1741 /* Bogus unit number. */ 1742 return NULL; 1743 } 1744 unit = (unit * 10) + (*cp++ - '0'); 1745 } 1746 1747 if (unitp != NULL) 1748 *unitp = unit; 1749 return ifc; 1750 } 1751 1752 /* 1753 * Register a network interface cloner. 1754 */ 1755 void 1756 if_clone_attach(struct if_clone *ifc) 1757 { 1758 1759 mutex_enter(&if_clone_mtx); 1760 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1761 if_cloners_count++; 1762 mutex_exit(&if_clone_mtx); 1763 } 1764 1765 /* 1766 * Unregister a network interface cloner. 1767 */ 1768 void 1769 if_clone_detach(struct if_clone *ifc) 1770 { 1771 1772 mutex_enter(&if_clone_mtx); 1773 LIST_REMOVE(ifc, ifc_list); 1774 if_cloners_count--; 1775 mutex_exit(&if_clone_mtx); 1776 } 1777 1778 /* 1779 * Provide list of interface cloners to userspace. 1780 */ 1781 int 1782 if_clone_list(int buf_count, char *buffer, int *total) 1783 { 1784 char outbuf[IFNAMSIZ], *dst; 1785 struct if_clone *ifc; 1786 int count, error = 0; 1787 1788 mutex_enter(&if_clone_mtx); 1789 *total = if_cloners_count; 1790 if ((dst = buffer) == NULL) { 1791 /* Just asking how many there are. */ 1792 goto out; 1793 } 1794 1795 if (buf_count < 0) { 1796 error = EINVAL; 1797 goto out; 1798 } 1799 1800 count = (if_cloners_count < buf_count) ? 1801 if_cloners_count : buf_count; 1802 1803 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1804 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1805 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1806 if (outbuf[sizeof(outbuf) - 1] != '\0') { 1807 error = ENAMETOOLONG; 1808 goto out; 1809 } 1810 error = copyout(outbuf, dst, sizeof(outbuf)); 1811 if (error != 0) 1812 break; 1813 } 1814 1815 out: 1816 mutex_exit(&if_clone_mtx); 1817 return error; 1818 } 1819 1820 void 1821 ifa_psref_init(struct ifaddr *ifa) 1822 { 1823 1824 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1825 } 1826 1827 void 1828 ifaref(struct ifaddr *ifa) 1829 { 1830 1831 atomic_inc_uint(&ifa->ifa_refcnt); 1832 } 1833 1834 void 1835 ifafree(struct ifaddr *ifa) 1836 { 1837 KASSERT(ifa != NULL); 1838 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt); 1839 1840 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) { 1841 free(ifa, M_IFADDR); 1842 } 1843 } 1844 1845 bool 1846 ifa_is_destroying(struct ifaddr *ifa) 1847 { 1848 1849 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1850 } 1851 1852 void 1853 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1854 { 1855 1856 ifa->ifa_ifp = ifp; 1857 1858 /* 1859 * Check MP-safety for IFEF_MPSAFE drivers. 1860 * Check !IFF_RUNNING for initialization routines that normally don't 1861 * take IFNET_LOCK but it's safe because there is no competitor. 1862 * XXX there are false positive cases because IFF_RUNNING can be off on 1863 * if_stop. 1864 */ 1865 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) || 1866 IFNET_LOCKED(ifp)); 1867 1868 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1869 IFADDR_ENTRY_INIT(ifa); 1870 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1871 1872 ifaref(ifa); 1873 } 1874 1875 void 1876 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1877 { 1878 1879 KASSERT(ifa->ifa_ifp == ifp); 1880 /* 1881 * Check MP-safety for IFEF_MPSAFE drivers. 1882 * if_is_deactivated indicates ifa_remove is called form if_detach 1883 * where is safe even if IFNET_LOCK isn't held. 1884 */ 1885 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp)); 1886 1887 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1888 IFADDR_WRITER_REMOVE(ifa); 1889 #ifdef NET_MPSAFE 1890 IFNET_GLOBAL_LOCK(); 1891 pserialize_perform(ifnet_psz); 1892 IFNET_GLOBAL_UNLOCK(); 1893 #endif 1894 1895 #ifdef NET_MPSAFE 1896 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1897 #endif 1898 IFADDR_ENTRY_DESTROY(ifa); 1899 ifafree(ifa); 1900 } 1901 1902 void 1903 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1904 { 1905 1906 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 1907 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1908 } 1909 1910 void 1911 ifa_release(struct ifaddr *ifa, struct psref *psref) 1912 { 1913 1914 if (ifa == NULL) 1915 return; 1916 1917 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1918 } 1919 1920 bool 1921 ifa_held(struct ifaddr *ifa) 1922 { 1923 1924 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1925 } 1926 1927 static inline int 1928 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1929 { 1930 return sockaddr_cmp(sa1, sa2) == 0; 1931 } 1932 1933 /* 1934 * Locate an interface based on a complete address. 1935 */ 1936 /*ARGSUSED*/ 1937 struct ifaddr * 1938 ifa_ifwithaddr(const struct sockaddr *addr) 1939 { 1940 struct ifnet *ifp; 1941 struct ifaddr *ifa; 1942 1943 IFNET_READER_FOREACH(ifp) { 1944 if (if_is_deactivated(ifp)) 1945 continue; 1946 IFADDR_READER_FOREACH(ifa, ifp) { 1947 if (ifa->ifa_addr->sa_family != addr->sa_family) 1948 continue; 1949 if (equal(addr, ifa->ifa_addr)) 1950 return ifa; 1951 if ((ifp->if_flags & IFF_BROADCAST) && 1952 ifa->ifa_broadaddr && 1953 /* IP6 doesn't have broadcast */ 1954 ifa->ifa_broadaddr->sa_len != 0 && 1955 equal(ifa->ifa_broadaddr, addr)) 1956 return ifa; 1957 } 1958 } 1959 return NULL; 1960 } 1961 1962 struct ifaddr * 1963 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1964 { 1965 struct ifaddr *ifa; 1966 int s = pserialize_read_enter(); 1967 1968 ifa = ifa_ifwithaddr(addr); 1969 if (ifa != NULL) 1970 ifa_acquire(ifa, psref); 1971 pserialize_read_exit(s); 1972 1973 return ifa; 1974 } 1975 1976 /* 1977 * Locate the point to point interface with a given destination address. 1978 */ 1979 /*ARGSUSED*/ 1980 struct ifaddr * 1981 ifa_ifwithdstaddr(const struct sockaddr *addr) 1982 { 1983 struct ifnet *ifp; 1984 struct ifaddr *ifa; 1985 1986 IFNET_READER_FOREACH(ifp) { 1987 if (if_is_deactivated(ifp)) 1988 continue; 1989 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1990 continue; 1991 IFADDR_READER_FOREACH(ifa, ifp) { 1992 if (ifa->ifa_addr->sa_family != addr->sa_family || 1993 ifa->ifa_dstaddr == NULL) 1994 continue; 1995 if (equal(addr, ifa->ifa_dstaddr)) 1996 return ifa; 1997 } 1998 } 1999 2000 return NULL; 2001 } 2002 2003 struct ifaddr * 2004 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 2005 { 2006 struct ifaddr *ifa; 2007 int s; 2008 2009 s = pserialize_read_enter(); 2010 ifa = ifa_ifwithdstaddr(addr); 2011 if (ifa != NULL) 2012 ifa_acquire(ifa, psref); 2013 pserialize_read_exit(s); 2014 2015 return ifa; 2016 } 2017 2018 /* 2019 * Find an interface on a specific network. If many, choice 2020 * is most specific found. 2021 */ 2022 struct ifaddr * 2023 ifa_ifwithnet(const struct sockaddr *addr) 2024 { 2025 struct ifnet *ifp; 2026 struct ifaddr *ifa, *ifa_maybe = NULL; 2027 const struct sockaddr_dl *sdl; 2028 u_int af = addr->sa_family; 2029 const char *addr_data = addr->sa_data, *cplim; 2030 2031 if (af == AF_LINK) { 2032 sdl = satocsdl(addr); 2033 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 2034 ifindex2ifnet[sdl->sdl_index] && 2035 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 2036 return ifindex2ifnet[sdl->sdl_index]->if_dl; 2037 } 2038 } 2039 #ifdef NETATALK 2040 if (af == AF_APPLETALK) { 2041 const struct sockaddr_at *sat, *sat2; 2042 sat = (const struct sockaddr_at *)addr; 2043 IFNET_READER_FOREACH(ifp) { 2044 if (if_is_deactivated(ifp)) 2045 continue; 2046 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 2047 if (ifa == NULL) 2048 continue; 2049 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 2050 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 2051 return ifa; /* exact match */ 2052 if (ifa_maybe == NULL) { 2053 /* else keep the if with the right range */ 2054 ifa_maybe = ifa; 2055 } 2056 } 2057 return ifa_maybe; 2058 } 2059 #endif 2060 IFNET_READER_FOREACH(ifp) { 2061 if (if_is_deactivated(ifp)) 2062 continue; 2063 IFADDR_READER_FOREACH(ifa, ifp) { 2064 const char *cp, *cp2, *cp3; 2065 2066 if (ifa->ifa_addr->sa_family != af || 2067 ifa->ifa_netmask == NULL) 2068 next: continue; 2069 cp = addr_data; 2070 cp2 = ifa->ifa_addr->sa_data; 2071 cp3 = ifa->ifa_netmask->sa_data; 2072 cplim = (const char *)ifa->ifa_netmask + 2073 ifa->ifa_netmask->sa_len; 2074 while (cp3 < cplim) { 2075 if ((*cp++ ^ *cp2++) & *cp3++) { 2076 /* want to continue for() loop */ 2077 goto next; 2078 } 2079 } 2080 if (ifa_maybe == NULL || 2081 rt_refines(ifa->ifa_netmask, 2082 ifa_maybe->ifa_netmask)) 2083 ifa_maybe = ifa; 2084 } 2085 } 2086 return ifa_maybe; 2087 } 2088 2089 struct ifaddr * 2090 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 2091 { 2092 struct ifaddr *ifa; 2093 int s; 2094 2095 s = pserialize_read_enter(); 2096 ifa = ifa_ifwithnet(addr); 2097 if (ifa != NULL) 2098 ifa_acquire(ifa, psref); 2099 pserialize_read_exit(s); 2100 2101 return ifa; 2102 } 2103 2104 /* 2105 * Find the interface of the addresss. 2106 */ 2107 struct ifaddr * 2108 ifa_ifwithladdr(const struct sockaddr *addr) 2109 { 2110 struct ifaddr *ia; 2111 2112 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 2113 (ia = ifa_ifwithnet(addr))) 2114 return ia; 2115 return NULL; 2116 } 2117 2118 struct ifaddr * 2119 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 2120 { 2121 struct ifaddr *ifa; 2122 int s; 2123 2124 s = pserialize_read_enter(); 2125 ifa = ifa_ifwithladdr(addr); 2126 if (ifa != NULL) 2127 ifa_acquire(ifa, psref); 2128 pserialize_read_exit(s); 2129 2130 return ifa; 2131 } 2132 2133 /* 2134 * Find an interface using a specific address family 2135 */ 2136 struct ifaddr * 2137 ifa_ifwithaf(int af) 2138 { 2139 struct ifnet *ifp; 2140 struct ifaddr *ifa = NULL; 2141 int s; 2142 2143 s = pserialize_read_enter(); 2144 IFNET_READER_FOREACH(ifp) { 2145 if (if_is_deactivated(ifp)) 2146 continue; 2147 IFADDR_READER_FOREACH(ifa, ifp) { 2148 if (ifa->ifa_addr->sa_family == af) 2149 goto out; 2150 } 2151 } 2152 out: 2153 pserialize_read_exit(s); 2154 return ifa; 2155 } 2156 2157 /* 2158 * Find an interface address specific to an interface best matching 2159 * a given address. 2160 */ 2161 struct ifaddr * 2162 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2163 { 2164 struct ifaddr *ifa; 2165 const char *cp, *cp2, *cp3; 2166 const char *cplim; 2167 struct ifaddr *ifa_maybe = 0; 2168 u_int af = addr->sa_family; 2169 2170 if (if_is_deactivated(ifp)) 2171 return NULL; 2172 2173 if (af >= AF_MAX) 2174 return NULL; 2175 2176 IFADDR_READER_FOREACH(ifa, ifp) { 2177 if (ifa->ifa_addr->sa_family != af) 2178 continue; 2179 ifa_maybe = ifa; 2180 if (ifa->ifa_netmask == NULL) { 2181 if (equal(addr, ifa->ifa_addr) || 2182 (ifa->ifa_dstaddr && 2183 equal(addr, ifa->ifa_dstaddr))) 2184 return ifa; 2185 continue; 2186 } 2187 cp = addr->sa_data; 2188 cp2 = ifa->ifa_addr->sa_data; 2189 cp3 = ifa->ifa_netmask->sa_data; 2190 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2191 for (; cp3 < cplim; cp3++) { 2192 if ((*cp++ ^ *cp2++) & *cp3) 2193 break; 2194 } 2195 if (cp3 == cplim) 2196 return ifa; 2197 } 2198 return ifa_maybe; 2199 } 2200 2201 struct ifaddr * 2202 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2203 struct psref *psref) 2204 { 2205 struct ifaddr *ifa; 2206 int s; 2207 2208 s = pserialize_read_enter(); 2209 ifa = ifaof_ifpforaddr(addr, ifp); 2210 if (ifa != NULL) 2211 ifa_acquire(ifa, psref); 2212 pserialize_read_exit(s); 2213 2214 return ifa; 2215 } 2216 2217 /* 2218 * Default action when installing a route with a Link Level gateway. 2219 * Lookup an appropriate real ifa to point to. 2220 * This should be moved to /sys/net/link.c eventually. 2221 */ 2222 void 2223 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2224 { 2225 struct ifaddr *ifa; 2226 const struct sockaddr *dst; 2227 struct ifnet *ifp; 2228 struct psref psref; 2229 2230 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2231 return; 2232 ifp = rt->rt_ifa->ifa_ifp; 2233 dst = rt_getkey(rt); 2234 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2235 rt_replace_ifa(rt, ifa); 2236 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2237 ifa->ifa_rtrequest(cmd, rt, info); 2238 ifa_release(ifa, &psref); 2239 } 2240 } 2241 2242 /* 2243 * bitmask macros to manage a densely packed link_state change queue. 2244 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2245 * LINK_STATE_UP(2) we need 2 bits for each state change. 2246 * As a state change to store is 0, treat all bits set as an unset item. 2247 */ 2248 #define LQ_ITEM_BITS 2 2249 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2250 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2251 #define LINK_STATE_UNSET LQ_ITEM_MASK 2252 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2253 #define LQ_STORE(q, i, v) \ 2254 do { \ 2255 (q) &= ~LQ_MASK((i)); \ 2256 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2257 } while (0 /* CONSTCOND */) 2258 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2259 #define LQ_POP(q, v) \ 2260 do { \ 2261 (v) = LQ_ITEM((q), 0); \ 2262 (q) >>= LQ_ITEM_BITS; \ 2263 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2264 } while (0 /* CONSTCOND */) 2265 #define LQ_PUSH(q, v) \ 2266 do { \ 2267 (q) >>= LQ_ITEM_BITS; \ 2268 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2269 } while (0 /* CONSTCOND */) 2270 #define LQ_FIND_UNSET(q, i) \ 2271 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2272 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2273 break; \ 2274 } 2275 2276 /* 2277 * Handle a change in the interface link state and 2278 * queue notifications. 2279 */ 2280 void 2281 if_link_state_change(struct ifnet *ifp, int link_state) 2282 { 2283 int idx; 2284 2285 /* Ensure change is to a valid state */ 2286 switch (link_state) { 2287 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2288 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2289 case LINK_STATE_UP: 2290 break; 2291 default: 2292 #ifdef DEBUG 2293 printf("%s: invalid link state %d\n", 2294 ifp->if_xname, link_state); 2295 #endif 2296 return; 2297 } 2298 2299 IF_LINK_STATE_CHANGE_LOCK(ifp); 2300 2301 /* Find the last unset event in the queue. */ 2302 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2303 2304 if (idx == 0) { 2305 /* 2306 * There is no queue of link state changes. 2307 * As we have the lock we can safely compare against the 2308 * current link state and return if the same. 2309 * Otherwise, if scheduled is true then the interface is being 2310 * detached and the queue is being drained so we need 2311 * to avoid queuing more work. 2312 */ 2313 if (ifp->if_link_state == link_state || ifp->if_link_scheduled) 2314 goto out; 2315 } else { 2316 /* Ensure link_state doesn't match the last queued state. */ 2317 if (LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state) 2318 goto out; 2319 } 2320 2321 /* Handle queue overflow. */ 2322 if (idx == LQ_MAX(ifp->if_link_queue)) { 2323 uint8_t lost; 2324 2325 /* 2326 * The DOWN state must be protected from being pushed off 2327 * the queue to ensure that userland will always be 2328 * in a sane state. 2329 * Because DOWN is protected, there is no need to protect 2330 * UNKNOWN. 2331 * It should be invalid to change from any other state to 2332 * UNKNOWN anyway ... 2333 */ 2334 lost = LQ_ITEM(ifp->if_link_queue, 0); 2335 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2336 if (lost == LINK_STATE_DOWN) { 2337 lost = LQ_ITEM(ifp->if_link_queue, 0); 2338 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2339 } 2340 printf("%s: lost link state change %s\n", 2341 ifp->if_xname, 2342 lost == LINK_STATE_UP ? "UP" : 2343 lost == LINK_STATE_DOWN ? "DOWN" : 2344 "UNKNOWN"); 2345 } else 2346 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2347 2348 if (ifp->if_link_scheduled) 2349 goto out; 2350 2351 ifp->if_link_scheduled = true; 2352 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL); 2353 2354 out: 2355 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2356 } 2357 2358 /* 2359 * Handle interface link state change notifications. 2360 */ 2361 static void 2362 if_link_state_change_process(struct ifnet *ifp, int link_state) 2363 { 2364 struct domain *dp; 2365 int s = splnet(); 2366 bool notify; 2367 2368 KASSERT(!cpu_intr_p()); 2369 2370 IF_LINK_STATE_CHANGE_LOCK(ifp); 2371 2372 /* Ensure the change is still valid. */ 2373 if (ifp->if_link_state == link_state) { 2374 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2375 splx(s); 2376 return; 2377 } 2378 2379 #ifdef DEBUG 2380 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2381 link_state == LINK_STATE_UP ? "UP" : 2382 link_state == LINK_STATE_DOWN ? "DOWN" : 2383 "UNKNOWN", 2384 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2385 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2386 "UNKNOWN"); 2387 #endif 2388 2389 /* 2390 * When going from UNKNOWN to UP, we need to mark existing 2391 * addresses as tentative and restart DAD as we may have 2392 * erroneously not found a duplicate. 2393 * 2394 * This needs to happen before rt_ifmsg to avoid a race where 2395 * listeners would have an address and expect it to work right 2396 * away. 2397 */ 2398 notify = (link_state == LINK_STATE_UP && 2399 ifp->if_link_state == LINK_STATE_UNKNOWN); 2400 ifp->if_link_state = link_state; 2401 /* The following routines may sleep so release the spin mutex */ 2402 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2403 2404 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2405 if (notify) { 2406 DOMAIN_FOREACH(dp) { 2407 if (dp->dom_if_link_state_change != NULL) 2408 dp->dom_if_link_state_change(ifp, 2409 LINK_STATE_DOWN); 2410 } 2411 } 2412 2413 /* Notify that the link state has changed. */ 2414 rt_ifmsg(ifp); 2415 2416 #if NCARP > 0 2417 if (ifp->if_carp) 2418 carp_carpdev_state(ifp); 2419 #endif 2420 2421 if (ifp->if_link_state_changed != NULL) 2422 ifp->if_link_state_changed(ifp, link_state); 2423 2424 #if NBRIDGE > 0 2425 if (ifp->if_bridge != NULL) 2426 bridge_calc_link_state(ifp->if_bridge); 2427 #endif 2428 2429 #if NLAGG > 0 2430 if (ifp->if_lagg != NULL) 2431 lagg_linkstate_changed(ifp); 2432 #endif 2433 2434 DOMAIN_FOREACH(dp) { 2435 if (dp->dom_if_link_state_change != NULL) 2436 dp->dom_if_link_state_change(ifp, link_state); 2437 } 2438 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2439 splx(s); 2440 } 2441 2442 /* 2443 * Process the interface link state change queue. 2444 */ 2445 static void 2446 if_link_state_change_work(struct work *work, void *arg) 2447 { 2448 struct ifnet *ifp = container_of(work, struct ifnet, if_link_work); 2449 int s; 2450 uint8_t state; 2451 2452 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2453 s = splnet(); 2454 2455 /* Pop a link state change from the queue and process it. 2456 * If there is nothing to process then if_detach() has been called. 2457 * We keep if_link_scheduled = true so the queue can safely drain 2458 * without more work being queued. */ 2459 IF_LINK_STATE_CHANGE_LOCK(ifp); 2460 LQ_POP(ifp->if_link_queue, state); 2461 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2462 if (state == LINK_STATE_UNSET) 2463 goto out; 2464 2465 if_link_state_change_process(ifp, state); 2466 2467 /* If there is a link state change to come, schedule it. */ 2468 IF_LINK_STATE_CHANGE_LOCK(ifp); 2469 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) { 2470 ifp->if_link_scheduled = true; 2471 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL); 2472 } else 2473 ifp->if_link_scheduled = false; 2474 IF_LINK_STATE_CHANGE_UNLOCK(ifp); 2475 2476 out: 2477 splx(s); 2478 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2479 } 2480 2481 /* 2482 * Used to mark addresses on an interface as DETATCHED or TENTATIVE 2483 * and thus start Duplicate Address Detection without changing the 2484 * real link state. 2485 */ 2486 void 2487 if_domain_link_state_change(struct ifnet *ifp, int link_state) 2488 { 2489 struct domain *dp; 2490 int s = splnet(); 2491 2492 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2493 2494 DOMAIN_FOREACH(dp) { 2495 if (dp->dom_if_link_state_change != NULL) 2496 dp->dom_if_link_state_change(ifp, link_state); 2497 } 2498 2499 splx(s); 2500 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2501 } 2502 2503 /* 2504 * Default action when installing a local route on a point-to-point 2505 * interface. 2506 */ 2507 void 2508 p2p_rtrequest(int req, struct rtentry *rt, 2509 __unused const struct rt_addrinfo *info) 2510 { 2511 struct ifnet *ifp = rt->rt_ifp; 2512 struct ifaddr *ifa, *lo0ifa; 2513 int s = pserialize_read_enter(); 2514 2515 switch (req) { 2516 case RTM_ADD: 2517 if ((rt->rt_flags & RTF_LOCAL) == 0) 2518 break; 2519 2520 rt->rt_ifp = lo0ifp; 2521 2522 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA)) 2523 break; 2524 2525 IFADDR_READER_FOREACH(ifa, ifp) { 2526 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2527 break; 2528 } 2529 if (ifa == NULL) 2530 break; 2531 2532 /* 2533 * Ensure lo0 has an address of the same family. 2534 */ 2535 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2536 if (lo0ifa->ifa_addr->sa_family == 2537 ifa->ifa_addr->sa_family) 2538 break; 2539 } 2540 if (lo0ifa == NULL) 2541 break; 2542 2543 /* 2544 * Make sure to set rt->rt_ifa to the interface 2545 * address we are using, otherwise we will have trouble 2546 * with source address selection. 2547 */ 2548 if (ifa != rt->rt_ifa) 2549 rt_replace_ifa(rt, ifa); 2550 break; 2551 case RTM_DELETE: 2552 default: 2553 break; 2554 } 2555 pserialize_read_exit(s); 2556 } 2557 2558 static void 2559 _if_down(struct ifnet *ifp) 2560 { 2561 struct ifaddr *ifa; 2562 struct domain *dp; 2563 int s, bound; 2564 struct psref psref; 2565 2566 ifp->if_flags &= ~IFF_UP; 2567 nanotime(&ifp->if_lastchange); 2568 2569 bound = curlwp_bind(); 2570 s = pserialize_read_enter(); 2571 IFADDR_READER_FOREACH(ifa, ifp) { 2572 ifa_acquire(ifa, &psref); 2573 pserialize_read_exit(s); 2574 2575 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2576 2577 s = pserialize_read_enter(); 2578 ifa_release(ifa, &psref); 2579 } 2580 pserialize_read_exit(s); 2581 curlwp_bindx(bound); 2582 2583 IFQ_PURGE(&ifp->if_snd); 2584 #if NCARP > 0 2585 if (ifp->if_carp) 2586 carp_carpdev_state(ifp); 2587 #endif 2588 rt_ifmsg(ifp); 2589 DOMAIN_FOREACH(dp) { 2590 if (dp->dom_if_down) 2591 dp->dom_if_down(ifp); 2592 } 2593 } 2594 2595 static void 2596 if_down_deactivated(struct ifnet *ifp) 2597 { 2598 2599 KASSERT(if_is_deactivated(ifp)); 2600 _if_down(ifp); 2601 } 2602 2603 void 2604 if_down_locked(struct ifnet *ifp) 2605 { 2606 2607 KASSERT(IFNET_LOCKED(ifp)); 2608 _if_down(ifp); 2609 } 2610 2611 /* 2612 * Mark an interface down and notify protocols of 2613 * the transition. 2614 * NOTE: must be called at splsoftnet or equivalent. 2615 */ 2616 void 2617 if_down(struct ifnet *ifp) 2618 { 2619 2620 IFNET_LOCK(ifp); 2621 if_down_locked(ifp); 2622 IFNET_UNLOCK(ifp); 2623 } 2624 2625 /* 2626 * Must be called with holding if_ioctl_lock. 2627 */ 2628 static void 2629 if_up_locked(struct ifnet *ifp) 2630 { 2631 #ifdef notyet 2632 struct ifaddr *ifa; 2633 #endif 2634 struct domain *dp; 2635 2636 KASSERT(IFNET_LOCKED(ifp)); 2637 2638 KASSERT(!if_is_deactivated(ifp)); 2639 ifp->if_flags |= IFF_UP; 2640 nanotime(&ifp->if_lastchange); 2641 #ifdef notyet 2642 /* this has no effect on IP, and will kill all ISO connections XXX */ 2643 IFADDR_READER_FOREACH(ifa, ifp) 2644 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2645 #endif 2646 #if NCARP > 0 2647 if (ifp->if_carp) 2648 carp_carpdev_state(ifp); 2649 #endif 2650 rt_ifmsg(ifp); 2651 DOMAIN_FOREACH(dp) { 2652 if (dp->dom_if_up) 2653 dp->dom_if_up(ifp); 2654 } 2655 } 2656 2657 /* 2658 * Handle interface slowtimo timer routine. Called 2659 * from softclock, we decrement timer (if set) and 2660 * call the appropriate interface routine on expiration. 2661 */ 2662 static void 2663 if_slowtimo(void *arg) 2664 { 2665 void (*slowtimo)(struct ifnet *); 2666 struct ifnet *ifp = arg; 2667 int s; 2668 2669 slowtimo = ifp->if_slowtimo; 2670 if (__predict_false(slowtimo == NULL)) 2671 return; 2672 2673 s = splnet(); 2674 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2675 (*slowtimo)(ifp); 2676 2677 splx(s); 2678 2679 if (__predict_true(ifp->if_slowtimo != NULL)) 2680 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ); 2681 } 2682 2683 /* 2684 * Mark an interface up and notify protocols of 2685 * the transition. 2686 * NOTE: must be called at splsoftnet or equivalent. 2687 */ 2688 void 2689 if_up(struct ifnet *ifp) 2690 { 2691 2692 IFNET_LOCK(ifp); 2693 if_up_locked(ifp); 2694 IFNET_UNLOCK(ifp); 2695 } 2696 2697 /* 2698 * Set/clear promiscuous mode on interface ifp based on the truth value 2699 * of pswitch. The calls are reference counted so that only the first 2700 * "on" request actually has an effect, as does the final "off" request. 2701 * Results are undefined if the "off" and "on" requests are not matched. 2702 */ 2703 int 2704 ifpromisc_locked(struct ifnet *ifp, int pswitch) 2705 { 2706 int pcount, ret = 0; 2707 u_short nflags; 2708 2709 KASSERT(IFNET_LOCKED(ifp)); 2710 2711 pcount = ifp->if_pcount; 2712 if (pswitch) { 2713 /* 2714 * Allow the device to be "placed" into promiscuous 2715 * mode even if it is not configured up. It will 2716 * consult IFF_PROMISC when it is brought up. 2717 */ 2718 if (ifp->if_pcount++ != 0) 2719 goto out; 2720 nflags = ifp->if_flags | IFF_PROMISC; 2721 } else { 2722 if (--ifp->if_pcount > 0) 2723 goto out; 2724 nflags = ifp->if_flags & ~IFF_PROMISC; 2725 } 2726 ret = if_flags_set(ifp, nflags); 2727 /* Restore interface state if not successful. */ 2728 if (ret != 0) { 2729 ifp->if_pcount = pcount; 2730 } 2731 out: 2732 return ret; 2733 } 2734 2735 int 2736 ifpromisc(struct ifnet *ifp, int pswitch) 2737 { 2738 int e; 2739 2740 IFNET_LOCK(ifp); 2741 e = ifpromisc_locked(ifp, pswitch); 2742 IFNET_UNLOCK(ifp); 2743 2744 return e; 2745 } 2746 2747 /* 2748 * Map interface name to 2749 * interface structure pointer. 2750 */ 2751 struct ifnet * 2752 ifunit(const char *name) 2753 { 2754 struct ifnet *ifp; 2755 const char *cp = name; 2756 u_int unit = 0; 2757 u_int i; 2758 int s; 2759 2760 /* 2761 * If the entire name is a number, treat it as an ifindex. 2762 */ 2763 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2764 unit = unit * 10 + (*cp - '0'); 2765 } 2766 2767 /* 2768 * If the number took all of the name, then it's a valid ifindex. 2769 */ 2770 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2771 return if_byindex(unit); 2772 2773 ifp = NULL; 2774 s = pserialize_read_enter(); 2775 IFNET_READER_FOREACH(ifp) { 2776 if (if_is_deactivated(ifp)) 2777 continue; 2778 if (strcmp(ifp->if_xname, name) == 0) 2779 goto out; 2780 } 2781 out: 2782 pserialize_read_exit(s); 2783 return ifp; 2784 } 2785 2786 /* 2787 * Get a reference of an ifnet object by an interface name. 2788 * The returned reference is protected by psref(9). The caller 2789 * must release a returned reference by if_put after use. 2790 */ 2791 struct ifnet * 2792 if_get(const char *name, struct psref *psref) 2793 { 2794 struct ifnet *ifp; 2795 const char *cp = name; 2796 u_int unit = 0; 2797 u_int i; 2798 int s; 2799 2800 /* 2801 * If the entire name is a number, treat it as an ifindex. 2802 */ 2803 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2804 unit = unit * 10 + (*cp - '0'); 2805 } 2806 2807 /* 2808 * If the number took all of the name, then it's a valid ifindex. 2809 */ 2810 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) 2811 return if_get_byindex(unit, psref); 2812 2813 ifp = NULL; 2814 s = pserialize_read_enter(); 2815 IFNET_READER_FOREACH(ifp) { 2816 if (if_is_deactivated(ifp)) 2817 continue; 2818 if (strcmp(ifp->if_xname, name) == 0) { 2819 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 2820 psref_acquire(psref, &ifp->if_psref, 2821 ifnet_psref_class); 2822 goto out; 2823 } 2824 } 2825 out: 2826 pserialize_read_exit(s); 2827 return ifp; 2828 } 2829 2830 /* 2831 * Release a reference of an ifnet object given by if_get, if_get_byindex 2832 * or if_get_bylla. 2833 */ 2834 void 2835 if_put(const struct ifnet *ifp, struct psref *psref) 2836 { 2837 2838 if (ifp == NULL) 2839 return; 2840 2841 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2842 } 2843 2844 /* 2845 * Return ifp having idx. Return NULL if not found. Normally if_byindex 2846 * should be used. 2847 */ 2848 ifnet_t * 2849 _if_byindex(u_int idx) 2850 { 2851 2852 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2853 } 2854 2855 /* 2856 * Return ifp having idx. Return NULL if not found or the found ifp is 2857 * already deactivated. 2858 */ 2859 ifnet_t * 2860 if_byindex(u_int idx) 2861 { 2862 ifnet_t *ifp; 2863 2864 ifp = _if_byindex(idx); 2865 if (ifp != NULL && if_is_deactivated(ifp)) 2866 ifp = NULL; 2867 return ifp; 2868 } 2869 2870 /* 2871 * Get a reference of an ifnet object by an interface index. 2872 * The returned reference is protected by psref(9). The caller 2873 * must release a returned reference by if_put after use. 2874 */ 2875 ifnet_t * 2876 if_get_byindex(u_int idx, struct psref *psref) 2877 { 2878 ifnet_t *ifp; 2879 int s; 2880 2881 s = pserialize_read_enter(); 2882 ifp = if_byindex(idx); 2883 if (__predict_true(ifp != NULL)) { 2884 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref); 2885 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2886 } 2887 pserialize_read_exit(s); 2888 2889 return ifp; 2890 } 2891 2892 ifnet_t * 2893 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref) 2894 { 2895 ifnet_t *ifp; 2896 int s; 2897 2898 s = pserialize_read_enter(); 2899 IFNET_READER_FOREACH(ifp) { 2900 if (if_is_deactivated(ifp)) 2901 continue; 2902 if (ifp->if_addrlen != lla_len) 2903 continue; 2904 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) { 2905 psref_acquire(psref, &ifp->if_psref, 2906 ifnet_psref_class); 2907 break; 2908 } 2909 } 2910 pserialize_read_exit(s); 2911 2912 return ifp; 2913 } 2914 2915 /* 2916 * Note that it's safe only if the passed ifp is guaranteed to not be freed, 2917 * for example using pserialize or the ifp is already held or some other 2918 * object is held which guarantes the ifp to not be freed indirectly. 2919 */ 2920 void 2921 if_acquire(struct ifnet *ifp, struct psref *psref) 2922 { 2923 2924 KASSERT(ifp->if_index != 0); 2925 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2926 } 2927 2928 bool 2929 if_held(struct ifnet *ifp) 2930 { 2931 2932 return psref_held(&ifp->if_psref, ifnet_psref_class); 2933 } 2934 2935 /* 2936 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4. 2937 * Check the tunnel nesting count. 2938 * Return > 0, if tunnel nesting count is more than limit. 2939 * Return 0, if tunnel nesting count is equal or less than limit. 2940 */ 2941 int 2942 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit) 2943 { 2944 struct m_tag *mtag; 2945 int *count; 2946 2947 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO); 2948 if (mtag != NULL) { 2949 count = (int *)(mtag + 1); 2950 if (++(*count) > limit) { 2951 log(LOG_NOTICE, 2952 "%s: recursively called too many times(%d)\n", 2953 ifp->if_xname, *count); 2954 return EIO; 2955 } 2956 } else { 2957 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count), 2958 M_NOWAIT); 2959 if (mtag != NULL) { 2960 m_tag_prepend(m, mtag); 2961 count = (int *)(mtag + 1); 2962 *count = 0; 2963 } else { 2964 log(LOG_DEBUG, 2965 "%s: m_tag_get() failed, recursion calls are not prevented.\n", 2966 ifp->if_xname); 2967 } 2968 } 2969 2970 return 0; 2971 } 2972 2973 static void 2974 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 2975 { 2976 struct tunnel_ro *tro = p; 2977 2978 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP); 2979 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 2980 } 2981 2982 static void 2983 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 2984 { 2985 struct tunnel_ro *tro = p; 2986 2987 rtcache_free(tro->tr_ro); 2988 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro)); 2989 2990 mutex_obj_free(tro->tr_lock); 2991 } 2992 2993 percpu_t * 2994 if_tunnel_alloc_ro_percpu(void) 2995 { 2996 2997 return percpu_create(sizeof(struct tunnel_ro), 2998 if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL); 2999 } 3000 3001 void 3002 if_tunnel_free_ro_percpu(percpu_t *ro_percpu) 3003 { 3004 3005 percpu_free(ro_percpu, sizeof(struct tunnel_ro)); 3006 } 3007 3008 3009 static void 3010 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused) 3011 { 3012 struct tunnel_ro *tro = p; 3013 3014 mutex_enter(tro->tr_lock); 3015 rtcache_free(tro->tr_ro); 3016 mutex_exit(tro->tr_lock); 3017 } 3018 3019 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu) 3020 { 3021 3022 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL); 3023 } 3024 3025 void 3026 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats) 3027 { 3028 3029 /* Collet the volatile stats first; this zeros *ifi. */ 3030 if_stats_to_if_data(ifp, ifi, zero_stats); 3031 3032 ifi->ifi_type = ifp->if_type; 3033 ifi->ifi_addrlen = ifp->if_addrlen; 3034 ifi->ifi_hdrlen = ifp->if_hdrlen; 3035 ifi->ifi_link_state = ifp->if_link_state; 3036 ifi->ifi_mtu = ifp->if_mtu; 3037 ifi->ifi_metric = ifp->if_metric; 3038 ifi->ifi_baudrate = ifp->if_baudrate; 3039 ifi->ifi_lastchange = ifp->if_lastchange; 3040 } 3041 3042 /* common */ 3043 int 3044 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 3045 { 3046 int s; 3047 struct ifreq *ifr; 3048 struct ifcapreq *ifcr; 3049 struct ifdatareq *ifdr; 3050 unsigned short flags; 3051 char *descr; 3052 int error; 3053 3054 switch (cmd) { 3055 case SIOCSIFCAP: 3056 ifcr = data; 3057 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 3058 return EINVAL; 3059 3060 if (ifcr->ifcr_capenable == ifp->if_capenable) 3061 return 0; 3062 3063 ifp->if_capenable = ifcr->ifcr_capenable; 3064 3065 /* Pre-compute the checksum flags mask. */ 3066 ifp->if_csum_flags_tx = 0; 3067 ifp->if_csum_flags_rx = 0; 3068 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) 3069 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 3070 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 3071 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 3072 3073 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) 3074 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 3075 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) 3076 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 3077 3078 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) 3079 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 3080 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) 3081 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 3082 3083 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) 3084 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 3085 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) 3086 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 3087 3088 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) 3089 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 3090 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) 3091 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 3092 3093 if (ifp->if_capenable & IFCAP_TSOv4) 3094 ifp->if_csum_flags_tx |= M_CSUM_TSOv4; 3095 if (ifp->if_capenable & IFCAP_TSOv6) 3096 ifp->if_csum_flags_tx |= M_CSUM_TSOv6; 3097 3098 #if NBRIDGE > 0 3099 if (ifp->if_bridge != NULL) 3100 bridge_calc_csum_flags(ifp->if_bridge); 3101 #endif 3102 3103 if (ifp->if_flags & IFF_UP) 3104 return ENETRESET; 3105 return 0; 3106 case SIOCSIFFLAGS: 3107 ifr = data; 3108 /* 3109 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up 3110 * and if_down aren't MP-safe yet, so we must hold the lock. 3111 */ 3112 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3113 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 3114 s = splsoftnet(); 3115 if_down_locked(ifp); 3116 splx(s); 3117 } 3118 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 3119 s = splsoftnet(); 3120 if_up_locked(ifp); 3121 splx(s); 3122 } 3123 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3124 flags = (ifp->if_flags & IFF_CANTCHANGE) | 3125 (ifr->ifr_flags &~ IFF_CANTCHANGE); 3126 if (ifp->if_flags != flags) { 3127 ifp->if_flags = flags; 3128 /* Notify that the flags have changed. */ 3129 rt_ifmsg(ifp); 3130 } 3131 break; 3132 case SIOCGIFFLAGS: 3133 ifr = data; 3134 ifr->ifr_flags = ifp->if_flags; 3135 break; 3136 3137 case SIOCGIFMETRIC: 3138 ifr = data; 3139 ifr->ifr_metric = ifp->if_metric; 3140 break; 3141 3142 case SIOCGIFMTU: 3143 ifr = data; 3144 ifr->ifr_mtu = ifp->if_mtu; 3145 break; 3146 3147 case SIOCGIFDLT: 3148 ifr = data; 3149 ifr->ifr_dlt = ifp->if_dlt; 3150 break; 3151 3152 case SIOCGIFCAP: 3153 ifcr = data; 3154 ifcr->ifcr_capabilities = ifp->if_capabilities; 3155 ifcr->ifcr_capenable = ifp->if_capenable; 3156 break; 3157 3158 case SIOCSIFMETRIC: 3159 ifr = data; 3160 ifp->if_metric = ifr->ifr_metric; 3161 break; 3162 3163 case SIOCGIFDATA: 3164 ifdr = data; 3165 if_export_if_data(ifp, &ifdr->ifdr_data, false); 3166 break; 3167 3168 case SIOCGIFINDEX: 3169 ifr = data; 3170 ifr->ifr_index = ifp->if_index; 3171 break; 3172 3173 case SIOCZIFDATA: 3174 ifdr = data; 3175 if_export_if_data(ifp, &ifdr->ifdr_data, true); 3176 getnanotime(&ifp->if_lastchange); 3177 break; 3178 case SIOCSIFMTU: 3179 ifr = data; 3180 if (ifp->if_mtu == ifr->ifr_mtu) 3181 break; 3182 ifp->if_mtu = ifr->ifr_mtu; 3183 return ENETRESET; 3184 case SIOCSIFDESCR: 3185 error = kauth_authorize_network(curlwp->l_cred, 3186 KAUTH_NETWORK_INTERFACE, 3187 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3188 NULL); 3189 if (error) 3190 return error; 3191 3192 ifr = data; 3193 3194 if (ifr->ifr_buflen > IFDESCRSIZE) 3195 return ENAMETOOLONG; 3196 3197 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) { 3198 /* unset description */ 3199 descr = NULL; 3200 } else { 3201 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP); 3202 /* 3203 * copy (IFDESCRSIZE - 1) bytes to ensure 3204 * terminating nul 3205 */ 3206 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1); 3207 if (error) { 3208 kmem_free(descr, IFDESCRSIZE); 3209 return error; 3210 } 3211 } 3212 3213 if (ifp->if_description != NULL) 3214 kmem_free(ifp->if_description, IFDESCRSIZE); 3215 3216 ifp->if_description = descr; 3217 break; 3218 3219 case SIOCGIFDESCR: 3220 ifr = data; 3221 descr = ifp->if_description; 3222 3223 if (descr == NULL) 3224 return ENOMSG; 3225 3226 if (ifr->ifr_buflen < IFDESCRSIZE) 3227 return EINVAL; 3228 3229 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE); 3230 if (error) 3231 return error; 3232 break; 3233 3234 default: 3235 return ENOTTY; 3236 } 3237 return 0; 3238 } 3239 3240 int 3241 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 3242 { 3243 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 3244 struct ifaddr *ifa; 3245 const struct sockaddr *any, *sa; 3246 union { 3247 struct sockaddr sa; 3248 struct sockaddr_storage ss; 3249 } u, v; 3250 int s, error = 0; 3251 3252 switch (cmd) { 3253 case SIOCSIFADDRPREF: 3254 error = kauth_authorize_network(curlwp->l_cred, 3255 KAUTH_NETWORK_INTERFACE, 3256 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 3257 NULL); 3258 if (error) 3259 return error; 3260 break; 3261 case SIOCGIFADDRPREF: 3262 break; 3263 default: 3264 return EOPNOTSUPP; 3265 } 3266 3267 /* sanity checks */ 3268 if (data == NULL || ifp == NULL) { 3269 panic("invalid argument to %s", __func__); 3270 /*NOTREACHED*/ 3271 } 3272 3273 /* address must be specified on ADD and DELETE */ 3274 sa = sstocsa(&ifap->ifap_addr); 3275 if (sa->sa_family != sofamily(so)) 3276 return EINVAL; 3277 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 3278 return EINVAL; 3279 3280 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 3281 3282 s = pserialize_read_enter(); 3283 IFADDR_READER_FOREACH(ifa, ifp) { 3284 if (ifa->ifa_addr->sa_family != sa->sa_family) 3285 continue; 3286 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 3287 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 3288 break; 3289 } 3290 if (ifa == NULL) { 3291 error = EADDRNOTAVAIL; 3292 goto out; 3293 } 3294 3295 switch (cmd) { 3296 case SIOCSIFADDRPREF: 3297 ifa->ifa_preference = ifap->ifap_preference; 3298 goto out; 3299 case SIOCGIFADDRPREF: 3300 /* fill in the if_laddrreq structure */ 3301 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 3302 sizeof(ifap->ifap_addr), ifa->ifa_addr); 3303 ifap->ifap_preference = ifa->ifa_preference; 3304 goto out; 3305 default: 3306 error = EOPNOTSUPP; 3307 } 3308 out: 3309 pserialize_read_exit(s); 3310 return error; 3311 } 3312 3313 /* 3314 * Interface ioctls. 3315 */ 3316 static int 3317 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 3318 { 3319 struct ifnet *ifp; 3320 struct ifreq *ifr; 3321 int error = 0; 3322 u_long ocmd = cmd; 3323 u_short oif_flags; 3324 struct ifreq ifrb; 3325 struct oifreq *oifr = NULL; 3326 int r; 3327 struct psref psref; 3328 int bound; 3329 bool do_if43_post = false; 3330 bool do_ifm80_post = false; 3331 3332 switch (cmd) { 3333 case SIOCGIFCONF: 3334 return ifconf(cmd, data); 3335 case SIOCINITIFADDR: 3336 return EPERM; 3337 default: 3338 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(), 3339 error); 3340 if (error != ENOSYS) 3341 return error; 3342 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data), 3343 enosys(), error); 3344 if (error != ENOSYS) 3345 return error; 3346 error = 0; 3347 break; 3348 } 3349 3350 ifr = data; 3351 /* Pre-conversion */ 3352 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error); 3353 if (cmd != ocmd) { 3354 oifr = data; 3355 data = ifr = &ifrb; 3356 IFREQO2N_43(oifr, ifr); 3357 do_if43_post = true; 3358 } 3359 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post), 3360 enosys(), error); 3361 3362 switch (cmd) { 3363 case SIOCIFCREATE: 3364 case SIOCIFDESTROY: 3365 bound = curlwp_bind(); 3366 if (l != NULL) { 3367 ifp = if_get(ifr->ifr_name, &psref); 3368 error = kauth_authorize_network(l->l_cred, 3369 KAUTH_NETWORK_INTERFACE, 3370 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3371 KAUTH_ARG(cmd), NULL); 3372 if (ifp != NULL) 3373 if_put(ifp, &psref); 3374 if (error != 0) { 3375 curlwp_bindx(bound); 3376 return error; 3377 } 3378 } 3379 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 3380 mutex_enter(&if_clone_mtx); 3381 r = (cmd == SIOCIFCREATE) ? 3382 if_clone_create(ifr->ifr_name) : 3383 if_clone_destroy(ifr->ifr_name); 3384 mutex_exit(&if_clone_mtx); 3385 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 3386 curlwp_bindx(bound); 3387 return r; 3388 3389 case SIOCIFGCLONERS: 3390 { 3391 struct if_clonereq *req = (struct if_clonereq *)data; 3392 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 3393 &req->ifcr_total); 3394 } 3395 } 3396 3397 bound = curlwp_bind(); 3398 ifp = if_get(ifr->ifr_name, &psref); 3399 if (ifp == NULL) { 3400 curlwp_bindx(bound); 3401 return ENXIO; 3402 } 3403 3404 switch (cmd) { 3405 case SIOCALIFADDR: 3406 case SIOCDLIFADDR: 3407 case SIOCSIFADDRPREF: 3408 case SIOCSIFFLAGS: 3409 case SIOCSIFCAP: 3410 case SIOCSIFMETRIC: 3411 case SIOCZIFDATA: 3412 case SIOCSIFMTU: 3413 case SIOCSIFPHYADDR: 3414 case SIOCDIFPHYADDR: 3415 #ifdef INET6 3416 case SIOCSIFPHYADDR_IN6: 3417 #endif 3418 case SIOCSLIFPHYADDR: 3419 case SIOCADDMULTI: 3420 case SIOCDELMULTI: 3421 case SIOCSETHERCAP: 3422 case SIOCSIFMEDIA: 3423 case SIOCSDRVSPEC: 3424 case SIOCG80211: 3425 case SIOCS80211: 3426 case SIOCS80211NWID: 3427 case SIOCS80211NWKEY: 3428 case SIOCS80211POWER: 3429 case SIOCS80211BSSID: 3430 case SIOCS80211CHANNEL: 3431 case SIOCSLINKSTR: 3432 if (l != NULL) { 3433 error = kauth_authorize_network(l->l_cred, 3434 KAUTH_NETWORK_INTERFACE, 3435 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3436 KAUTH_ARG(cmd), NULL); 3437 if (error != 0) 3438 goto out; 3439 } 3440 } 3441 3442 oif_flags = ifp->if_flags; 3443 3444 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); 3445 IFNET_LOCK(ifp); 3446 3447 error = (*ifp->if_ioctl)(ifp, cmd, data); 3448 if (error != ENOTTY) 3449 ; 3450 else if (so->so_proto == NULL) 3451 error = EOPNOTSUPP; 3452 else { 3453 KERNEL_LOCK_IF_IFP_MPSAFE(ifp); 3454 MODULE_HOOK_CALL(if_ifioctl_43_hook, 3455 (so, ocmd, cmd, data, l), enosys(), error); 3456 if (error == ENOSYS) 3457 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 3458 cmd, data, ifp); 3459 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp); 3460 } 3461 3462 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 3463 if ((ifp->if_flags & IFF_UP) != 0) { 3464 int s = splsoftnet(); 3465 if_up_locked(ifp); 3466 splx(s); 3467 } 3468 } 3469 3470 /* Post-conversion */ 3471 if (do_ifm80_post && (error == 0)) 3472 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd), 3473 enosys(), error); 3474 if (do_if43_post) 3475 IFREQN2O_43(oifr, ifr); 3476 3477 IFNET_UNLOCK(ifp); 3478 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); 3479 out: 3480 if_put(ifp, &psref); 3481 curlwp_bindx(bound); 3482 return error; 3483 } 3484 3485 /* 3486 * Return interface configuration 3487 * of system. List may be used 3488 * in later ioctl's (above) to get 3489 * other information. 3490 * 3491 * Each record is a struct ifreq. Before the addition of 3492 * sockaddr_storage, the API rule was that sockaddr flavors that did 3493 * not fit would extend beyond the struct ifreq, with the next struct 3494 * ifreq starting sa_len beyond the struct sockaddr. Because the 3495 * union in struct ifreq includes struct sockaddr_storage, every kind 3496 * of sockaddr must fit. Thus, there are no longer any overlength 3497 * records. 3498 * 3499 * Records are added to the user buffer if they fit, and ifc_len is 3500 * adjusted to the length that was written. Thus, the user is only 3501 * assured of getting the complete list if ifc_len on return is at 3502 * least sizeof(struct ifreq) less than it was on entry. 3503 * 3504 * If the user buffer pointer is NULL, this routine copies no data and 3505 * returns the amount of space that would be needed. 3506 * 3507 * Invariants: 3508 * ifrp points to the next part of the user's buffer to be used. If 3509 * ifrp != NULL, space holds the number of bytes remaining that we may 3510 * write at ifrp. Otherwise, space holds the number of bytes that 3511 * would have been written had there been adequate space. 3512 */ 3513 /*ARGSUSED*/ 3514 static int 3515 ifconf(u_long cmd, void *data) 3516 { 3517 struct ifconf *ifc = (struct ifconf *)data; 3518 struct ifnet *ifp; 3519 struct ifaddr *ifa; 3520 struct ifreq ifr, *ifrp = NULL; 3521 int space = 0, error = 0; 3522 const int sz = (int)sizeof(struct ifreq); 3523 const bool docopy = ifc->ifc_req != NULL; 3524 int s; 3525 int bound; 3526 struct psref psref; 3527 3528 if (docopy) { 3529 if (ifc->ifc_len < 0) 3530 return EINVAL; 3531 3532 space = ifc->ifc_len; 3533 ifrp = ifc->ifc_req; 3534 } 3535 memset(&ifr, 0, sizeof(ifr)); 3536 3537 bound = curlwp_bind(); 3538 s = pserialize_read_enter(); 3539 IFNET_READER_FOREACH(ifp) { 3540 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3541 pserialize_read_exit(s); 3542 3543 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3544 sizeof(ifr.ifr_name)); 3545 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3546 error = ENAMETOOLONG; 3547 goto release_exit; 3548 } 3549 if (IFADDR_READER_EMPTY(ifp)) { 3550 /* Interface with no addresses - send zero sockaddr. */ 3551 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3552 if (!docopy) { 3553 space += sz; 3554 goto next; 3555 } 3556 if (space >= sz) { 3557 error = copyout(&ifr, ifrp, sz); 3558 if (error != 0) 3559 goto release_exit; 3560 ifrp++; 3561 space -= sz; 3562 } 3563 } 3564 3565 s = pserialize_read_enter(); 3566 IFADDR_READER_FOREACH(ifa, ifp) { 3567 struct sockaddr *sa = ifa->ifa_addr; 3568 /* all sockaddrs must fit in sockaddr_storage */ 3569 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3570 3571 if (!docopy) { 3572 space += sz; 3573 continue; 3574 } 3575 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3576 pserialize_read_exit(s); 3577 3578 if (space >= sz) { 3579 error = copyout(&ifr, ifrp, sz); 3580 if (error != 0) 3581 goto release_exit; 3582 ifrp++; space -= sz; 3583 } 3584 s = pserialize_read_enter(); 3585 } 3586 pserialize_read_exit(s); 3587 3588 next: 3589 s = pserialize_read_enter(); 3590 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3591 } 3592 pserialize_read_exit(s); 3593 curlwp_bindx(bound); 3594 3595 if (docopy) { 3596 KASSERT(0 <= space && space <= ifc->ifc_len); 3597 ifc->ifc_len -= space; 3598 } else { 3599 KASSERT(space >= 0); 3600 ifc->ifc_len = space; 3601 } 3602 return (0); 3603 3604 release_exit: 3605 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3606 curlwp_bindx(bound); 3607 return error; 3608 } 3609 3610 int 3611 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3612 { 3613 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space); 3614 struct ifreq ifrb; 3615 struct oifreq *oifr = NULL; 3616 u_long ocmd = cmd; 3617 int hook; 3618 3619 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook); 3620 if (hook != ENOSYS) { 3621 if (cmd != ocmd) { 3622 oifr = (struct oifreq *)(void *)ifr; 3623 ifr = &ifrb; 3624 IFREQO2N_43(oifr, ifr); 3625 len = sizeof(oifr->ifr_addr); 3626 } 3627 } 3628 3629 if (len < sa->sa_len) 3630 return EFBIG; 3631 3632 memset(&ifr->ifr_addr, 0, len); 3633 sockaddr_copy(&ifr->ifr_addr, len, sa); 3634 3635 if (cmd != ocmd) 3636 IFREQN2O_43(oifr, ifr); 3637 return 0; 3638 } 3639 3640 /* 3641 * wrapper function for the drivers which doesn't have if_transmit(). 3642 */ 3643 static int 3644 if_transmit(struct ifnet *ifp, struct mbuf *m) 3645 { 3646 int s, error; 3647 size_t pktlen = m->m_pkthdr.len; 3648 bool mcast = (m->m_flags & M_MCAST) != 0; 3649 3650 s = splnet(); 3651 3652 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3653 if (error != 0) { 3654 /* mbuf is already freed */ 3655 goto out; 3656 } 3657 3658 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 3659 if_statadd_ref(nsr, if_obytes, pktlen); 3660 if (mcast) 3661 if_statinc_ref(nsr, if_omcasts); 3662 IF_STAT_PUTREF(ifp); 3663 3664 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3665 if_start_lock(ifp); 3666 out: 3667 splx(s); 3668 3669 return error; 3670 } 3671 3672 int 3673 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3674 { 3675 int error; 3676 3677 kmsan_check_mbuf(m); 3678 3679 #ifdef ALTQ 3680 KERNEL_LOCK(1, NULL); 3681 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3682 error = if_transmit(ifp, m); 3683 KERNEL_UNLOCK_ONE(NULL); 3684 } else { 3685 KERNEL_UNLOCK_ONE(NULL); 3686 error = (*ifp->if_transmit)(ifp, m); 3687 /* mbuf is alredy freed */ 3688 } 3689 #else /* !ALTQ */ 3690 error = (*ifp->if_transmit)(ifp, m); 3691 /* mbuf is alredy freed */ 3692 #endif /* !ALTQ */ 3693 3694 return error; 3695 } 3696 3697 /* 3698 * Queue message on interface, and start output if interface 3699 * not yet active. 3700 */ 3701 int 3702 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3703 { 3704 3705 return if_transmit_lock(ifp, m); 3706 } 3707 3708 /* 3709 * Queue message on interface, possibly using a second fast queue 3710 */ 3711 int 3712 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3713 { 3714 int error = 0; 3715 3716 if (ifq != NULL 3717 #ifdef ALTQ 3718 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3719 #endif 3720 ) { 3721 if (IF_QFULL(ifq)) { 3722 IF_DROP(&ifp->if_snd); 3723 m_freem(m); 3724 if (error == 0) 3725 error = ENOBUFS; 3726 } else 3727 IF_ENQUEUE(ifq, m); 3728 } else 3729 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3730 if (error != 0) { 3731 if_statinc(ifp, if_oerrors); 3732 return error; 3733 } 3734 return 0; 3735 } 3736 3737 int 3738 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3739 { 3740 int rc; 3741 3742 KASSERT(IFNET_LOCKED(ifp)); 3743 if (ifp->if_initaddr != NULL) 3744 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3745 else if (src || 3746 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3747 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); 3748 3749 return rc; 3750 } 3751 3752 int 3753 if_do_dad(struct ifnet *ifp) 3754 { 3755 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3756 return 0; 3757 3758 switch (ifp->if_type) { 3759 case IFT_FAITH: 3760 /* 3761 * These interfaces do not have the IFF_LOOPBACK flag, 3762 * but loop packets back. We do not have to do DAD on such 3763 * interfaces. We should even omit it, because loop-backed 3764 * responses would confuse the DAD procedure. 3765 */ 3766 return 0; 3767 default: 3768 /* 3769 * Our DAD routine requires the interface up and running. 3770 * However, some interfaces can be up before the RUNNING 3771 * status. Additionaly, users may try to assign addresses 3772 * before the interface becomes up (or running). 3773 * We simply skip DAD in such a case as a work around. 3774 * XXX: we should rather mark "tentative" on such addresses, 3775 * and do DAD after the interface becomes ready. 3776 */ 3777 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != 3778 (IFF_UP | IFF_RUNNING)) 3779 return 0; 3780 3781 return 1; 3782 } 3783 } 3784 3785 int 3786 if_flags_set(ifnet_t *ifp, const u_short flags) 3787 { 3788 int rc; 3789 3790 KASSERT(IFNET_LOCKED(ifp)); 3791 3792 if (ifp->if_setflags != NULL) 3793 rc = (*ifp->if_setflags)(ifp, flags); 3794 else { 3795 u_short cantflags, chgdflags; 3796 struct ifreq ifr; 3797 3798 chgdflags = ifp->if_flags ^ flags; 3799 cantflags = chgdflags & IFF_CANTCHANGE; 3800 3801 if (cantflags != 0) 3802 ifp->if_flags ^= cantflags; 3803 3804 /* Traditionally, we do not call if_ioctl after 3805 * setting/clearing only IFF_PROMISC if the interface 3806 * isn't IFF_UP. Uphold that tradition. 3807 */ 3808 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3809 return 0; 3810 3811 memset(&ifr, 0, sizeof(ifr)); 3812 3813 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3814 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); 3815 3816 if (rc != 0 && cantflags != 0) 3817 ifp->if_flags ^= cantflags; 3818 } 3819 3820 return rc; 3821 } 3822 3823 int 3824 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3825 { 3826 int rc; 3827 struct ifreq ifr; 3828 3829 /* 3830 * XXX NOMPSAFE - this calls if_ioctl without holding IFNET_LOCK() 3831 * in some cases - e.g. when called from vlan/netinet/netinet6 code 3832 * directly rather than via doifoictl() 3833 */ 3834 ifreq_setaddr(cmd, &ifr, sa); 3835 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); 3836 3837 return rc; 3838 } 3839 3840 static void 3841 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3842 struct ifaltq *ifq) 3843 { 3844 const struct sysctlnode *cnode, *rnode; 3845 3846 if (sysctl_createv(clog, 0, NULL, &rnode, 3847 CTLFLAG_PERMANENT, 3848 CTLTYPE_NODE, "interfaces", 3849 SYSCTL_DESCR("Per-interface controls"), 3850 NULL, 0, NULL, 0, 3851 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 3852 goto bad; 3853 3854 if (sysctl_createv(clog, 0, &rnode, &rnode, 3855 CTLFLAG_PERMANENT, 3856 CTLTYPE_NODE, ifname, 3857 SYSCTL_DESCR("Interface controls"), 3858 NULL, 0, NULL, 0, 3859 CTL_CREATE, CTL_EOL) != 0) 3860 goto bad; 3861 3862 if (sysctl_createv(clog, 0, &rnode, &rnode, 3863 CTLFLAG_PERMANENT, 3864 CTLTYPE_NODE, "sndq", 3865 SYSCTL_DESCR("Interface output queue controls"), 3866 NULL, 0, NULL, 0, 3867 CTL_CREATE, CTL_EOL) != 0) 3868 goto bad; 3869 3870 if (sysctl_createv(clog, 0, &rnode, &cnode, 3871 CTLFLAG_PERMANENT, 3872 CTLTYPE_INT, "len", 3873 SYSCTL_DESCR("Current output queue length"), 3874 NULL, 0, &ifq->ifq_len, 0, 3875 CTL_CREATE, CTL_EOL) != 0) 3876 goto bad; 3877 3878 if (sysctl_createv(clog, 0, &rnode, &cnode, 3879 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 3880 CTLTYPE_INT, "maxlen", 3881 SYSCTL_DESCR("Maximum allowed output queue length"), 3882 NULL, 0, &ifq->ifq_maxlen, 0, 3883 CTL_CREATE, CTL_EOL) != 0) 3884 goto bad; 3885 3886 if (sysctl_createv(clog, 0, &rnode, &cnode, 3887 CTLFLAG_PERMANENT, 3888 CTLTYPE_INT, "drops", 3889 SYSCTL_DESCR("Packets dropped due to full output queue"), 3890 NULL, 0, &ifq->ifq_drops, 0, 3891 CTL_CREATE, CTL_EOL) != 0) 3892 goto bad; 3893 3894 return; 3895 bad: 3896 printf("%s: could not attach sysctl nodes\n", ifname); 3897 return; 3898 } 3899 3900 #if defined(INET) || defined(INET6) 3901 3902 #define SYSCTL_NET_PKTQ(q, cn, c) \ 3903 static int \ 3904 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \ 3905 { \ 3906 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \ 3907 } 3908 3909 #if defined(INET) 3910 static int 3911 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS) 3912 { 3913 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq); 3914 } 3915 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS) 3916 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS) 3917 #endif 3918 3919 #if defined(INET6) 3920 static int 3921 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS) 3922 { 3923 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq); 3924 } 3925 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS) 3926 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS) 3927 #endif 3928 3929 static void 3930 sysctl_net_pktq_setup(struct sysctllog **clog, int pf) 3931 { 3932 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL; 3933 const char *pfname = NULL, *ipname = NULL; 3934 int ipn = 0, qid = 0; 3935 3936 switch (pf) { 3937 #if defined(INET) 3938 case PF_INET: 3939 len_func = sysctl_net_ip_pktq_items; 3940 maxlen_func = sysctl_net_ip_pktq_maxlen; 3941 drops_func = sysctl_net_ip_pktq_drops; 3942 pfname = "inet", ipn = IPPROTO_IP; 3943 ipname = "ip", qid = IPCTL_IFQ; 3944 break; 3945 #endif 3946 #if defined(INET6) 3947 case PF_INET6: 3948 len_func = sysctl_net_ip6_pktq_items; 3949 maxlen_func = sysctl_net_ip6_pktq_maxlen; 3950 drops_func = sysctl_net_ip6_pktq_drops; 3951 pfname = "inet6", ipn = IPPROTO_IPV6; 3952 ipname = "ip6", qid = IPV6CTL_IFQ; 3953 break; 3954 #endif 3955 default: 3956 KASSERT(false); 3957 } 3958 3959 sysctl_createv(clog, 0, NULL, NULL, 3960 CTLFLAG_PERMANENT, 3961 CTLTYPE_NODE, pfname, NULL, 3962 NULL, 0, NULL, 0, 3963 CTL_NET, pf, CTL_EOL); 3964 sysctl_createv(clog, 0, NULL, NULL, 3965 CTLFLAG_PERMANENT, 3966 CTLTYPE_NODE, ipname, NULL, 3967 NULL, 0, NULL, 0, 3968 CTL_NET, pf, ipn, CTL_EOL); 3969 sysctl_createv(clog, 0, NULL, NULL, 3970 CTLFLAG_PERMANENT, 3971 CTLTYPE_NODE, "ifq", 3972 SYSCTL_DESCR("Protocol input queue controls"), 3973 NULL, 0, NULL, 0, 3974 CTL_NET, pf, ipn, qid, CTL_EOL); 3975 3976 sysctl_createv(clog, 0, NULL, NULL, 3977 CTLFLAG_PERMANENT, 3978 CTLTYPE_QUAD, "len", 3979 SYSCTL_DESCR("Current input queue length"), 3980 len_func, 0, NULL, 0, 3981 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); 3982 sysctl_createv(clog, 0, NULL, NULL, 3983 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 3984 CTLTYPE_INT, "maxlen", 3985 SYSCTL_DESCR("Maximum allowed input queue length"), 3986 maxlen_func, 0, NULL, 0, 3987 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); 3988 sysctl_createv(clog, 0, NULL, NULL, 3989 CTLFLAG_PERMANENT, 3990 CTLTYPE_QUAD, "drops", 3991 SYSCTL_DESCR("Packets dropped due to full input queue"), 3992 drops_func, 0, NULL, 0, 3993 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); 3994 } 3995 #endif /* INET || INET6 */ 3996 3997 static int 3998 if_sdl_sysctl(SYSCTLFN_ARGS) 3999 { 4000 struct ifnet *ifp; 4001 const struct sockaddr_dl *sdl; 4002 struct psref psref; 4003 int error = 0; 4004 int bound; 4005 4006 if (namelen != 1) 4007 return EINVAL; 4008 4009 bound = curlwp_bind(); 4010 ifp = if_get_byindex(name[0], &psref); 4011 if (ifp == NULL) { 4012 error = ENODEV; 4013 goto out0; 4014 } 4015 4016 sdl = ifp->if_sadl; 4017 if (sdl == NULL) { 4018 *oldlenp = 0; 4019 goto out1; 4020 } 4021 4022 if (oldp == NULL) { 4023 *oldlenp = sdl->sdl_alen; 4024 goto out1; 4025 } 4026 4027 if (*oldlenp >= sdl->sdl_alen) 4028 *oldlenp = sdl->sdl_alen; 4029 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp); 4030 out1: 4031 if_put(ifp, &psref); 4032 out0: 4033 curlwp_bindx(bound); 4034 return error; 4035 } 4036 4037 static void 4038 if_sysctl_setup(struct sysctllog **clog) 4039 { 4040 const struct sysctlnode *rnode = NULL; 4041 4042 sysctl_createv(clog, 0, NULL, &rnode, 4043 CTLFLAG_PERMANENT, 4044 CTLTYPE_NODE, "sdl", 4045 SYSCTL_DESCR("Get active link-layer address"), 4046 if_sdl_sysctl, 0, NULL, 0, 4047 CTL_NET, CTL_CREATE, CTL_EOL); 4048 4049 #if defined(INET) 4050 sysctl_net_pktq_setup(NULL, PF_INET); 4051 #endif 4052 #ifdef INET6 4053 if (in6_present) 4054 sysctl_net_pktq_setup(NULL, PF_INET6); 4055 #endif 4056 } 4057