1 /* $NetBSD: if.c,v 1.371 2017/01/10 08:45:45 ozaki-r Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.371 2017/01/10 08:45:45 ozaki-r Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 99 #include "opt_atalk.h" 100 #include "opt_natm.h" 101 #include "opt_wlan.h" 102 #include "opt_net_mpsafe.h" 103 #endif 104 105 #include <sys/param.h> 106 #include <sys/mbuf.h> 107 #include <sys/systm.h> 108 #include <sys/callout.h> 109 #include <sys/proc.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/domain.h> 113 #include <sys/protosw.h> 114 #include <sys/kernel.h> 115 #include <sys/ioctl.h> 116 #include <sys/sysctl.h> 117 #include <sys/syslog.h> 118 #include <sys/kauth.h> 119 #include <sys/kmem.h> 120 #include <sys/xcall.h> 121 #include <sys/cpu.h> 122 #include <sys/intr.h> 123 124 #include <net/if.h> 125 #include <net/if_dl.h> 126 #include <net/if_ether.h> 127 #include <net/if_media.h> 128 #include <net80211/ieee80211.h> 129 #include <net80211/ieee80211_ioctl.h> 130 #include <net/if_types.h> 131 #include <net/route.h> 132 #include <net/netisr.h> 133 #include <sys/module.h> 134 #ifdef NETATALK 135 #include <netatalk/at_extern.h> 136 #include <netatalk/at.h> 137 #endif 138 #include <net/pfil.h> 139 #include <netinet/in.h> 140 #include <netinet/in_var.h> 141 #ifndef IPSEC 142 #include <netinet/ip_encap.h> 143 #endif 144 #include <net/bpf.h> 145 146 #ifdef INET6 147 #include <netinet6/in6_var.h> 148 #include <netinet6/nd6.h> 149 #endif 150 151 #include "ether.h" 152 #include "fddi.h" 153 #include "token.h" 154 155 #include "carp.h" 156 #if NCARP > 0 157 #include <netinet/ip_carp.h> 158 #endif 159 160 #include <compat/sys/sockio.h> 161 #include <compat/sys/socket.h> 162 163 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 164 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 165 166 /* 167 * Global list of interfaces. 168 */ 169 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 170 struct ifnet_head ifnet_list; 171 172 struct pslist_head ifnet_pslist; 173 static ifnet_t ** ifindex2ifnet = NULL; 174 static u_int if_index = 1; 175 static size_t if_indexlim = 0; 176 static uint64_t index_gen; 177 /* Mutex to protect the above objects. */ 178 kmutex_t ifnet_mtx __cacheline_aligned; 179 struct psref_class *ifnet_psref_class __read_mostly; 180 static pserialize_t ifnet_psz; 181 182 static kmutex_t if_clone_mtx; 183 184 struct ifnet *lo0ifp; 185 int ifqmaxlen = IFQ_MAXLEN; 186 187 struct psref_class *ifa_psref_class __read_mostly; 188 189 static int if_delroute_matcher(struct rtentry *, void *); 190 191 static struct if_clone *if_clone_lookup(const char *, int *); 192 193 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 194 static int if_cloners_count; 195 196 /* Packet filtering hook for interfaces. */ 197 pfil_head_t * if_pfil __read_mostly; 198 199 static kauth_listener_t if_listener; 200 201 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 202 static void if_detach_queues(struct ifnet *, struct ifqueue *); 203 static void sysctl_sndq_setup(struct sysctllog **, const char *, 204 struct ifaltq *); 205 static void if_slowtimo(void *); 206 static void if_free_sadl(struct ifnet *); 207 static void if_attachdomain1(struct ifnet *); 208 static int ifconf(u_long, void *); 209 static int if_transmit(struct ifnet *, struct mbuf *); 210 static int if_clone_create(const char *); 211 static int if_clone_destroy(const char *); 212 static void if_link_state_change_si(void *); 213 214 struct if_percpuq { 215 struct ifnet *ipq_ifp; 216 void *ipq_si; 217 struct percpu *ipq_ifqs; /* struct ifqueue */ 218 }; 219 220 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 221 222 static void if_percpuq_drops(void *, void *, struct cpu_info *); 223 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 224 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 225 struct if_percpuq *); 226 227 struct if_deferred_start { 228 struct ifnet *ids_ifp; 229 void (*ids_if_start)(struct ifnet *); 230 void *ids_si; 231 }; 232 233 static void if_deferred_start_softint(void *); 234 static void if_deferred_start_common(struct ifnet *); 235 static void if_deferred_start_destroy(struct ifnet *); 236 237 #if defined(INET) || defined(INET6) 238 static void sysctl_net_pktq_setup(struct sysctllog **, int); 239 #endif 240 241 static void if_sysctl_setup(struct sysctllog **); 242 243 /* 244 * Pointer to stub or real compat_cvtcmd() depending on presence of 245 * the compat module 246 */ 247 u_long stub_compat_cvtcmd(u_long); 248 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd; 249 250 /* Similarly, pointer to compat_ifioctl() if it is present */ 251 252 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *, 253 struct lwp *) = NULL; 254 255 /* The stub version of compat_cvtcmd() */ 256 u_long stub_compat_cvtcmd(u_long cmd) 257 { 258 259 return cmd; 260 } 261 262 static int 263 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 264 void *arg0, void *arg1, void *arg2, void *arg3) 265 { 266 int result; 267 enum kauth_network_req req; 268 269 result = KAUTH_RESULT_DEFER; 270 req = (enum kauth_network_req)arg1; 271 272 if (action != KAUTH_NETWORK_INTERFACE) 273 return result; 274 275 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 276 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 277 result = KAUTH_RESULT_ALLOW; 278 279 return result; 280 } 281 282 /* 283 * Network interface utility routines. 284 * 285 * Routines with ifa_ifwith* names take sockaddr *'s as 286 * parameters. 287 */ 288 void 289 ifinit(void) 290 { 291 292 if_sysctl_setup(NULL); 293 294 #if (defined(INET) || defined(INET6)) && !defined(IPSEC) 295 encapinit(); 296 #endif 297 298 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 299 if_listener_cb, NULL); 300 301 /* interfaces are available, inform socket code */ 302 ifioctl = doifioctl; 303 } 304 305 /* 306 * XXX Initialization before configure(). 307 * XXX hack to get pfil_add_hook working in autoconf. 308 */ 309 void 310 ifinit1(void) 311 { 312 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 313 314 TAILQ_INIT(&ifnet_list); 315 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 316 ifnet_psz = pserialize_create(); 317 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 318 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 319 PSLIST_INIT(&ifnet_pslist); 320 321 if_indexlim = 8; 322 323 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 324 KASSERT(if_pfil != NULL); 325 326 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN) 327 etherinit(); 328 #endif 329 } 330 331 ifnet_t * 332 if_alloc(u_char type) 333 { 334 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 335 } 336 337 void 338 if_free(ifnet_t *ifp) 339 { 340 kmem_free(ifp, sizeof(ifnet_t)); 341 } 342 343 void 344 if_initname(struct ifnet *ifp, const char *name, int unit) 345 { 346 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 347 "%s%d", name, unit); 348 } 349 350 /* 351 * Null routines used while an interface is going away. These routines 352 * just return an error. 353 */ 354 355 int 356 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 357 const struct sockaddr *so, const struct rtentry *rt) 358 { 359 360 return ENXIO; 361 } 362 363 void 364 if_nullinput(struct ifnet *ifp, struct mbuf *m) 365 { 366 367 /* Nothing. */ 368 } 369 370 void 371 if_nullstart(struct ifnet *ifp) 372 { 373 374 /* Nothing. */ 375 } 376 377 int 378 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 379 { 380 381 return ENXIO; 382 } 383 384 int 385 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 386 { 387 388 return ENXIO; 389 } 390 391 int 392 if_nullinit(struct ifnet *ifp) 393 { 394 395 return ENXIO; 396 } 397 398 void 399 if_nullstop(struct ifnet *ifp, int disable) 400 { 401 402 /* Nothing. */ 403 } 404 405 void 406 if_nullslowtimo(struct ifnet *ifp) 407 { 408 409 /* Nothing. */ 410 } 411 412 void 413 if_nulldrain(struct ifnet *ifp) 414 { 415 416 /* Nothing. */ 417 } 418 419 void 420 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 421 { 422 struct ifaddr *ifa; 423 struct sockaddr_dl *sdl; 424 425 ifp->if_addrlen = addrlen; 426 if_alloc_sadl(ifp); 427 ifa = ifp->if_dl; 428 sdl = satosdl(ifa->ifa_addr); 429 430 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 431 if (factory) { 432 ifp->if_hwdl = ifp->if_dl; 433 ifaref(ifp->if_hwdl); 434 } 435 /* TBD routing socket */ 436 } 437 438 struct ifaddr * 439 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 440 { 441 unsigned socksize, ifasize; 442 int addrlen, namelen; 443 struct sockaddr_dl *mask, *sdl; 444 struct ifaddr *ifa; 445 446 namelen = strlen(ifp->if_xname); 447 addrlen = ifp->if_addrlen; 448 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 449 ifasize = sizeof(*ifa) + 2 * socksize; 450 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO); 451 452 sdl = (struct sockaddr_dl *)(ifa + 1); 453 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 454 455 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 456 ifp->if_xname, namelen, NULL, addrlen); 457 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 458 memset(&mask->sdl_data[0], 0xff, namelen); 459 ifa->ifa_rtrequest = link_rtrequest; 460 ifa->ifa_addr = (struct sockaddr *)sdl; 461 ifa->ifa_netmask = (struct sockaddr *)mask; 462 ifa_psref_init(ifa); 463 464 *sdlp = sdl; 465 466 return ifa; 467 } 468 469 static void 470 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 471 { 472 const struct sockaddr_dl *sdl; 473 474 ifp->if_dl = ifa; 475 ifaref(ifa); 476 sdl = satosdl(ifa->ifa_addr); 477 ifp->if_sadl = sdl; 478 } 479 480 /* 481 * Allocate the link level name for the specified interface. This 482 * is an attachment helper. It must be called after ifp->if_addrlen 483 * is initialized, which may not be the case when if_attach() is 484 * called. 485 */ 486 void 487 if_alloc_sadl(struct ifnet *ifp) 488 { 489 struct ifaddr *ifa; 490 const struct sockaddr_dl *sdl; 491 492 /* 493 * If the interface already has a link name, release it 494 * now. This is useful for interfaces that can change 495 * link types, and thus switch link names often. 496 */ 497 if (ifp->if_sadl != NULL) 498 if_free_sadl(ifp); 499 500 ifa = if_dl_create(ifp, &sdl); 501 502 ifa_insert(ifp, ifa); 503 if_sadl_setrefs(ifp, ifa); 504 } 505 506 static void 507 if_deactivate_sadl(struct ifnet *ifp) 508 { 509 struct ifaddr *ifa; 510 511 KASSERT(ifp->if_dl != NULL); 512 513 ifa = ifp->if_dl; 514 515 ifp->if_sadl = NULL; 516 517 ifp->if_dl = NULL; 518 ifafree(ifa); 519 } 520 521 void 522 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 523 const struct sockaddr_dl *sdl) 524 { 525 int s, ss; 526 struct ifaddr *ifa; 527 int bound = curlwp_bind(); 528 529 s = splnet(); 530 531 if_deactivate_sadl(ifp); 532 533 if_sadl_setrefs(ifp, ifa0); 534 535 ss = pserialize_read_enter(); 536 IFADDR_READER_FOREACH(ifa, ifp) { 537 struct psref psref; 538 ifa_acquire(ifa, &psref); 539 pserialize_read_exit(ss); 540 541 rtinit(ifa, RTM_LLINFO_UPD, 0); 542 543 ss = pserialize_read_enter(); 544 ifa_release(ifa, &psref); 545 } 546 pserialize_read_exit(ss); 547 548 splx(s); 549 curlwp_bindx(bound); 550 } 551 552 /* 553 * Free the link level name for the specified interface. This is 554 * a detach helper. This is called from if_detach(). 555 */ 556 static void 557 if_free_sadl(struct ifnet *ifp) 558 { 559 struct ifaddr *ifa; 560 int s; 561 562 ifa = ifp->if_dl; 563 if (ifa == NULL) { 564 KASSERT(ifp->if_sadl == NULL); 565 return; 566 } 567 568 KASSERT(ifp->if_sadl != NULL); 569 570 s = splnet(); 571 rtinit(ifa, RTM_DELETE, 0); 572 ifa_remove(ifp, ifa); 573 if_deactivate_sadl(ifp); 574 if (ifp->if_hwdl == ifa) { 575 ifafree(ifa); 576 ifp->if_hwdl = NULL; 577 } 578 splx(s); 579 } 580 581 static void 582 if_getindex(ifnet_t *ifp) 583 { 584 bool hitlimit = false; 585 586 ifp->if_index_gen = index_gen++; 587 588 ifp->if_index = if_index; 589 if (ifindex2ifnet == NULL) { 590 if_index++; 591 goto skip; 592 } 593 while (if_byindex(ifp->if_index)) { 594 /* 595 * If we hit USHRT_MAX, we skip back to 0 since 596 * there are a number of places where the value 597 * of if_index or if_index itself is compared 598 * to or stored in an unsigned short. By 599 * jumping back, we won't botch those assignments 600 * or comparisons. 601 */ 602 if (++if_index == 0) { 603 if_index = 1; 604 } else if (if_index == USHRT_MAX) { 605 /* 606 * However, if we have to jump back to 607 * zero *twice* without finding an empty 608 * slot in ifindex2ifnet[], then there 609 * there are too many (>65535) interfaces. 610 */ 611 if (hitlimit) { 612 panic("too many interfaces"); 613 } 614 hitlimit = true; 615 if_index = 1; 616 } 617 ifp->if_index = if_index; 618 } 619 skip: 620 /* 621 * ifindex2ifnet is indexed by if_index. Since if_index will 622 * grow dynamically, it should grow too. 623 */ 624 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 625 size_t m, n, oldlim; 626 void *q; 627 628 oldlim = if_indexlim; 629 while (ifp->if_index >= if_indexlim) 630 if_indexlim <<= 1; 631 632 /* grow ifindex2ifnet */ 633 m = oldlim * sizeof(struct ifnet *); 634 n = if_indexlim * sizeof(struct ifnet *); 635 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); 636 if (ifindex2ifnet != NULL) { 637 memcpy(q, ifindex2ifnet, m); 638 free(ifindex2ifnet, M_IFADDR); 639 } 640 ifindex2ifnet = (struct ifnet **)q; 641 } 642 ifindex2ifnet[ifp->if_index] = ifp; 643 } 644 645 /* 646 * Initialize an interface and assign an index for it. 647 * 648 * It must be called prior to a device specific attach routine 649 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 650 * and be followed by if_register: 651 * 652 * if_initialize(ifp); 653 * ether_ifattach(ifp, enaddr); 654 * if_register(ifp); 655 */ 656 void 657 if_initialize(ifnet_t *ifp) 658 { 659 KASSERT(if_indexlim > 0); 660 TAILQ_INIT(&ifp->if_addrlist); 661 662 /* 663 * Link level name is allocated later by a separate call to 664 * if_alloc_sadl(). 665 */ 666 667 if (ifp->if_snd.ifq_maxlen == 0) 668 ifp->if_snd.ifq_maxlen = ifqmaxlen; 669 670 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 671 672 ifp->if_link_state = LINK_STATE_UNKNOWN; 673 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 674 675 ifp->if_capenable = 0; 676 ifp->if_csum_flags_tx = 0; 677 ifp->if_csum_flags_rx = 0; 678 679 #ifdef ALTQ 680 ifp->if_snd.altq_type = 0; 681 ifp->if_snd.altq_disc = NULL; 682 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 683 ifp->if_snd.altq_tbr = NULL; 684 ifp->if_snd.altq_ifp = ifp; 685 #endif 686 687 IFQ_LOCK_INIT(&ifp->if_snd); 688 689 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 690 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); 691 692 IF_AFDATA_LOCK_INIT(ifp); 693 694 if (if_is_link_state_changeable(ifp)) { 695 ifp->if_link_si = softint_establish(SOFTINT_NET, 696 if_link_state_change_si, ifp); 697 if (ifp->if_link_si == NULL) 698 panic("%s: softint_establish() failed", __func__); 699 } 700 701 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 702 PSLIST_INIT(&ifp->if_addr_pslist); 703 psref_target_init(&ifp->if_psref, ifnet_psref_class); 704 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 705 706 IFNET_LOCK(); 707 if_getindex(ifp); 708 IFNET_UNLOCK(); 709 } 710 711 /* 712 * Register an interface to the list of "active" interfaces. 713 */ 714 void 715 if_register(ifnet_t *ifp) 716 { 717 /* 718 * If the driver has not supplied its own if_ioctl, then 719 * supply the default. 720 */ 721 if (ifp->if_ioctl == NULL) 722 ifp->if_ioctl = ifioctl_common; 723 724 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 725 726 if (!STAILQ_EMPTY(&domains)) 727 if_attachdomain1(ifp); 728 729 /* Announce the interface. */ 730 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 731 732 if (ifp->if_slowtimo != NULL) { 733 ifp->if_slowtimo_ch = 734 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP); 735 callout_init(ifp->if_slowtimo_ch, 0); 736 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp); 737 if_slowtimo(ifp); 738 } 739 740 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 741 ifp->if_transmit = if_transmit; 742 743 IFNET_LOCK(); 744 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 745 IFNET_WRITER_INSERT_TAIL(ifp); 746 IFNET_UNLOCK(); 747 } 748 749 /* 750 * The if_percpuq framework 751 * 752 * It allows network device drivers to execute the network stack 753 * in softint (so called softint-based if_input). It utilizes 754 * softint and percpu ifqueue. It doesn't distribute any packets 755 * between CPUs, unlike pktqueue(9). 756 * 757 * Currently we support two options for device drivers to apply the framework: 758 * - Use it implicitly with less changes 759 * - If you use if_attach in driver's _attach function and if_input in 760 * driver's Rx interrupt handler, a packet is queued and a softint handles 761 * the packet implicitly 762 * - Use it explicitly in each driver (recommended) 763 * - You can use if_percpuq_* directly in your driver 764 * - In this case, you need to allocate struct if_percpuq in driver's softc 765 * - See wm(4) as a reference implementation 766 */ 767 768 static void 769 if_percpuq_softint(void *arg) 770 { 771 struct if_percpuq *ipq = arg; 772 struct ifnet *ifp = ipq->ipq_ifp; 773 struct mbuf *m; 774 775 while ((m = if_percpuq_dequeue(ipq)) != NULL) { 776 ifp->if_ipackets++; 777 #ifndef NET_MPSAFE 778 KERNEL_LOCK(1, NULL); 779 #endif 780 bpf_mtap(ifp, m); 781 #ifndef NET_MPSAFE 782 KERNEL_UNLOCK_ONE(NULL); 783 #endif 784 785 ifp->_if_input(ifp, m); 786 } 787 } 788 789 static void 790 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 791 { 792 struct ifqueue *const ifq = p; 793 794 memset(ifq, 0, sizeof(*ifq)); 795 ifq->ifq_maxlen = IFQ_MAXLEN; 796 } 797 798 struct if_percpuq * 799 if_percpuq_create(struct ifnet *ifp) 800 { 801 struct if_percpuq *ipq; 802 803 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 804 if (ipq == NULL) 805 panic("kmem_zalloc failed"); 806 807 ipq->ipq_ifp = ifp; 808 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, 809 if_percpuq_softint, ipq); 810 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 811 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 812 813 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 814 815 return ipq; 816 } 817 818 static struct mbuf * 819 if_percpuq_dequeue(struct if_percpuq *ipq) 820 { 821 struct mbuf *m; 822 struct ifqueue *ifq; 823 int s; 824 825 s = splnet(); 826 ifq = percpu_getref(ipq->ipq_ifqs); 827 IF_DEQUEUE(ifq, m); 828 percpu_putref(ipq->ipq_ifqs); 829 splx(s); 830 831 return m; 832 } 833 834 static void 835 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 836 { 837 struct ifqueue *const ifq = p; 838 839 IF_PURGE(ifq); 840 } 841 842 void 843 if_percpuq_destroy(struct if_percpuq *ipq) 844 { 845 846 /* if_detach may already destroy it */ 847 if (ipq == NULL) 848 return; 849 850 softint_disestablish(ipq->ipq_si); 851 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 852 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 853 kmem_free(ipq, sizeof(*ipq)); 854 } 855 856 void 857 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 858 { 859 struct ifqueue *ifq; 860 int s; 861 862 KASSERT(ipq != NULL); 863 864 s = splnet(); 865 ifq = percpu_getref(ipq->ipq_ifqs); 866 if (IF_QFULL(ifq)) { 867 IF_DROP(ifq); 868 percpu_putref(ipq->ipq_ifqs); 869 m_freem(m); 870 goto out; 871 } 872 IF_ENQUEUE(ifq, m); 873 percpu_putref(ipq->ipq_ifqs); 874 875 softint_schedule(ipq->ipq_si); 876 out: 877 splx(s); 878 } 879 880 static void 881 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 882 { 883 struct ifqueue *const ifq = p; 884 int *sum = arg; 885 886 *sum += ifq->ifq_drops; 887 } 888 889 static int 890 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 891 { 892 struct sysctlnode node; 893 struct if_percpuq *ipq; 894 int sum = 0; 895 int error; 896 897 node = *rnode; 898 ipq = node.sysctl_data; 899 900 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 901 902 node.sysctl_data = ∑ 903 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 904 if (error != 0 || newp == NULL) 905 return error; 906 907 return 0; 908 } 909 910 static void 911 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 912 struct if_percpuq *ipq) 913 { 914 const struct sysctlnode *cnode, *rnode; 915 916 if (sysctl_createv(clog, 0, NULL, &rnode, 917 CTLFLAG_PERMANENT, 918 CTLTYPE_NODE, "interfaces", 919 SYSCTL_DESCR("Per-interface controls"), 920 NULL, 0, NULL, 0, 921 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 922 goto bad; 923 924 if (sysctl_createv(clog, 0, &rnode, &rnode, 925 CTLFLAG_PERMANENT, 926 CTLTYPE_NODE, ifname, 927 SYSCTL_DESCR("Interface controls"), 928 NULL, 0, NULL, 0, 929 CTL_CREATE, CTL_EOL) != 0) 930 goto bad; 931 932 if (sysctl_createv(clog, 0, &rnode, &rnode, 933 CTLFLAG_PERMANENT, 934 CTLTYPE_NODE, "rcvq", 935 SYSCTL_DESCR("Interface input queue controls"), 936 NULL, 0, NULL, 0, 937 CTL_CREATE, CTL_EOL) != 0) 938 goto bad; 939 940 #ifdef NOTYET 941 /* XXX Should show each per-CPU queue length? */ 942 if (sysctl_createv(clog, 0, &rnode, &rnode, 943 CTLFLAG_PERMANENT, 944 CTLTYPE_INT, "len", 945 SYSCTL_DESCR("Current input queue length"), 946 sysctl_percpuq_len, 0, NULL, 0, 947 CTL_CREATE, CTL_EOL) != 0) 948 goto bad; 949 950 if (sysctl_createv(clog, 0, &rnode, &cnode, 951 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 952 CTLTYPE_INT, "maxlen", 953 SYSCTL_DESCR("Maximum allowed input queue length"), 954 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 955 CTL_CREATE, CTL_EOL) != 0) 956 goto bad; 957 #endif 958 959 if (sysctl_createv(clog, 0, &rnode, &cnode, 960 CTLFLAG_PERMANENT, 961 CTLTYPE_INT, "drops", 962 SYSCTL_DESCR("Total packets dropped due to full input queue"), 963 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 964 CTL_CREATE, CTL_EOL) != 0) 965 goto bad; 966 967 return; 968 bad: 969 printf("%s: could not attach sysctl nodes\n", ifname); 970 return; 971 } 972 973 /* 974 * The deferred if_start framework 975 * 976 * The common APIs to defer if_start to softint when if_start is requested 977 * from a device driver running in hardware interrupt context. 978 */ 979 /* 980 * Call ifp->if_start (or equivalent) in a dedicated softint for 981 * deferred if_start. 982 */ 983 static void 984 if_deferred_start_softint(void *arg) 985 { 986 struct if_deferred_start *ids = arg; 987 struct ifnet *ifp = ids->ids_ifp; 988 989 ids->ids_if_start(ifp); 990 } 991 992 /* 993 * The default callback function for deferred if_start. 994 */ 995 static void 996 if_deferred_start_common(struct ifnet *ifp) 997 { 998 999 if_start_lock(ifp); 1000 } 1001 1002 static inline bool 1003 if_snd_is_used(struct ifnet *ifp) 1004 { 1005 1006 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit || 1007 ALTQ_IS_ENABLED(&ifp->if_snd); 1008 } 1009 1010 /* 1011 * Schedule deferred if_start. 1012 */ 1013 void 1014 if_schedule_deferred_start(struct ifnet *ifp) 1015 { 1016 1017 KASSERT(ifp->if_deferred_start != NULL); 1018 1019 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1020 return; 1021 1022 softint_schedule(ifp->if_deferred_start->ids_si); 1023 } 1024 1025 /* 1026 * Create an instance of deferred if_start. A driver should call the function 1027 * only if the driver needs deferred if_start. Drivers can setup their own 1028 * deferred if_start function via 2nd argument. 1029 */ 1030 void 1031 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1032 { 1033 struct if_deferred_start *ids; 1034 1035 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1036 if (ids == NULL) 1037 panic("kmem_zalloc failed"); 1038 1039 ids->ids_ifp = ifp; 1040 ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, 1041 if_deferred_start_softint, ids); 1042 if (func != NULL) 1043 ids->ids_if_start = func; 1044 else 1045 ids->ids_if_start = if_deferred_start_common; 1046 1047 ifp->if_deferred_start = ids; 1048 } 1049 1050 static void 1051 if_deferred_start_destroy(struct ifnet *ifp) 1052 { 1053 1054 if (ifp->if_deferred_start == NULL) 1055 return; 1056 1057 softint_disestablish(ifp->if_deferred_start->ids_si); 1058 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1059 ifp->if_deferred_start = NULL; 1060 } 1061 1062 /* 1063 * The common interface input routine that is called by device drivers, 1064 * which should be used only when the driver's rx handler already runs 1065 * in softint. 1066 */ 1067 void 1068 if_input(struct ifnet *ifp, struct mbuf *m) 1069 { 1070 1071 KASSERT(ifp->if_percpuq == NULL); 1072 KASSERT(!cpu_intr_p()); 1073 1074 ifp->if_ipackets++; 1075 #ifndef NET_MPSAFE 1076 KERNEL_LOCK(1, NULL); 1077 #endif 1078 bpf_mtap(ifp, m); 1079 #ifndef NET_MPSAFE 1080 KERNEL_UNLOCK_ONE(NULL); 1081 #endif 1082 1083 ifp->_if_input(ifp, m); 1084 } 1085 1086 /* 1087 * DEPRECATED. Use if_initialize and if_register instead. 1088 * See the above comment of if_initialize. 1089 * 1090 * Note that it implicitly enables if_percpuq to make drivers easy to 1091 * migrate softint-based if_input without much changes. If you don't 1092 * want to enable it, use if_initialize instead. 1093 */ 1094 void 1095 if_attach(ifnet_t *ifp) 1096 { 1097 1098 if_initialize(ifp); 1099 ifp->if_percpuq = if_percpuq_create(ifp); 1100 if_register(ifp); 1101 } 1102 1103 void 1104 if_attachdomain(void) 1105 { 1106 struct ifnet *ifp; 1107 int s; 1108 int bound = curlwp_bind(); 1109 1110 s = pserialize_read_enter(); 1111 IFNET_READER_FOREACH(ifp) { 1112 struct psref psref; 1113 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1114 pserialize_read_exit(s); 1115 if_attachdomain1(ifp); 1116 s = pserialize_read_enter(); 1117 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1118 } 1119 pserialize_read_exit(s); 1120 curlwp_bindx(bound); 1121 } 1122 1123 static void 1124 if_attachdomain1(struct ifnet *ifp) 1125 { 1126 struct domain *dp; 1127 int s; 1128 1129 s = splnet(); 1130 1131 /* address family dependent data region */ 1132 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1133 DOMAIN_FOREACH(dp) { 1134 if (dp->dom_ifattach != NULL) 1135 ifp->if_afdata[dp->dom_family] = 1136 (*dp->dom_ifattach)(ifp); 1137 } 1138 1139 splx(s); 1140 } 1141 1142 /* 1143 * Deactivate an interface. This points all of the procedure 1144 * handles at error stubs. May be called from interrupt context. 1145 */ 1146 void 1147 if_deactivate(struct ifnet *ifp) 1148 { 1149 int s; 1150 1151 s = splnet(); 1152 1153 ifp->if_output = if_nulloutput; 1154 ifp->_if_input = if_nullinput; 1155 ifp->if_start = if_nullstart; 1156 ifp->if_transmit = if_nulltransmit; 1157 ifp->if_ioctl = if_nullioctl; 1158 ifp->if_init = if_nullinit; 1159 ifp->if_stop = if_nullstop; 1160 ifp->if_slowtimo = if_nullslowtimo; 1161 ifp->if_drain = if_nulldrain; 1162 1163 /* No more packets may be enqueued. */ 1164 ifp->if_snd.ifq_maxlen = 0; 1165 1166 splx(s); 1167 } 1168 1169 bool 1170 if_is_deactivated(const struct ifnet *ifp) 1171 { 1172 1173 return ifp->if_output == if_nulloutput; 1174 } 1175 1176 void 1177 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 1178 { 1179 struct ifaddr *ifa, *nifa; 1180 int s; 1181 1182 s = pserialize_read_enter(); 1183 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1184 nifa = IFADDR_READER_NEXT(ifa); 1185 if (ifa->ifa_addr->sa_family != family) 1186 continue; 1187 pserialize_read_exit(s); 1188 1189 (*purgeaddr)(ifa); 1190 1191 s = pserialize_read_enter(); 1192 } 1193 pserialize_read_exit(s); 1194 } 1195 1196 #ifdef IFAREF_DEBUG 1197 static struct ifaddr **ifa_list; 1198 static int ifa_list_size; 1199 1200 /* Depends on only one if_attach runs at once */ 1201 static void 1202 if_build_ifa_list(struct ifnet *ifp) 1203 { 1204 struct ifaddr *ifa; 1205 int i; 1206 1207 KASSERT(ifa_list == NULL); 1208 KASSERT(ifa_list_size == 0); 1209 1210 IFADDR_READER_FOREACH(ifa, ifp) 1211 ifa_list_size++; 1212 1213 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1214 if (ifa_list == NULL) 1215 return; 1216 1217 i = 0; 1218 IFADDR_READER_FOREACH(ifa, ifp) { 1219 ifa_list[i++] = ifa; 1220 ifaref(ifa); 1221 } 1222 } 1223 1224 static void 1225 if_check_and_free_ifa_list(struct ifnet *ifp) 1226 { 1227 int i; 1228 struct ifaddr *ifa; 1229 1230 if (ifa_list == NULL) 1231 return; 1232 1233 for (i = 0; i < ifa_list_size; i++) { 1234 char buf[64]; 1235 1236 ifa = ifa_list[i]; 1237 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1238 if (ifa->ifa_refcnt > 1) { 1239 log(LOG_WARNING, 1240 "ifa(%s) still referenced (refcnt=%d)\n", 1241 buf, ifa->ifa_refcnt - 1); 1242 } else 1243 log(LOG_DEBUG, 1244 "ifa(%s) not referenced (refcnt=%d)\n", 1245 buf, ifa->ifa_refcnt - 1); 1246 ifafree(ifa); 1247 } 1248 1249 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1250 ifa_list = NULL; 1251 ifa_list_size = 0; 1252 } 1253 #endif 1254 1255 /* 1256 * Detach an interface from the list of "active" interfaces, 1257 * freeing any resources as we go along. 1258 * 1259 * NOTE: This routine must be called with a valid thread context, 1260 * as it may block. 1261 */ 1262 void 1263 if_detach(struct ifnet *ifp) 1264 { 1265 struct socket so; 1266 struct ifaddr *ifa; 1267 #ifdef IFAREF_DEBUG 1268 struct ifaddr *last_ifa = NULL; 1269 #endif 1270 struct domain *dp; 1271 const struct protosw *pr; 1272 int s, i, family, purged; 1273 uint64_t xc; 1274 1275 #ifdef IFAREF_DEBUG 1276 if_build_ifa_list(ifp); 1277 #endif 1278 /* 1279 * XXX It's kind of lame that we have to have the 1280 * XXX socket structure... 1281 */ 1282 memset(&so, 0, sizeof(so)); 1283 1284 s = splnet(); 1285 1286 sysctl_teardown(&ifp->if_sysctl_log); 1287 mutex_enter(ifp->if_ioctl_lock); 1288 if_deactivate(ifp); 1289 mutex_exit(ifp->if_ioctl_lock); 1290 1291 IFNET_LOCK(); 1292 ifindex2ifnet[ifp->if_index] = NULL; 1293 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1294 IFNET_WRITER_REMOVE(ifp); 1295 pserialize_perform(ifnet_psz); 1296 IFNET_UNLOCK(); 1297 1298 /* Wait for all readers to drain before freeing. */ 1299 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1300 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1301 1302 mutex_obj_free(ifp->if_ioctl_lock); 1303 ifp->if_ioctl_lock = NULL; 1304 1305 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) { 1306 ifp->if_slowtimo = NULL; 1307 callout_halt(ifp->if_slowtimo_ch, NULL); 1308 callout_destroy(ifp->if_slowtimo_ch); 1309 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch)); 1310 } 1311 if_deferred_start_destroy(ifp); 1312 1313 /* 1314 * Do an if_down() to give protocols a chance to do something. 1315 */ 1316 if_down(ifp); 1317 1318 #ifdef ALTQ 1319 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1320 altq_disable(&ifp->if_snd); 1321 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1322 altq_detach(&ifp->if_snd); 1323 #endif 1324 1325 mutex_obj_free(ifp->if_snd.ifq_lock); 1326 1327 #if NCARP > 0 1328 /* Remove the interface from any carp group it is a part of. */ 1329 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1330 carp_ifdetach(ifp); 1331 #endif 1332 1333 /* 1334 * Rip all the addresses off the interface. This should make 1335 * all of the routes go away. 1336 * 1337 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1338 * from the list, including our "cursor", ifa. For safety, 1339 * and to honor the TAILQ abstraction, I just restart the 1340 * loop after each removal. Note that the loop will exit 1341 * when all of the remaining ifaddrs belong to the AF_LINK 1342 * family. I am counting on the historical fact that at 1343 * least one pr_usrreq in each address domain removes at 1344 * least one ifaddr. 1345 */ 1346 again: 1347 /* 1348 * At this point, no other one tries to remove ifa in the list, 1349 * so we don't need to take a lock or psref. 1350 */ 1351 IFADDR_READER_FOREACH(ifa, ifp) { 1352 family = ifa->ifa_addr->sa_family; 1353 #ifdef IFAREF_DEBUG 1354 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1355 ifa, family, ifa->ifa_refcnt); 1356 if (last_ifa != NULL && ifa == last_ifa) 1357 panic("if_detach: loop detected"); 1358 last_ifa = ifa; 1359 #endif 1360 if (family == AF_LINK) 1361 continue; 1362 dp = pffinddomain(family); 1363 #ifdef DIAGNOSTIC 1364 if (dp == NULL) 1365 panic("if_detach: no domain for AF %d", 1366 family); 1367 #endif 1368 /* 1369 * XXX These PURGEIF calls are redundant with the 1370 * purge-all-families calls below, but are left in for 1371 * now both to make a smaller change, and to avoid 1372 * unplanned interactions with clearing of 1373 * ifp->if_addrlist. 1374 */ 1375 purged = 0; 1376 for (pr = dp->dom_protosw; 1377 pr < dp->dom_protoswNPROTOSW; pr++) { 1378 so.so_proto = pr; 1379 if (pr->pr_usrreqs) { 1380 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1381 purged = 1; 1382 } 1383 } 1384 if (purged == 0) { 1385 /* 1386 * XXX What's really the best thing to do 1387 * XXX here? --thorpej@NetBSD.org 1388 */ 1389 printf("if_detach: WARNING: AF %d not purged\n", 1390 family); 1391 ifa_remove(ifp, ifa); 1392 } 1393 goto again; 1394 } 1395 1396 if_free_sadl(ifp); 1397 1398 /* Delete stray routes from the routing table. */ 1399 for (i = 0; i <= AF_MAX; i++) 1400 rt_delete_matched_entries(i, if_delroute_matcher, ifp); 1401 1402 DOMAIN_FOREACH(dp) { 1403 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1404 { 1405 void *p = ifp->if_afdata[dp->dom_family]; 1406 if (p) { 1407 ifp->if_afdata[dp->dom_family] = NULL; 1408 (*dp->dom_ifdetach)(ifp, p); 1409 } 1410 } 1411 1412 /* 1413 * One would expect multicast memberships (INET and 1414 * INET6) on UDP sockets to be purged by the PURGEIF 1415 * calls above, but if all addresses were removed from 1416 * the interface prior to destruction, the calls will 1417 * not be made (e.g. ppp, for which pppd(8) generally 1418 * removes addresses before destroying the interface). 1419 * Because there is no invariant that multicast 1420 * memberships only exist for interfaces with IPv4 1421 * addresses, we must call PURGEIF regardless of 1422 * addresses. (Protocols which might store ifnet 1423 * pointers are marked with PR_PURGEIF.) 1424 */ 1425 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 1426 so.so_proto = pr; 1427 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1428 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1429 } 1430 } 1431 1432 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 1433 (void)pfil_head_destroy(ifp->if_pfil); 1434 1435 /* Announce that the interface is gone. */ 1436 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1437 1438 IF_AFDATA_LOCK_DESTROY(ifp); 1439 1440 if (if_is_link_state_changeable(ifp)) { 1441 softint_disestablish(ifp->if_link_si); 1442 ifp->if_link_si = NULL; 1443 } 1444 1445 /* 1446 * remove packets that came from ifp, from software interrupt queues. 1447 */ 1448 DOMAIN_FOREACH(dp) { 1449 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { 1450 struct ifqueue *iq = dp->dom_ifqueues[i]; 1451 if (iq == NULL) 1452 break; 1453 dp->dom_ifqueues[i] = NULL; 1454 if_detach_queues(ifp, iq); 1455 } 1456 } 1457 1458 /* 1459 * IP queues have to be processed separately: net-queue barrier 1460 * ensures that the packets are dequeued while a cross-call will 1461 * ensure that the interrupts have completed. FIXME: not quite.. 1462 */ 1463 #ifdef INET 1464 pktq_barrier(ip_pktq); 1465 #endif 1466 #ifdef INET6 1467 if (in6_present) 1468 pktq_barrier(ip6_pktq); 1469 #endif 1470 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 1471 xc_wait(xc); 1472 1473 if (ifp->if_percpuq != NULL) { 1474 if_percpuq_destroy(ifp->if_percpuq); 1475 ifp->if_percpuq = NULL; 1476 } 1477 1478 splx(s); 1479 1480 #ifdef IFAREF_DEBUG 1481 if_check_and_free_ifa_list(ifp); 1482 #endif 1483 } 1484 1485 static void 1486 if_detach_queues(struct ifnet *ifp, struct ifqueue *q) 1487 { 1488 struct mbuf *m, *prev, *next; 1489 1490 prev = NULL; 1491 for (m = q->ifq_head; m != NULL; m = next) { 1492 KASSERT((m->m_flags & M_PKTHDR) != 0); 1493 1494 next = m->m_nextpkt; 1495 if (m->m_pkthdr.rcvif_index != ifp->if_index) { 1496 prev = m; 1497 continue; 1498 } 1499 1500 if (prev != NULL) 1501 prev->m_nextpkt = m->m_nextpkt; 1502 else 1503 q->ifq_head = m->m_nextpkt; 1504 if (q->ifq_tail == m) 1505 q->ifq_tail = prev; 1506 q->ifq_len--; 1507 1508 m->m_nextpkt = NULL; 1509 m_freem(m); 1510 IF_DROP(q); 1511 } 1512 } 1513 1514 /* 1515 * Callback for a radix tree walk to delete all references to an 1516 * ifnet. 1517 */ 1518 static int 1519 if_delroute_matcher(struct rtentry *rt, void *v) 1520 { 1521 struct ifnet *ifp = (struct ifnet *)v; 1522 1523 if (rt->rt_ifp == ifp) 1524 return 1; 1525 else 1526 return 0; 1527 } 1528 1529 /* 1530 * Create a clone network interface. 1531 */ 1532 static int 1533 if_clone_create(const char *name) 1534 { 1535 struct if_clone *ifc; 1536 int unit; 1537 struct ifnet *ifp; 1538 struct psref psref; 1539 1540 ifc = if_clone_lookup(name, &unit); 1541 if (ifc == NULL) 1542 return EINVAL; 1543 1544 ifp = if_get(name, &psref); 1545 if (ifp != NULL) { 1546 if_put(ifp, &psref); 1547 return EEXIST; 1548 } 1549 1550 return (*ifc->ifc_create)(ifc, unit); 1551 } 1552 1553 /* 1554 * Destroy a clone network interface. 1555 */ 1556 static int 1557 if_clone_destroy(const char *name) 1558 { 1559 struct if_clone *ifc; 1560 struct ifnet *ifp; 1561 struct psref psref; 1562 1563 ifc = if_clone_lookup(name, NULL); 1564 if (ifc == NULL) 1565 return EINVAL; 1566 1567 if (ifc->ifc_destroy == NULL) 1568 return EOPNOTSUPP; 1569 1570 ifp = if_get(name, &psref); 1571 if (ifp == NULL) 1572 return ENXIO; 1573 1574 /* We have to disable ioctls here */ 1575 mutex_enter(ifp->if_ioctl_lock); 1576 ifp->if_ioctl = if_nullioctl; 1577 mutex_exit(ifp->if_ioctl_lock); 1578 1579 /* 1580 * We cannot call ifc_destroy with holding ifp. 1581 * Releasing ifp here is safe thanks to if_clone_mtx. 1582 */ 1583 if_put(ifp, &psref); 1584 1585 return (*ifc->ifc_destroy)(ifp); 1586 } 1587 1588 /* 1589 * Look up a network interface cloner. 1590 */ 1591 static struct if_clone * 1592 if_clone_lookup(const char *name, int *unitp) 1593 { 1594 struct if_clone *ifc; 1595 const char *cp; 1596 char *dp, ifname[IFNAMSIZ + 3]; 1597 int unit; 1598 1599 strcpy(ifname, "if_"); 1600 /* separate interface name from unit */ 1601 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1602 *cp && (*cp < '0' || *cp > '9');) 1603 *dp++ = *cp++; 1604 1605 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1606 return NULL; /* No name or unit number */ 1607 *dp++ = '\0'; 1608 1609 again: 1610 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1611 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1612 break; 1613 } 1614 1615 if (ifc == NULL) { 1616 if (*ifname == '\0' || 1617 module_autoload(ifname, MODULE_CLASS_DRIVER)) 1618 return NULL; 1619 *ifname = '\0'; 1620 goto again; 1621 } 1622 1623 unit = 0; 1624 while (cp - name < IFNAMSIZ && *cp) { 1625 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1626 /* Bogus unit number. */ 1627 return NULL; 1628 } 1629 unit = (unit * 10) + (*cp++ - '0'); 1630 } 1631 1632 if (unitp != NULL) 1633 *unitp = unit; 1634 return ifc; 1635 } 1636 1637 /* 1638 * Register a network interface cloner. 1639 */ 1640 void 1641 if_clone_attach(struct if_clone *ifc) 1642 { 1643 1644 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1645 if_cloners_count++; 1646 } 1647 1648 /* 1649 * Unregister a network interface cloner. 1650 */ 1651 void 1652 if_clone_detach(struct if_clone *ifc) 1653 { 1654 1655 LIST_REMOVE(ifc, ifc_list); 1656 if_cloners_count--; 1657 } 1658 1659 /* 1660 * Provide list of interface cloners to userspace. 1661 */ 1662 int 1663 if_clone_list(int buf_count, char *buffer, int *total) 1664 { 1665 char outbuf[IFNAMSIZ], *dst; 1666 struct if_clone *ifc; 1667 int count, error = 0; 1668 1669 *total = if_cloners_count; 1670 if ((dst = buffer) == NULL) { 1671 /* Just asking how many there are. */ 1672 return 0; 1673 } 1674 1675 if (buf_count < 0) 1676 return EINVAL; 1677 1678 count = (if_cloners_count < buf_count) ? 1679 if_cloners_count : buf_count; 1680 1681 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1682 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1683 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1684 if (outbuf[sizeof(outbuf) - 1] != '\0') 1685 return ENAMETOOLONG; 1686 error = copyout(outbuf, dst, sizeof(outbuf)); 1687 if (error != 0) 1688 break; 1689 } 1690 1691 return error; 1692 } 1693 1694 void 1695 ifa_psref_init(struct ifaddr *ifa) 1696 { 1697 1698 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1699 } 1700 1701 void 1702 ifaref(struct ifaddr *ifa) 1703 { 1704 KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING)); 1705 ifa->ifa_refcnt++; 1706 } 1707 1708 void 1709 ifafree(struct ifaddr *ifa) 1710 { 1711 KASSERT(ifa != NULL); 1712 KASSERT(ifa->ifa_refcnt > 0); 1713 1714 if (--ifa->ifa_refcnt == 0) { 1715 free(ifa, M_IFADDR); 1716 } 1717 } 1718 1719 bool 1720 ifa_is_destroying(struct ifaddr *ifa) 1721 { 1722 1723 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1724 } 1725 1726 void 1727 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1728 { 1729 1730 ifa->ifa_ifp = ifp; 1731 1732 IFNET_LOCK(); 1733 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1734 IFADDR_ENTRY_INIT(ifa); 1735 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1736 IFNET_UNLOCK(); 1737 1738 ifaref(ifa); 1739 } 1740 1741 void 1742 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1743 { 1744 1745 KASSERT(ifa->ifa_ifp == ifp); 1746 1747 IFNET_LOCK(); 1748 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1749 IFADDR_WRITER_REMOVE(ifa); 1750 #ifdef NET_MPSAFE 1751 pserialize_perform(ifnet_psz); 1752 #endif 1753 IFNET_UNLOCK(); 1754 1755 #ifdef NET_MPSAFE 1756 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1757 #endif 1758 IFADDR_ENTRY_DESTROY(ifa); 1759 ifafree(ifa); 1760 } 1761 1762 void 1763 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1764 { 1765 1766 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1767 } 1768 1769 void 1770 ifa_release(struct ifaddr *ifa, struct psref *psref) 1771 { 1772 1773 if (ifa == NULL) 1774 return; 1775 1776 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1777 } 1778 1779 bool 1780 ifa_held(struct ifaddr *ifa) 1781 { 1782 1783 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1784 } 1785 1786 static inline int 1787 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1788 { 1789 return sockaddr_cmp(sa1, sa2) == 0; 1790 } 1791 1792 /* 1793 * Locate an interface based on a complete address. 1794 */ 1795 /*ARGSUSED*/ 1796 struct ifaddr * 1797 ifa_ifwithaddr(const struct sockaddr *addr) 1798 { 1799 struct ifnet *ifp; 1800 struct ifaddr *ifa; 1801 1802 IFNET_READER_FOREACH(ifp) { 1803 if (if_is_deactivated(ifp)) 1804 continue; 1805 IFADDR_READER_FOREACH(ifa, ifp) { 1806 if (ifa->ifa_addr->sa_family != addr->sa_family) 1807 continue; 1808 if (equal(addr, ifa->ifa_addr)) 1809 return ifa; 1810 if ((ifp->if_flags & IFF_BROADCAST) && 1811 ifa->ifa_broadaddr && 1812 /* IP6 doesn't have broadcast */ 1813 ifa->ifa_broadaddr->sa_len != 0 && 1814 equal(ifa->ifa_broadaddr, addr)) 1815 return ifa; 1816 } 1817 } 1818 return NULL; 1819 } 1820 1821 struct ifaddr * 1822 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1823 { 1824 struct ifaddr *ifa; 1825 int s = pserialize_read_enter(); 1826 1827 ifa = ifa_ifwithaddr(addr); 1828 if (ifa != NULL) 1829 ifa_acquire(ifa, psref); 1830 pserialize_read_exit(s); 1831 1832 return ifa; 1833 } 1834 1835 /* 1836 * Locate the point to point interface with a given destination address. 1837 */ 1838 /*ARGSUSED*/ 1839 struct ifaddr * 1840 ifa_ifwithdstaddr(const struct sockaddr *addr) 1841 { 1842 struct ifnet *ifp; 1843 struct ifaddr *ifa; 1844 1845 IFNET_READER_FOREACH(ifp) { 1846 if (if_is_deactivated(ifp)) 1847 continue; 1848 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1849 continue; 1850 IFADDR_READER_FOREACH(ifa, ifp) { 1851 if (ifa->ifa_addr->sa_family != addr->sa_family || 1852 ifa->ifa_dstaddr == NULL) 1853 continue; 1854 if (equal(addr, ifa->ifa_dstaddr)) 1855 return ifa; 1856 } 1857 } 1858 1859 return NULL; 1860 } 1861 1862 struct ifaddr * 1863 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 1864 { 1865 struct ifaddr *ifa; 1866 int s; 1867 1868 s = pserialize_read_enter(); 1869 ifa = ifa_ifwithdstaddr(addr); 1870 if (ifa != NULL) 1871 ifa_acquire(ifa, psref); 1872 pserialize_read_exit(s); 1873 1874 return ifa; 1875 } 1876 1877 /* 1878 * Find an interface on a specific network. If many, choice 1879 * is most specific found. 1880 */ 1881 struct ifaddr * 1882 ifa_ifwithnet(const struct sockaddr *addr) 1883 { 1884 struct ifnet *ifp; 1885 struct ifaddr *ifa, *ifa_maybe = NULL; 1886 const struct sockaddr_dl *sdl; 1887 u_int af = addr->sa_family; 1888 const char *addr_data = addr->sa_data, *cplim; 1889 1890 if (af == AF_LINK) { 1891 sdl = satocsdl(addr); 1892 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1893 ifindex2ifnet[sdl->sdl_index] && 1894 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 1895 return ifindex2ifnet[sdl->sdl_index]->if_dl; 1896 } 1897 } 1898 #ifdef NETATALK 1899 if (af == AF_APPLETALK) { 1900 const struct sockaddr_at *sat, *sat2; 1901 sat = (const struct sockaddr_at *)addr; 1902 IFNET_READER_FOREACH(ifp) { 1903 if (if_is_deactivated(ifp)) 1904 continue; 1905 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 1906 if (ifa == NULL) 1907 continue; 1908 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 1909 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 1910 return ifa; /* exact match */ 1911 if (ifa_maybe == NULL) { 1912 /* else keep the if with the right range */ 1913 ifa_maybe = ifa; 1914 } 1915 } 1916 return ifa_maybe; 1917 } 1918 #endif 1919 IFNET_READER_FOREACH(ifp) { 1920 if (if_is_deactivated(ifp)) 1921 continue; 1922 IFADDR_READER_FOREACH(ifa, ifp) { 1923 const char *cp, *cp2, *cp3; 1924 1925 if (ifa->ifa_addr->sa_family != af || 1926 ifa->ifa_netmask == NULL) 1927 next: continue; 1928 cp = addr_data; 1929 cp2 = ifa->ifa_addr->sa_data; 1930 cp3 = ifa->ifa_netmask->sa_data; 1931 cplim = (const char *)ifa->ifa_netmask + 1932 ifa->ifa_netmask->sa_len; 1933 while (cp3 < cplim) { 1934 if ((*cp++ ^ *cp2++) & *cp3++) { 1935 /* want to continue for() loop */ 1936 goto next; 1937 } 1938 } 1939 if (ifa_maybe == NULL || 1940 rt_refines(ifa->ifa_netmask, 1941 ifa_maybe->ifa_netmask)) 1942 ifa_maybe = ifa; 1943 } 1944 } 1945 return ifa_maybe; 1946 } 1947 1948 struct ifaddr * 1949 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 1950 { 1951 struct ifaddr *ifa; 1952 int s; 1953 1954 s = pserialize_read_enter(); 1955 ifa = ifa_ifwithnet(addr); 1956 if (ifa != NULL) 1957 ifa_acquire(ifa, psref); 1958 pserialize_read_exit(s); 1959 1960 return ifa; 1961 } 1962 1963 /* 1964 * Find the interface of the addresss. 1965 */ 1966 struct ifaddr * 1967 ifa_ifwithladdr(const struct sockaddr *addr) 1968 { 1969 struct ifaddr *ia; 1970 1971 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 1972 (ia = ifa_ifwithnet(addr))) 1973 return ia; 1974 return NULL; 1975 } 1976 1977 struct ifaddr * 1978 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 1979 { 1980 struct ifaddr *ifa; 1981 int s; 1982 1983 s = pserialize_read_enter(); 1984 ifa = ifa_ifwithladdr(addr); 1985 if (ifa != NULL) 1986 ifa_acquire(ifa, psref); 1987 pserialize_read_exit(s); 1988 1989 return ifa; 1990 } 1991 1992 /* 1993 * Find an interface using a specific address family 1994 */ 1995 struct ifaddr * 1996 ifa_ifwithaf(int af) 1997 { 1998 struct ifnet *ifp; 1999 struct ifaddr *ifa = NULL; 2000 int s; 2001 2002 s = pserialize_read_enter(); 2003 IFNET_READER_FOREACH(ifp) { 2004 if (if_is_deactivated(ifp)) 2005 continue; 2006 IFADDR_READER_FOREACH(ifa, ifp) { 2007 if (ifa->ifa_addr->sa_family == af) 2008 goto out; 2009 } 2010 } 2011 out: 2012 pserialize_read_exit(s); 2013 return ifa; 2014 } 2015 2016 /* 2017 * Find an interface address specific to an interface best matching 2018 * a given address. 2019 */ 2020 struct ifaddr * 2021 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2022 { 2023 struct ifaddr *ifa; 2024 const char *cp, *cp2, *cp3; 2025 const char *cplim; 2026 struct ifaddr *ifa_maybe = 0; 2027 u_int af = addr->sa_family; 2028 2029 if (if_is_deactivated(ifp)) 2030 return NULL; 2031 2032 if (af >= AF_MAX) 2033 return NULL; 2034 2035 IFADDR_READER_FOREACH(ifa, ifp) { 2036 if (ifa->ifa_addr->sa_family != af) 2037 continue; 2038 ifa_maybe = ifa; 2039 if (ifa->ifa_netmask == NULL) { 2040 if (equal(addr, ifa->ifa_addr) || 2041 (ifa->ifa_dstaddr && 2042 equal(addr, ifa->ifa_dstaddr))) 2043 return ifa; 2044 continue; 2045 } 2046 cp = addr->sa_data; 2047 cp2 = ifa->ifa_addr->sa_data; 2048 cp3 = ifa->ifa_netmask->sa_data; 2049 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2050 for (; cp3 < cplim; cp3++) { 2051 if ((*cp++ ^ *cp2++) & *cp3) 2052 break; 2053 } 2054 if (cp3 == cplim) 2055 return ifa; 2056 } 2057 return ifa_maybe; 2058 } 2059 2060 struct ifaddr * 2061 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2062 struct psref *psref) 2063 { 2064 struct ifaddr *ifa; 2065 int s; 2066 2067 s = pserialize_read_enter(); 2068 ifa = ifaof_ifpforaddr(addr, ifp); 2069 if (ifa != NULL) 2070 ifa_acquire(ifa, psref); 2071 pserialize_read_exit(s); 2072 2073 return ifa; 2074 } 2075 2076 /* 2077 * Default action when installing a route with a Link Level gateway. 2078 * Lookup an appropriate real ifa to point to. 2079 * This should be moved to /sys/net/link.c eventually. 2080 */ 2081 void 2082 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2083 { 2084 struct ifaddr *ifa; 2085 const struct sockaddr *dst; 2086 struct ifnet *ifp; 2087 struct psref psref; 2088 2089 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 2090 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL) 2091 return; 2092 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2093 rt_replace_ifa(rt, ifa); 2094 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2095 ifa->ifa_rtrequest(cmd, rt, info); 2096 ifa_release(ifa, &psref); 2097 } 2098 } 2099 2100 /* 2101 * bitmask macros to manage a densely packed link_state change queue. 2102 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2103 * LINK_STATE_UP(2) we need 2 bits for each state change. 2104 * As a state change to store is 0, treat all bits set as an unset item. 2105 */ 2106 #define LQ_ITEM_BITS 2 2107 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2108 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2109 #define LINK_STATE_UNSET LQ_ITEM_MASK 2110 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2111 #define LQ_STORE(q, i, v) \ 2112 do { \ 2113 (q) &= ~LQ_MASK((i)); \ 2114 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2115 } while (0 /* CONSTCOND */) 2116 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2117 #define LQ_POP(q, v) \ 2118 do { \ 2119 (v) = LQ_ITEM((q), 0); \ 2120 (q) >>= LQ_ITEM_BITS; \ 2121 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2122 } while (0 /* CONSTCOND */) 2123 #define LQ_PUSH(q, v) \ 2124 do { \ 2125 (q) >>= LQ_ITEM_BITS; \ 2126 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2127 } while (0 /* CONSTCOND */) 2128 #define LQ_FIND_UNSET(q, i) \ 2129 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2130 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2131 break; \ 2132 } 2133 /* 2134 * Handle a change in the interface link state and 2135 * queue notifications. 2136 */ 2137 void 2138 if_link_state_change(struct ifnet *ifp, int link_state) 2139 { 2140 int s, idx; 2141 2142 KASSERTMSG(if_is_link_state_changeable(ifp), 2143 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x", 2144 ifp->if_xname, ifp->if_extflags); 2145 2146 /* Ensure change is to a valid state */ 2147 switch (link_state) { 2148 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2149 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2150 case LINK_STATE_UP: 2151 break; 2152 default: 2153 #ifdef DEBUG 2154 printf("%s: invalid link state %d\n", 2155 ifp->if_xname, link_state); 2156 #endif 2157 return; 2158 } 2159 2160 s = splnet(); 2161 2162 /* Find the last unset event in the queue. */ 2163 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2164 2165 /* 2166 * Ensure link_state doesn't match the last event in the queue. 2167 * ifp->if_link_state is not checked and set here because 2168 * that would present an inconsistent picture to the system. 2169 */ 2170 if (idx != 0 && 2171 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state) 2172 goto out; 2173 2174 /* Handle queue overflow. */ 2175 if (idx == LQ_MAX(ifp->if_link_queue)) { 2176 uint8_t lost; 2177 2178 /* 2179 * The DOWN state must be protected from being pushed off 2180 * the queue to ensure that userland will always be 2181 * in a sane state. 2182 * Because DOWN is protected, there is no need to protect 2183 * UNKNOWN. 2184 * It should be invalid to change from any other state to 2185 * UNKNOWN anyway ... 2186 */ 2187 lost = LQ_ITEM(ifp->if_link_queue, 0); 2188 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2189 if (lost == LINK_STATE_DOWN) { 2190 lost = LQ_ITEM(ifp->if_link_queue, 0); 2191 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2192 } 2193 printf("%s: lost link state change %s\n", 2194 ifp->if_xname, 2195 lost == LINK_STATE_UP ? "UP" : 2196 lost == LINK_STATE_DOWN ? "DOWN" : 2197 "UNKNOWN"); 2198 } else 2199 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2200 2201 softint_schedule(ifp->if_link_si); 2202 2203 out: 2204 splx(s); 2205 } 2206 2207 /* 2208 * Handle interface link state change notifications. 2209 * Must be called at splnet(). 2210 */ 2211 static void 2212 if_link_state_change0(struct ifnet *ifp, int link_state) 2213 { 2214 struct domain *dp; 2215 2216 /* Ensure the change is still valid. */ 2217 if (ifp->if_link_state == link_state) 2218 return; 2219 2220 #ifdef DEBUG 2221 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2222 link_state == LINK_STATE_UP ? "UP" : 2223 link_state == LINK_STATE_DOWN ? "DOWN" : 2224 "UNKNOWN", 2225 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2226 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2227 "UNKNOWN"); 2228 #endif 2229 2230 /* 2231 * When going from UNKNOWN to UP, we need to mark existing 2232 * addresses as tentative and restart DAD as we may have 2233 * erroneously not found a duplicate. 2234 * 2235 * This needs to happen before rt_ifmsg to avoid a race where 2236 * listeners would have an address and expect it to work right 2237 * away. 2238 */ 2239 if (link_state == LINK_STATE_UP && 2240 ifp->if_link_state == LINK_STATE_UNKNOWN) 2241 { 2242 DOMAIN_FOREACH(dp) { 2243 if (dp->dom_if_link_state_change != NULL) 2244 dp->dom_if_link_state_change(ifp, 2245 LINK_STATE_DOWN); 2246 } 2247 } 2248 2249 ifp->if_link_state = link_state; 2250 2251 /* Notify that the link state has changed. */ 2252 rt_ifmsg(ifp); 2253 2254 #if NCARP > 0 2255 if (ifp->if_carp) 2256 carp_carpdev_state(ifp); 2257 #endif 2258 2259 DOMAIN_FOREACH(dp) { 2260 if (dp->dom_if_link_state_change != NULL) 2261 dp->dom_if_link_state_change(ifp, link_state); 2262 } 2263 } 2264 2265 /* 2266 * Process the interface link state change queue. 2267 */ 2268 static void 2269 if_link_state_change_si(void *arg) 2270 { 2271 struct ifnet *ifp = arg; 2272 int s; 2273 uint8_t state; 2274 2275 #ifndef NET_MPSAFE 2276 mutex_enter(softnet_lock); 2277 KERNEL_LOCK(1, NULL); 2278 #endif 2279 s = splnet(); 2280 2281 /* Pop a link state change from the queue and process it. */ 2282 LQ_POP(ifp->if_link_queue, state); 2283 if_link_state_change0(ifp, state); 2284 2285 /* If there is a link state change to come, schedule it. */ 2286 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) 2287 softint_schedule(ifp->if_link_si); 2288 2289 splx(s); 2290 #ifndef NET_MPSAFE 2291 KERNEL_UNLOCK_ONE(NULL); 2292 mutex_exit(softnet_lock); 2293 #endif 2294 } 2295 2296 /* 2297 * Default action when installing a local route on a point-to-point 2298 * interface. 2299 */ 2300 void 2301 p2p_rtrequest(int req, struct rtentry *rt, 2302 __unused const struct rt_addrinfo *info) 2303 { 2304 struct ifnet *ifp = rt->rt_ifp; 2305 struct ifaddr *ifa, *lo0ifa; 2306 int s = pserialize_read_enter(); 2307 2308 switch (req) { 2309 case RTM_ADD: 2310 if ((rt->rt_flags & RTF_LOCAL) == 0) 2311 break; 2312 2313 rt->rt_ifp = lo0ifp; 2314 2315 IFADDR_READER_FOREACH(ifa, ifp) { 2316 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2317 break; 2318 } 2319 if (ifa == NULL) 2320 break; 2321 2322 /* 2323 * Ensure lo0 has an address of the same family. 2324 */ 2325 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2326 if (lo0ifa->ifa_addr->sa_family == 2327 ifa->ifa_addr->sa_family) 2328 break; 2329 } 2330 if (lo0ifa == NULL) 2331 break; 2332 2333 /* 2334 * Make sure to set rt->rt_ifa to the interface 2335 * address we are using, otherwise we will have trouble 2336 * with source address selection. 2337 */ 2338 if (ifa != rt->rt_ifa) 2339 rt_replace_ifa(rt, ifa); 2340 break; 2341 case RTM_DELETE: 2342 default: 2343 break; 2344 } 2345 pserialize_read_exit(s); 2346 } 2347 2348 /* 2349 * Mark an interface down and notify protocols of 2350 * the transition. 2351 * NOTE: must be called at splsoftnet or equivalent. 2352 */ 2353 void 2354 if_down(struct ifnet *ifp) 2355 { 2356 struct ifaddr *ifa; 2357 struct domain *dp; 2358 int s, bound; 2359 struct psref psref; 2360 2361 ifp->if_flags &= ~IFF_UP; 2362 nanotime(&ifp->if_lastchange); 2363 2364 bound = curlwp_bind(); 2365 s = pserialize_read_enter(); 2366 IFADDR_READER_FOREACH(ifa, ifp) { 2367 ifa_acquire(ifa, &psref); 2368 pserialize_read_exit(s); 2369 2370 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2371 2372 s = pserialize_read_enter(); 2373 ifa_release(ifa, &psref); 2374 } 2375 pserialize_read_exit(s); 2376 curlwp_bindx(bound); 2377 2378 IFQ_PURGE(&ifp->if_snd); 2379 #if NCARP > 0 2380 if (ifp->if_carp) 2381 carp_carpdev_state(ifp); 2382 #endif 2383 rt_ifmsg(ifp); 2384 DOMAIN_FOREACH(dp) { 2385 if (dp->dom_if_down) 2386 dp->dom_if_down(ifp); 2387 } 2388 } 2389 2390 /* 2391 * Mark an interface up and notify protocols of 2392 * the transition. 2393 * NOTE: must be called at splsoftnet or equivalent. 2394 */ 2395 void 2396 if_up(struct ifnet *ifp) 2397 { 2398 #ifdef notyet 2399 struct ifaddr *ifa; 2400 #endif 2401 struct domain *dp; 2402 2403 ifp->if_flags |= IFF_UP; 2404 nanotime(&ifp->if_lastchange); 2405 #ifdef notyet 2406 /* this has no effect on IP, and will kill all ISO connections XXX */ 2407 IFADDR_READER_FOREACH(ifa, ifp) 2408 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2409 #endif 2410 #if NCARP > 0 2411 if (ifp->if_carp) 2412 carp_carpdev_state(ifp); 2413 #endif 2414 rt_ifmsg(ifp); 2415 DOMAIN_FOREACH(dp) { 2416 if (dp->dom_if_up) 2417 dp->dom_if_up(ifp); 2418 } 2419 } 2420 2421 /* 2422 * Handle interface slowtimo timer routine. Called 2423 * from softclock, we decrement timer (if set) and 2424 * call the appropriate interface routine on expiration. 2425 */ 2426 static void 2427 if_slowtimo(void *arg) 2428 { 2429 void (*slowtimo)(struct ifnet *); 2430 struct ifnet *ifp = arg; 2431 int s; 2432 2433 slowtimo = ifp->if_slowtimo; 2434 if (__predict_false(slowtimo == NULL)) 2435 return; 2436 2437 s = splnet(); 2438 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2439 (*slowtimo)(ifp); 2440 2441 splx(s); 2442 2443 if (__predict_true(ifp->if_slowtimo != NULL)) 2444 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ); 2445 } 2446 2447 /* 2448 * Set/clear promiscuous mode on interface ifp based on the truth value 2449 * of pswitch. The calls are reference counted so that only the first 2450 * "on" request actually has an effect, as does the final "off" request. 2451 * Results are undefined if the "off" and "on" requests are not matched. 2452 */ 2453 int 2454 ifpromisc(struct ifnet *ifp, int pswitch) 2455 { 2456 int pcount, ret; 2457 short nflags; 2458 2459 pcount = ifp->if_pcount; 2460 if (pswitch) { 2461 /* 2462 * Allow the device to be "placed" into promiscuous 2463 * mode even if it is not configured up. It will 2464 * consult IFF_PROMISC when it is brought up. 2465 */ 2466 if (ifp->if_pcount++ != 0) 2467 return 0; 2468 nflags = ifp->if_flags | IFF_PROMISC; 2469 } else { 2470 if (--ifp->if_pcount > 0) 2471 return 0; 2472 nflags = ifp->if_flags & ~IFF_PROMISC; 2473 } 2474 ret = if_flags_set(ifp, nflags); 2475 /* Restore interface state if not successful. */ 2476 if (ret != 0) { 2477 ifp->if_pcount = pcount; 2478 } 2479 return ret; 2480 } 2481 2482 /* 2483 * Map interface name to 2484 * interface structure pointer. 2485 */ 2486 struct ifnet * 2487 ifunit(const char *name) 2488 { 2489 struct ifnet *ifp; 2490 const char *cp = name; 2491 u_int unit = 0; 2492 u_int i; 2493 int s; 2494 2495 /* 2496 * If the entire name is a number, treat it as an ifindex. 2497 */ 2498 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2499 unit = unit * 10 + (*cp - '0'); 2500 } 2501 2502 /* 2503 * If the number took all of the name, then it's a valid ifindex. 2504 */ 2505 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) { 2506 if (unit >= if_indexlim) 2507 return NULL; 2508 ifp = ifindex2ifnet[unit]; 2509 if (ifp == NULL || if_is_deactivated(ifp)) 2510 return NULL; 2511 return ifp; 2512 } 2513 2514 ifp = NULL; 2515 s = pserialize_read_enter(); 2516 IFNET_READER_FOREACH(ifp) { 2517 if (if_is_deactivated(ifp)) 2518 continue; 2519 if (strcmp(ifp->if_xname, name) == 0) 2520 goto out; 2521 } 2522 out: 2523 pserialize_read_exit(s); 2524 return ifp; 2525 } 2526 2527 /* 2528 * Get a reference of an ifnet object by an interface name. 2529 * The returned reference is protected by psref(9). The caller 2530 * must release a returned reference by if_put after use. 2531 */ 2532 struct ifnet * 2533 if_get(const char *name, struct psref *psref) 2534 { 2535 struct ifnet *ifp; 2536 const char *cp = name; 2537 u_int unit = 0; 2538 u_int i; 2539 int s; 2540 2541 /* 2542 * If the entire name is a number, treat it as an ifindex. 2543 */ 2544 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2545 unit = unit * 10 + (*cp - '0'); 2546 } 2547 2548 /* 2549 * If the number took all of the name, then it's a valid ifindex. 2550 */ 2551 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) { 2552 if (unit >= if_indexlim) 2553 return NULL; 2554 ifp = ifindex2ifnet[unit]; 2555 if (ifp == NULL || if_is_deactivated(ifp)) 2556 return NULL; 2557 return ifp; 2558 } 2559 2560 ifp = NULL; 2561 s = pserialize_read_enter(); 2562 IFNET_READER_FOREACH(ifp) { 2563 if (if_is_deactivated(ifp)) 2564 continue; 2565 if (strcmp(ifp->if_xname, name) == 0) { 2566 psref_acquire(psref, &ifp->if_psref, 2567 ifnet_psref_class); 2568 goto out; 2569 } 2570 } 2571 out: 2572 pserialize_read_exit(s); 2573 return ifp; 2574 } 2575 2576 /* 2577 * Release a reference of an ifnet object given by if_get or 2578 * if_get_byindex. 2579 */ 2580 void 2581 if_put(const struct ifnet *ifp, struct psref *psref) 2582 { 2583 2584 if (ifp == NULL) 2585 return; 2586 2587 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2588 } 2589 2590 ifnet_t * 2591 if_byindex(u_int idx) 2592 { 2593 ifnet_t *ifp; 2594 2595 ifp = (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL; 2596 if (ifp != NULL && if_is_deactivated(ifp)) 2597 ifp = NULL; 2598 return ifp; 2599 } 2600 2601 /* 2602 * Get a reference of an ifnet object by an interface index. 2603 * The returned reference is protected by psref(9). The caller 2604 * must release a returned reference by if_put after use. 2605 */ 2606 ifnet_t * 2607 if_get_byindex(u_int idx, struct psref *psref) 2608 { 2609 ifnet_t *ifp; 2610 int s; 2611 2612 s = pserialize_read_enter(); 2613 ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2614 if (ifp != NULL && if_is_deactivated(ifp)) 2615 ifp = NULL; 2616 if (__predict_true(ifp != NULL)) 2617 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2618 pserialize_read_exit(s); 2619 2620 return ifp; 2621 } 2622 2623 /* 2624 * XXX it's safe only if the passed ifp is guaranteed to not be freed, 2625 * for example the ifp is already held or some other object is held which 2626 * guarantes the ifp to not be freed indirectly. 2627 */ 2628 void 2629 if_acquire_NOMPSAFE(struct ifnet *ifp, struct psref *psref) 2630 { 2631 2632 KASSERT(ifp->if_index != 0); 2633 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2634 } 2635 2636 bool 2637 if_held(struct ifnet *ifp) 2638 { 2639 2640 return psref_held(&ifp->if_psref, ifnet_psref_class); 2641 } 2642 2643 2644 /* common */ 2645 int 2646 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 2647 { 2648 int s; 2649 struct ifreq *ifr; 2650 struct ifcapreq *ifcr; 2651 struct ifdatareq *ifdr; 2652 2653 switch (cmd) { 2654 case SIOCSIFCAP: 2655 ifcr = data; 2656 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 2657 return EINVAL; 2658 2659 if (ifcr->ifcr_capenable == ifp->if_capenable) 2660 return 0; 2661 2662 ifp->if_capenable = ifcr->ifcr_capenable; 2663 2664 /* Pre-compute the checksum flags mask. */ 2665 ifp->if_csum_flags_tx = 0; 2666 ifp->if_csum_flags_rx = 0; 2667 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) { 2668 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 2669 } 2670 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { 2671 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 2672 } 2673 2674 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) { 2675 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 2676 } 2677 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) { 2678 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 2679 } 2680 2681 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) { 2682 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 2683 } 2684 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) { 2685 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 2686 } 2687 2688 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) { 2689 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 2690 } 2691 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) { 2692 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 2693 } 2694 2695 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) { 2696 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 2697 } 2698 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) { 2699 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 2700 } 2701 if (ifp->if_flags & IFF_UP) 2702 return ENETRESET; 2703 return 0; 2704 case SIOCSIFFLAGS: 2705 ifr = data; 2706 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 2707 s = splnet(); 2708 if_down(ifp); 2709 splx(s); 2710 } 2711 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 2712 s = splnet(); 2713 if_up(ifp); 2714 splx(s); 2715 } 2716 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2717 (ifr->ifr_flags &~ IFF_CANTCHANGE); 2718 break; 2719 case SIOCGIFFLAGS: 2720 ifr = data; 2721 ifr->ifr_flags = ifp->if_flags; 2722 break; 2723 2724 case SIOCGIFMETRIC: 2725 ifr = data; 2726 ifr->ifr_metric = ifp->if_metric; 2727 break; 2728 2729 case SIOCGIFMTU: 2730 ifr = data; 2731 ifr->ifr_mtu = ifp->if_mtu; 2732 break; 2733 2734 case SIOCGIFDLT: 2735 ifr = data; 2736 ifr->ifr_dlt = ifp->if_dlt; 2737 break; 2738 2739 case SIOCGIFCAP: 2740 ifcr = data; 2741 ifcr->ifcr_capabilities = ifp->if_capabilities; 2742 ifcr->ifcr_capenable = ifp->if_capenable; 2743 break; 2744 2745 case SIOCSIFMETRIC: 2746 ifr = data; 2747 ifp->if_metric = ifr->ifr_metric; 2748 break; 2749 2750 case SIOCGIFDATA: 2751 ifdr = data; 2752 ifdr->ifdr_data = ifp->if_data; 2753 break; 2754 2755 case SIOCGIFINDEX: 2756 ifr = data; 2757 ifr->ifr_index = ifp->if_index; 2758 break; 2759 2760 case SIOCZIFDATA: 2761 ifdr = data; 2762 ifdr->ifdr_data = ifp->if_data; 2763 /* 2764 * Assumes that the volatile counters that can be 2765 * zero'ed are at the end of if_data. 2766 */ 2767 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) - 2768 offsetof(struct if_data, ifi_ipackets)); 2769 /* 2770 * The memset() clears to the bottm of if_data. In the area, 2771 * if_lastchange is included. Please be careful if new entry 2772 * will be added into if_data or rewite this. 2773 * 2774 * And also, update if_lastchnage. 2775 */ 2776 getnanotime(&ifp->if_lastchange); 2777 break; 2778 case SIOCSIFMTU: 2779 ifr = data; 2780 if (ifp->if_mtu == ifr->ifr_mtu) 2781 break; 2782 ifp->if_mtu = ifr->ifr_mtu; 2783 /* 2784 * If the link MTU changed, do network layer specific procedure. 2785 */ 2786 #ifdef INET6 2787 if (in6_present) 2788 nd6_setmtu(ifp); 2789 #endif 2790 return ENETRESET; 2791 default: 2792 return ENOTTY; 2793 } 2794 return 0; 2795 } 2796 2797 int 2798 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 2799 { 2800 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 2801 struct ifaddr *ifa; 2802 const struct sockaddr *any, *sa; 2803 union { 2804 struct sockaddr sa; 2805 struct sockaddr_storage ss; 2806 } u, v; 2807 int s, error = 0; 2808 2809 switch (cmd) { 2810 case SIOCSIFADDRPREF: 2811 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, 2812 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 2813 NULL) != 0) 2814 return EPERM; 2815 case SIOCGIFADDRPREF: 2816 break; 2817 default: 2818 return EOPNOTSUPP; 2819 } 2820 2821 /* sanity checks */ 2822 if (data == NULL || ifp == NULL) { 2823 panic("invalid argument to %s", __func__); 2824 /*NOTREACHED*/ 2825 } 2826 2827 /* address must be specified on ADD and DELETE */ 2828 sa = sstocsa(&ifap->ifap_addr); 2829 if (sa->sa_family != sofamily(so)) 2830 return EINVAL; 2831 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 2832 return EINVAL; 2833 2834 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 2835 2836 s = pserialize_read_enter(); 2837 IFADDR_READER_FOREACH(ifa, ifp) { 2838 if (ifa->ifa_addr->sa_family != sa->sa_family) 2839 continue; 2840 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 2841 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 2842 break; 2843 } 2844 if (ifa == NULL) { 2845 error = EADDRNOTAVAIL; 2846 goto out; 2847 } 2848 2849 switch (cmd) { 2850 case SIOCSIFADDRPREF: 2851 ifa->ifa_preference = ifap->ifap_preference; 2852 goto out; 2853 case SIOCGIFADDRPREF: 2854 /* fill in the if_laddrreq structure */ 2855 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 2856 sizeof(ifap->ifap_addr), ifa->ifa_addr); 2857 ifap->ifap_preference = ifa->ifa_preference; 2858 goto out; 2859 default: 2860 error = EOPNOTSUPP; 2861 } 2862 out: 2863 pserialize_read_exit(s); 2864 return error; 2865 } 2866 2867 /* 2868 * Interface ioctls. 2869 */ 2870 static int 2871 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 2872 { 2873 struct ifnet *ifp; 2874 struct ifreq *ifr; 2875 int error = 0; 2876 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ) 2877 u_long ocmd = cmd; 2878 #endif 2879 short oif_flags; 2880 #ifdef COMPAT_OIFREQ 2881 struct ifreq ifrb; 2882 struct oifreq *oifr = NULL; 2883 #endif 2884 int r; 2885 struct psref psref; 2886 int bound; 2887 2888 switch (cmd) { 2889 #ifdef COMPAT_OIFREQ 2890 case OSIOCGIFCONF: 2891 case OOSIOCGIFCONF: 2892 return compat_ifconf(cmd, data); 2893 #endif 2894 #ifdef COMPAT_OIFDATA 2895 case OSIOCGIFDATA: 2896 case OSIOCZIFDATA: 2897 return compat_ifdatareq(l, cmd, data); 2898 #endif 2899 case SIOCGIFCONF: 2900 return ifconf(cmd, data); 2901 case SIOCINITIFADDR: 2902 return EPERM; 2903 } 2904 2905 #ifdef COMPAT_OIFREQ 2906 cmd = (*vec_compat_cvtcmd)(cmd); 2907 if (cmd != ocmd) { 2908 oifr = data; 2909 data = ifr = &ifrb; 2910 ifreqo2n(oifr, ifr); 2911 } else 2912 #endif 2913 ifr = data; 2914 2915 switch (cmd) { 2916 case SIOCIFCREATE: 2917 case SIOCIFDESTROY: 2918 bound = curlwp_bind(); 2919 if (l != NULL) { 2920 ifp = if_get(ifr->ifr_name, &psref); 2921 error = kauth_authorize_network(l->l_cred, 2922 KAUTH_NETWORK_INTERFACE, 2923 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 2924 (void *)cmd, NULL); 2925 if (ifp != NULL) 2926 if_put(ifp, &psref); 2927 if (error != 0) { 2928 curlwp_bindx(bound); 2929 return error; 2930 } 2931 } 2932 mutex_enter(&if_clone_mtx); 2933 r = (cmd == SIOCIFCREATE) ? 2934 if_clone_create(ifr->ifr_name) : 2935 if_clone_destroy(ifr->ifr_name); 2936 mutex_exit(&if_clone_mtx); 2937 curlwp_bindx(bound); 2938 return r; 2939 2940 case SIOCIFGCLONERS: 2941 { 2942 struct if_clonereq *req = (struct if_clonereq *)data; 2943 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 2944 &req->ifcr_total); 2945 } 2946 } 2947 2948 bound = curlwp_bind(); 2949 ifp = if_get(ifr->ifr_name, &psref); 2950 if (ifp == NULL) { 2951 curlwp_bindx(bound); 2952 return ENXIO; 2953 } 2954 2955 switch (cmd) { 2956 case SIOCALIFADDR: 2957 case SIOCDLIFADDR: 2958 case SIOCSIFADDRPREF: 2959 case SIOCSIFFLAGS: 2960 case SIOCSIFCAP: 2961 case SIOCSIFMETRIC: 2962 case SIOCZIFDATA: 2963 case SIOCSIFMTU: 2964 case SIOCSIFPHYADDR: 2965 case SIOCDIFPHYADDR: 2966 #ifdef INET6 2967 case SIOCSIFPHYADDR_IN6: 2968 #endif 2969 case SIOCSLIFPHYADDR: 2970 case SIOCADDMULTI: 2971 case SIOCDELMULTI: 2972 case SIOCSIFMEDIA: 2973 case SIOCSDRVSPEC: 2974 case SIOCG80211: 2975 case SIOCS80211: 2976 case SIOCS80211NWID: 2977 case SIOCS80211NWKEY: 2978 case SIOCS80211POWER: 2979 case SIOCS80211BSSID: 2980 case SIOCS80211CHANNEL: 2981 case SIOCSLINKSTR: 2982 if (l != NULL) { 2983 error = kauth_authorize_network(l->l_cred, 2984 KAUTH_NETWORK_INTERFACE, 2985 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 2986 (void *)cmd, NULL); 2987 if (error != 0) 2988 goto out; 2989 } 2990 } 2991 2992 oif_flags = ifp->if_flags; 2993 2994 mutex_enter(ifp->if_ioctl_lock); 2995 2996 error = (*ifp->if_ioctl)(ifp, cmd, data); 2997 if (error != ENOTTY) 2998 ; 2999 else if (so->so_proto == NULL) 3000 error = EOPNOTSUPP; 3001 else { 3002 #ifdef COMPAT_OSOCK 3003 if (vec_compat_ifioctl != NULL) 3004 error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l); 3005 else 3006 #endif 3007 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 3008 cmd, data, ifp); 3009 } 3010 3011 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 3012 if ((ifp->if_flags & IFF_UP) != 0) { 3013 int s = splnet(); 3014 if_up(ifp); 3015 splx(s); 3016 } 3017 } 3018 #ifdef COMPAT_OIFREQ 3019 if (cmd != ocmd) 3020 ifreqn2o(oifr, ifr); 3021 #endif 3022 3023 mutex_exit(ifp->if_ioctl_lock); 3024 out: 3025 if_put(ifp, &psref); 3026 curlwp_bindx(bound); 3027 return error; 3028 } 3029 3030 /* 3031 * Return interface configuration 3032 * of system. List may be used 3033 * in later ioctl's (above) to get 3034 * other information. 3035 * 3036 * Each record is a struct ifreq. Before the addition of 3037 * sockaddr_storage, the API rule was that sockaddr flavors that did 3038 * not fit would extend beyond the struct ifreq, with the next struct 3039 * ifreq starting sa_len beyond the struct sockaddr. Because the 3040 * union in struct ifreq includes struct sockaddr_storage, every kind 3041 * of sockaddr must fit. Thus, there are no longer any overlength 3042 * records. 3043 * 3044 * Records are added to the user buffer if they fit, and ifc_len is 3045 * adjusted to the length that was written. Thus, the user is only 3046 * assured of getting the complete list if ifc_len on return is at 3047 * least sizeof(struct ifreq) less than it was on entry. 3048 * 3049 * If the user buffer pointer is NULL, this routine copies no data and 3050 * returns the amount of space that would be needed. 3051 * 3052 * Invariants: 3053 * ifrp points to the next part of the user's buffer to be used. If 3054 * ifrp != NULL, space holds the number of bytes remaining that we may 3055 * write at ifrp. Otherwise, space holds the number of bytes that 3056 * would have been written had there been adequate space. 3057 */ 3058 /*ARGSUSED*/ 3059 static int 3060 ifconf(u_long cmd, void *data) 3061 { 3062 struct ifconf *ifc = (struct ifconf *)data; 3063 struct ifnet *ifp; 3064 struct ifaddr *ifa; 3065 struct ifreq ifr, *ifrp = NULL; 3066 int space = 0, error = 0; 3067 const int sz = (int)sizeof(struct ifreq); 3068 const bool docopy = ifc->ifc_req != NULL; 3069 int s; 3070 int bound; 3071 struct psref psref; 3072 3073 if (docopy) { 3074 space = ifc->ifc_len; 3075 ifrp = ifc->ifc_req; 3076 } 3077 3078 bound = curlwp_bind(); 3079 s = pserialize_read_enter(); 3080 IFNET_READER_FOREACH(ifp) { 3081 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3082 pserialize_read_exit(s); 3083 3084 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3085 sizeof(ifr.ifr_name)); 3086 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3087 error = ENAMETOOLONG; 3088 goto release_exit; 3089 } 3090 if (IFADDR_READER_EMPTY(ifp)) { 3091 /* Interface with no addresses - send zero sockaddr. */ 3092 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3093 if (!docopy) { 3094 space += sz; 3095 continue; 3096 } 3097 if (space >= sz) { 3098 error = copyout(&ifr, ifrp, sz); 3099 if (error != 0) 3100 goto release_exit; 3101 ifrp++; 3102 space -= sz; 3103 } 3104 } 3105 3106 IFADDR_READER_FOREACH(ifa, ifp) { 3107 struct sockaddr *sa = ifa->ifa_addr; 3108 /* all sockaddrs must fit in sockaddr_storage */ 3109 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3110 3111 if (!docopy) { 3112 space += sz; 3113 continue; 3114 } 3115 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3116 if (space >= sz) { 3117 error = copyout(&ifr, ifrp, sz); 3118 if (error != 0) 3119 goto release_exit; 3120 ifrp++; space -= sz; 3121 } 3122 } 3123 3124 s = pserialize_read_enter(); 3125 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3126 } 3127 pserialize_read_exit(s); 3128 curlwp_bindx(bound); 3129 3130 if (docopy) { 3131 KASSERT(0 <= space && space <= ifc->ifc_len); 3132 ifc->ifc_len -= space; 3133 } else { 3134 KASSERT(space >= 0); 3135 ifc->ifc_len = space; 3136 } 3137 return (0); 3138 3139 release_exit: 3140 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3141 curlwp_bindx(bound); 3142 return error; 3143 } 3144 3145 int 3146 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3147 { 3148 uint8_t len; 3149 #ifdef COMPAT_OIFREQ 3150 struct ifreq ifrb; 3151 struct oifreq *oifr = NULL; 3152 u_long ocmd = cmd; 3153 cmd = (*vec_compat_cvtcmd)(cmd); 3154 if (cmd != ocmd) { 3155 oifr = (struct oifreq *)(void *)ifr; 3156 ifr = &ifrb; 3157 ifreqo2n(oifr, ifr); 3158 len = sizeof(oifr->ifr_addr); 3159 } else 3160 #endif 3161 len = sizeof(ifr->ifr_ifru.ifru_space); 3162 3163 if (len < sa->sa_len) 3164 return EFBIG; 3165 3166 memset(&ifr->ifr_addr, 0, len); 3167 sockaddr_copy(&ifr->ifr_addr, len, sa); 3168 3169 #ifdef COMPAT_OIFREQ 3170 if (cmd != ocmd) 3171 ifreqn2o(oifr, ifr); 3172 #endif 3173 return 0; 3174 } 3175 3176 /* 3177 * wrapper function for the drivers which doesn't have if_transmit(). 3178 */ 3179 static int 3180 if_transmit(struct ifnet *ifp, struct mbuf *m) 3181 { 3182 int s, error; 3183 3184 s = splnet(); 3185 3186 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3187 if (error != 0) { 3188 /* mbuf is already freed */ 3189 goto out; 3190 } 3191 3192 ifp->if_obytes += m->m_pkthdr.len;; 3193 if (m->m_flags & M_MCAST) 3194 ifp->if_omcasts++; 3195 3196 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3197 if_start_lock(ifp); 3198 out: 3199 splx(s); 3200 3201 return error; 3202 } 3203 3204 int 3205 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3206 { 3207 int error; 3208 3209 #ifdef ALTQ 3210 KERNEL_LOCK(1, NULL); 3211 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3212 error = if_transmit(ifp, m); 3213 KERNEL_UNLOCK_ONE(NULL); 3214 } else { 3215 KERNEL_UNLOCK_ONE(NULL); 3216 error = (*ifp->if_transmit)(ifp, m); 3217 } 3218 #else /* !ALTQ */ 3219 error = (*ifp->if_transmit)(ifp, m); 3220 #endif /* !ALTQ */ 3221 3222 return error; 3223 } 3224 3225 /* 3226 * Queue message on interface, and start output if interface 3227 * not yet active. 3228 */ 3229 int 3230 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3231 { 3232 3233 return if_transmit_lock(ifp, m); 3234 } 3235 3236 /* 3237 * Queue message on interface, possibly using a second fast queue 3238 */ 3239 int 3240 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3241 { 3242 int error = 0; 3243 3244 if (ifq != NULL 3245 #ifdef ALTQ 3246 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3247 #endif 3248 ) { 3249 if (IF_QFULL(ifq)) { 3250 IF_DROP(&ifp->if_snd); 3251 m_freem(m); 3252 if (error == 0) 3253 error = ENOBUFS; 3254 } else 3255 IF_ENQUEUE(ifq, m); 3256 } else 3257 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3258 if (error != 0) { 3259 ++ifp->if_oerrors; 3260 return error; 3261 } 3262 return 0; 3263 } 3264 3265 int 3266 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3267 { 3268 int rc; 3269 3270 if (ifp->if_initaddr != NULL) 3271 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3272 else if (src || 3273 /* FIXME: may not hold if_ioctl_lock */ 3274 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3275 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); 3276 3277 return rc; 3278 } 3279 3280 int 3281 if_do_dad(struct ifnet *ifp) 3282 { 3283 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3284 return 0; 3285 3286 switch (ifp->if_type) { 3287 case IFT_FAITH: 3288 /* 3289 * These interfaces do not have the IFF_LOOPBACK flag, 3290 * but loop packets back. We do not have to do DAD on such 3291 * interfaces. We should even omit it, because loop-backed 3292 * responses would confuse the DAD procedure. 3293 */ 3294 return 0; 3295 default: 3296 /* 3297 * Our DAD routine requires the interface up and running. 3298 * However, some interfaces can be up before the RUNNING 3299 * status. Additionaly, users may try to assign addresses 3300 * before the interface becomes up (or running). 3301 * We simply skip DAD in such a case as a work around. 3302 * XXX: we should rather mark "tentative" on such addresses, 3303 * and do DAD after the interface becomes ready. 3304 */ 3305 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 3306 (IFF_UP|IFF_RUNNING)) 3307 return 0; 3308 3309 return 1; 3310 } 3311 } 3312 3313 int 3314 if_flags_set(ifnet_t *ifp, const short flags) 3315 { 3316 int rc; 3317 3318 if (ifp->if_setflags != NULL) 3319 rc = (*ifp->if_setflags)(ifp, flags); 3320 else { 3321 short cantflags, chgdflags; 3322 struct ifreq ifr; 3323 3324 chgdflags = ifp->if_flags ^ flags; 3325 cantflags = chgdflags & IFF_CANTCHANGE; 3326 3327 if (cantflags != 0) 3328 ifp->if_flags ^= cantflags; 3329 3330 /* Traditionally, we do not call if_ioctl after 3331 * setting/clearing only IFF_PROMISC if the interface 3332 * isn't IFF_UP. Uphold that tradition. 3333 */ 3334 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3335 return 0; 3336 3337 memset(&ifr, 0, sizeof(ifr)); 3338 3339 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3340 /* FIXME: may not hold if_ioctl_lock */ 3341 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); 3342 3343 if (rc != 0 && cantflags != 0) 3344 ifp->if_flags ^= cantflags; 3345 } 3346 3347 return rc; 3348 } 3349 3350 int 3351 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3352 { 3353 int rc; 3354 struct ifreq ifr; 3355 3356 if (ifp->if_mcastop != NULL) 3357 rc = (*ifp->if_mcastop)(ifp, cmd, sa); 3358 else { 3359 ifreq_setaddr(cmd, &ifr, sa); 3360 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); 3361 } 3362 3363 return rc; 3364 } 3365 3366 static void 3367 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3368 struct ifaltq *ifq) 3369 { 3370 const struct sysctlnode *cnode, *rnode; 3371 3372 if (sysctl_createv(clog, 0, NULL, &rnode, 3373 CTLFLAG_PERMANENT, 3374 CTLTYPE_NODE, "interfaces", 3375 SYSCTL_DESCR("Per-interface controls"), 3376 NULL, 0, NULL, 0, 3377 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 3378 goto bad; 3379 3380 if (sysctl_createv(clog, 0, &rnode, &rnode, 3381 CTLFLAG_PERMANENT, 3382 CTLTYPE_NODE, ifname, 3383 SYSCTL_DESCR("Interface controls"), 3384 NULL, 0, NULL, 0, 3385 CTL_CREATE, CTL_EOL) != 0) 3386 goto bad; 3387 3388 if (sysctl_createv(clog, 0, &rnode, &rnode, 3389 CTLFLAG_PERMANENT, 3390 CTLTYPE_NODE, "sndq", 3391 SYSCTL_DESCR("Interface output queue controls"), 3392 NULL, 0, NULL, 0, 3393 CTL_CREATE, CTL_EOL) != 0) 3394 goto bad; 3395 3396 if (sysctl_createv(clog, 0, &rnode, &cnode, 3397 CTLFLAG_PERMANENT, 3398 CTLTYPE_INT, "len", 3399 SYSCTL_DESCR("Current output queue length"), 3400 NULL, 0, &ifq->ifq_len, 0, 3401 CTL_CREATE, CTL_EOL) != 0) 3402 goto bad; 3403 3404 if (sysctl_createv(clog, 0, &rnode, &cnode, 3405 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3406 CTLTYPE_INT, "maxlen", 3407 SYSCTL_DESCR("Maximum allowed output queue length"), 3408 NULL, 0, &ifq->ifq_maxlen, 0, 3409 CTL_CREATE, CTL_EOL) != 0) 3410 goto bad; 3411 3412 if (sysctl_createv(clog, 0, &rnode, &cnode, 3413 CTLFLAG_PERMANENT, 3414 CTLTYPE_INT, "drops", 3415 SYSCTL_DESCR("Packets dropped due to full output queue"), 3416 NULL, 0, &ifq->ifq_drops, 0, 3417 CTL_CREATE, CTL_EOL) != 0) 3418 goto bad; 3419 3420 return; 3421 bad: 3422 printf("%s: could not attach sysctl nodes\n", ifname); 3423 return; 3424 } 3425 3426 #if defined(INET) || defined(INET6) 3427 3428 #define SYSCTL_NET_PKTQ(q, cn, c) \ 3429 static int \ 3430 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \ 3431 { \ 3432 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \ 3433 } 3434 3435 #if defined(INET) 3436 static int 3437 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS) 3438 { 3439 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq); 3440 } 3441 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS) 3442 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS) 3443 #endif 3444 3445 #if defined(INET6) 3446 static int 3447 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS) 3448 { 3449 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq); 3450 } 3451 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS) 3452 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS) 3453 #endif 3454 3455 static void 3456 sysctl_net_pktq_setup(struct sysctllog **clog, int pf) 3457 { 3458 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL; 3459 const char *pfname = NULL, *ipname = NULL; 3460 int ipn = 0, qid = 0; 3461 3462 switch (pf) { 3463 #if defined(INET) 3464 case PF_INET: 3465 len_func = sysctl_net_ip_pktq_items; 3466 maxlen_func = sysctl_net_ip_pktq_maxlen; 3467 drops_func = sysctl_net_ip_pktq_drops; 3468 pfname = "inet", ipn = IPPROTO_IP; 3469 ipname = "ip", qid = IPCTL_IFQ; 3470 break; 3471 #endif 3472 #if defined(INET6) 3473 case PF_INET6: 3474 len_func = sysctl_net_ip6_pktq_items; 3475 maxlen_func = sysctl_net_ip6_pktq_maxlen; 3476 drops_func = sysctl_net_ip6_pktq_drops; 3477 pfname = "inet6", ipn = IPPROTO_IPV6; 3478 ipname = "ip6", qid = IPV6CTL_IFQ; 3479 break; 3480 #endif 3481 default: 3482 KASSERT(false); 3483 } 3484 3485 sysctl_createv(clog, 0, NULL, NULL, 3486 CTLFLAG_PERMANENT, 3487 CTLTYPE_NODE, pfname, NULL, 3488 NULL, 0, NULL, 0, 3489 CTL_NET, pf, CTL_EOL); 3490 sysctl_createv(clog, 0, NULL, NULL, 3491 CTLFLAG_PERMANENT, 3492 CTLTYPE_NODE, ipname, NULL, 3493 NULL, 0, NULL, 0, 3494 CTL_NET, pf, ipn, CTL_EOL); 3495 sysctl_createv(clog, 0, NULL, NULL, 3496 CTLFLAG_PERMANENT, 3497 CTLTYPE_NODE, "ifq", 3498 SYSCTL_DESCR("Protocol input queue controls"), 3499 NULL, 0, NULL, 0, 3500 CTL_NET, pf, ipn, qid, CTL_EOL); 3501 3502 sysctl_createv(clog, 0, NULL, NULL, 3503 CTLFLAG_PERMANENT, 3504 CTLTYPE_INT, "len", 3505 SYSCTL_DESCR("Current input queue length"), 3506 len_func, 0, NULL, 0, 3507 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); 3508 sysctl_createv(clog, 0, NULL, NULL, 3509 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3510 CTLTYPE_INT, "maxlen", 3511 SYSCTL_DESCR("Maximum allowed input queue length"), 3512 maxlen_func, 0, NULL, 0, 3513 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); 3514 sysctl_createv(clog, 0, NULL, NULL, 3515 CTLFLAG_PERMANENT, 3516 CTLTYPE_INT, "drops", 3517 SYSCTL_DESCR("Packets dropped due to full input queue"), 3518 drops_func, 0, NULL, 0, 3519 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); 3520 } 3521 #endif /* INET || INET6 */ 3522 3523 static int 3524 if_sdl_sysctl(SYSCTLFN_ARGS) 3525 { 3526 struct ifnet *ifp; 3527 const struct sockaddr_dl *sdl; 3528 struct psref psref; 3529 int error = 0; 3530 int bound; 3531 3532 if (namelen != 1) 3533 return EINVAL; 3534 3535 bound = curlwp_bind(); 3536 ifp = if_get_byindex(name[0], &psref); 3537 if (ifp == NULL) { 3538 error = ENODEV; 3539 goto out0; 3540 } 3541 3542 sdl = ifp->if_sadl; 3543 if (sdl == NULL) { 3544 *oldlenp = 0; 3545 goto out1; 3546 } 3547 3548 if (oldp == NULL) { 3549 *oldlenp = sdl->sdl_alen; 3550 goto out1; 3551 } 3552 3553 if (*oldlenp >= sdl->sdl_alen) 3554 *oldlenp = sdl->sdl_alen; 3555 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp); 3556 out1: 3557 if_put(ifp, &psref); 3558 out0: 3559 curlwp_bindx(bound); 3560 return error; 3561 } 3562 3563 static void 3564 if_sysctl_setup(struct sysctllog **clog) 3565 { 3566 const struct sysctlnode *rnode = NULL; 3567 3568 sysctl_createv(clog, 0, NULL, &rnode, 3569 CTLFLAG_PERMANENT, 3570 CTLTYPE_NODE, "sdl", 3571 SYSCTL_DESCR("Get active link-layer address"), 3572 if_sdl_sysctl, 0, NULL, 0, 3573 CTL_NET, CTL_CREATE, CTL_EOL); 3574 3575 #if defined(INET) 3576 sysctl_net_pktq_setup(NULL, PF_INET); 3577 #endif 3578 #ifdef INET6 3579 if (in6_present) 3580 sysctl_net_pktq_setup(NULL, PF_INET6); 3581 #endif 3582 } 3583