1 /* $NetBSD: if.c,v 1.369 2016/12/26 23:21:49 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.369 2016/12/26 23:21:49 christos Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 99 #include "opt_atalk.h" 100 #include "opt_natm.h" 101 #include "opt_wlan.h" 102 #include "opt_net_mpsafe.h" 103 #endif 104 105 #include <sys/param.h> 106 #include <sys/mbuf.h> 107 #include <sys/systm.h> 108 #include <sys/callout.h> 109 #include <sys/proc.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/domain.h> 113 #include <sys/protosw.h> 114 #include <sys/kernel.h> 115 #include <sys/ioctl.h> 116 #include <sys/sysctl.h> 117 #include <sys/syslog.h> 118 #include <sys/kauth.h> 119 #include <sys/kmem.h> 120 #include <sys/xcall.h> 121 #include <sys/cpu.h> 122 #include <sys/intr.h> 123 124 #include <net/if.h> 125 #include <net/if_dl.h> 126 #include <net/if_ether.h> 127 #include <net/if_media.h> 128 #include <net80211/ieee80211.h> 129 #include <net80211/ieee80211_ioctl.h> 130 #include <net/if_types.h> 131 #include <net/route.h> 132 #include <net/netisr.h> 133 #include <sys/module.h> 134 #ifdef NETATALK 135 #include <netatalk/at_extern.h> 136 #include <netatalk/at.h> 137 #endif 138 #include <net/pfil.h> 139 #include <netinet/in.h> 140 #include <netinet/in_var.h> 141 #ifndef IPSEC 142 #include <netinet/ip_encap.h> 143 #endif 144 #include <net/bpf.h> 145 146 #ifdef INET6 147 #include <netinet6/in6_var.h> 148 #include <netinet6/nd6.h> 149 #endif 150 151 #include "ether.h" 152 #include "fddi.h" 153 #include "token.h" 154 155 #include "carp.h" 156 #if NCARP > 0 157 #include <netinet/ip_carp.h> 158 #endif 159 160 #include <compat/sys/sockio.h> 161 #include <compat/sys/socket.h> 162 163 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 164 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 165 166 /* 167 * Global list of interfaces. 168 */ 169 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 170 struct ifnet_head ifnet_list; 171 172 struct pslist_head ifnet_pslist; 173 static ifnet_t ** ifindex2ifnet = NULL; 174 static u_int if_index = 1; 175 static size_t if_indexlim = 0; 176 static uint64_t index_gen; 177 /* Mutex to protect the above objects. */ 178 kmutex_t ifnet_mtx __cacheline_aligned; 179 struct psref_class *ifnet_psref_class __read_mostly; 180 static pserialize_t ifnet_psz; 181 182 static kmutex_t if_clone_mtx; 183 184 struct ifnet *lo0ifp; 185 int ifqmaxlen = IFQ_MAXLEN; 186 187 struct psref_class *ifa_psref_class __read_mostly; 188 189 static int if_delroute_matcher(struct rtentry *, void *); 190 191 static struct if_clone *if_clone_lookup(const char *, int *); 192 193 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 194 static int if_cloners_count; 195 196 /* Packet filtering hook for interfaces. */ 197 pfil_head_t * if_pfil __read_mostly; 198 199 static kauth_listener_t if_listener; 200 201 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 202 static void if_detach_queues(struct ifnet *, struct ifqueue *); 203 static void sysctl_sndq_setup(struct sysctllog **, const char *, 204 struct ifaltq *); 205 static void if_slowtimo(void *); 206 static void if_free_sadl(struct ifnet *); 207 static void if_attachdomain1(struct ifnet *); 208 static int ifconf(u_long, void *); 209 static int if_transmit(struct ifnet *, struct mbuf *); 210 static int if_clone_create(const char *); 211 static int if_clone_destroy(const char *); 212 static void if_link_state_change_si(void *); 213 214 struct if_percpuq { 215 struct ifnet *ipq_ifp; 216 void *ipq_si; 217 struct percpu *ipq_ifqs; /* struct ifqueue */ 218 }; 219 220 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 221 222 static void if_percpuq_drops(void *, void *, struct cpu_info *); 223 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 224 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 225 struct if_percpuq *); 226 227 struct if_deferred_start { 228 struct ifnet *ids_ifp; 229 void (*ids_if_start)(struct ifnet *); 230 void *ids_si; 231 }; 232 233 static void if_deferred_start_softint(void *); 234 static void if_deferred_start_common(struct ifnet *); 235 static void if_deferred_start_destroy(struct ifnet *); 236 237 #if defined(INET) || defined(INET6) 238 static void sysctl_net_pktq_setup(struct sysctllog **, int); 239 #endif 240 241 /* 242 * Pointer to stub or real compat_cvtcmd() depending on presence of 243 * the compat module 244 */ 245 u_long stub_compat_cvtcmd(u_long); 246 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd; 247 248 /* Similarly, pointer to compat_ifioctl() if it is present */ 249 250 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *, 251 struct lwp *) = NULL; 252 253 /* The stub version of compat_cvtcmd() */ 254 u_long stub_compat_cvtcmd(u_long cmd) 255 { 256 257 return cmd; 258 } 259 260 static int 261 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 262 void *arg0, void *arg1, void *arg2, void *arg3) 263 { 264 int result; 265 enum kauth_network_req req; 266 267 result = KAUTH_RESULT_DEFER; 268 req = (enum kauth_network_req)arg1; 269 270 if (action != KAUTH_NETWORK_INTERFACE) 271 return result; 272 273 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 274 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 275 result = KAUTH_RESULT_ALLOW; 276 277 return result; 278 } 279 280 /* 281 * Network interface utility routines. 282 * 283 * Routines with ifa_ifwith* names take sockaddr *'s as 284 * parameters. 285 */ 286 void 287 ifinit(void) 288 { 289 #if defined(INET) 290 sysctl_net_pktq_setup(NULL, PF_INET); 291 #endif 292 #ifdef INET6 293 if (in6_present) 294 sysctl_net_pktq_setup(NULL, PF_INET6); 295 #endif 296 297 #if (defined(INET) || defined(INET6)) && !defined(IPSEC) 298 encapinit(); 299 #endif 300 301 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 302 if_listener_cb, NULL); 303 304 /* interfaces are available, inform socket code */ 305 ifioctl = doifioctl; 306 } 307 308 /* 309 * XXX Initialization before configure(). 310 * XXX hack to get pfil_add_hook working in autoconf. 311 */ 312 void 313 ifinit1(void) 314 { 315 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 316 317 TAILQ_INIT(&ifnet_list); 318 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 319 ifnet_psz = pserialize_create(); 320 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 321 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 322 PSLIST_INIT(&ifnet_pslist); 323 324 if_indexlim = 8; 325 326 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 327 KASSERT(if_pfil != NULL); 328 329 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN) 330 etherinit(); 331 #endif 332 } 333 334 ifnet_t * 335 if_alloc(u_char type) 336 { 337 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 338 } 339 340 void 341 if_free(ifnet_t *ifp) 342 { 343 kmem_free(ifp, sizeof(ifnet_t)); 344 } 345 346 void 347 if_initname(struct ifnet *ifp, const char *name, int unit) 348 { 349 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 350 "%s%d", name, unit); 351 } 352 353 /* 354 * Null routines used while an interface is going away. These routines 355 * just return an error. 356 */ 357 358 int 359 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 360 const struct sockaddr *so, const struct rtentry *rt) 361 { 362 363 return ENXIO; 364 } 365 366 void 367 if_nullinput(struct ifnet *ifp, struct mbuf *m) 368 { 369 370 /* Nothing. */ 371 } 372 373 void 374 if_nullstart(struct ifnet *ifp) 375 { 376 377 /* Nothing. */ 378 } 379 380 int 381 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 382 { 383 384 return ENXIO; 385 } 386 387 int 388 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 389 { 390 391 return ENXIO; 392 } 393 394 int 395 if_nullinit(struct ifnet *ifp) 396 { 397 398 return ENXIO; 399 } 400 401 void 402 if_nullstop(struct ifnet *ifp, int disable) 403 { 404 405 /* Nothing. */ 406 } 407 408 void 409 if_nullslowtimo(struct ifnet *ifp) 410 { 411 412 /* Nothing. */ 413 } 414 415 void 416 if_nulldrain(struct ifnet *ifp) 417 { 418 419 /* Nothing. */ 420 } 421 422 void 423 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 424 { 425 struct ifaddr *ifa; 426 struct sockaddr_dl *sdl; 427 428 ifp->if_addrlen = addrlen; 429 if_alloc_sadl(ifp); 430 ifa = ifp->if_dl; 431 sdl = satosdl(ifa->ifa_addr); 432 433 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 434 if (factory) { 435 ifp->if_hwdl = ifp->if_dl; 436 ifaref(ifp->if_hwdl); 437 } 438 /* TBD routing socket */ 439 } 440 441 struct ifaddr * 442 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 443 { 444 unsigned socksize, ifasize; 445 int addrlen, namelen; 446 struct sockaddr_dl *mask, *sdl; 447 struct ifaddr *ifa; 448 449 namelen = strlen(ifp->if_xname); 450 addrlen = ifp->if_addrlen; 451 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 452 ifasize = sizeof(*ifa) + 2 * socksize; 453 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO); 454 455 sdl = (struct sockaddr_dl *)(ifa + 1); 456 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 457 458 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 459 ifp->if_xname, namelen, NULL, addrlen); 460 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 461 memset(&mask->sdl_data[0], 0xff, namelen); 462 ifa->ifa_rtrequest = link_rtrequest; 463 ifa->ifa_addr = (struct sockaddr *)sdl; 464 ifa->ifa_netmask = (struct sockaddr *)mask; 465 ifa_psref_init(ifa); 466 467 *sdlp = sdl; 468 469 return ifa; 470 } 471 472 static void 473 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 474 { 475 const struct sockaddr_dl *sdl; 476 477 ifp->if_dl = ifa; 478 ifaref(ifa); 479 sdl = satosdl(ifa->ifa_addr); 480 ifp->if_sadl = sdl; 481 } 482 483 /* 484 * Allocate the link level name for the specified interface. This 485 * is an attachment helper. It must be called after ifp->if_addrlen 486 * is initialized, which may not be the case when if_attach() is 487 * called. 488 */ 489 void 490 if_alloc_sadl(struct ifnet *ifp) 491 { 492 struct ifaddr *ifa; 493 const struct sockaddr_dl *sdl; 494 495 /* 496 * If the interface already has a link name, release it 497 * now. This is useful for interfaces that can change 498 * link types, and thus switch link names often. 499 */ 500 if (ifp->if_sadl != NULL) 501 if_free_sadl(ifp); 502 503 ifa = if_dl_create(ifp, &sdl); 504 505 ifa_insert(ifp, ifa); 506 if_sadl_setrefs(ifp, ifa); 507 } 508 509 static void 510 if_deactivate_sadl(struct ifnet *ifp) 511 { 512 struct ifaddr *ifa; 513 514 KASSERT(ifp->if_dl != NULL); 515 516 ifa = ifp->if_dl; 517 518 ifp->if_sadl = NULL; 519 520 ifp->if_dl = NULL; 521 ifafree(ifa); 522 } 523 524 void 525 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 526 const struct sockaddr_dl *sdl) 527 { 528 int s, ss; 529 struct ifaddr *ifa; 530 int bound = curlwp_bind(); 531 532 s = splnet(); 533 534 if_deactivate_sadl(ifp); 535 536 if_sadl_setrefs(ifp, ifa0); 537 538 ss = pserialize_read_enter(); 539 IFADDR_READER_FOREACH(ifa, ifp) { 540 struct psref psref; 541 ifa_acquire(ifa, &psref); 542 pserialize_read_exit(ss); 543 544 rtinit(ifa, RTM_LLINFO_UPD, 0); 545 546 ss = pserialize_read_enter(); 547 ifa_release(ifa, &psref); 548 } 549 pserialize_read_exit(ss); 550 551 splx(s); 552 curlwp_bindx(bound); 553 } 554 555 /* 556 * Free the link level name for the specified interface. This is 557 * a detach helper. This is called from if_detach(). 558 */ 559 static void 560 if_free_sadl(struct ifnet *ifp) 561 { 562 struct ifaddr *ifa; 563 int s; 564 565 ifa = ifp->if_dl; 566 if (ifa == NULL) { 567 KASSERT(ifp->if_sadl == NULL); 568 return; 569 } 570 571 KASSERT(ifp->if_sadl != NULL); 572 573 s = splnet(); 574 rtinit(ifa, RTM_DELETE, 0); 575 ifa_remove(ifp, ifa); 576 if_deactivate_sadl(ifp); 577 if (ifp->if_hwdl == ifa) { 578 ifafree(ifa); 579 ifp->if_hwdl = NULL; 580 } 581 splx(s); 582 } 583 584 static void 585 if_getindex(ifnet_t *ifp) 586 { 587 bool hitlimit = false; 588 589 ifp->if_index_gen = index_gen++; 590 591 ifp->if_index = if_index; 592 if (ifindex2ifnet == NULL) { 593 if_index++; 594 goto skip; 595 } 596 while (if_byindex(ifp->if_index)) { 597 /* 598 * If we hit USHRT_MAX, we skip back to 0 since 599 * there are a number of places where the value 600 * of if_index or if_index itself is compared 601 * to or stored in an unsigned short. By 602 * jumping back, we won't botch those assignments 603 * or comparisons. 604 */ 605 if (++if_index == 0) { 606 if_index = 1; 607 } else if (if_index == USHRT_MAX) { 608 /* 609 * However, if we have to jump back to 610 * zero *twice* without finding an empty 611 * slot in ifindex2ifnet[], then there 612 * there are too many (>65535) interfaces. 613 */ 614 if (hitlimit) { 615 panic("too many interfaces"); 616 } 617 hitlimit = true; 618 if_index = 1; 619 } 620 ifp->if_index = if_index; 621 } 622 skip: 623 /* 624 * ifindex2ifnet is indexed by if_index. Since if_index will 625 * grow dynamically, it should grow too. 626 */ 627 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 628 size_t m, n, oldlim; 629 void *q; 630 631 oldlim = if_indexlim; 632 while (ifp->if_index >= if_indexlim) 633 if_indexlim <<= 1; 634 635 /* grow ifindex2ifnet */ 636 m = oldlim * sizeof(struct ifnet *); 637 n = if_indexlim * sizeof(struct ifnet *); 638 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); 639 if (ifindex2ifnet != NULL) { 640 memcpy(q, ifindex2ifnet, m); 641 free(ifindex2ifnet, M_IFADDR); 642 } 643 ifindex2ifnet = (struct ifnet **)q; 644 } 645 ifindex2ifnet[ifp->if_index] = ifp; 646 } 647 648 /* 649 * Initialize an interface and assign an index for it. 650 * 651 * It must be called prior to a device specific attach routine 652 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 653 * and be followed by if_register: 654 * 655 * if_initialize(ifp); 656 * ether_ifattach(ifp, enaddr); 657 * if_register(ifp); 658 */ 659 void 660 if_initialize(ifnet_t *ifp) 661 { 662 KASSERT(if_indexlim > 0); 663 TAILQ_INIT(&ifp->if_addrlist); 664 665 /* 666 * Link level name is allocated later by a separate call to 667 * if_alloc_sadl(). 668 */ 669 670 if (ifp->if_snd.ifq_maxlen == 0) 671 ifp->if_snd.ifq_maxlen = ifqmaxlen; 672 673 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 674 675 ifp->if_link_state = LINK_STATE_UNKNOWN; 676 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 677 678 ifp->if_capenable = 0; 679 ifp->if_csum_flags_tx = 0; 680 ifp->if_csum_flags_rx = 0; 681 682 #ifdef ALTQ 683 ifp->if_snd.altq_type = 0; 684 ifp->if_snd.altq_disc = NULL; 685 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 686 ifp->if_snd.altq_tbr = NULL; 687 ifp->if_snd.altq_ifp = ifp; 688 #endif 689 690 IFQ_LOCK_INIT(&ifp->if_snd); 691 692 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 693 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp); 694 695 IF_AFDATA_LOCK_INIT(ifp); 696 697 if (if_is_link_state_changeable(ifp)) { 698 ifp->if_link_si = softint_establish(SOFTINT_NET, 699 if_link_state_change_si, ifp); 700 if (ifp->if_link_si == NULL) 701 panic("%s: softint_establish() failed", __func__); 702 } 703 704 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 705 PSLIST_INIT(&ifp->if_addr_pslist); 706 psref_target_init(&ifp->if_psref, ifnet_psref_class); 707 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 708 709 IFNET_LOCK(); 710 if_getindex(ifp); 711 IFNET_UNLOCK(); 712 } 713 714 /* 715 * Register an interface to the list of "active" interfaces. 716 */ 717 void 718 if_register(ifnet_t *ifp) 719 { 720 /* 721 * If the driver has not supplied its own if_ioctl, then 722 * supply the default. 723 */ 724 if (ifp->if_ioctl == NULL) 725 ifp->if_ioctl = ifioctl_common; 726 727 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 728 729 if (!STAILQ_EMPTY(&domains)) 730 if_attachdomain1(ifp); 731 732 /* Announce the interface. */ 733 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 734 735 if (ifp->if_slowtimo != NULL) { 736 ifp->if_slowtimo_ch = 737 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP); 738 callout_init(ifp->if_slowtimo_ch, 0); 739 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp); 740 if_slowtimo(ifp); 741 } 742 743 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 744 ifp->if_transmit = if_transmit; 745 746 IFNET_LOCK(); 747 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 748 IFNET_WRITER_INSERT_TAIL(ifp); 749 IFNET_UNLOCK(); 750 } 751 752 /* 753 * The if_percpuq framework 754 * 755 * It allows network device drivers to execute the network stack 756 * in softint (so called softint-based if_input). It utilizes 757 * softint and percpu ifqueue. It doesn't distribute any packets 758 * between CPUs, unlike pktqueue(9). 759 * 760 * Currently we support two options for device drivers to apply the framework: 761 * - Use it implicitly with less changes 762 * - If you use if_attach in driver's _attach function and if_input in 763 * driver's Rx interrupt handler, a packet is queued and a softint handles 764 * the packet implicitly 765 * - Use it explicitly in each driver (recommended) 766 * - You can use if_percpuq_* directly in your driver 767 * - In this case, you need to allocate struct if_percpuq in driver's softc 768 * - See wm(4) as a reference implementation 769 */ 770 771 static void 772 if_percpuq_softint(void *arg) 773 { 774 struct if_percpuq *ipq = arg; 775 struct ifnet *ifp = ipq->ipq_ifp; 776 struct mbuf *m; 777 778 while ((m = if_percpuq_dequeue(ipq)) != NULL) { 779 ifp->if_ipackets++; 780 #ifndef NET_MPSAFE 781 KERNEL_LOCK(1, NULL); 782 #endif 783 bpf_mtap(ifp, m); 784 #ifndef NET_MPSAFE 785 KERNEL_UNLOCK_ONE(NULL); 786 #endif 787 788 ifp->_if_input(ifp, m); 789 } 790 } 791 792 static void 793 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 794 { 795 struct ifqueue *const ifq = p; 796 797 memset(ifq, 0, sizeof(*ifq)); 798 ifq->ifq_maxlen = IFQ_MAXLEN; 799 } 800 801 struct if_percpuq * 802 if_percpuq_create(struct ifnet *ifp) 803 { 804 struct if_percpuq *ipq; 805 806 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 807 if (ipq == NULL) 808 panic("kmem_zalloc failed"); 809 810 ipq->ipq_ifp = ifp; 811 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, 812 if_percpuq_softint, ipq); 813 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 814 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 815 816 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 817 818 return ipq; 819 } 820 821 static struct mbuf * 822 if_percpuq_dequeue(struct if_percpuq *ipq) 823 { 824 struct mbuf *m; 825 struct ifqueue *ifq; 826 int s; 827 828 s = splnet(); 829 ifq = percpu_getref(ipq->ipq_ifqs); 830 IF_DEQUEUE(ifq, m); 831 percpu_putref(ipq->ipq_ifqs); 832 splx(s); 833 834 return m; 835 } 836 837 static void 838 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 839 { 840 struct ifqueue *const ifq = p; 841 842 IF_PURGE(ifq); 843 } 844 845 void 846 if_percpuq_destroy(struct if_percpuq *ipq) 847 { 848 849 /* if_detach may already destroy it */ 850 if (ipq == NULL) 851 return; 852 853 softint_disestablish(ipq->ipq_si); 854 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 855 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 856 kmem_free(ipq, sizeof(*ipq)); 857 } 858 859 void 860 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 861 { 862 struct ifqueue *ifq; 863 int s; 864 865 KASSERT(ipq != NULL); 866 867 s = splnet(); 868 ifq = percpu_getref(ipq->ipq_ifqs); 869 if (IF_QFULL(ifq)) { 870 IF_DROP(ifq); 871 percpu_putref(ipq->ipq_ifqs); 872 m_freem(m); 873 goto out; 874 } 875 IF_ENQUEUE(ifq, m); 876 percpu_putref(ipq->ipq_ifqs); 877 878 softint_schedule(ipq->ipq_si); 879 out: 880 splx(s); 881 } 882 883 static void 884 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 885 { 886 struct ifqueue *const ifq = p; 887 int *sum = arg; 888 889 *sum += ifq->ifq_drops; 890 } 891 892 static int 893 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 894 { 895 struct sysctlnode node; 896 struct if_percpuq *ipq; 897 int sum = 0; 898 int error; 899 900 node = *rnode; 901 ipq = node.sysctl_data; 902 903 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 904 905 node.sysctl_data = ∑ 906 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 907 if (error != 0 || newp == NULL) 908 return error; 909 910 return 0; 911 } 912 913 static void 914 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 915 struct if_percpuq *ipq) 916 { 917 const struct sysctlnode *cnode, *rnode; 918 919 if (sysctl_createv(clog, 0, NULL, &rnode, 920 CTLFLAG_PERMANENT, 921 CTLTYPE_NODE, "interfaces", 922 SYSCTL_DESCR("Per-interface controls"), 923 NULL, 0, NULL, 0, 924 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 925 goto bad; 926 927 if (sysctl_createv(clog, 0, &rnode, &rnode, 928 CTLFLAG_PERMANENT, 929 CTLTYPE_NODE, ifname, 930 SYSCTL_DESCR("Interface controls"), 931 NULL, 0, NULL, 0, 932 CTL_CREATE, CTL_EOL) != 0) 933 goto bad; 934 935 if (sysctl_createv(clog, 0, &rnode, &rnode, 936 CTLFLAG_PERMANENT, 937 CTLTYPE_NODE, "rcvq", 938 SYSCTL_DESCR("Interface input queue controls"), 939 NULL, 0, NULL, 0, 940 CTL_CREATE, CTL_EOL) != 0) 941 goto bad; 942 943 #ifdef NOTYET 944 /* XXX Should show each per-CPU queue length? */ 945 if (sysctl_createv(clog, 0, &rnode, &rnode, 946 CTLFLAG_PERMANENT, 947 CTLTYPE_INT, "len", 948 SYSCTL_DESCR("Current input queue length"), 949 sysctl_percpuq_len, 0, NULL, 0, 950 CTL_CREATE, CTL_EOL) != 0) 951 goto bad; 952 953 if (sysctl_createv(clog, 0, &rnode, &cnode, 954 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 955 CTLTYPE_INT, "maxlen", 956 SYSCTL_DESCR("Maximum allowed input queue length"), 957 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 958 CTL_CREATE, CTL_EOL) != 0) 959 goto bad; 960 #endif 961 962 if (sysctl_createv(clog, 0, &rnode, &cnode, 963 CTLFLAG_PERMANENT, 964 CTLTYPE_INT, "drops", 965 SYSCTL_DESCR("Total packets dropped due to full input queue"), 966 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 967 CTL_CREATE, CTL_EOL) != 0) 968 goto bad; 969 970 return; 971 bad: 972 printf("%s: could not attach sysctl nodes\n", ifname); 973 return; 974 } 975 976 /* 977 * The deferred if_start framework 978 * 979 * The common APIs to defer if_start to softint when if_start is requested 980 * from a device driver running in hardware interrupt context. 981 */ 982 /* 983 * Call ifp->if_start (or equivalent) in a dedicated softint for 984 * deferred if_start. 985 */ 986 static void 987 if_deferred_start_softint(void *arg) 988 { 989 struct if_deferred_start *ids = arg; 990 struct ifnet *ifp = ids->ids_ifp; 991 992 ids->ids_if_start(ifp); 993 } 994 995 /* 996 * The default callback function for deferred if_start. 997 */ 998 static void 999 if_deferred_start_common(struct ifnet *ifp) 1000 { 1001 1002 if_start_lock(ifp); 1003 } 1004 1005 static inline bool 1006 if_snd_is_used(struct ifnet *ifp) 1007 { 1008 1009 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit || 1010 ALTQ_IS_ENABLED(&ifp->if_snd); 1011 } 1012 1013 /* 1014 * Schedule deferred if_start. 1015 */ 1016 void 1017 if_schedule_deferred_start(struct ifnet *ifp) 1018 { 1019 1020 KASSERT(ifp->if_deferred_start != NULL); 1021 1022 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1023 return; 1024 1025 softint_schedule(ifp->if_deferred_start->ids_si); 1026 } 1027 1028 /* 1029 * Create an instance of deferred if_start. A driver should call the function 1030 * only if the driver needs deferred if_start. Drivers can setup their own 1031 * deferred if_start function via 2nd argument. 1032 */ 1033 void 1034 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1035 { 1036 struct if_deferred_start *ids; 1037 1038 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1039 if (ids == NULL) 1040 panic("kmem_zalloc failed"); 1041 1042 ids->ids_ifp = ifp; 1043 ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, 1044 if_deferred_start_softint, ids); 1045 if (func != NULL) 1046 ids->ids_if_start = func; 1047 else 1048 ids->ids_if_start = if_deferred_start_common; 1049 1050 ifp->if_deferred_start = ids; 1051 } 1052 1053 static void 1054 if_deferred_start_destroy(struct ifnet *ifp) 1055 { 1056 1057 if (ifp->if_deferred_start == NULL) 1058 return; 1059 1060 softint_disestablish(ifp->if_deferred_start->ids_si); 1061 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1062 ifp->if_deferred_start = NULL; 1063 } 1064 1065 /* 1066 * The common interface input routine that is called by device drivers, 1067 * which should be used only when the driver's rx handler already runs 1068 * in softint. 1069 */ 1070 void 1071 if_input(struct ifnet *ifp, struct mbuf *m) 1072 { 1073 1074 KASSERT(ifp->if_percpuq == NULL); 1075 KASSERT(!cpu_intr_p()); 1076 1077 ifp->if_ipackets++; 1078 #ifndef NET_MPSAFE 1079 KERNEL_LOCK(1, NULL); 1080 #endif 1081 bpf_mtap(ifp, m); 1082 #ifndef NET_MPSAFE 1083 KERNEL_UNLOCK_ONE(NULL); 1084 #endif 1085 1086 ifp->_if_input(ifp, m); 1087 } 1088 1089 /* 1090 * DEPRECATED. Use if_initialize and if_register instead. 1091 * See the above comment of if_initialize. 1092 * 1093 * Note that it implicitly enables if_percpuq to make drivers easy to 1094 * migrate softint-based if_input without much changes. If you don't 1095 * want to enable it, use if_initialize instead. 1096 */ 1097 void 1098 if_attach(ifnet_t *ifp) 1099 { 1100 1101 if_initialize(ifp); 1102 ifp->if_percpuq = if_percpuq_create(ifp); 1103 if_register(ifp); 1104 } 1105 1106 void 1107 if_attachdomain(void) 1108 { 1109 struct ifnet *ifp; 1110 int s; 1111 int bound = curlwp_bind(); 1112 1113 s = pserialize_read_enter(); 1114 IFNET_READER_FOREACH(ifp) { 1115 struct psref psref; 1116 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1117 pserialize_read_exit(s); 1118 if_attachdomain1(ifp); 1119 s = pserialize_read_enter(); 1120 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1121 } 1122 pserialize_read_exit(s); 1123 curlwp_bindx(bound); 1124 } 1125 1126 static void 1127 if_attachdomain1(struct ifnet *ifp) 1128 { 1129 struct domain *dp; 1130 int s; 1131 1132 s = splnet(); 1133 1134 /* address family dependent data region */ 1135 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1136 DOMAIN_FOREACH(dp) { 1137 if (dp->dom_ifattach != NULL) 1138 ifp->if_afdata[dp->dom_family] = 1139 (*dp->dom_ifattach)(ifp); 1140 } 1141 1142 splx(s); 1143 } 1144 1145 /* 1146 * Deactivate an interface. This points all of the procedure 1147 * handles at error stubs. May be called from interrupt context. 1148 */ 1149 void 1150 if_deactivate(struct ifnet *ifp) 1151 { 1152 int s; 1153 1154 s = splnet(); 1155 1156 ifp->if_output = if_nulloutput; 1157 ifp->_if_input = if_nullinput; 1158 ifp->if_start = if_nullstart; 1159 ifp->if_transmit = if_nulltransmit; 1160 ifp->if_ioctl = if_nullioctl; 1161 ifp->if_init = if_nullinit; 1162 ifp->if_stop = if_nullstop; 1163 ifp->if_slowtimo = if_nullslowtimo; 1164 ifp->if_drain = if_nulldrain; 1165 1166 /* No more packets may be enqueued. */ 1167 ifp->if_snd.ifq_maxlen = 0; 1168 1169 splx(s); 1170 } 1171 1172 bool 1173 if_is_deactivated(const struct ifnet *ifp) 1174 { 1175 1176 return ifp->if_output == if_nulloutput; 1177 } 1178 1179 void 1180 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 1181 { 1182 struct ifaddr *ifa, *nifa; 1183 int s; 1184 1185 s = pserialize_read_enter(); 1186 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1187 nifa = IFADDR_READER_NEXT(ifa); 1188 if (ifa->ifa_addr->sa_family != family) 1189 continue; 1190 pserialize_read_exit(s); 1191 1192 (*purgeaddr)(ifa); 1193 1194 s = pserialize_read_enter(); 1195 } 1196 pserialize_read_exit(s); 1197 } 1198 1199 #ifdef IFAREF_DEBUG 1200 static struct ifaddr **ifa_list; 1201 static int ifa_list_size; 1202 1203 /* Depends on only one if_attach runs at once */ 1204 static void 1205 if_build_ifa_list(struct ifnet *ifp) 1206 { 1207 struct ifaddr *ifa; 1208 int i; 1209 1210 KASSERT(ifa_list == NULL); 1211 KASSERT(ifa_list_size == 0); 1212 1213 IFADDR_READER_FOREACH(ifa, ifp) 1214 ifa_list_size++; 1215 1216 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1217 if (ifa_list == NULL) 1218 return; 1219 1220 i = 0; 1221 IFADDR_READER_FOREACH(ifa, ifp) { 1222 ifa_list[i++] = ifa; 1223 ifaref(ifa); 1224 } 1225 } 1226 1227 static void 1228 if_check_and_free_ifa_list(struct ifnet *ifp) 1229 { 1230 int i; 1231 struct ifaddr *ifa; 1232 1233 if (ifa_list == NULL) 1234 return; 1235 1236 for (i = 0; i < ifa_list_size; i++) { 1237 char buf[64]; 1238 1239 ifa = ifa_list[i]; 1240 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1241 if (ifa->ifa_refcnt > 1) { 1242 log(LOG_WARNING, 1243 "ifa(%s) still referenced (refcnt=%d)\n", 1244 buf, ifa->ifa_refcnt - 1); 1245 } else 1246 log(LOG_DEBUG, 1247 "ifa(%s) not referenced (refcnt=%d)\n", 1248 buf, ifa->ifa_refcnt - 1); 1249 ifafree(ifa); 1250 } 1251 1252 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1253 ifa_list = NULL; 1254 ifa_list_size = 0; 1255 } 1256 #endif 1257 1258 /* 1259 * Detach an interface from the list of "active" interfaces, 1260 * freeing any resources as we go along. 1261 * 1262 * NOTE: This routine must be called with a valid thread context, 1263 * as it may block. 1264 */ 1265 void 1266 if_detach(struct ifnet *ifp) 1267 { 1268 struct socket so; 1269 struct ifaddr *ifa; 1270 #ifdef IFAREF_DEBUG 1271 struct ifaddr *last_ifa = NULL; 1272 #endif 1273 struct domain *dp; 1274 const struct protosw *pr; 1275 int s, i, family, purged; 1276 uint64_t xc; 1277 1278 #ifdef IFAREF_DEBUG 1279 if_build_ifa_list(ifp); 1280 #endif 1281 /* 1282 * XXX It's kind of lame that we have to have the 1283 * XXX socket structure... 1284 */ 1285 memset(&so, 0, sizeof(so)); 1286 1287 s = splnet(); 1288 1289 sysctl_teardown(&ifp->if_sysctl_log); 1290 mutex_enter(ifp->if_ioctl_lock); 1291 if_deactivate(ifp); 1292 mutex_exit(ifp->if_ioctl_lock); 1293 1294 IFNET_LOCK(); 1295 ifindex2ifnet[ifp->if_index] = NULL; 1296 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1297 IFNET_WRITER_REMOVE(ifp); 1298 pserialize_perform(ifnet_psz); 1299 IFNET_UNLOCK(); 1300 1301 /* Wait for all readers to drain before freeing. */ 1302 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1303 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1304 1305 mutex_obj_free(ifp->if_ioctl_lock); 1306 ifp->if_ioctl_lock = NULL; 1307 1308 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) { 1309 ifp->if_slowtimo = NULL; 1310 callout_halt(ifp->if_slowtimo_ch, NULL); 1311 callout_destroy(ifp->if_slowtimo_ch); 1312 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch)); 1313 } 1314 if_deferred_start_destroy(ifp); 1315 1316 /* 1317 * Do an if_down() to give protocols a chance to do something. 1318 */ 1319 if_down(ifp); 1320 1321 #ifdef ALTQ 1322 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1323 altq_disable(&ifp->if_snd); 1324 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1325 altq_detach(&ifp->if_snd); 1326 #endif 1327 1328 mutex_obj_free(ifp->if_snd.ifq_lock); 1329 1330 #if NCARP > 0 1331 /* Remove the interface from any carp group it is a part of. */ 1332 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1333 carp_ifdetach(ifp); 1334 #endif 1335 1336 /* 1337 * Rip all the addresses off the interface. This should make 1338 * all of the routes go away. 1339 * 1340 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1341 * from the list, including our "cursor", ifa. For safety, 1342 * and to honor the TAILQ abstraction, I just restart the 1343 * loop after each removal. Note that the loop will exit 1344 * when all of the remaining ifaddrs belong to the AF_LINK 1345 * family. I am counting on the historical fact that at 1346 * least one pr_usrreq in each address domain removes at 1347 * least one ifaddr. 1348 */ 1349 again: 1350 /* 1351 * At this point, no other one tries to remove ifa in the list, 1352 * so we don't need to take a lock or psref. 1353 */ 1354 IFADDR_READER_FOREACH(ifa, ifp) { 1355 family = ifa->ifa_addr->sa_family; 1356 #ifdef IFAREF_DEBUG 1357 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1358 ifa, family, ifa->ifa_refcnt); 1359 if (last_ifa != NULL && ifa == last_ifa) 1360 panic("if_detach: loop detected"); 1361 last_ifa = ifa; 1362 #endif 1363 if (family == AF_LINK) 1364 continue; 1365 dp = pffinddomain(family); 1366 #ifdef DIAGNOSTIC 1367 if (dp == NULL) 1368 panic("if_detach: no domain for AF %d", 1369 family); 1370 #endif 1371 /* 1372 * XXX These PURGEIF calls are redundant with the 1373 * purge-all-families calls below, but are left in for 1374 * now both to make a smaller change, and to avoid 1375 * unplanned interactions with clearing of 1376 * ifp->if_addrlist. 1377 */ 1378 purged = 0; 1379 for (pr = dp->dom_protosw; 1380 pr < dp->dom_protoswNPROTOSW; pr++) { 1381 so.so_proto = pr; 1382 if (pr->pr_usrreqs) { 1383 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1384 purged = 1; 1385 } 1386 } 1387 if (purged == 0) { 1388 /* 1389 * XXX What's really the best thing to do 1390 * XXX here? --thorpej@NetBSD.org 1391 */ 1392 printf("if_detach: WARNING: AF %d not purged\n", 1393 family); 1394 ifa_remove(ifp, ifa); 1395 } 1396 goto again; 1397 } 1398 1399 if_free_sadl(ifp); 1400 1401 /* Delete stray routes from the routing table. */ 1402 for (i = 0; i <= AF_MAX; i++) 1403 rt_delete_matched_entries(i, if_delroute_matcher, ifp); 1404 1405 DOMAIN_FOREACH(dp) { 1406 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1407 { 1408 void *p = ifp->if_afdata[dp->dom_family]; 1409 if (p) { 1410 ifp->if_afdata[dp->dom_family] = NULL; 1411 (*dp->dom_ifdetach)(ifp, p); 1412 } 1413 } 1414 1415 /* 1416 * One would expect multicast memberships (INET and 1417 * INET6) on UDP sockets to be purged by the PURGEIF 1418 * calls above, but if all addresses were removed from 1419 * the interface prior to destruction, the calls will 1420 * not be made (e.g. ppp, for which pppd(8) generally 1421 * removes addresses before destroying the interface). 1422 * Because there is no invariant that multicast 1423 * memberships only exist for interfaces with IPv4 1424 * addresses, we must call PURGEIF regardless of 1425 * addresses. (Protocols which might store ifnet 1426 * pointers are marked with PR_PURGEIF.) 1427 */ 1428 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 1429 so.so_proto = pr; 1430 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1431 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1432 } 1433 } 1434 1435 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp); 1436 (void)pfil_head_destroy(ifp->if_pfil); 1437 1438 /* Announce that the interface is gone. */ 1439 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1440 1441 IF_AFDATA_LOCK_DESTROY(ifp); 1442 1443 if (if_is_link_state_changeable(ifp)) { 1444 softint_disestablish(ifp->if_link_si); 1445 ifp->if_link_si = NULL; 1446 } 1447 1448 /* 1449 * remove packets that came from ifp, from software interrupt queues. 1450 */ 1451 DOMAIN_FOREACH(dp) { 1452 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { 1453 struct ifqueue *iq = dp->dom_ifqueues[i]; 1454 if (iq == NULL) 1455 break; 1456 dp->dom_ifqueues[i] = NULL; 1457 if_detach_queues(ifp, iq); 1458 } 1459 } 1460 1461 /* 1462 * IP queues have to be processed separately: net-queue barrier 1463 * ensures that the packets are dequeued while a cross-call will 1464 * ensure that the interrupts have completed. FIXME: not quite.. 1465 */ 1466 #ifdef INET 1467 pktq_barrier(ip_pktq); 1468 #endif 1469 #ifdef INET6 1470 if (in6_present) 1471 pktq_barrier(ip6_pktq); 1472 #endif 1473 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 1474 xc_wait(xc); 1475 1476 if (ifp->if_percpuq != NULL) { 1477 if_percpuq_destroy(ifp->if_percpuq); 1478 ifp->if_percpuq = NULL; 1479 } 1480 1481 splx(s); 1482 1483 #ifdef IFAREF_DEBUG 1484 if_check_and_free_ifa_list(ifp); 1485 #endif 1486 } 1487 1488 static void 1489 if_detach_queues(struct ifnet *ifp, struct ifqueue *q) 1490 { 1491 struct mbuf *m, *prev, *next; 1492 1493 prev = NULL; 1494 for (m = q->ifq_head; m != NULL; m = next) { 1495 KASSERT((m->m_flags & M_PKTHDR) != 0); 1496 1497 next = m->m_nextpkt; 1498 if (m->m_pkthdr.rcvif_index != ifp->if_index) { 1499 prev = m; 1500 continue; 1501 } 1502 1503 if (prev != NULL) 1504 prev->m_nextpkt = m->m_nextpkt; 1505 else 1506 q->ifq_head = m->m_nextpkt; 1507 if (q->ifq_tail == m) 1508 q->ifq_tail = prev; 1509 q->ifq_len--; 1510 1511 m->m_nextpkt = NULL; 1512 m_freem(m); 1513 IF_DROP(q); 1514 } 1515 } 1516 1517 /* 1518 * Callback for a radix tree walk to delete all references to an 1519 * ifnet. 1520 */ 1521 static int 1522 if_delroute_matcher(struct rtentry *rt, void *v) 1523 { 1524 struct ifnet *ifp = (struct ifnet *)v; 1525 1526 if (rt->rt_ifp == ifp) 1527 return 1; 1528 else 1529 return 0; 1530 } 1531 1532 /* 1533 * Create a clone network interface. 1534 */ 1535 static int 1536 if_clone_create(const char *name) 1537 { 1538 struct if_clone *ifc; 1539 int unit; 1540 struct ifnet *ifp; 1541 struct psref psref; 1542 1543 ifc = if_clone_lookup(name, &unit); 1544 if (ifc == NULL) 1545 return EINVAL; 1546 1547 ifp = if_get(name, &psref); 1548 if (ifp != NULL) { 1549 if_put(ifp, &psref); 1550 return EEXIST; 1551 } 1552 1553 return (*ifc->ifc_create)(ifc, unit); 1554 } 1555 1556 /* 1557 * Destroy a clone network interface. 1558 */ 1559 static int 1560 if_clone_destroy(const char *name) 1561 { 1562 struct if_clone *ifc; 1563 struct ifnet *ifp; 1564 struct psref psref; 1565 1566 ifc = if_clone_lookup(name, NULL); 1567 if (ifc == NULL) 1568 return EINVAL; 1569 1570 if (ifc->ifc_destroy == NULL) 1571 return EOPNOTSUPP; 1572 1573 ifp = if_get(name, &psref); 1574 if (ifp == NULL) 1575 return ENXIO; 1576 1577 /* We have to disable ioctls here */ 1578 mutex_enter(ifp->if_ioctl_lock); 1579 ifp->if_ioctl = if_nullioctl; 1580 mutex_exit(ifp->if_ioctl_lock); 1581 1582 /* 1583 * We cannot call ifc_destroy with holding ifp. 1584 * Releasing ifp here is safe thanks to if_clone_mtx. 1585 */ 1586 if_put(ifp, &psref); 1587 1588 return (*ifc->ifc_destroy)(ifp); 1589 } 1590 1591 /* 1592 * Look up a network interface cloner. 1593 */ 1594 static struct if_clone * 1595 if_clone_lookup(const char *name, int *unitp) 1596 { 1597 struct if_clone *ifc; 1598 const char *cp; 1599 char *dp, ifname[IFNAMSIZ + 3]; 1600 int unit; 1601 1602 strcpy(ifname, "if_"); 1603 /* separate interface name from unit */ 1604 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1605 *cp && (*cp < '0' || *cp > '9');) 1606 *dp++ = *cp++; 1607 1608 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1609 return NULL; /* No name or unit number */ 1610 *dp++ = '\0'; 1611 1612 again: 1613 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1614 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1615 break; 1616 } 1617 1618 if (ifc == NULL) { 1619 if (*ifname == '\0' || 1620 module_autoload(ifname, MODULE_CLASS_DRIVER)) 1621 return NULL; 1622 *ifname = '\0'; 1623 goto again; 1624 } 1625 1626 unit = 0; 1627 while (cp - name < IFNAMSIZ && *cp) { 1628 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1629 /* Bogus unit number. */ 1630 return NULL; 1631 } 1632 unit = (unit * 10) + (*cp++ - '0'); 1633 } 1634 1635 if (unitp != NULL) 1636 *unitp = unit; 1637 return ifc; 1638 } 1639 1640 /* 1641 * Register a network interface cloner. 1642 */ 1643 void 1644 if_clone_attach(struct if_clone *ifc) 1645 { 1646 1647 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1648 if_cloners_count++; 1649 } 1650 1651 /* 1652 * Unregister a network interface cloner. 1653 */ 1654 void 1655 if_clone_detach(struct if_clone *ifc) 1656 { 1657 1658 LIST_REMOVE(ifc, ifc_list); 1659 if_cloners_count--; 1660 } 1661 1662 /* 1663 * Provide list of interface cloners to userspace. 1664 */ 1665 int 1666 if_clone_list(int buf_count, char *buffer, int *total) 1667 { 1668 char outbuf[IFNAMSIZ], *dst; 1669 struct if_clone *ifc; 1670 int count, error = 0; 1671 1672 *total = if_cloners_count; 1673 if ((dst = buffer) == NULL) { 1674 /* Just asking how many there are. */ 1675 return 0; 1676 } 1677 1678 if (buf_count < 0) 1679 return EINVAL; 1680 1681 count = (if_cloners_count < buf_count) ? 1682 if_cloners_count : buf_count; 1683 1684 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1685 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1686 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1687 if (outbuf[sizeof(outbuf) - 1] != '\0') 1688 return ENAMETOOLONG; 1689 error = copyout(outbuf, dst, sizeof(outbuf)); 1690 if (error != 0) 1691 break; 1692 } 1693 1694 return error; 1695 } 1696 1697 void 1698 ifa_psref_init(struct ifaddr *ifa) 1699 { 1700 1701 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1702 } 1703 1704 void 1705 ifaref(struct ifaddr *ifa) 1706 { 1707 KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING)); 1708 ifa->ifa_refcnt++; 1709 } 1710 1711 void 1712 ifafree(struct ifaddr *ifa) 1713 { 1714 KASSERT(ifa != NULL); 1715 KASSERT(ifa->ifa_refcnt > 0); 1716 1717 if (--ifa->ifa_refcnt == 0) { 1718 free(ifa, M_IFADDR); 1719 } 1720 } 1721 1722 bool 1723 ifa_is_destroying(struct ifaddr *ifa) 1724 { 1725 1726 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1727 } 1728 1729 void 1730 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1731 { 1732 1733 ifa->ifa_ifp = ifp; 1734 1735 IFNET_LOCK(); 1736 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1737 IFADDR_ENTRY_INIT(ifa); 1738 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1739 IFNET_UNLOCK(); 1740 1741 ifaref(ifa); 1742 } 1743 1744 void 1745 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1746 { 1747 1748 KASSERT(ifa->ifa_ifp == ifp); 1749 1750 IFNET_LOCK(); 1751 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1752 IFADDR_WRITER_REMOVE(ifa); 1753 #ifdef NET_MPSAFE 1754 pserialize_perform(ifnet_psz); 1755 #endif 1756 IFNET_UNLOCK(); 1757 1758 #ifdef NET_MPSAFE 1759 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1760 #endif 1761 IFADDR_ENTRY_DESTROY(ifa); 1762 ifafree(ifa); 1763 } 1764 1765 void 1766 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1767 { 1768 1769 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1770 } 1771 1772 void 1773 ifa_release(struct ifaddr *ifa, struct psref *psref) 1774 { 1775 1776 if (ifa == NULL) 1777 return; 1778 1779 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1780 } 1781 1782 bool 1783 ifa_held(struct ifaddr *ifa) 1784 { 1785 1786 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1787 } 1788 1789 static inline int 1790 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1791 { 1792 return sockaddr_cmp(sa1, sa2) == 0; 1793 } 1794 1795 /* 1796 * Locate an interface based on a complete address. 1797 */ 1798 /*ARGSUSED*/ 1799 struct ifaddr * 1800 ifa_ifwithaddr(const struct sockaddr *addr) 1801 { 1802 struct ifnet *ifp; 1803 struct ifaddr *ifa; 1804 1805 IFNET_READER_FOREACH(ifp) { 1806 if (if_is_deactivated(ifp)) 1807 continue; 1808 IFADDR_READER_FOREACH(ifa, ifp) { 1809 if (ifa->ifa_addr->sa_family != addr->sa_family) 1810 continue; 1811 if (equal(addr, ifa->ifa_addr)) 1812 return ifa; 1813 if ((ifp->if_flags & IFF_BROADCAST) && 1814 ifa->ifa_broadaddr && 1815 /* IP6 doesn't have broadcast */ 1816 ifa->ifa_broadaddr->sa_len != 0 && 1817 equal(ifa->ifa_broadaddr, addr)) 1818 return ifa; 1819 } 1820 } 1821 return NULL; 1822 } 1823 1824 struct ifaddr * 1825 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1826 { 1827 struct ifaddr *ifa; 1828 int s = pserialize_read_enter(); 1829 1830 ifa = ifa_ifwithaddr(addr); 1831 if (ifa != NULL) 1832 ifa_acquire(ifa, psref); 1833 pserialize_read_exit(s); 1834 1835 return ifa; 1836 } 1837 1838 /* 1839 * Locate the point to point interface with a given destination address. 1840 */ 1841 /*ARGSUSED*/ 1842 struct ifaddr * 1843 ifa_ifwithdstaddr(const struct sockaddr *addr) 1844 { 1845 struct ifnet *ifp; 1846 struct ifaddr *ifa; 1847 1848 IFNET_READER_FOREACH(ifp) { 1849 if (if_is_deactivated(ifp)) 1850 continue; 1851 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1852 continue; 1853 IFADDR_READER_FOREACH(ifa, ifp) { 1854 if (ifa->ifa_addr->sa_family != addr->sa_family || 1855 ifa->ifa_dstaddr == NULL) 1856 continue; 1857 if (equal(addr, ifa->ifa_dstaddr)) 1858 return ifa; 1859 } 1860 } 1861 1862 return NULL; 1863 } 1864 1865 struct ifaddr * 1866 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 1867 { 1868 struct ifaddr *ifa; 1869 int s; 1870 1871 s = pserialize_read_enter(); 1872 ifa = ifa_ifwithdstaddr(addr); 1873 if (ifa != NULL) 1874 ifa_acquire(ifa, psref); 1875 pserialize_read_exit(s); 1876 1877 return ifa; 1878 } 1879 1880 /* 1881 * Find an interface on a specific network. If many, choice 1882 * is most specific found. 1883 */ 1884 struct ifaddr * 1885 ifa_ifwithnet(const struct sockaddr *addr) 1886 { 1887 struct ifnet *ifp; 1888 struct ifaddr *ifa, *ifa_maybe = NULL; 1889 const struct sockaddr_dl *sdl; 1890 u_int af = addr->sa_family; 1891 const char *addr_data = addr->sa_data, *cplim; 1892 1893 if (af == AF_LINK) { 1894 sdl = satocsdl(addr); 1895 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1896 ifindex2ifnet[sdl->sdl_index] && 1897 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 1898 return ifindex2ifnet[sdl->sdl_index]->if_dl; 1899 } 1900 } 1901 #ifdef NETATALK 1902 if (af == AF_APPLETALK) { 1903 const struct sockaddr_at *sat, *sat2; 1904 sat = (const struct sockaddr_at *)addr; 1905 IFNET_READER_FOREACH(ifp) { 1906 if (if_is_deactivated(ifp)) 1907 continue; 1908 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 1909 if (ifa == NULL) 1910 continue; 1911 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 1912 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 1913 return ifa; /* exact match */ 1914 if (ifa_maybe == NULL) { 1915 /* else keep the if with the right range */ 1916 ifa_maybe = ifa; 1917 } 1918 } 1919 return ifa_maybe; 1920 } 1921 #endif 1922 IFNET_READER_FOREACH(ifp) { 1923 if (if_is_deactivated(ifp)) 1924 continue; 1925 IFADDR_READER_FOREACH(ifa, ifp) { 1926 const char *cp, *cp2, *cp3; 1927 1928 if (ifa->ifa_addr->sa_family != af || 1929 ifa->ifa_netmask == NULL) 1930 next: continue; 1931 cp = addr_data; 1932 cp2 = ifa->ifa_addr->sa_data; 1933 cp3 = ifa->ifa_netmask->sa_data; 1934 cplim = (const char *)ifa->ifa_netmask + 1935 ifa->ifa_netmask->sa_len; 1936 while (cp3 < cplim) { 1937 if ((*cp++ ^ *cp2++) & *cp3++) { 1938 /* want to continue for() loop */ 1939 goto next; 1940 } 1941 } 1942 if (ifa_maybe == NULL || 1943 rt_refines(ifa->ifa_netmask, 1944 ifa_maybe->ifa_netmask)) 1945 ifa_maybe = ifa; 1946 } 1947 } 1948 return ifa_maybe; 1949 } 1950 1951 struct ifaddr * 1952 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 1953 { 1954 struct ifaddr *ifa; 1955 int s; 1956 1957 s = pserialize_read_enter(); 1958 ifa = ifa_ifwithnet(addr); 1959 if (ifa != NULL) 1960 ifa_acquire(ifa, psref); 1961 pserialize_read_exit(s); 1962 1963 return ifa; 1964 } 1965 1966 /* 1967 * Find the interface of the addresss. 1968 */ 1969 struct ifaddr * 1970 ifa_ifwithladdr(const struct sockaddr *addr) 1971 { 1972 struct ifaddr *ia; 1973 1974 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 1975 (ia = ifa_ifwithnet(addr))) 1976 return ia; 1977 return NULL; 1978 } 1979 1980 struct ifaddr * 1981 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 1982 { 1983 struct ifaddr *ifa; 1984 int s; 1985 1986 s = pserialize_read_enter(); 1987 ifa = ifa_ifwithladdr(addr); 1988 if (ifa != NULL) 1989 ifa_acquire(ifa, psref); 1990 pserialize_read_exit(s); 1991 1992 return ifa; 1993 } 1994 1995 /* 1996 * Find an interface using a specific address family 1997 */ 1998 struct ifaddr * 1999 ifa_ifwithaf(int af) 2000 { 2001 struct ifnet *ifp; 2002 struct ifaddr *ifa = NULL; 2003 int s; 2004 2005 s = pserialize_read_enter(); 2006 IFNET_READER_FOREACH(ifp) { 2007 if (if_is_deactivated(ifp)) 2008 continue; 2009 IFADDR_READER_FOREACH(ifa, ifp) { 2010 if (ifa->ifa_addr->sa_family == af) 2011 goto out; 2012 } 2013 } 2014 out: 2015 pserialize_read_exit(s); 2016 return ifa; 2017 } 2018 2019 /* 2020 * Find an interface address specific to an interface best matching 2021 * a given address. 2022 */ 2023 struct ifaddr * 2024 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2025 { 2026 struct ifaddr *ifa; 2027 const char *cp, *cp2, *cp3; 2028 const char *cplim; 2029 struct ifaddr *ifa_maybe = 0; 2030 u_int af = addr->sa_family; 2031 2032 if (if_is_deactivated(ifp)) 2033 return NULL; 2034 2035 if (af >= AF_MAX) 2036 return NULL; 2037 2038 IFADDR_READER_FOREACH(ifa, ifp) { 2039 if (ifa->ifa_addr->sa_family != af) 2040 continue; 2041 ifa_maybe = ifa; 2042 if (ifa->ifa_netmask == NULL) { 2043 if (equal(addr, ifa->ifa_addr) || 2044 (ifa->ifa_dstaddr && 2045 equal(addr, ifa->ifa_dstaddr))) 2046 return ifa; 2047 continue; 2048 } 2049 cp = addr->sa_data; 2050 cp2 = ifa->ifa_addr->sa_data; 2051 cp3 = ifa->ifa_netmask->sa_data; 2052 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2053 for (; cp3 < cplim; cp3++) { 2054 if ((*cp++ ^ *cp2++) & *cp3) 2055 break; 2056 } 2057 if (cp3 == cplim) 2058 return ifa; 2059 } 2060 return ifa_maybe; 2061 } 2062 2063 struct ifaddr * 2064 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2065 struct psref *psref) 2066 { 2067 struct ifaddr *ifa; 2068 int s; 2069 2070 s = pserialize_read_enter(); 2071 ifa = ifaof_ifpforaddr(addr, ifp); 2072 if (ifa != NULL) 2073 ifa_acquire(ifa, psref); 2074 pserialize_read_exit(s); 2075 2076 return ifa; 2077 } 2078 2079 /* 2080 * Default action when installing a route with a Link Level gateway. 2081 * Lookup an appropriate real ifa to point to. 2082 * This should be moved to /sys/net/link.c eventually. 2083 */ 2084 void 2085 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2086 { 2087 struct ifaddr *ifa; 2088 const struct sockaddr *dst; 2089 struct ifnet *ifp; 2090 struct psref psref; 2091 2092 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 2093 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL) 2094 return; 2095 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2096 rt_replace_ifa(rt, ifa); 2097 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2098 ifa->ifa_rtrequest(cmd, rt, info); 2099 ifa_release(ifa, &psref); 2100 } 2101 } 2102 2103 /* 2104 * bitmask macros to manage a densely packed link_state change queue. 2105 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2106 * LINK_STATE_UP(2) we need 2 bits for each state change. 2107 * As a state change to store is 0, treat all bits set as an unset item. 2108 */ 2109 #define LQ_ITEM_BITS 2 2110 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2111 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2112 #define LINK_STATE_UNSET LQ_ITEM_MASK 2113 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2114 #define LQ_STORE(q, i, v) \ 2115 do { \ 2116 (q) &= ~LQ_MASK((i)); \ 2117 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2118 } while (0 /* CONSTCOND */) 2119 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2120 #define LQ_POP(q, v) \ 2121 do { \ 2122 (v) = LQ_ITEM((q), 0); \ 2123 (q) >>= LQ_ITEM_BITS; \ 2124 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2125 } while (0 /* CONSTCOND */) 2126 #define LQ_PUSH(q, v) \ 2127 do { \ 2128 (q) >>= LQ_ITEM_BITS; \ 2129 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2130 } while (0 /* CONSTCOND */) 2131 #define LQ_FIND_UNSET(q, i) \ 2132 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2133 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2134 break; \ 2135 } 2136 /* 2137 * Handle a change in the interface link state and 2138 * queue notifications. 2139 */ 2140 void 2141 if_link_state_change(struct ifnet *ifp, int link_state) 2142 { 2143 int s, idx; 2144 2145 KASSERTMSG(if_is_link_state_changeable(ifp), 2146 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x", 2147 ifp->if_xname, ifp->if_extflags); 2148 2149 /* Ensure change is to a valid state */ 2150 switch (link_state) { 2151 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2152 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2153 case LINK_STATE_UP: 2154 break; 2155 default: 2156 #ifdef DEBUG 2157 printf("%s: invalid link state %d\n", 2158 ifp->if_xname, link_state); 2159 #endif 2160 return; 2161 } 2162 2163 s = splnet(); 2164 2165 /* Find the last unset event in the queue. */ 2166 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2167 2168 /* 2169 * Ensure link_state doesn't match the last event in the queue. 2170 * ifp->if_link_state is not checked and set here because 2171 * that would present an inconsistent picture to the system. 2172 */ 2173 if (idx != 0 && 2174 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state) 2175 goto out; 2176 2177 /* Handle queue overflow. */ 2178 if (idx == LQ_MAX(ifp->if_link_queue)) { 2179 uint8_t lost; 2180 2181 /* 2182 * The DOWN state must be protected from being pushed off 2183 * the queue to ensure that userland will always be 2184 * in a sane state. 2185 * Because DOWN is protected, there is no need to protect 2186 * UNKNOWN. 2187 * It should be invalid to change from any other state to 2188 * UNKNOWN anyway ... 2189 */ 2190 lost = LQ_ITEM(ifp->if_link_queue, 0); 2191 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2192 if (lost == LINK_STATE_DOWN) { 2193 lost = LQ_ITEM(ifp->if_link_queue, 0); 2194 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2195 } 2196 printf("%s: lost link state change %s\n", 2197 ifp->if_xname, 2198 lost == LINK_STATE_UP ? "UP" : 2199 lost == LINK_STATE_DOWN ? "DOWN" : 2200 "UNKNOWN"); 2201 } else 2202 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2203 2204 softint_schedule(ifp->if_link_si); 2205 2206 out: 2207 splx(s); 2208 } 2209 2210 /* 2211 * Handle interface link state change notifications. 2212 * Must be called at splnet(). 2213 */ 2214 static void 2215 if_link_state_change0(struct ifnet *ifp, int link_state) 2216 { 2217 struct domain *dp; 2218 2219 /* Ensure the change is still valid. */ 2220 if (ifp->if_link_state == link_state) 2221 return; 2222 2223 #ifdef DEBUG 2224 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2225 link_state == LINK_STATE_UP ? "UP" : 2226 link_state == LINK_STATE_DOWN ? "DOWN" : 2227 "UNKNOWN", 2228 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2229 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2230 "UNKNOWN"); 2231 #endif 2232 2233 /* 2234 * When going from UNKNOWN to UP, we need to mark existing 2235 * addresses as tentative and restart DAD as we may have 2236 * erroneously not found a duplicate. 2237 * 2238 * This needs to happen before rt_ifmsg to avoid a race where 2239 * listeners would have an address and expect it to work right 2240 * away. 2241 */ 2242 if (link_state == LINK_STATE_UP && 2243 ifp->if_link_state == LINK_STATE_UNKNOWN) 2244 { 2245 DOMAIN_FOREACH(dp) { 2246 if (dp->dom_if_link_state_change != NULL) 2247 dp->dom_if_link_state_change(ifp, 2248 LINK_STATE_DOWN); 2249 } 2250 } 2251 2252 ifp->if_link_state = link_state; 2253 2254 /* Notify that the link state has changed. */ 2255 rt_ifmsg(ifp); 2256 2257 #if NCARP > 0 2258 if (ifp->if_carp) 2259 carp_carpdev_state(ifp); 2260 #endif 2261 2262 DOMAIN_FOREACH(dp) { 2263 if (dp->dom_if_link_state_change != NULL) 2264 dp->dom_if_link_state_change(ifp, link_state); 2265 } 2266 } 2267 2268 /* 2269 * Process the interface link state change queue. 2270 */ 2271 static void 2272 if_link_state_change_si(void *arg) 2273 { 2274 struct ifnet *ifp = arg; 2275 int s; 2276 uint8_t state; 2277 2278 s = splnet(); 2279 2280 /* Pop a link state change from the queue and process it. */ 2281 LQ_POP(ifp->if_link_queue, state); 2282 if_link_state_change0(ifp, state); 2283 2284 /* If there is a link state change to come, schedule it. */ 2285 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) 2286 softint_schedule(ifp->if_link_si); 2287 2288 splx(s); 2289 } 2290 2291 /* 2292 * Default action when installing a local route on a point-to-point 2293 * interface. 2294 */ 2295 void 2296 p2p_rtrequest(int req, struct rtentry *rt, 2297 __unused const struct rt_addrinfo *info) 2298 { 2299 struct ifnet *ifp = rt->rt_ifp; 2300 struct ifaddr *ifa, *lo0ifa; 2301 int s = pserialize_read_enter(); 2302 2303 switch (req) { 2304 case RTM_ADD: 2305 if ((rt->rt_flags & RTF_LOCAL) == 0) 2306 break; 2307 2308 rt->rt_ifp = lo0ifp; 2309 2310 IFADDR_READER_FOREACH(ifa, ifp) { 2311 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2312 break; 2313 } 2314 if (ifa == NULL) 2315 break; 2316 2317 /* 2318 * Ensure lo0 has an address of the same family. 2319 */ 2320 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2321 if (lo0ifa->ifa_addr->sa_family == 2322 ifa->ifa_addr->sa_family) 2323 break; 2324 } 2325 if (lo0ifa == NULL) 2326 break; 2327 2328 /* 2329 * Make sure to set rt->rt_ifa to the interface 2330 * address we are using, otherwise we will have trouble 2331 * with source address selection. 2332 */ 2333 if (ifa != rt->rt_ifa) 2334 rt_replace_ifa(rt, ifa); 2335 break; 2336 case RTM_DELETE: 2337 default: 2338 break; 2339 } 2340 pserialize_read_exit(s); 2341 } 2342 2343 /* 2344 * Mark an interface down and notify protocols of 2345 * the transition. 2346 * NOTE: must be called at splsoftnet or equivalent. 2347 */ 2348 void 2349 if_down(struct ifnet *ifp) 2350 { 2351 struct ifaddr *ifa; 2352 struct domain *dp; 2353 int s, bound; 2354 struct psref psref; 2355 2356 ifp->if_flags &= ~IFF_UP; 2357 nanotime(&ifp->if_lastchange); 2358 2359 bound = curlwp_bind(); 2360 s = pserialize_read_enter(); 2361 IFADDR_READER_FOREACH(ifa, ifp) { 2362 ifa_acquire(ifa, &psref); 2363 pserialize_read_exit(s); 2364 2365 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2366 2367 s = pserialize_read_enter(); 2368 ifa_release(ifa, &psref); 2369 } 2370 pserialize_read_exit(s); 2371 curlwp_bindx(bound); 2372 2373 IFQ_PURGE(&ifp->if_snd); 2374 #if NCARP > 0 2375 if (ifp->if_carp) 2376 carp_carpdev_state(ifp); 2377 #endif 2378 rt_ifmsg(ifp); 2379 DOMAIN_FOREACH(dp) { 2380 if (dp->dom_if_down) 2381 dp->dom_if_down(ifp); 2382 } 2383 } 2384 2385 /* 2386 * Mark an interface up and notify protocols of 2387 * the transition. 2388 * NOTE: must be called at splsoftnet or equivalent. 2389 */ 2390 void 2391 if_up(struct ifnet *ifp) 2392 { 2393 #ifdef notyet 2394 struct ifaddr *ifa; 2395 #endif 2396 struct domain *dp; 2397 2398 ifp->if_flags |= IFF_UP; 2399 nanotime(&ifp->if_lastchange); 2400 #ifdef notyet 2401 /* this has no effect on IP, and will kill all ISO connections XXX */ 2402 IFADDR_READER_FOREACH(ifa, ifp) 2403 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2404 #endif 2405 #if NCARP > 0 2406 if (ifp->if_carp) 2407 carp_carpdev_state(ifp); 2408 #endif 2409 rt_ifmsg(ifp); 2410 DOMAIN_FOREACH(dp) { 2411 if (dp->dom_if_up) 2412 dp->dom_if_up(ifp); 2413 } 2414 } 2415 2416 /* 2417 * Handle interface slowtimo timer routine. Called 2418 * from softclock, we decrement timer (if set) and 2419 * call the appropriate interface routine on expiration. 2420 */ 2421 static void 2422 if_slowtimo(void *arg) 2423 { 2424 void (*slowtimo)(struct ifnet *); 2425 struct ifnet *ifp = arg; 2426 int s; 2427 2428 slowtimo = ifp->if_slowtimo; 2429 if (__predict_false(slowtimo == NULL)) 2430 return; 2431 2432 s = splnet(); 2433 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2434 (*slowtimo)(ifp); 2435 2436 splx(s); 2437 2438 if (__predict_true(ifp->if_slowtimo != NULL)) 2439 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ); 2440 } 2441 2442 /* 2443 * Set/clear promiscuous mode on interface ifp based on the truth value 2444 * of pswitch. The calls are reference counted so that only the first 2445 * "on" request actually has an effect, as does the final "off" request. 2446 * Results are undefined if the "off" and "on" requests are not matched. 2447 */ 2448 int 2449 ifpromisc(struct ifnet *ifp, int pswitch) 2450 { 2451 int pcount, ret; 2452 short nflags; 2453 2454 pcount = ifp->if_pcount; 2455 if (pswitch) { 2456 /* 2457 * Allow the device to be "placed" into promiscuous 2458 * mode even if it is not configured up. It will 2459 * consult IFF_PROMISC when it is brought up. 2460 */ 2461 if (ifp->if_pcount++ != 0) 2462 return 0; 2463 nflags = ifp->if_flags | IFF_PROMISC; 2464 } else { 2465 if (--ifp->if_pcount > 0) 2466 return 0; 2467 nflags = ifp->if_flags & ~IFF_PROMISC; 2468 } 2469 ret = if_flags_set(ifp, nflags); 2470 /* Restore interface state if not successful. */ 2471 if (ret != 0) { 2472 ifp->if_pcount = pcount; 2473 } 2474 return ret; 2475 } 2476 2477 /* 2478 * Map interface name to 2479 * interface structure pointer. 2480 */ 2481 struct ifnet * 2482 ifunit(const char *name) 2483 { 2484 struct ifnet *ifp; 2485 const char *cp = name; 2486 u_int unit = 0; 2487 u_int i; 2488 int s; 2489 2490 /* 2491 * If the entire name is a number, treat it as an ifindex. 2492 */ 2493 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2494 unit = unit * 10 + (*cp - '0'); 2495 } 2496 2497 /* 2498 * If the number took all of the name, then it's a valid ifindex. 2499 */ 2500 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) { 2501 if (unit >= if_indexlim) 2502 return NULL; 2503 ifp = ifindex2ifnet[unit]; 2504 if (ifp == NULL || if_is_deactivated(ifp)) 2505 return NULL; 2506 return ifp; 2507 } 2508 2509 ifp = NULL; 2510 s = pserialize_read_enter(); 2511 IFNET_READER_FOREACH(ifp) { 2512 if (if_is_deactivated(ifp)) 2513 continue; 2514 if (strcmp(ifp->if_xname, name) == 0) 2515 goto out; 2516 } 2517 out: 2518 pserialize_read_exit(s); 2519 return ifp; 2520 } 2521 2522 /* 2523 * Get a reference of an ifnet object by an interface name. 2524 * The returned reference is protected by psref(9). The caller 2525 * must release a returned reference by if_put after use. 2526 */ 2527 struct ifnet * 2528 if_get(const char *name, struct psref *psref) 2529 { 2530 struct ifnet *ifp; 2531 const char *cp = name; 2532 u_int unit = 0; 2533 u_int i; 2534 int s; 2535 2536 /* 2537 * If the entire name is a number, treat it as an ifindex. 2538 */ 2539 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2540 unit = unit * 10 + (*cp - '0'); 2541 } 2542 2543 /* 2544 * If the number took all of the name, then it's a valid ifindex. 2545 */ 2546 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) { 2547 if (unit >= if_indexlim) 2548 return NULL; 2549 ifp = ifindex2ifnet[unit]; 2550 if (ifp == NULL || if_is_deactivated(ifp)) 2551 return NULL; 2552 return ifp; 2553 } 2554 2555 ifp = NULL; 2556 s = pserialize_read_enter(); 2557 IFNET_READER_FOREACH(ifp) { 2558 if (if_is_deactivated(ifp)) 2559 continue; 2560 if (strcmp(ifp->if_xname, name) == 0) { 2561 psref_acquire(psref, &ifp->if_psref, 2562 ifnet_psref_class); 2563 goto out; 2564 } 2565 } 2566 out: 2567 pserialize_read_exit(s); 2568 return ifp; 2569 } 2570 2571 /* 2572 * Release a reference of an ifnet object given by if_get or 2573 * if_get_byindex. 2574 */ 2575 void 2576 if_put(const struct ifnet *ifp, struct psref *psref) 2577 { 2578 2579 if (ifp == NULL) 2580 return; 2581 2582 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2583 } 2584 2585 ifnet_t * 2586 if_byindex(u_int idx) 2587 { 2588 ifnet_t *ifp; 2589 2590 ifp = (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL; 2591 if (ifp != NULL && if_is_deactivated(ifp)) 2592 ifp = NULL; 2593 return ifp; 2594 } 2595 2596 /* 2597 * Get a reference of an ifnet object by an interface index. 2598 * The returned reference is protected by psref(9). The caller 2599 * must release a returned reference by if_put after use. 2600 */ 2601 ifnet_t * 2602 if_get_byindex(u_int idx, struct psref *psref) 2603 { 2604 ifnet_t *ifp; 2605 int s; 2606 2607 s = pserialize_read_enter(); 2608 ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2609 if (ifp != NULL && if_is_deactivated(ifp)) 2610 ifp = NULL; 2611 if (__predict_true(ifp != NULL)) 2612 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2613 pserialize_read_exit(s); 2614 2615 return ifp; 2616 } 2617 2618 /* 2619 * XXX it's safe only if the passed ifp is guaranteed to not be freed, 2620 * for example the ifp is already held or some other object is held which 2621 * guarantes the ifp to not be freed indirectly. 2622 */ 2623 void 2624 if_acquire_NOMPSAFE(struct ifnet *ifp, struct psref *psref) 2625 { 2626 2627 KASSERT(ifp->if_index != 0); 2628 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2629 } 2630 2631 bool 2632 if_held(struct ifnet *ifp) 2633 { 2634 2635 return psref_held(&ifp->if_psref, ifnet_psref_class); 2636 } 2637 2638 2639 /* common */ 2640 int 2641 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 2642 { 2643 int s; 2644 struct ifreq *ifr; 2645 struct ifcapreq *ifcr; 2646 struct ifdatareq *ifdr; 2647 2648 switch (cmd) { 2649 case SIOCSIFCAP: 2650 ifcr = data; 2651 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 2652 return EINVAL; 2653 2654 if (ifcr->ifcr_capenable == ifp->if_capenable) 2655 return 0; 2656 2657 ifp->if_capenable = ifcr->ifcr_capenable; 2658 2659 /* Pre-compute the checksum flags mask. */ 2660 ifp->if_csum_flags_tx = 0; 2661 ifp->if_csum_flags_rx = 0; 2662 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) { 2663 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 2664 } 2665 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { 2666 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 2667 } 2668 2669 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) { 2670 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 2671 } 2672 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) { 2673 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 2674 } 2675 2676 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) { 2677 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 2678 } 2679 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) { 2680 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 2681 } 2682 2683 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) { 2684 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 2685 } 2686 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) { 2687 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 2688 } 2689 2690 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) { 2691 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 2692 } 2693 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) { 2694 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 2695 } 2696 if (ifp->if_flags & IFF_UP) 2697 return ENETRESET; 2698 return 0; 2699 case SIOCSIFFLAGS: 2700 ifr = data; 2701 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 2702 s = splnet(); 2703 if_down(ifp); 2704 splx(s); 2705 } 2706 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 2707 s = splnet(); 2708 if_up(ifp); 2709 splx(s); 2710 } 2711 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2712 (ifr->ifr_flags &~ IFF_CANTCHANGE); 2713 break; 2714 case SIOCGIFFLAGS: 2715 ifr = data; 2716 ifr->ifr_flags = ifp->if_flags; 2717 break; 2718 2719 case SIOCGIFMETRIC: 2720 ifr = data; 2721 ifr->ifr_metric = ifp->if_metric; 2722 break; 2723 2724 case SIOCGIFMTU: 2725 ifr = data; 2726 ifr->ifr_mtu = ifp->if_mtu; 2727 break; 2728 2729 case SIOCGIFDLT: 2730 ifr = data; 2731 ifr->ifr_dlt = ifp->if_dlt; 2732 break; 2733 2734 case SIOCGIFCAP: 2735 ifcr = data; 2736 ifcr->ifcr_capabilities = ifp->if_capabilities; 2737 ifcr->ifcr_capenable = ifp->if_capenable; 2738 break; 2739 2740 case SIOCSIFMETRIC: 2741 ifr = data; 2742 ifp->if_metric = ifr->ifr_metric; 2743 break; 2744 2745 case SIOCGIFDATA: 2746 ifdr = data; 2747 ifdr->ifdr_data = ifp->if_data; 2748 break; 2749 2750 case SIOCGIFINDEX: 2751 ifr = data; 2752 ifr->ifr_index = ifp->if_index; 2753 break; 2754 2755 case SIOCZIFDATA: 2756 ifdr = data; 2757 ifdr->ifdr_data = ifp->if_data; 2758 /* 2759 * Assumes that the volatile counters that can be 2760 * zero'ed are at the end of if_data. 2761 */ 2762 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) - 2763 offsetof(struct if_data, ifi_ipackets)); 2764 /* 2765 * The memset() clears to the bottm of if_data. In the area, 2766 * if_lastchange is included. Please be careful if new entry 2767 * will be added into if_data or rewite this. 2768 * 2769 * And also, update if_lastchnage. 2770 */ 2771 getnanotime(&ifp->if_lastchange); 2772 break; 2773 case SIOCSIFMTU: 2774 ifr = data; 2775 if (ifp->if_mtu == ifr->ifr_mtu) 2776 break; 2777 ifp->if_mtu = ifr->ifr_mtu; 2778 /* 2779 * If the link MTU changed, do network layer specific procedure. 2780 */ 2781 #ifdef INET6 2782 if (in6_present) 2783 nd6_setmtu(ifp); 2784 #endif 2785 return ENETRESET; 2786 default: 2787 return ENOTTY; 2788 } 2789 return 0; 2790 } 2791 2792 int 2793 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 2794 { 2795 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 2796 struct ifaddr *ifa; 2797 const struct sockaddr *any, *sa; 2798 union { 2799 struct sockaddr sa; 2800 struct sockaddr_storage ss; 2801 } u, v; 2802 int s, error = 0; 2803 2804 switch (cmd) { 2805 case SIOCSIFADDRPREF: 2806 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, 2807 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 2808 NULL) != 0) 2809 return EPERM; 2810 case SIOCGIFADDRPREF: 2811 break; 2812 default: 2813 return EOPNOTSUPP; 2814 } 2815 2816 /* sanity checks */ 2817 if (data == NULL || ifp == NULL) { 2818 panic("invalid argument to %s", __func__); 2819 /*NOTREACHED*/ 2820 } 2821 2822 /* address must be specified on ADD and DELETE */ 2823 sa = sstocsa(&ifap->ifap_addr); 2824 if (sa->sa_family != sofamily(so)) 2825 return EINVAL; 2826 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 2827 return EINVAL; 2828 2829 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 2830 2831 s = pserialize_read_enter(); 2832 IFADDR_READER_FOREACH(ifa, ifp) { 2833 if (ifa->ifa_addr->sa_family != sa->sa_family) 2834 continue; 2835 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 2836 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 2837 break; 2838 } 2839 if (ifa == NULL) { 2840 error = EADDRNOTAVAIL; 2841 goto out; 2842 } 2843 2844 switch (cmd) { 2845 case SIOCSIFADDRPREF: 2846 ifa->ifa_preference = ifap->ifap_preference; 2847 goto out; 2848 case SIOCGIFADDRPREF: 2849 /* fill in the if_laddrreq structure */ 2850 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 2851 sizeof(ifap->ifap_addr), ifa->ifa_addr); 2852 ifap->ifap_preference = ifa->ifa_preference; 2853 goto out; 2854 default: 2855 error = EOPNOTSUPP; 2856 } 2857 out: 2858 pserialize_read_exit(s); 2859 return error; 2860 } 2861 2862 /* 2863 * Interface ioctls. 2864 */ 2865 static int 2866 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 2867 { 2868 struct ifnet *ifp; 2869 struct ifreq *ifr; 2870 int error = 0; 2871 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ) 2872 u_long ocmd = cmd; 2873 #endif 2874 short oif_flags; 2875 #ifdef COMPAT_OIFREQ 2876 struct ifreq ifrb; 2877 struct oifreq *oifr = NULL; 2878 #endif 2879 int r; 2880 struct psref psref; 2881 int bound; 2882 2883 switch (cmd) { 2884 #ifdef COMPAT_OIFREQ 2885 case OSIOCGIFCONF: 2886 case OOSIOCGIFCONF: 2887 return compat_ifconf(cmd, data); 2888 #endif 2889 #ifdef COMPAT_OIFDATA 2890 case OSIOCGIFDATA: 2891 case OSIOCZIFDATA: 2892 return compat_ifdatareq(l, cmd, data); 2893 #endif 2894 case SIOCGIFCONF: 2895 return ifconf(cmd, data); 2896 case SIOCINITIFADDR: 2897 return EPERM; 2898 } 2899 2900 #ifdef COMPAT_OIFREQ 2901 cmd = (*vec_compat_cvtcmd)(cmd); 2902 if (cmd != ocmd) { 2903 oifr = data; 2904 data = ifr = &ifrb; 2905 ifreqo2n(oifr, ifr); 2906 } else 2907 #endif 2908 ifr = data; 2909 2910 switch (cmd) { 2911 case SIOCIFCREATE: 2912 case SIOCIFDESTROY: 2913 bound = curlwp_bind(); 2914 if (l != NULL) { 2915 ifp = if_get(ifr->ifr_name, &psref); 2916 error = kauth_authorize_network(l->l_cred, 2917 KAUTH_NETWORK_INTERFACE, 2918 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 2919 (void *)cmd, NULL); 2920 if (ifp != NULL) 2921 if_put(ifp, &psref); 2922 if (error != 0) { 2923 curlwp_bindx(bound); 2924 return error; 2925 } 2926 } 2927 mutex_enter(&if_clone_mtx); 2928 r = (cmd == SIOCIFCREATE) ? 2929 if_clone_create(ifr->ifr_name) : 2930 if_clone_destroy(ifr->ifr_name); 2931 mutex_exit(&if_clone_mtx); 2932 curlwp_bindx(bound); 2933 return r; 2934 2935 case SIOCIFGCLONERS: 2936 { 2937 struct if_clonereq *req = (struct if_clonereq *)data; 2938 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 2939 &req->ifcr_total); 2940 } 2941 } 2942 2943 bound = curlwp_bind(); 2944 ifp = if_get(ifr->ifr_name, &psref); 2945 if (ifp == NULL) { 2946 curlwp_bindx(bound); 2947 return ENXIO; 2948 } 2949 2950 switch (cmd) { 2951 case SIOCALIFADDR: 2952 case SIOCDLIFADDR: 2953 case SIOCSIFADDRPREF: 2954 case SIOCSIFFLAGS: 2955 case SIOCSIFCAP: 2956 case SIOCSIFMETRIC: 2957 case SIOCZIFDATA: 2958 case SIOCSIFMTU: 2959 case SIOCSIFPHYADDR: 2960 case SIOCDIFPHYADDR: 2961 #ifdef INET6 2962 case SIOCSIFPHYADDR_IN6: 2963 #endif 2964 case SIOCSLIFPHYADDR: 2965 case SIOCADDMULTI: 2966 case SIOCDELMULTI: 2967 case SIOCSIFMEDIA: 2968 case SIOCSDRVSPEC: 2969 case SIOCG80211: 2970 case SIOCS80211: 2971 case SIOCS80211NWID: 2972 case SIOCS80211NWKEY: 2973 case SIOCS80211POWER: 2974 case SIOCS80211BSSID: 2975 case SIOCS80211CHANNEL: 2976 case SIOCSLINKSTR: 2977 if (l != NULL) { 2978 error = kauth_authorize_network(l->l_cred, 2979 KAUTH_NETWORK_INTERFACE, 2980 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 2981 (void *)cmd, NULL); 2982 if (error != 0) 2983 goto out; 2984 } 2985 } 2986 2987 oif_flags = ifp->if_flags; 2988 2989 mutex_enter(ifp->if_ioctl_lock); 2990 2991 error = (*ifp->if_ioctl)(ifp, cmd, data); 2992 if (error != ENOTTY) 2993 ; 2994 else if (so->so_proto == NULL) 2995 error = EOPNOTSUPP; 2996 else { 2997 #ifdef COMPAT_OSOCK 2998 if (vec_compat_ifioctl != NULL) 2999 error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l); 3000 else 3001 #endif 3002 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 3003 cmd, data, ifp); 3004 } 3005 3006 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 3007 if ((ifp->if_flags & IFF_UP) != 0) { 3008 int s = splnet(); 3009 if_up(ifp); 3010 splx(s); 3011 } 3012 } 3013 #ifdef COMPAT_OIFREQ 3014 if (cmd != ocmd) 3015 ifreqn2o(oifr, ifr); 3016 #endif 3017 3018 mutex_exit(ifp->if_ioctl_lock); 3019 out: 3020 if_put(ifp, &psref); 3021 curlwp_bindx(bound); 3022 return error; 3023 } 3024 3025 /* 3026 * Return interface configuration 3027 * of system. List may be used 3028 * in later ioctl's (above) to get 3029 * other information. 3030 * 3031 * Each record is a struct ifreq. Before the addition of 3032 * sockaddr_storage, the API rule was that sockaddr flavors that did 3033 * not fit would extend beyond the struct ifreq, with the next struct 3034 * ifreq starting sa_len beyond the struct sockaddr. Because the 3035 * union in struct ifreq includes struct sockaddr_storage, every kind 3036 * of sockaddr must fit. Thus, there are no longer any overlength 3037 * records. 3038 * 3039 * Records are added to the user buffer if they fit, and ifc_len is 3040 * adjusted to the length that was written. Thus, the user is only 3041 * assured of getting the complete list if ifc_len on return is at 3042 * least sizeof(struct ifreq) less than it was on entry. 3043 * 3044 * If the user buffer pointer is NULL, this routine copies no data and 3045 * returns the amount of space that would be needed. 3046 * 3047 * Invariants: 3048 * ifrp points to the next part of the user's buffer to be used. If 3049 * ifrp != NULL, space holds the number of bytes remaining that we may 3050 * write at ifrp. Otherwise, space holds the number of bytes that 3051 * would have been written had there been adequate space. 3052 */ 3053 /*ARGSUSED*/ 3054 static int 3055 ifconf(u_long cmd, void *data) 3056 { 3057 struct ifconf *ifc = (struct ifconf *)data; 3058 struct ifnet *ifp; 3059 struct ifaddr *ifa; 3060 struct ifreq ifr, *ifrp = NULL; 3061 int space = 0, error = 0; 3062 const int sz = (int)sizeof(struct ifreq); 3063 const bool docopy = ifc->ifc_req != NULL; 3064 int s; 3065 int bound; 3066 struct psref psref; 3067 3068 if (docopy) { 3069 space = ifc->ifc_len; 3070 ifrp = ifc->ifc_req; 3071 } 3072 3073 bound = curlwp_bind(); 3074 s = pserialize_read_enter(); 3075 IFNET_READER_FOREACH(ifp) { 3076 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3077 pserialize_read_exit(s); 3078 3079 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3080 sizeof(ifr.ifr_name)); 3081 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3082 error = ENAMETOOLONG; 3083 goto release_exit; 3084 } 3085 if (IFADDR_READER_EMPTY(ifp)) { 3086 /* Interface with no addresses - send zero sockaddr. */ 3087 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3088 if (!docopy) { 3089 space += sz; 3090 continue; 3091 } 3092 if (space >= sz) { 3093 error = copyout(&ifr, ifrp, sz); 3094 if (error != 0) 3095 goto release_exit; 3096 ifrp++; 3097 space -= sz; 3098 } 3099 } 3100 3101 IFADDR_READER_FOREACH(ifa, ifp) { 3102 struct sockaddr *sa = ifa->ifa_addr; 3103 /* all sockaddrs must fit in sockaddr_storage */ 3104 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3105 3106 if (!docopy) { 3107 space += sz; 3108 continue; 3109 } 3110 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3111 if (space >= sz) { 3112 error = copyout(&ifr, ifrp, sz); 3113 if (error != 0) 3114 goto release_exit; 3115 ifrp++; space -= sz; 3116 } 3117 } 3118 3119 s = pserialize_read_enter(); 3120 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3121 } 3122 pserialize_read_exit(s); 3123 curlwp_bindx(bound); 3124 3125 if (docopy) { 3126 KASSERT(0 <= space && space <= ifc->ifc_len); 3127 ifc->ifc_len -= space; 3128 } else { 3129 KASSERT(space >= 0); 3130 ifc->ifc_len = space; 3131 } 3132 return (0); 3133 3134 release_exit: 3135 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3136 curlwp_bindx(bound); 3137 return error; 3138 } 3139 3140 int 3141 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3142 { 3143 uint8_t len; 3144 #ifdef COMPAT_OIFREQ 3145 struct ifreq ifrb; 3146 struct oifreq *oifr = NULL; 3147 u_long ocmd = cmd; 3148 cmd = (*vec_compat_cvtcmd)(cmd); 3149 if (cmd != ocmd) { 3150 oifr = (struct oifreq *)(void *)ifr; 3151 ifr = &ifrb; 3152 ifreqo2n(oifr, ifr); 3153 len = sizeof(oifr->ifr_addr); 3154 } else 3155 #endif 3156 len = sizeof(ifr->ifr_ifru.ifru_space); 3157 3158 if (len < sa->sa_len) 3159 return EFBIG; 3160 3161 memset(&ifr->ifr_addr, 0, len); 3162 sockaddr_copy(&ifr->ifr_addr, len, sa); 3163 3164 #ifdef COMPAT_OIFREQ 3165 if (cmd != ocmd) 3166 ifreqn2o(oifr, ifr); 3167 #endif 3168 return 0; 3169 } 3170 3171 /* 3172 * wrapper function for the drivers which doesn't have if_transmit(). 3173 */ 3174 static int 3175 if_transmit(struct ifnet *ifp, struct mbuf *m) 3176 { 3177 int s, error; 3178 3179 s = splnet(); 3180 3181 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3182 if (error != 0) { 3183 /* mbuf is already freed */ 3184 goto out; 3185 } 3186 3187 ifp->if_obytes += m->m_pkthdr.len;; 3188 if (m->m_flags & M_MCAST) 3189 ifp->if_omcasts++; 3190 3191 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3192 if_start_lock(ifp); 3193 out: 3194 splx(s); 3195 3196 return error; 3197 } 3198 3199 int 3200 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3201 { 3202 int error; 3203 3204 #ifdef ALTQ 3205 KERNEL_LOCK(1, NULL); 3206 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3207 error = if_transmit(ifp, m); 3208 KERNEL_UNLOCK_ONE(NULL); 3209 } else { 3210 KERNEL_UNLOCK_ONE(NULL); 3211 error = (*ifp->if_transmit)(ifp, m); 3212 } 3213 #else /* !ALTQ */ 3214 error = (*ifp->if_transmit)(ifp, m); 3215 #endif /* !ALTQ */ 3216 3217 return error; 3218 } 3219 3220 /* 3221 * Queue message on interface, and start output if interface 3222 * not yet active. 3223 */ 3224 int 3225 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3226 { 3227 3228 return if_transmit_lock(ifp, m); 3229 } 3230 3231 /* 3232 * Queue message on interface, possibly using a second fast queue 3233 */ 3234 int 3235 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3236 { 3237 int error = 0; 3238 3239 if (ifq != NULL 3240 #ifdef ALTQ 3241 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3242 #endif 3243 ) { 3244 if (IF_QFULL(ifq)) { 3245 IF_DROP(&ifp->if_snd); 3246 m_freem(m); 3247 if (error == 0) 3248 error = ENOBUFS; 3249 } else 3250 IF_ENQUEUE(ifq, m); 3251 } else 3252 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3253 if (error != 0) { 3254 ++ifp->if_oerrors; 3255 return error; 3256 } 3257 return 0; 3258 } 3259 3260 int 3261 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3262 { 3263 int rc; 3264 3265 if (ifp->if_initaddr != NULL) 3266 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3267 else if (src || 3268 /* FIXME: may not hold if_ioctl_lock */ 3269 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3270 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); 3271 3272 return rc; 3273 } 3274 3275 int 3276 if_do_dad(struct ifnet *ifp) 3277 { 3278 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3279 return 0; 3280 3281 switch (ifp->if_type) { 3282 case IFT_FAITH: 3283 /* 3284 * These interfaces do not have the IFF_LOOPBACK flag, 3285 * but loop packets back. We do not have to do DAD on such 3286 * interfaces. We should even omit it, because loop-backed 3287 * responses would confuse the DAD procedure. 3288 */ 3289 return 0; 3290 default: 3291 /* 3292 * Our DAD routine requires the interface up and running. 3293 * However, some interfaces can be up before the RUNNING 3294 * status. Additionaly, users may try to assign addresses 3295 * before the interface becomes up (or running). 3296 * We simply skip DAD in such a case as a work around. 3297 * XXX: we should rather mark "tentative" on such addresses, 3298 * and do DAD after the interface becomes ready. 3299 */ 3300 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 3301 (IFF_UP|IFF_RUNNING)) 3302 return 0; 3303 3304 return 1; 3305 } 3306 } 3307 3308 int 3309 if_flags_set(ifnet_t *ifp, const short flags) 3310 { 3311 int rc; 3312 3313 if (ifp->if_setflags != NULL) 3314 rc = (*ifp->if_setflags)(ifp, flags); 3315 else { 3316 short cantflags, chgdflags; 3317 struct ifreq ifr; 3318 3319 chgdflags = ifp->if_flags ^ flags; 3320 cantflags = chgdflags & IFF_CANTCHANGE; 3321 3322 if (cantflags != 0) 3323 ifp->if_flags ^= cantflags; 3324 3325 /* Traditionally, we do not call if_ioctl after 3326 * setting/clearing only IFF_PROMISC if the interface 3327 * isn't IFF_UP. Uphold that tradition. 3328 */ 3329 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3330 return 0; 3331 3332 memset(&ifr, 0, sizeof(ifr)); 3333 3334 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3335 /* FIXME: may not hold if_ioctl_lock */ 3336 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); 3337 3338 if (rc != 0 && cantflags != 0) 3339 ifp->if_flags ^= cantflags; 3340 } 3341 3342 return rc; 3343 } 3344 3345 int 3346 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3347 { 3348 int rc; 3349 struct ifreq ifr; 3350 3351 if (ifp->if_mcastop != NULL) 3352 rc = (*ifp->if_mcastop)(ifp, cmd, sa); 3353 else { 3354 ifreq_setaddr(cmd, &ifr, sa); 3355 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); 3356 } 3357 3358 return rc; 3359 } 3360 3361 static void 3362 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3363 struct ifaltq *ifq) 3364 { 3365 const struct sysctlnode *cnode, *rnode; 3366 3367 if (sysctl_createv(clog, 0, NULL, &rnode, 3368 CTLFLAG_PERMANENT, 3369 CTLTYPE_NODE, "interfaces", 3370 SYSCTL_DESCR("Per-interface controls"), 3371 NULL, 0, NULL, 0, 3372 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 3373 goto bad; 3374 3375 if (sysctl_createv(clog, 0, &rnode, &rnode, 3376 CTLFLAG_PERMANENT, 3377 CTLTYPE_NODE, ifname, 3378 SYSCTL_DESCR("Interface controls"), 3379 NULL, 0, NULL, 0, 3380 CTL_CREATE, CTL_EOL) != 0) 3381 goto bad; 3382 3383 if (sysctl_createv(clog, 0, &rnode, &rnode, 3384 CTLFLAG_PERMANENT, 3385 CTLTYPE_NODE, "sndq", 3386 SYSCTL_DESCR("Interface output queue controls"), 3387 NULL, 0, NULL, 0, 3388 CTL_CREATE, CTL_EOL) != 0) 3389 goto bad; 3390 3391 if (sysctl_createv(clog, 0, &rnode, &cnode, 3392 CTLFLAG_PERMANENT, 3393 CTLTYPE_INT, "len", 3394 SYSCTL_DESCR("Current output queue length"), 3395 NULL, 0, &ifq->ifq_len, 0, 3396 CTL_CREATE, CTL_EOL) != 0) 3397 goto bad; 3398 3399 if (sysctl_createv(clog, 0, &rnode, &cnode, 3400 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3401 CTLTYPE_INT, "maxlen", 3402 SYSCTL_DESCR("Maximum allowed output queue length"), 3403 NULL, 0, &ifq->ifq_maxlen, 0, 3404 CTL_CREATE, CTL_EOL) != 0) 3405 goto bad; 3406 3407 if (sysctl_createv(clog, 0, &rnode, &cnode, 3408 CTLFLAG_PERMANENT, 3409 CTLTYPE_INT, "drops", 3410 SYSCTL_DESCR("Packets dropped due to full output queue"), 3411 NULL, 0, &ifq->ifq_drops, 0, 3412 CTL_CREATE, CTL_EOL) != 0) 3413 goto bad; 3414 3415 return; 3416 bad: 3417 printf("%s: could not attach sysctl nodes\n", ifname); 3418 return; 3419 } 3420 3421 #if defined(INET) || defined(INET6) 3422 3423 #define SYSCTL_NET_PKTQ(q, cn, c) \ 3424 static int \ 3425 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \ 3426 { \ 3427 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \ 3428 } 3429 3430 #if defined(INET) 3431 static int 3432 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS) 3433 { 3434 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq); 3435 } 3436 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS) 3437 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS) 3438 #endif 3439 3440 #if defined(INET6) 3441 static int 3442 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS) 3443 { 3444 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq); 3445 } 3446 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS) 3447 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS) 3448 #endif 3449 3450 static void 3451 sysctl_net_pktq_setup(struct sysctllog **clog, int pf) 3452 { 3453 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL; 3454 const char *pfname = NULL, *ipname = NULL; 3455 int ipn = 0, qid = 0; 3456 3457 switch (pf) { 3458 #if defined(INET) 3459 case PF_INET: 3460 len_func = sysctl_net_ip_pktq_items; 3461 maxlen_func = sysctl_net_ip_pktq_maxlen; 3462 drops_func = sysctl_net_ip_pktq_drops; 3463 pfname = "inet", ipn = IPPROTO_IP; 3464 ipname = "ip", qid = IPCTL_IFQ; 3465 break; 3466 #endif 3467 #if defined(INET6) 3468 case PF_INET6: 3469 len_func = sysctl_net_ip6_pktq_items; 3470 maxlen_func = sysctl_net_ip6_pktq_maxlen; 3471 drops_func = sysctl_net_ip6_pktq_drops; 3472 pfname = "inet6", ipn = IPPROTO_IPV6; 3473 ipname = "ip6", qid = IPV6CTL_IFQ; 3474 break; 3475 #endif 3476 default: 3477 KASSERT(false); 3478 } 3479 3480 sysctl_createv(clog, 0, NULL, NULL, 3481 CTLFLAG_PERMANENT, 3482 CTLTYPE_NODE, pfname, NULL, 3483 NULL, 0, NULL, 0, 3484 CTL_NET, pf, CTL_EOL); 3485 sysctl_createv(clog, 0, NULL, NULL, 3486 CTLFLAG_PERMANENT, 3487 CTLTYPE_NODE, ipname, NULL, 3488 NULL, 0, NULL, 0, 3489 CTL_NET, pf, ipn, CTL_EOL); 3490 sysctl_createv(clog, 0, NULL, NULL, 3491 CTLFLAG_PERMANENT, 3492 CTLTYPE_NODE, "ifq", 3493 SYSCTL_DESCR("Protocol input queue controls"), 3494 NULL, 0, NULL, 0, 3495 CTL_NET, pf, ipn, qid, CTL_EOL); 3496 3497 sysctl_createv(clog, 0, NULL, NULL, 3498 CTLFLAG_PERMANENT, 3499 CTLTYPE_INT, "len", 3500 SYSCTL_DESCR("Current input queue length"), 3501 len_func, 0, NULL, 0, 3502 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); 3503 sysctl_createv(clog, 0, NULL, NULL, 3504 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3505 CTLTYPE_INT, "maxlen", 3506 SYSCTL_DESCR("Maximum allowed input queue length"), 3507 maxlen_func, 0, NULL, 0, 3508 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); 3509 sysctl_createv(clog, 0, NULL, NULL, 3510 CTLFLAG_PERMANENT, 3511 CTLTYPE_INT, "drops", 3512 SYSCTL_DESCR("Packets dropped due to full input queue"), 3513 drops_func, 0, NULL, 0, 3514 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); 3515 } 3516 #endif /* INET || INET6 */ 3517 3518 static int 3519 if_sdl_sysctl(SYSCTLFN_ARGS) 3520 { 3521 struct ifnet *ifp; 3522 const struct sockaddr_dl *sdl; 3523 struct psref psref; 3524 int error = 0; 3525 int bound; 3526 3527 if (namelen != 1) 3528 return EINVAL; 3529 3530 bound = curlwp_bind(); 3531 ifp = if_get_byindex(name[0], &psref); 3532 if (ifp == NULL) { 3533 error = ENODEV; 3534 goto out0; 3535 } 3536 3537 sdl = ifp->if_sadl; 3538 if (sdl == NULL) { 3539 *oldlenp = 0; 3540 goto out1; 3541 } 3542 3543 if (oldp == NULL) { 3544 *oldlenp = sdl->sdl_alen; 3545 goto out1; 3546 } 3547 3548 if (*oldlenp >= sdl->sdl_alen) 3549 *oldlenp = sdl->sdl_alen; 3550 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp); 3551 out1: 3552 if_put(ifp, &psref); 3553 out0: 3554 curlwp_bindx(bound); 3555 return error; 3556 } 3557 3558 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup") 3559 { 3560 const struct sysctlnode *rnode = NULL; 3561 3562 sysctl_createv(clog, 0, NULL, &rnode, 3563 CTLFLAG_PERMANENT, 3564 CTLTYPE_NODE, "sdl", 3565 SYSCTL_DESCR("Get active link-layer address"), 3566 if_sdl_sysctl, 0, NULL, 0, 3567 CTL_NET, CTL_CREATE, CTL_EOL); 3568 } 3569