1 /* $NetBSD: if.c,v 1.367 2016/12/13 02:05:48 ozaki-r Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by William Studenmund and Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of the project nor the names of its contributors 45 * may be used to endorse or promote products derived from this software 46 * without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * SUCH DAMAGE. 59 */ 60 61 /* 62 * Copyright (c) 1980, 1986, 1993 63 * The Regents of the University of California. All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. Neither the name of the University nor the names of its contributors 74 * may be used to endorse or promote products derived from this software 75 * without specific prior written permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * SUCH DAMAGE. 88 * 89 * @(#)if.c 8.5 (Berkeley) 1/9/95 90 */ 91 92 #include <sys/cdefs.h> 93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.367 2016/12/13 02:05:48 ozaki-r Exp $"); 94 95 #if defined(_KERNEL_OPT) 96 #include "opt_inet.h" 97 #include "opt_ipsec.h" 98 99 #include "opt_atalk.h" 100 #include "opt_natm.h" 101 #include "opt_wlan.h" 102 #include "opt_net_mpsafe.h" 103 #endif 104 105 #include <sys/param.h> 106 #include <sys/mbuf.h> 107 #include <sys/systm.h> 108 #include <sys/callout.h> 109 #include <sys/proc.h> 110 #include <sys/socket.h> 111 #include <sys/socketvar.h> 112 #include <sys/domain.h> 113 #include <sys/protosw.h> 114 #include <sys/kernel.h> 115 #include <sys/ioctl.h> 116 #include <sys/sysctl.h> 117 #include <sys/syslog.h> 118 #include <sys/kauth.h> 119 #include <sys/kmem.h> 120 #include <sys/xcall.h> 121 #include <sys/cpu.h> 122 #include <sys/intr.h> 123 124 #include <net/if.h> 125 #include <net/if_dl.h> 126 #include <net/if_ether.h> 127 #include <net/if_media.h> 128 #include <net80211/ieee80211.h> 129 #include <net80211/ieee80211_ioctl.h> 130 #include <net/if_types.h> 131 #include <net/route.h> 132 #include <net/netisr.h> 133 #include <sys/module.h> 134 #ifdef NETATALK 135 #include <netatalk/at_extern.h> 136 #include <netatalk/at.h> 137 #endif 138 #include <net/pfil.h> 139 #include <netinet/in.h> 140 #include <netinet/in_var.h> 141 #ifndef IPSEC 142 #include <netinet/ip_encap.h> 143 #endif 144 145 #ifdef INET6 146 #include <netinet6/in6_var.h> 147 #include <netinet6/nd6.h> 148 #endif 149 150 #include "ether.h" 151 #include "fddi.h" 152 #include "token.h" 153 154 #include "carp.h" 155 #if NCARP > 0 156 #include <netinet/ip_carp.h> 157 #endif 158 159 #include <compat/sys/sockio.h> 160 #include <compat/sys/socket.h> 161 162 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); 163 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); 164 165 /* 166 * Global list of interfaces. 167 */ 168 /* DEPRECATED. Remove it once kvm(3) users disappeared */ 169 struct ifnet_head ifnet_list; 170 171 struct pslist_head ifnet_pslist; 172 static ifnet_t ** ifindex2ifnet = NULL; 173 static u_int if_index = 1; 174 static size_t if_indexlim = 0; 175 static uint64_t index_gen; 176 /* Mutex to protect the above objects. */ 177 kmutex_t ifnet_mtx __cacheline_aligned; 178 struct psref_class *ifnet_psref_class __read_mostly; 179 static pserialize_t ifnet_psz; 180 181 static kmutex_t if_clone_mtx; 182 183 struct ifnet *lo0ifp; 184 int ifqmaxlen = IFQ_MAXLEN; 185 186 struct psref_class *ifa_psref_class __read_mostly; 187 188 static int if_delroute_matcher(struct rtentry *, void *); 189 190 static struct if_clone *if_clone_lookup(const char *, int *); 191 192 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); 193 static int if_cloners_count; 194 195 /* Packet filtering hook for interfaces. */ 196 pfil_head_t * if_pfil; 197 198 static kauth_listener_t if_listener; 199 200 static int doifioctl(struct socket *, u_long, void *, struct lwp *); 201 static void if_detach_queues(struct ifnet *, struct ifqueue *); 202 static void sysctl_sndq_setup(struct sysctllog **, const char *, 203 struct ifaltq *); 204 static void if_slowtimo(void *); 205 static void if_free_sadl(struct ifnet *); 206 static void if_attachdomain1(struct ifnet *); 207 static int ifconf(u_long, void *); 208 static int if_transmit(struct ifnet *, struct mbuf *); 209 static int if_clone_create(const char *); 210 static int if_clone_destroy(const char *); 211 static void if_link_state_change_si(void *); 212 213 struct if_percpuq { 214 struct ifnet *ipq_ifp; 215 void *ipq_si; 216 struct percpu *ipq_ifqs; /* struct ifqueue */ 217 }; 218 219 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *); 220 221 static void if_percpuq_drops(void *, void *, struct cpu_info *); 222 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO); 223 static void sysctl_percpuq_setup(struct sysctllog **, const char *, 224 struct if_percpuq *); 225 226 struct if_deferred_start { 227 struct ifnet *ids_ifp; 228 void (*ids_if_start)(struct ifnet *); 229 void *ids_si; 230 }; 231 232 static void if_deferred_start_softint(void *); 233 static void if_deferred_start_common(struct ifnet *); 234 static void if_deferred_start_destroy(struct ifnet *); 235 236 #if defined(INET) || defined(INET6) 237 static void sysctl_net_pktq_setup(struct sysctllog **, int); 238 #endif 239 240 /* 241 * Pointer to stub or real compat_cvtcmd() depending on presence of 242 * the compat module 243 */ 244 u_long stub_compat_cvtcmd(u_long); 245 u_long (*vec_compat_cvtcmd)(u_long) = stub_compat_cvtcmd; 246 247 /* Similarly, pointer to compat_ifioctl() if it is present */ 248 249 int (*vec_compat_ifioctl)(struct socket *, u_long, u_long, void *, 250 struct lwp *) = NULL; 251 252 /* The stub version of compat_cvtcmd() */ 253 u_long stub_compat_cvtcmd(u_long cmd) 254 { 255 256 return cmd; 257 } 258 259 static int 260 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 261 void *arg0, void *arg1, void *arg2, void *arg3) 262 { 263 int result; 264 enum kauth_network_req req; 265 266 result = KAUTH_RESULT_DEFER; 267 req = (enum kauth_network_req)arg1; 268 269 if (action != KAUTH_NETWORK_INTERFACE) 270 return result; 271 272 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) || 273 (req == KAUTH_REQ_NETWORK_INTERFACE_SET)) 274 result = KAUTH_RESULT_ALLOW; 275 276 return result; 277 } 278 279 /* 280 * Network interface utility routines. 281 * 282 * Routines with ifa_ifwith* names take sockaddr *'s as 283 * parameters. 284 */ 285 void 286 ifinit(void) 287 { 288 #if defined(INET) 289 sysctl_net_pktq_setup(NULL, PF_INET); 290 #endif 291 #ifdef INET6 292 if (in6_present) 293 sysctl_net_pktq_setup(NULL, PF_INET6); 294 #endif 295 296 #if (defined(INET) || defined(INET6)) && !defined(IPSEC) 297 encapinit(); 298 #endif 299 300 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 301 if_listener_cb, NULL); 302 303 /* interfaces are available, inform socket code */ 304 ifioctl = doifioctl; 305 } 306 307 /* 308 * XXX Initialization before configure(). 309 * XXX hack to get pfil_add_hook working in autoconf. 310 */ 311 void 312 ifinit1(void) 313 { 314 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE); 315 316 TAILQ_INIT(&ifnet_list); 317 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE); 318 ifnet_psz = pserialize_create(); 319 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET); 320 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET); 321 PSLIST_INIT(&ifnet_pslist); 322 323 if_indexlim = 8; 324 325 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL); 326 KASSERT(if_pfil != NULL); 327 328 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN) 329 etherinit(); 330 #endif 331 } 332 333 ifnet_t * 334 if_alloc(u_char type) 335 { 336 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP); 337 } 338 339 void 340 if_free(ifnet_t *ifp) 341 { 342 kmem_free(ifp, sizeof(ifnet_t)); 343 } 344 345 void 346 if_initname(struct ifnet *ifp, const char *name, int unit) 347 { 348 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname), 349 "%s%d", name, unit); 350 } 351 352 /* 353 * Null routines used while an interface is going away. These routines 354 * just return an error. 355 */ 356 357 int 358 if_nulloutput(struct ifnet *ifp, struct mbuf *m, 359 const struct sockaddr *so, const struct rtentry *rt) 360 { 361 362 return ENXIO; 363 } 364 365 void 366 if_nullinput(struct ifnet *ifp, struct mbuf *m) 367 { 368 369 /* Nothing. */ 370 } 371 372 void 373 if_nullstart(struct ifnet *ifp) 374 { 375 376 /* Nothing. */ 377 } 378 379 int 380 if_nulltransmit(struct ifnet *ifp, struct mbuf *m) 381 { 382 383 return ENXIO; 384 } 385 386 int 387 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data) 388 { 389 390 return ENXIO; 391 } 392 393 int 394 if_nullinit(struct ifnet *ifp) 395 { 396 397 return ENXIO; 398 } 399 400 void 401 if_nullstop(struct ifnet *ifp, int disable) 402 { 403 404 /* Nothing. */ 405 } 406 407 void 408 if_nullslowtimo(struct ifnet *ifp) 409 { 410 411 /* Nothing. */ 412 } 413 414 void 415 if_nulldrain(struct ifnet *ifp) 416 { 417 418 /* Nothing. */ 419 } 420 421 void 422 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory) 423 { 424 struct ifaddr *ifa; 425 struct sockaddr_dl *sdl; 426 427 ifp->if_addrlen = addrlen; 428 if_alloc_sadl(ifp); 429 ifa = ifp->if_dl; 430 sdl = satosdl(ifa->ifa_addr); 431 432 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen); 433 if (factory) { 434 ifp->if_hwdl = ifp->if_dl; 435 ifaref(ifp->if_hwdl); 436 } 437 /* TBD routing socket */ 438 } 439 440 struct ifaddr * 441 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp) 442 { 443 unsigned socksize, ifasize; 444 int addrlen, namelen; 445 struct sockaddr_dl *mask, *sdl; 446 struct ifaddr *ifa; 447 448 namelen = strlen(ifp->if_xname); 449 addrlen = ifp->if_addrlen; 450 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long)); 451 ifasize = sizeof(*ifa) + 2 * socksize; 452 ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO); 453 454 sdl = (struct sockaddr_dl *)(ifa + 1); 455 mask = (struct sockaddr_dl *)(socksize + (char *)sdl); 456 457 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type, 458 ifp->if_xname, namelen, NULL, addrlen); 459 mask->sdl_len = sockaddr_dl_measure(namelen, 0); 460 memset(&mask->sdl_data[0], 0xff, namelen); 461 ifa->ifa_rtrequest = link_rtrequest; 462 ifa->ifa_addr = (struct sockaddr *)sdl; 463 ifa->ifa_netmask = (struct sockaddr *)mask; 464 ifa_psref_init(ifa); 465 466 *sdlp = sdl; 467 468 return ifa; 469 } 470 471 static void 472 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa) 473 { 474 const struct sockaddr_dl *sdl; 475 476 ifp->if_dl = ifa; 477 ifaref(ifa); 478 sdl = satosdl(ifa->ifa_addr); 479 ifp->if_sadl = sdl; 480 } 481 482 /* 483 * Allocate the link level name for the specified interface. This 484 * is an attachment helper. It must be called after ifp->if_addrlen 485 * is initialized, which may not be the case when if_attach() is 486 * called. 487 */ 488 void 489 if_alloc_sadl(struct ifnet *ifp) 490 { 491 struct ifaddr *ifa; 492 const struct sockaddr_dl *sdl; 493 494 /* 495 * If the interface already has a link name, release it 496 * now. This is useful for interfaces that can change 497 * link types, and thus switch link names often. 498 */ 499 if (ifp->if_sadl != NULL) 500 if_free_sadl(ifp); 501 502 ifa = if_dl_create(ifp, &sdl); 503 504 ifa_insert(ifp, ifa); 505 if_sadl_setrefs(ifp, ifa); 506 } 507 508 static void 509 if_deactivate_sadl(struct ifnet *ifp) 510 { 511 struct ifaddr *ifa; 512 513 KASSERT(ifp->if_dl != NULL); 514 515 ifa = ifp->if_dl; 516 517 ifp->if_sadl = NULL; 518 519 ifp->if_dl = NULL; 520 ifafree(ifa); 521 } 522 523 void 524 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0, 525 const struct sockaddr_dl *sdl) 526 { 527 int s, ss; 528 struct ifaddr *ifa; 529 int bound = curlwp_bind(); 530 531 s = splnet(); 532 533 if_deactivate_sadl(ifp); 534 535 if_sadl_setrefs(ifp, ifa0); 536 537 ss = pserialize_read_enter(); 538 IFADDR_READER_FOREACH(ifa, ifp) { 539 struct psref psref; 540 ifa_acquire(ifa, &psref); 541 pserialize_read_exit(ss); 542 543 rtinit(ifa, RTM_LLINFO_UPD, 0); 544 545 ss = pserialize_read_enter(); 546 ifa_release(ifa, &psref); 547 } 548 pserialize_read_exit(ss); 549 550 splx(s); 551 curlwp_bindx(bound); 552 } 553 554 /* 555 * Free the link level name for the specified interface. This is 556 * a detach helper. This is called from if_detach(). 557 */ 558 static void 559 if_free_sadl(struct ifnet *ifp) 560 { 561 struct ifaddr *ifa; 562 int s; 563 564 ifa = ifp->if_dl; 565 if (ifa == NULL) { 566 KASSERT(ifp->if_sadl == NULL); 567 return; 568 } 569 570 KASSERT(ifp->if_sadl != NULL); 571 572 s = splnet(); 573 rtinit(ifa, RTM_DELETE, 0); 574 ifa_remove(ifp, ifa); 575 if_deactivate_sadl(ifp); 576 if (ifp->if_hwdl == ifa) { 577 ifafree(ifa); 578 ifp->if_hwdl = NULL; 579 } 580 splx(s); 581 } 582 583 static void 584 if_getindex(ifnet_t *ifp) 585 { 586 bool hitlimit = false; 587 588 ifp->if_index_gen = index_gen++; 589 590 ifp->if_index = if_index; 591 if (ifindex2ifnet == NULL) { 592 if_index++; 593 goto skip; 594 } 595 while (if_byindex(ifp->if_index)) { 596 /* 597 * If we hit USHRT_MAX, we skip back to 0 since 598 * there are a number of places where the value 599 * of if_index or if_index itself is compared 600 * to or stored in an unsigned short. By 601 * jumping back, we won't botch those assignments 602 * or comparisons. 603 */ 604 if (++if_index == 0) { 605 if_index = 1; 606 } else if (if_index == USHRT_MAX) { 607 /* 608 * However, if we have to jump back to 609 * zero *twice* without finding an empty 610 * slot in ifindex2ifnet[], then there 611 * there are too many (>65535) interfaces. 612 */ 613 if (hitlimit) { 614 panic("too many interfaces"); 615 } 616 hitlimit = true; 617 if_index = 1; 618 } 619 ifp->if_index = if_index; 620 } 621 skip: 622 /* 623 * ifindex2ifnet is indexed by if_index. Since if_index will 624 * grow dynamically, it should grow too. 625 */ 626 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) { 627 size_t m, n, oldlim; 628 void *q; 629 630 oldlim = if_indexlim; 631 while (ifp->if_index >= if_indexlim) 632 if_indexlim <<= 1; 633 634 /* grow ifindex2ifnet */ 635 m = oldlim * sizeof(struct ifnet *); 636 n = if_indexlim * sizeof(struct ifnet *); 637 q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO); 638 if (ifindex2ifnet != NULL) { 639 memcpy(q, ifindex2ifnet, m); 640 free(ifindex2ifnet, M_IFADDR); 641 } 642 ifindex2ifnet = (struct ifnet **)q; 643 } 644 ifindex2ifnet[ifp->if_index] = ifp; 645 } 646 647 /* 648 * Initialize an interface and assign an index for it. 649 * 650 * It must be called prior to a device specific attach routine 651 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl, 652 * and be followed by if_register: 653 * 654 * if_initialize(ifp); 655 * ether_ifattach(ifp, enaddr); 656 * if_register(ifp); 657 */ 658 void 659 if_initialize(ifnet_t *ifp) 660 { 661 KASSERT(if_indexlim > 0); 662 TAILQ_INIT(&ifp->if_addrlist); 663 664 /* 665 * Link level name is allocated later by a separate call to 666 * if_alloc_sadl(). 667 */ 668 669 if (ifp->if_snd.ifq_maxlen == 0) 670 ifp->if_snd.ifq_maxlen = ifqmaxlen; 671 672 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */ 673 674 ifp->if_link_state = LINK_STATE_UNKNOWN; 675 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */ 676 677 ifp->if_capenable = 0; 678 ifp->if_csum_flags_tx = 0; 679 ifp->if_csum_flags_rx = 0; 680 681 #ifdef ALTQ 682 ifp->if_snd.altq_type = 0; 683 ifp->if_snd.altq_disc = NULL; 684 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE; 685 ifp->if_snd.altq_tbr = NULL; 686 ifp->if_snd.altq_ifp = ifp; 687 #endif 688 689 IFQ_LOCK_INIT(&ifp->if_snd); 690 691 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp); 692 (void)pfil_run_hooks(if_pfil, 693 (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET); 694 695 IF_AFDATA_LOCK_INIT(ifp); 696 697 if (if_is_link_state_changeable(ifp)) { 698 ifp->if_link_si = softint_establish(SOFTINT_NET, 699 if_link_state_change_si, ifp); 700 if (ifp->if_link_si == NULL) 701 panic("%s: softint_establish() failed", __func__); 702 } 703 704 PSLIST_ENTRY_INIT(ifp, if_pslist_entry); 705 PSLIST_INIT(&ifp->if_addr_pslist); 706 psref_target_init(&ifp->if_psref, ifnet_psref_class); 707 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 708 709 IFNET_LOCK(); 710 if_getindex(ifp); 711 IFNET_UNLOCK(); 712 } 713 714 /* 715 * Register an interface to the list of "active" interfaces. 716 */ 717 void 718 if_register(ifnet_t *ifp) 719 { 720 /* 721 * If the driver has not supplied its own if_ioctl, then 722 * supply the default. 723 */ 724 if (ifp->if_ioctl == NULL) 725 ifp->if_ioctl = ifioctl_common; 726 727 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd); 728 729 if (!STAILQ_EMPTY(&domains)) 730 if_attachdomain1(ifp); 731 732 /* Announce the interface. */ 733 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 734 735 if (ifp->if_slowtimo != NULL) { 736 ifp->if_slowtimo_ch = 737 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP); 738 callout_init(ifp->if_slowtimo_ch, 0); 739 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp); 740 if_slowtimo(ifp); 741 } 742 743 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit) 744 ifp->if_transmit = if_transmit; 745 746 IFNET_LOCK(); 747 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list); 748 IFNET_WRITER_INSERT_TAIL(ifp); 749 IFNET_UNLOCK(); 750 } 751 752 /* 753 * The if_percpuq framework 754 * 755 * It allows network device drivers to execute the network stack 756 * in softint (so called softint-based if_input). It utilizes 757 * softint and percpu ifqueue. It doesn't distribute any packets 758 * between CPUs, unlike pktqueue(9). 759 * 760 * Currently we support two options for device drivers to apply the framework: 761 * - Use it implicitly with less changes 762 * - If you use if_attach in driver's _attach function and if_input in 763 * driver's Rx interrupt handler, a packet is queued and a softint handles 764 * the packet implicitly 765 * - Use it explicitly in each driver (recommended) 766 * - You can use if_percpuq_* directly in your driver 767 * - In this case, you need to allocate struct if_percpuq in driver's softc 768 * - See wm(4) as a reference implementation 769 */ 770 771 static void 772 if_percpuq_softint(void *arg) 773 { 774 struct if_percpuq *ipq = arg; 775 struct ifnet *ifp = ipq->ipq_ifp; 776 struct mbuf *m; 777 778 while ((m = if_percpuq_dequeue(ipq)) != NULL) 779 ifp->_if_input(ifp, m); 780 } 781 782 static void 783 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 784 { 785 struct ifqueue *const ifq = p; 786 787 memset(ifq, 0, sizeof(*ifq)); 788 ifq->ifq_maxlen = IFQ_MAXLEN; 789 } 790 791 struct if_percpuq * 792 if_percpuq_create(struct ifnet *ifp) 793 { 794 struct if_percpuq *ipq; 795 796 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP); 797 if (ipq == NULL) 798 panic("kmem_zalloc failed"); 799 800 ipq->ipq_ifp = ifp; 801 ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, 802 if_percpuq_softint, ipq); 803 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue)); 804 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL); 805 806 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq); 807 808 return ipq; 809 } 810 811 static struct mbuf * 812 if_percpuq_dequeue(struct if_percpuq *ipq) 813 { 814 struct mbuf *m; 815 struct ifqueue *ifq; 816 int s; 817 818 s = splnet(); 819 ifq = percpu_getref(ipq->ipq_ifqs); 820 IF_DEQUEUE(ifq, m); 821 percpu_putref(ipq->ipq_ifqs); 822 splx(s); 823 824 return m; 825 } 826 827 static void 828 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused) 829 { 830 struct ifqueue *const ifq = p; 831 832 IF_PURGE(ifq); 833 } 834 835 void 836 if_percpuq_destroy(struct if_percpuq *ipq) 837 { 838 839 /* if_detach may already destroy it */ 840 if (ipq == NULL) 841 return; 842 843 softint_disestablish(ipq->ipq_si); 844 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL); 845 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue)); 846 kmem_free(ipq, sizeof(*ipq)); 847 } 848 849 void 850 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m) 851 { 852 struct ifqueue *ifq; 853 int s; 854 855 KASSERT(ipq != NULL); 856 857 s = splnet(); 858 ifq = percpu_getref(ipq->ipq_ifqs); 859 if (IF_QFULL(ifq)) { 860 IF_DROP(ifq); 861 percpu_putref(ipq->ipq_ifqs); 862 m_freem(m); 863 goto out; 864 } 865 IF_ENQUEUE(ifq, m); 866 percpu_putref(ipq->ipq_ifqs); 867 868 softint_schedule(ipq->ipq_si); 869 out: 870 splx(s); 871 } 872 873 static void 874 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused) 875 { 876 struct ifqueue *const ifq = p; 877 int *sum = arg; 878 879 *sum += ifq->ifq_drops; 880 } 881 882 static int 883 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS) 884 { 885 struct sysctlnode node; 886 struct if_percpuq *ipq; 887 int sum = 0; 888 int error; 889 890 node = *rnode; 891 ipq = node.sysctl_data; 892 893 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum); 894 895 node.sysctl_data = ∑ 896 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 897 if (error != 0 || newp == NULL) 898 return error; 899 900 return 0; 901 } 902 903 static void 904 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname, 905 struct if_percpuq *ipq) 906 { 907 const struct sysctlnode *cnode, *rnode; 908 909 if (sysctl_createv(clog, 0, NULL, &rnode, 910 CTLFLAG_PERMANENT, 911 CTLTYPE_NODE, "interfaces", 912 SYSCTL_DESCR("Per-interface controls"), 913 NULL, 0, NULL, 0, 914 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 915 goto bad; 916 917 if (sysctl_createv(clog, 0, &rnode, &rnode, 918 CTLFLAG_PERMANENT, 919 CTLTYPE_NODE, ifname, 920 SYSCTL_DESCR("Interface controls"), 921 NULL, 0, NULL, 0, 922 CTL_CREATE, CTL_EOL) != 0) 923 goto bad; 924 925 if (sysctl_createv(clog, 0, &rnode, &rnode, 926 CTLFLAG_PERMANENT, 927 CTLTYPE_NODE, "rcvq", 928 SYSCTL_DESCR("Interface input queue controls"), 929 NULL, 0, NULL, 0, 930 CTL_CREATE, CTL_EOL) != 0) 931 goto bad; 932 933 #ifdef NOTYET 934 /* XXX Should show each per-CPU queue length? */ 935 if (sysctl_createv(clog, 0, &rnode, &rnode, 936 CTLFLAG_PERMANENT, 937 CTLTYPE_INT, "len", 938 SYSCTL_DESCR("Current input queue length"), 939 sysctl_percpuq_len, 0, NULL, 0, 940 CTL_CREATE, CTL_EOL) != 0) 941 goto bad; 942 943 if (sysctl_createv(clog, 0, &rnode, &cnode, 944 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 945 CTLTYPE_INT, "maxlen", 946 SYSCTL_DESCR("Maximum allowed input queue length"), 947 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0, 948 CTL_CREATE, CTL_EOL) != 0) 949 goto bad; 950 #endif 951 952 if (sysctl_createv(clog, 0, &rnode, &cnode, 953 CTLFLAG_PERMANENT, 954 CTLTYPE_INT, "drops", 955 SYSCTL_DESCR("Total packets dropped due to full input queue"), 956 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0, 957 CTL_CREATE, CTL_EOL) != 0) 958 goto bad; 959 960 return; 961 bad: 962 printf("%s: could not attach sysctl nodes\n", ifname); 963 return; 964 } 965 966 /* 967 * The deferred if_start framework 968 * 969 * The common APIs to defer if_start to softint when if_start is requested 970 * from a device driver running in hardware interrupt context. 971 */ 972 /* 973 * Call ifp->if_start (or equivalent) in a dedicated softint for 974 * deferred if_start. 975 */ 976 static void 977 if_deferred_start_softint(void *arg) 978 { 979 struct if_deferred_start *ids = arg; 980 struct ifnet *ifp = ids->ids_ifp; 981 982 ids->ids_if_start(ifp); 983 } 984 985 /* 986 * The default callback function for deferred if_start. 987 */ 988 static void 989 if_deferred_start_common(struct ifnet *ifp) 990 { 991 992 if_start_lock(ifp); 993 } 994 995 static inline bool 996 if_snd_is_used(struct ifnet *ifp) 997 { 998 999 return ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit || 1000 ALTQ_IS_ENABLED(&ifp->if_snd); 1001 } 1002 1003 /* 1004 * Schedule deferred if_start. 1005 */ 1006 void 1007 if_schedule_deferred_start(struct ifnet *ifp) 1008 { 1009 1010 KASSERT(ifp->if_deferred_start != NULL); 1011 1012 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd)) 1013 return; 1014 1015 softint_schedule(ifp->if_deferred_start->ids_si); 1016 } 1017 1018 /* 1019 * Create an instance of deferred if_start. A driver should call the function 1020 * only if the driver needs deferred if_start. Drivers can setup their own 1021 * deferred if_start function via 2nd argument. 1022 */ 1023 void 1024 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *)) 1025 { 1026 struct if_deferred_start *ids; 1027 1028 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP); 1029 if (ids == NULL) 1030 panic("kmem_zalloc failed"); 1031 1032 ids->ids_ifp = ifp; 1033 ids->ids_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, 1034 if_deferred_start_softint, ids); 1035 if (func != NULL) 1036 ids->ids_if_start = func; 1037 else 1038 ids->ids_if_start = if_deferred_start_common; 1039 1040 ifp->if_deferred_start = ids; 1041 } 1042 1043 static void 1044 if_deferred_start_destroy(struct ifnet *ifp) 1045 { 1046 1047 if (ifp->if_deferred_start == NULL) 1048 return; 1049 1050 softint_disestablish(ifp->if_deferred_start->ids_si); 1051 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start)); 1052 ifp->if_deferred_start = NULL; 1053 } 1054 1055 /* 1056 * The common interface input routine that is called by device drivers, 1057 * which should be used only when the driver's rx handler already runs 1058 * in softint. 1059 */ 1060 void 1061 if_input(struct ifnet *ifp, struct mbuf *m) 1062 { 1063 1064 KASSERT(ifp->if_percpuq == NULL); 1065 KASSERT(!cpu_intr_p()); 1066 1067 ifp->_if_input(ifp, m); 1068 } 1069 1070 /* 1071 * DEPRECATED. Use if_initialize and if_register instead. 1072 * See the above comment of if_initialize. 1073 * 1074 * Note that it implicitly enables if_percpuq to make drivers easy to 1075 * migrate softint-based if_input without much changes. If you don't 1076 * want to enable it, use if_initialize instead. 1077 */ 1078 void 1079 if_attach(ifnet_t *ifp) 1080 { 1081 1082 if_initialize(ifp); 1083 ifp->if_percpuq = if_percpuq_create(ifp); 1084 if_register(ifp); 1085 } 1086 1087 void 1088 if_attachdomain(void) 1089 { 1090 struct ifnet *ifp; 1091 int s; 1092 int bound = curlwp_bind(); 1093 1094 s = pserialize_read_enter(); 1095 IFNET_READER_FOREACH(ifp) { 1096 struct psref psref; 1097 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 1098 pserialize_read_exit(s); 1099 if_attachdomain1(ifp); 1100 s = pserialize_read_enter(); 1101 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 1102 } 1103 pserialize_read_exit(s); 1104 curlwp_bindx(bound); 1105 } 1106 1107 static void 1108 if_attachdomain1(struct ifnet *ifp) 1109 { 1110 struct domain *dp; 1111 int s; 1112 1113 s = splnet(); 1114 1115 /* address family dependent data region */ 1116 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata)); 1117 DOMAIN_FOREACH(dp) { 1118 if (dp->dom_ifattach != NULL) 1119 ifp->if_afdata[dp->dom_family] = 1120 (*dp->dom_ifattach)(ifp); 1121 } 1122 1123 splx(s); 1124 } 1125 1126 /* 1127 * Deactivate an interface. This points all of the procedure 1128 * handles at error stubs. May be called from interrupt context. 1129 */ 1130 void 1131 if_deactivate(struct ifnet *ifp) 1132 { 1133 int s; 1134 1135 s = splnet(); 1136 1137 ifp->if_output = if_nulloutput; 1138 ifp->_if_input = if_nullinput; 1139 ifp->if_start = if_nullstart; 1140 ifp->if_transmit = if_nulltransmit; 1141 ifp->if_ioctl = if_nullioctl; 1142 ifp->if_init = if_nullinit; 1143 ifp->if_stop = if_nullstop; 1144 ifp->if_slowtimo = if_nullslowtimo; 1145 ifp->if_drain = if_nulldrain; 1146 1147 /* No more packets may be enqueued. */ 1148 ifp->if_snd.ifq_maxlen = 0; 1149 1150 splx(s); 1151 } 1152 1153 bool 1154 if_is_deactivated(const struct ifnet *ifp) 1155 { 1156 1157 return ifp->if_output == if_nulloutput; 1158 } 1159 1160 void 1161 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *)) 1162 { 1163 struct ifaddr *ifa, *nifa; 1164 int s; 1165 1166 s = pserialize_read_enter(); 1167 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) { 1168 nifa = IFADDR_READER_NEXT(ifa); 1169 if (ifa->ifa_addr->sa_family != family) 1170 continue; 1171 pserialize_read_exit(s); 1172 1173 (*purgeaddr)(ifa); 1174 1175 s = pserialize_read_enter(); 1176 } 1177 pserialize_read_exit(s); 1178 } 1179 1180 #ifdef IFAREF_DEBUG 1181 static struct ifaddr **ifa_list; 1182 static int ifa_list_size; 1183 1184 /* Depends on only one if_attach runs at once */ 1185 static void 1186 if_build_ifa_list(struct ifnet *ifp) 1187 { 1188 struct ifaddr *ifa; 1189 int i; 1190 1191 KASSERT(ifa_list == NULL); 1192 KASSERT(ifa_list_size == 0); 1193 1194 IFADDR_READER_FOREACH(ifa, ifp) 1195 ifa_list_size++; 1196 1197 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP); 1198 if (ifa_list == NULL) 1199 return; 1200 1201 i = 0; 1202 IFADDR_READER_FOREACH(ifa, ifp) { 1203 ifa_list[i++] = ifa; 1204 ifaref(ifa); 1205 } 1206 } 1207 1208 static void 1209 if_check_and_free_ifa_list(struct ifnet *ifp) 1210 { 1211 int i; 1212 struct ifaddr *ifa; 1213 1214 if (ifa_list == NULL) 1215 return; 1216 1217 for (i = 0; i < ifa_list_size; i++) { 1218 char buf[64]; 1219 1220 ifa = ifa_list[i]; 1221 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf)); 1222 if (ifa->ifa_refcnt > 1) { 1223 log(LOG_WARNING, 1224 "ifa(%s) still referenced (refcnt=%d)\n", 1225 buf, ifa->ifa_refcnt - 1); 1226 } else 1227 log(LOG_DEBUG, 1228 "ifa(%s) not referenced (refcnt=%d)\n", 1229 buf, ifa->ifa_refcnt - 1); 1230 ifafree(ifa); 1231 } 1232 1233 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size); 1234 ifa_list = NULL; 1235 ifa_list_size = 0; 1236 } 1237 #endif 1238 1239 /* 1240 * Detach an interface from the list of "active" interfaces, 1241 * freeing any resources as we go along. 1242 * 1243 * NOTE: This routine must be called with a valid thread context, 1244 * as it may block. 1245 */ 1246 void 1247 if_detach(struct ifnet *ifp) 1248 { 1249 struct socket so; 1250 struct ifaddr *ifa; 1251 #ifdef IFAREF_DEBUG 1252 struct ifaddr *last_ifa = NULL; 1253 #endif 1254 struct domain *dp; 1255 const struct protosw *pr; 1256 int s, i, family, purged; 1257 uint64_t xc; 1258 1259 #ifdef IFAREF_DEBUG 1260 if_build_ifa_list(ifp); 1261 #endif 1262 /* 1263 * XXX It's kind of lame that we have to have the 1264 * XXX socket structure... 1265 */ 1266 memset(&so, 0, sizeof(so)); 1267 1268 s = splnet(); 1269 1270 sysctl_teardown(&ifp->if_sysctl_log); 1271 mutex_enter(ifp->if_ioctl_lock); 1272 if_deactivate(ifp); 1273 mutex_exit(ifp->if_ioctl_lock); 1274 1275 IFNET_LOCK(); 1276 ifindex2ifnet[ifp->if_index] = NULL; 1277 TAILQ_REMOVE(&ifnet_list, ifp, if_list); 1278 IFNET_WRITER_REMOVE(ifp); 1279 pserialize_perform(ifnet_psz); 1280 IFNET_UNLOCK(); 1281 1282 /* Wait for all readers to drain before freeing. */ 1283 psref_target_destroy(&ifp->if_psref, ifnet_psref_class); 1284 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry); 1285 1286 mutex_obj_free(ifp->if_ioctl_lock); 1287 ifp->if_ioctl_lock = NULL; 1288 1289 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) { 1290 ifp->if_slowtimo = NULL; 1291 callout_halt(ifp->if_slowtimo_ch, NULL); 1292 callout_destroy(ifp->if_slowtimo_ch); 1293 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch)); 1294 } 1295 if_deferred_start_destroy(ifp); 1296 1297 /* 1298 * Do an if_down() to give protocols a chance to do something. 1299 */ 1300 if_down(ifp); 1301 1302 #ifdef ALTQ 1303 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 1304 altq_disable(&ifp->if_snd); 1305 if (ALTQ_IS_ATTACHED(&ifp->if_snd)) 1306 altq_detach(&ifp->if_snd); 1307 #endif 1308 1309 mutex_obj_free(ifp->if_snd.ifq_lock); 1310 1311 #if NCARP > 0 1312 /* Remove the interface from any carp group it is a part of. */ 1313 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP) 1314 carp_ifdetach(ifp); 1315 #endif 1316 1317 /* 1318 * Rip all the addresses off the interface. This should make 1319 * all of the routes go away. 1320 * 1321 * pr_usrreq calls can remove an arbitrary number of ifaddrs 1322 * from the list, including our "cursor", ifa. For safety, 1323 * and to honor the TAILQ abstraction, I just restart the 1324 * loop after each removal. Note that the loop will exit 1325 * when all of the remaining ifaddrs belong to the AF_LINK 1326 * family. I am counting on the historical fact that at 1327 * least one pr_usrreq in each address domain removes at 1328 * least one ifaddr. 1329 */ 1330 again: 1331 /* 1332 * At this point, no other one tries to remove ifa in the list, 1333 * so we don't need to take a lock or psref. 1334 */ 1335 IFADDR_READER_FOREACH(ifa, ifp) { 1336 family = ifa->ifa_addr->sa_family; 1337 #ifdef IFAREF_DEBUG 1338 printf("if_detach: ifaddr %p, family %d, refcnt %d\n", 1339 ifa, family, ifa->ifa_refcnt); 1340 if (last_ifa != NULL && ifa == last_ifa) 1341 panic("if_detach: loop detected"); 1342 last_ifa = ifa; 1343 #endif 1344 if (family == AF_LINK) 1345 continue; 1346 dp = pffinddomain(family); 1347 #ifdef DIAGNOSTIC 1348 if (dp == NULL) 1349 panic("if_detach: no domain for AF %d", 1350 family); 1351 #endif 1352 /* 1353 * XXX These PURGEIF calls are redundant with the 1354 * purge-all-families calls below, but are left in for 1355 * now both to make a smaller change, and to avoid 1356 * unplanned interactions with clearing of 1357 * ifp->if_addrlist. 1358 */ 1359 purged = 0; 1360 for (pr = dp->dom_protosw; 1361 pr < dp->dom_protoswNPROTOSW; pr++) { 1362 so.so_proto = pr; 1363 if (pr->pr_usrreqs) { 1364 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1365 purged = 1; 1366 } 1367 } 1368 if (purged == 0) { 1369 /* 1370 * XXX What's really the best thing to do 1371 * XXX here? --thorpej@NetBSD.org 1372 */ 1373 printf("if_detach: WARNING: AF %d not purged\n", 1374 family); 1375 ifa_remove(ifp, ifa); 1376 } 1377 goto again; 1378 } 1379 1380 if_free_sadl(ifp); 1381 1382 /* Delete stray routes from the routing table. */ 1383 for (i = 0; i <= AF_MAX; i++) 1384 rt_delete_matched_entries(i, if_delroute_matcher, ifp); 1385 1386 DOMAIN_FOREACH(dp) { 1387 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family]) 1388 { 1389 void *p = ifp->if_afdata[dp->dom_family]; 1390 if (p) { 1391 ifp->if_afdata[dp->dom_family] = NULL; 1392 (*dp->dom_ifdetach)(ifp, p); 1393 } 1394 } 1395 1396 /* 1397 * One would expect multicast memberships (INET and 1398 * INET6) on UDP sockets to be purged by the PURGEIF 1399 * calls above, but if all addresses were removed from 1400 * the interface prior to destruction, the calls will 1401 * not be made (e.g. ppp, for which pppd(8) generally 1402 * removes addresses before destroying the interface). 1403 * Because there is no invariant that multicast 1404 * memberships only exist for interfaces with IPv4 1405 * addresses, we must call PURGEIF regardless of 1406 * addresses. (Protocols which might store ifnet 1407 * pointers are marked with PR_PURGEIF.) 1408 */ 1409 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) { 1410 so.so_proto = pr; 1411 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF) 1412 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp); 1413 } 1414 } 1415 1416 (void)pfil_run_hooks(if_pfil, 1417 (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET); 1418 (void)pfil_head_destroy(ifp->if_pfil); 1419 1420 /* Announce that the interface is gone. */ 1421 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 1422 1423 IF_AFDATA_LOCK_DESTROY(ifp); 1424 1425 if (if_is_link_state_changeable(ifp)) { 1426 softint_disestablish(ifp->if_link_si); 1427 ifp->if_link_si = NULL; 1428 } 1429 1430 /* 1431 * remove packets that came from ifp, from software interrupt queues. 1432 */ 1433 DOMAIN_FOREACH(dp) { 1434 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) { 1435 struct ifqueue *iq = dp->dom_ifqueues[i]; 1436 if (iq == NULL) 1437 break; 1438 dp->dom_ifqueues[i] = NULL; 1439 if_detach_queues(ifp, iq); 1440 } 1441 } 1442 1443 /* 1444 * IP queues have to be processed separately: net-queue barrier 1445 * ensures that the packets are dequeued while a cross-call will 1446 * ensure that the interrupts have completed. FIXME: not quite.. 1447 */ 1448 #ifdef INET 1449 pktq_barrier(ip_pktq); 1450 #endif 1451 #ifdef INET6 1452 if (in6_present) 1453 pktq_barrier(ip6_pktq); 1454 #endif 1455 xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 1456 xc_wait(xc); 1457 1458 if (ifp->if_percpuq != NULL) { 1459 if_percpuq_destroy(ifp->if_percpuq); 1460 ifp->if_percpuq = NULL; 1461 } 1462 1463 splx(s); 1464 1465 #ifdef IFAREF_DEBUG 1466 if_check_and_free_ifa_list(ifp); 1467 #endif 1468 } 1469 1470 static void 1471 if_detach_queues(struct ifnet *ifp, struct ifqueue *q) 1472 { 1473 struct mbuf *m, *prev, *next; 1474 1475 prev = NULL; 1476 for (m = q->ifq_head; m != NULL; m = next) { 1477 KASSERT((m->m_flags & M_PKTHDR) != 0); 1478 1479 next = m->m_nextpkt; 1480 if (m->m_pkthdr.rcvif_index != ifp->if_index) { 1481 prev = m; 1482 continue; 1483 } 1484 1485 if (prev != NULL) 1486 prev->m_nextpkt = m->m_nextpkt; 1487 else 1488 q->ifq_head = m->m_nextpkt; 1489 if (q->ifq_tail == m) 1490 q->ifq_tail = prev; 1491 q->ifq_len--; 1492 1493 m->m_nextpkt = NULL; 1494 m_freem(m); 1495 IF_DROP(q); 1496 } 1497 } 1498 1499 /* 1500 * Callback for a radix tree walk to delete all references to an 1501 * ifnet. 1502 */ 1503 static int 1504 if_delroute_matcher(struct rtentry *rt, void *v) 1505 { 1506 struct ifnet *ifp = (struct ifnet *)v; 1507 1508 if (rt->rt_ifp == ifp) 1509 return 1; 1510 else 1511 return 0; 1512 } 1513 1514 /* 1515 * Create a clone network interface. 1516 */ 1517 static int 1518 if_clone_create(const char *name) 1519 { 1520 struct if_clone *ifc; 1521 int unit; 1522 struct ifnet *ifp; 1523 struct psref psref; 1524 1525 ifc = if_clone_lookup(name, &unit); 1526 if (ifc == NULL) 1527 return EINVAL; 1528 1529 ifp = if_get(name, &psref); 1530 if (ifp != NULL) { 1531 if_put(ifp, &psref); 1532 return EEXIST; 1533 } 1534 1535 return (*ifc->ifc_create)(ifc, unit); 1536 } 1537 1538 /* 1539 * Destroy a clone network interface. 1540 */ 1541 static int 1542 if_clone_destroy(const char *name) 1543 { 1544 struct if_clone *ifc; 1545 struct ifnet *ifp; 1546 struct psref psref; 1547 1548 ifc = if_clone_lookup(name, NULL); 1549 if (ifc == NULL) 1550 return EINVAL; 1551 1552 if (ifc->ifc_destroy == NULL) 1553 return EOPNOTSUPP; 1554 1555 ifp = if_get(name, &psref); 1556 if (ifp == NULL) 1557 return ENXIO; 1558 1559 /* We have to disable ioctls here */ 1560 mutex_enter(ifp->if_ioctl_lock); 1561 ifp->if_ioctl = if_nullioctl; 1562 mutex_exit(ifp->if_ioctl_lock); 1563 1564 /* 1565 * We cannot call ifc_destroy with holding ifp. 1566 * Releasing ifp here is safe thanks to if_clone_mtx. 1567 */ 1568 if_put(ifp, &psref); 1569 1570 return (*ifc->ifc_destroy)(ifp); 1571 } 1572 1573 /* 1574 * Look up a network interface cloner. 1575 */ 1576 static struct if_clone * 1577 if_clone_lookup(const char *name, int *unitp) 1578 { 1579 struct if_clone *ifc; 1580 const char *cp; 1581 char *dp, ifname[IFNAMSIZ + 3]; 1582 int unit; 1583 1584 strcpy(ifname, "if_"); 1585 /* separate interface name from unit */ 1586 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ && 1587 *cp && (*cp < '0' || *cp > '9');) 1588 *dp++ = *cp++; 1589 1590 if (cp == name || cp - name == IFNAMSIZ || !*cp) 1591 return NULL; /* No name or unit number */ 1592 *dp++ = '\0'; 1593 1594 again: 1595 LIST_FOREACH(ifc, &if_cloners, ifc_list) { 1596 if (strcmp(ifname + 3, ifc->ifc_name) == 0) 1597 break; 1598 } 1599 1600 if (ifc == NULL) { 1601 if (*ifname == '\0' || 1602 module_autoload(ifname, MODULE_CLASS_DRIVER)) 1603 return NULL; 1604 *ifname = '\0'; 1605 goto again; 1606 } 1607 1608 unit = 0; 1609 while (cp - name < IFNAMSIZ && *cp) { 1610 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) { 1611 /* Bogus unit number. */ 1612 return NULL; 1613 } 1614 unit = (unit * 10) + (*cp++ - '0'); 1615 } 1616 1617 if (unitp != NULL) 1618 *unitp = unit; 1619 return ifc; 1620 } 1621 1622 /* 1623 * Register a network interface cloner. 1624 */ 1625 void 1626 if_clone_attach(struct if_clone *ifc) 1627 { 1628 1629 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); 1630 if_cloners_count++; 1631 } 1632 1633 /* 1634 * Unregister a network interface cloner. 1635 */ 1636 void 1637 if_clone_detach(struct if_clone *ifc) 1638 { 1639 1640 LIST_REMOVE(ifc, ifc_list); 1641 if_cloners_count--; 1642 } 1643 1644 /* 1645 * Provide list of interface cloners to userspace. 1646 */ 1647 int 1648 if_clone_list(int buf_count, char *buffer, int *total) 1649 { 1650 char outbuf[IFNAMSIZ], *dst; 1651 struct if_clone *ifc; 1652 int count, error = 0; 1653 1654 *total = if_cloners_count; 1655 if ((dst = buffer) == NULL) { 1656 /* Just asking how many there are. */ 1657 return 0; 1658 } 1659 1660 if (buf_count < 0) 1661 return EINVAL; 1662 1663 count = (if_cloners_count < buf_count) ? 1664 if_cloners_count : buf_count; 1665 1666 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0; 1667 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) { 1668 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf)); 1669 if (outbuf[sizeof(outbuf) - 1] != '\0') 1670 return ENAMETOOLONG; 1671 error = copyout(outbuf, dst, sizeof(outbuf)); 1672 if (error != 0) 1673 break; 1674 } 1675 1676 return error; 1677 } 1678 1679 void 1680 ifa_psref_init(struct ifaddr *ifa) 1681 { 1682 1683 psref_target_init(&ifa->ifa_psref, ifa_psref_class); 1684 } 1685 1686 void 1687 ifaref(struct ifaddr *ifa) 1688 { 1689 KASSERT(!ISSET(ifa->ifa_flags, IFA_DESTROYING)); 1690 ifa->ifa_refcnt++; 1691 } 1692 1693 void 1694 ifafree(struct ifaddr *ifa) 1695 { 1696 KASSERT(ifa != NULL); 1697 KASSERT(ifa->ifa_refcnt > 0); 1698 1699 if (--ifa->ifa_refcnt == 0) { 1700 free(ifa, M_IFADDR); 1701 } 1702 } 1703 1704 bool 1705 ifa_is_destroying(struct ifaddr *ifa) 1706 { 1707 1708 return ISSET(ifa->ifa_flags, IFA_DESTROYING); 1709 } 1710 1711 void 1712 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa) 1713 { 1714 1715 ifa->ifa_ifp = ifp; 1716 1717 IFNET_LOCK(); 1718 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); 1719 IFADDR_ENTRY_INIT(ifa); 1720 IFADDR_WRITER_INSERT_TAIL(ifp, ifa); 1721 IFNET_UNLOCK(); 1722 1723 ifaref(ifa); 1724 } 1725 1726 void 1727 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa) 1728 { 1729 1730 KASSERT(ifa->ifa_ifp == ifp); 1731 1732 IFNET_LOCK(); 1733 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); 1734 IFADDR_WRITER_REMOVE(ifa); 1735 #ifdef NET_MPSAFE 1736 pserialize_perform(ifnet_psz); 1737 #endif 1738 IFNET_UNLOCK(); 1739 1740 #ifdef NET_MPSAFE 1741 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class); 1742 #endif 1743 IFADDR_ENTRY_DESTROY(ifa); 1744 ifafree(ifa); 1745 } 1746 1747 void 1748 ifa_acquire(struct ifaddr *ifa, struct psref *psref) 1749 { 1750 1751 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class); 1752 } 1753 1754 void 1755 ifa_release(struct ifaddr *ifa, struct psref *psref) 1756 { 1757 1758 if (ifa == NULL) 1759 return; 1760 1761 psref_release(psref, &ifa->ifa_psref, ifa_psref_class); 1762 } 1763 1764 bool 1765 ifa_held(struct ifaddr *ifa) 1766 { 1767 1768 return psref_held(&ifa->ifa_psref, ifa_psref_class); 1769 } 1770 1771 static inline int 1772 equal(const struct sockaddr *sa1, const struct sockaddr *sa2) 1773 { 1774 return sockaddr_cmp(sa1, sa2) == 0; 1775 } 1776 1777 /* 1778 * Locate an interface based on a complete address. 1779 */ 1780 /*ARGSUSED*/ 1781 struct ifaddr * 1782 ifa_ifwithaddr(const struct sockaddr *addr) 1783 { 1784 struct ifnet *ifp; 1785 struct ifaddr *ifa; 1786 1787 IFNET_READER_FOREACH(ifp) { 1788 if (if_is_deactivated(ifp)) 1789 continue; 1790 IFADDR_READER_FOREACH(ifa, ifp) { 1791 if (ifa->ifa_addr->sa_family != addr->sa_family) 1792 continue; 1793 if (equal(addr, ifa->ifa_addr)) 1794 return ifa; 1795 if ((ifp->if_flags & IFF_BROADCAST) && 1796 ifa->ifa_broadaddr && 1797 /* IP6 doesn't have broadcast */ 1798 ifa->ifa_broadaddr->sa_len != 0 && 1799 equal(ifa->ifa_broadaddr, addr)) 1800 return ifa; 1801 } 1802 } 1803 return NULL; 1804 } 1805 1806 struct ifaddr * 1807 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref) 1808 { 1809 struct ifaddr *ifa; 1810 int s = pserialize_read_enter(); 1811 1812 ifa = ifa_ifwithaddr(addr); 1813 if (ifa != NULL) 1814 ifa_acquire(ifa, psref); 1815 pserialize_read_exit(s); 1816 1817 return ifa; 1818 } 1819 1820 /* 1821 * Locate the point to point interface with a given destination address. 1822 */ 1823 /*ARGSUSED*/ 1824 struct ifaddr * 1825 ifa_ifwithdstaddr(const struct sockaddr *addr) 1826 { 1827 struct ifnet *ifp; 1828 struct ifaddr *ifa; 1829 1830 IFNET_READER_FOREACH(ifp) { 1831 if (if_is_deactivated(ifp)) 1832 continue; 1833 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1834 continue; 1835 IFADDR_READER_FOREACH(ifa, ifp) { 1836 if (ifa->ifa_addr->sa_family != addr->sa_family || 1837 ifa->ifa_dstaddr == NULL) 1838 continue; 1839 if (equal(addr, ifa->ifa_dstaddr)) 1840 return ifa; 1841 } 1842 } 1843 1844 return NULL; 1845 } 1846 1847 struct ifaddr * 1848 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref) 1849 { 1850 struct ifaddr *ifa; 1851 int s; 1852 1853 s = pserialize_read_enter(); 1854 ifa = ifa_ifwithdstaddr(addr); 1855 if (ifa != NULL) 1856 ifa_acquire(ifa, psref); 1857 pserialize_read_exit(s); 1858 1859 return ifa; 1860 } 1861 1862 /* 1863 * Find an interface on a specific network. If many, choice 1864 * is most specific found. 1865 */ 1866 struct ifaddr * 1867 ifa_ifwithnet(const struct sockaddr *addr) 1868 { 1869 struct ifnet *ifp; 1870 struct ifaddr *ifa, *ifa_maybe = NULL; 1871 const struct sockaddr_dl *sdl; 1872 u_int af = addr->sa_family; 1873 const char *addr_data = addr->sa_data, *cplim; 1874 1875 if (af == AF_LINK) { 1876 sdl = satocsdl(addr); 1877 if (sdl->sdl_index && sdl->sdl_index < if_indexlim && 1878 ifindex2ifnet[sdl->sdl_index] && 1879 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) { 1880 return ifindex2ifnet[sdl->sdl_index]->if_dl; 1881 } 1882 } 1883 #ifdef NETATALK 1884 if (af == AF_APPLETALK) { 1885 const struct sockaddr_at *sat, *sat2; 1886 sat = (const struct sockaddr_at *)addr; 1887 IFNET_READER_FOREACH(ifp) { 1888 if (if_is_deactivated(ifp)) 1889 continue; 1890 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp); 1891 if (ifa == NULL) 1892 continue; 1893 sat2 = (struct sockaddr_at *)ifa->ifa_addr; 1894 if (sat2->sat_addr.s_net == sat->sat_addr.s_net) 1895 return ifa; /* exact match */ 1896 if (ifa_maybe == NULL) { 1897 /* else keep the if with the right range */ 1898 ifa_maybe = ifa; 1899 } 1900 } 1901 return ifa_maybe; 1902 } 1903 #endif 1904 IFNET_READER_FOREACH(ifp) { 1905 if (if_is_deactivated(ifp)) 1906 continue; 1907 IFADDR_READER_FOREACH(ifa, ifp) { 1908 const char *cp, *cp2, *cp3; 1909 1910 if (ifa->ifa_addr->sa_family != af || 1911 ifa->ifa_netmask == NULL) 1912 next: continue; 1913 cp = addr_data; 1914 cp2 = ifa->ifa_addr->sa_data; 1915 cp3 = ifa->ifa_netmask->sa_data; 1916 cplim = (const char *)ifa->ifa_netmask + 1917 ifa->ifa_netmask->sa_len; 1918 while (cp3 < cplim) { 1919 if ((*cp++ ^ *cp2++) & *cp3++) { 1920 /* want to continue for() loop */ 1921 goto next; 1922 } 1923 } 1924 if (ifa_maybe == NULL || 1925 rt_refines(ifa->ifa_netmask, 1926 ifa_maybe->ifa_netmask)) 1927 ifa_maybe = ifa; 1928 } 1929 } 1930 return ifa_maybe; 1931 } 1932 1933 struct ifaddr * 1934 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref) 1935 { 1936 struct ifaddr *ifa; 1937 int s; 1938 1939 s = pserialize_read_enter(); 1940 ifa = ifa_ifwithnet(addr); 1941 if (ifa != NULL) 1942 ifa_acquire(ifa, psref); 1943 pserialize_read_exit(s); 1944 1945 return ifa; 1946 } 1947 1948 /* 1949 * Find the interface of the addresss. 1950 */ 1951 struct ifaddr * 1952 ifa_ifwithladdr(const struct sockaddr *addr) 1953 { 1954 struct ifaddr *ia; 1955 1956 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) || 1957 (ia = ifa_ifwithnet(addr))) 1958 return ia; 1959 return NULL; 1960 } 1961 1962 struct ifaddr * 1963 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref) 1964 { 1965 struct ifaddr *ifa; 1966 int s; 1967 1968 s = pserialize_read_enter(); 1969 ifa = ifa_ifwithladdr(addr); 1970 if (ifa != NULL) 1971 ifa_acquire(ifa, psref); 1972 pserialize_read_exit(s); 1973 1974 return ifa; 1975 } 1976 1977 /* 1978 * Find an interface using a specific address family 1979 */ 1980 struct ifaddr * 1981 ifa_ifwithaf(int af) 1982 { 1983 struct ifnet *ifp; 1984 struct ifaddr *ifa = NULL; 1985 int s; 1986 1987 s = pserialize_read_enter(); 1988 IFNET_READER_FOREACH(ifp) { 1989 if (if_is_deactivated(ifp)) 1990 continue; 1991 IFADDR_READER_FOREACH(ifa, ifp) { 1992 if (ifa->ifa_addr->sa_family == af) 1993 goto out; 1994 } 1995 } 1996 out: 1997 pserialize_read_exit(s); 1998 return ifa; 1999 } 2000 2001 /* 2002 * Find an interface address specific to an interface best matching 2003 * a given address. 2004 */ 2005 struct ifaddr * 2006 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) 2007 { 2008 struct ifaddr *ifa; 2009 const char *cp, *cp2, *cp3; 2010 const char *cplim; 2011 struct ifaddr *ifa_maybe = 0; 2012 u_int af = addr->sa_family; 2013 2014 if (if_is_deactivated(ifp)) 2015 return NULL; 2016 2017 if (af >= AF_MAX) 2018 return NULL; 2019 2020 IFADDR_READER_FOREACH(ifa, ifp) { 2021 if (ifa->ifa_addr->sa_family != af) 2022 continue; 2023 ifa_maybe = ifa; 2024 if (ifa->ifa_netmask == NULL) { 2025 if (equal(addr, ifa->ifa_addr) || 2026 (ifa->ifa_dstaddr && 2027 equal(addr, ifa->ifa_dstaddr))) 2028 return ifa; 2029 continue; 2030 } 2031 cp = addr->sa_data; 2032 cp2 = ifa->ifa_addr->sa_data; 2033 cp3 = ifa->ifa_netmask->sa_data; 2034 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; 2035 for (; cp3 < cplim; cp3++) { 2036 if ((*cp++ ^ *cp2++) & *cp3) 2037 break; 2038 } 2039 if (cp3 == cplim) 2040 return ifa; 2041 } 2042 return ifa_maybe; 2043 } 2044 2045 struct ifaddr * 2046 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp, 2047 struct psref *psref) 2048 { 2049 struct ifaddr *ifa; 2050 int s; 2051 2052 s = pserialize_read_enter(); 2053 ifa = ifaof_ifpforaddr(addr, ifp); 2054 if (ifa != NULL) 2055 ifa_acquire(ifa, psref); 2056 pserialize_read_exit(s); 2057 2058 return ifa; 2059 } 2060 2061 /* 2062 * Default action when installing a route with a Link Level gateway. 2063 * Lookup an appropriate real ifa to point to. 2064 * This should be moved to /sys/net/link.c eventually. 2065 */ 2066 void 2067 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info) 2068 { 2069 struct ifaddr *ifa; 2070 const struct sockaddr *dst; 2071 struct ifnet *ifp; 2072 struct psref psref; 2073 2074 if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL || 2075 (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL) 2076 return; 2077 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) { 2078 rt_replace_ifa(rt, ifa); 2079 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) 2080 ifa->ifa_rtrequest(cmd, rt, info); 2081 ifa_release(ifa, &psref); 2082 } 2083 } 2084 2085 /* 2086 * bitmask macros to manage a densely packed link_state change queue. 2087 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and 2088 * LINK_STATE_UP(2) we need 2 bits for each state change. 2089 * As a state change to store is 0, treat all bits set as an unset item. 2090 */ 2091 #define LQ_ITEM_BITS 2 2092 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1) 2093 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS) 2094 #define LINK_STATE_UNSET LQ_ITEM_MASK 2095 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS) 2096 #define LQ_STORE(q, i, v) \ 2097 do { \ 2098 (q) &= ~LQ_MASK((i)); \ 2099 (q) |= (v) << (i) * LQ_ITEM_BITS; \ 2100 } while (0 /* CONSTCOND */) 2101 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS) 2102 #define LQ_POP(q, v) \ 2103 do { \ 2104 (v) = LQ_ITEM((q), 0); \ 2105 (q) >>= LQ_ITEM_BITS; \ 2106 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2107 } while (0 /* CONSTCOND */) 2108 #define LQ_PUSH(q, v) \ 2109 do { \ 2110 (q) >>= LQ_ITEM_BITS; \ 2111 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \ 2112 } while (0 /* CONSTCOND */) 2113 #define LQ_FIND_UNSET(q, i) \ 2114 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \ 2115 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \ 2116 break; \ 2117 } 2118 /* 2119 * Handle a change in the interface link state and 2120 * queue notifications. 2121 */ 2122 void 2123 if_link_state_change(struct ifnet *ifp, int link_state) 2124 { 2125 int s, idx; 2126 2127 KASSERTMSG(if_is_link_state_changeable(ifp), 2128 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x", 2129 ifp->if_xname, ifp->if_extflags); 2130 2131 /* Ensure change is to a valid state */ 2132 switch (link_state) { 2133 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */ 2134 case LINK_STATE_DOWN: /* FALLTHROUGH */ 2135 case LINK_STATE_UP: 2136 break; 2137 default: 2138 #ifdef DEBUG 2139 printf("%s: invalid link state %d\n", 2140 ifp->if_xname, link_state); 2141 #endif 2142 return; 2143 } 2144 2145 s = splnet(); 2146 2147 /* Find the last unset event in the queue. */ 2148 LQ_FIND_UNSET(ifp->if_link_queue, idx); 2149 2150 /* 2151 * Ensure link_state doesn't match the last event in the queue. 2152 * ifp->if_link_state is not checked and set here because 2153 * that would present an inconsistent picture to the system. 2154 */ 2155 if (idx != 0 && 2156 LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state) 2157 goto out; 2158 2159 /* Handle queue overflow. */ 2160 if (idx == LQ_MAX(ifp->if_link_queue)) { 2161 uint8_t lost; 2162 2163 /* 2164 * The DOWN state must be protected from being pushed off 2165 * the queue to ensure that userland will always be 2166 * in a sane state. 2167 * Because DOWN is protected, there is no need to protect 2168 * UNKNOWN. 2169 * It should be invalid to change from any other state to 2170 * UNKNOWN anyway ... 2171 */ 2172 lost = LQ_ITEM(ifp->if_link_queue, 0); 2173 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state); 2174 if (lost == LINK_STATE_DOWN) { 2175 lost = LQ_ITEM(ifp->if_link_queue, 0); 2176 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN); 2177 } 2178 printf("%s: lost link state change %s\n", 2179 ifp->if_xname, 2180 lost == LINK_STATE_UP ? "UP" : 2181 lost == LINK_STATE_DOWN ? "DOWN" : 2182 "UNKNOWN"); 2183 } else 2184 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state); 2185 2186 softint_schedule(ifp->if_link_si); 2187 2188 out: 2189 splx(s); 2190 } 2191 2192 /* 2193 * Handle interface link state change notifications. 2194 * Must be called at splnet(). 2195 */ 2196 static void 2197 if_link_state_change0(struct ifnet *ifp, int link_state) 2198 { 2199 struct domain *dp; 2200 2201 /* Ensure the change is still valid. */ 2202 if (ifp->if_link_state == link_state) 2203 return; 2204 2205 #ifdef DEBUG 2206 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname, 2207 link_state == LINK_STATE_UP ? "UP" : 2208 link_state == LINK_STATE_DOWN ? "DOWN" : 2209 "UNKNOWN", 2210 ifp->if_link_state == LINK_STATE_UP ? "UP" : 2211 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" : 2212 "UNKNOWN"); 2213 #endif 2214 2215 /* 2216 * When going from UNKNOWN to UP, we need to mark existing 2217 * addresses as tentative and restart DAD as we may have 2218 * erroneously not found a duplicate. 2219 * 2220 * This needs to happen before rt_ifmsg to avoid a race where 2221 * listeners would have an address and expect it to work right 2222 * away. 2223 */ 2224 if (link_state == LINK_STATE_UP && 2225 ifp->if_link_state == LINK_STATE_UNKNOWN) 2226 { 2227 DOMAIN_FOREACH(dp) { 2228 if (dp->dom_if_link_state_change != NULL) 2229 dp->dom_if_link_state_change(ifp, 2230 LINK_STATE_DOWN); 2231 } 2232 } 2233 2234 ifp->if_link_state = link_state; 2235 2236 /* Notify that the link state has changed. */ 2237 rt_ifmsg(ifp); 2238 2239 #if NCARP > 0 2240 if (ifp->if_carp) 2241 carp_carpdev_state(ifp); 2242 #endif 2243 2244 DOMAIN_FOREACH(dp) { 2245 if (dp->dom_if_link_state_change != NULL) 2246 dp->dom_if_link_state_change(ifp, link_state); 2247 } 2248 } 2249 2250 /* 2251 * Process the interface link state change queue. 2252 */ 2253 static void 2254 if_link_state_change_si(void *arg) 2255 { 2256 struct ifnet *ifp = arg; 2257 int s; 2258 uint8_t state; 2259 2260 s = splnet(); 2261 2262 /* Pop a link state change from the queue and process it. */ 2263 LQ_POP(ifp->if_link_queue, state); 2264 if_link_state_change0(ifp, state); 2265 2266 /* If there is a link state change to come, schedule it. */ 2267 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) 2268 softint_schedule(ifp->if_link_si); 2269 2270 splx(s); 2271 } 2272 2273 /* 2274 * Default action when installing a local route on a point-to-point 2275 * interface. 2276 */ 2277 void 2278 p2p_rtrequest(int req, struct rtentry *rt, 2279 __unused const struct rt_addrinfo *info) 2280 { 2281 struct ifnet *ifp = rt->rt_ifp; 2282 struct ifaddr *ifa, *lo0ifa; 2283 int s = pserialize_read_enter(); 2284 2285 switch (req) { 2286 case RTM_ADD: 2287 if ((rt->rt_flags & RTF_LOCAL) == 0) 2288 break; 2289 2290 rt->rt_ifp = lo0ifp; 2291 2292 IFADDR_READER_FOREACH(ifa, ifp) { 2293 if (equal(rt_getkey(rt), ifa->ifa_addr)) 2294 break; 2295 } 2296 if (ifa == NULL) 2297 break; 2298 2299 /* 2300 * Ensure lo0 has an address of the same family. 2301 */ 2302 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) { 2303 if (lo0ifa->ifa_addr->sa_family == 2304 ifa->ifa_addr->sa_family) 2305 break; 2306 } 2307 if (lo0ifa == NULL) 2308 break; 2309 2310 /* 2311 * Make sure to set rt->rt_ifa to the interface 2312 * address we are using, otherwise we will have trouble 2313 * with source address selection. 2314 */ 2315 if (ifa != rt->rt_ifa) 2316 rt_replace_ifa(rt, ifa); 2317 break; 2318 case RTM_DELETE: 2319 default: 2320 break; 2321 } 2322 pserialize_read_exit(s); 2323 } 2324 2325 /* 2326 * Mark an interface down and notify protocols of 2327 * the transition. 2328 * NOTE: must be called at splsoftnet or equivalent. 2329 */ 2330 void 2331 if_down(struct ifnet *ifp) 2332 { 2333 struct ifaddr *ifa; 2334 struct domain *dp; 2335 int s, bound; 2336 struct psref psref; 2337 2338 ifp->if_flags &= ~IFF_UP; 2339 nanotime(&ifp->if_lastchange); 2340 2341 bound = curlwp_bind(); 2342 s = pserialize_read_enter(); 2343 IFADDR_READER_FOREACH(ifa, ifp) { 2344 ifa_acquire(ifa, &psref); 2345 pserialize_read_exit(s); 2346 2347 pfctlinput(PRC_IFDOWN, ifa->ifa_addr); 2348 2349 s = pserialize_read_enter(); 2350 ifa_release(ifa, &psref); 2351 } 2352 pserialize_read_exit(s); 2353 curlwp_bindx(bound); 2354 2355 IFQ_PURGE(&ifp->if_snd); 2356 #if NCARP > 0 2357 if (ifp->if_carp) 2358 carp_carpdev_state(ifp); 2359 #endif 2360 rt_ifmsg(ifp); 2361 DOMAIN_FOREACH(dp) { 2362 if (dp->dom_if_down) 2363 dp->dom_if_down(ifp); 2364 } 2365 } 2366 2367 /* 2368 * Mark an interface up and notify protocols of 2369 * the transition. 2370 * NOTE: must be called at splsoftnet or equivalent. 2371 */ 2372 void 2373 if_up(struct ifnet *ifp) 2374 { 2375 #ifdef notyet 2376 struct ifaddr *ifa; 2377 #endif 2378 struct domain *dp; 2379 2380 ifp->if_flags |= IFF_UP; 2381 nanotime(&ifp->if_lastchange); 2382 #ifdef notyet 2383 /* this has no effect on IP, and will kill all ISO connections XXX */ 2384 IFADDR_READER_FOREACH(ifa, ifp) 2385 pfctlinput(PRC_IFUP, ifa->ifa_addr); 2386 #endif 2387 #if NCARP > 0 2388 if (ifp->if_carp) 2389 carp_carpdev_state(ifp); 2390 #endif 2391 rt_ifmsg(ifp); 2392 DOMAIN_FOREACH(dp) { 2393 if (dp->dom_if_up) 2394 dp->dom_if_up(ifp); 2395 } 2396 } 2397 2398 /* 2399 * Handle interface slowtimo timer routine. Called 2400 * from softclock, we decrement timer (if set) and 2401 * call the appropriate interface routine on expiration. 2402 */ 2403 static void 2404 if_slowtimo(void *arg) 2405 { 2406 void (*slowtimo)(struct ifnet *); 2407 struct ifnet *ifp = arg; 2408 int s; 2409 2410 slowtimo = ifp->if_slowtimo; 2411 if (__predict_false(slowtimo == NULL)) 2412 return; 2413 2414 s = splnet(); 2415 if (ifp->if_timer != 0 && --ifp->if_timer == 0) 2416 (*slowtimo)(ifp); 2417 2418 splx(s); 2419 2420 if (__predict_true(ifp->if_slowtimo != NULL)) 2421 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ); 2422 } 2423 2424 /* 2425 * Set/clear promiscuous mode on interface ifp based on the truth value 2426 * of pswitch. The calls are reference counted so that only the first 2427 * "on" request actually has an effect, as does the final "off" request. 2428 * Results are undefined if the "off" and "on" requests are not matched. 2429 */ 2430 int 2431 ifpromisc(struct ifnet *ifp, int pswitch) 2432 { 2433 int pcount, ret; 2434 short nflags; 2435 2436 pcount = ifp->if_pcount; 2437 if (pswitch) { 2438 /* 2439 * Allow the device to be "placed" into promiscuous 2440 * mode even if it is not configured up. It will 2441 * consult IFF_PROMISC when it is brought up. 2442 */ 2443 if (ifp->if_pcount++ != 0) 2444 return 0; 2445 nflags = ifp->if_flags | IFF_PROMISC; 2446 } else { 2447 if (--ifp->if_pcount > 0) 2448 return 0; 2449 nflags = ifp->if_flags & ~IFF_PROMISC; 2450 } 2451 ret = if_flags_set(ifp, nflags); 2452 /* Restore interface state if not successful. */ 2453 if (ret != 0) { 2454 ifp->if_pcount = pcount; 2455 } 2456 return ret; 2457 } 2458 2459 /* 2460 * Map interface name to 2461 * interface structure pointer. 2462 */ 2463 struct ifnet * 2464 ifunit(const char *name) 2465 { 2466 struct ifnet *ifp; 2467 const char *cp = name; 2468 u_int unit = 0; 2469 u_int i; 2470 int s; 2471 2472 /* 2473 * If the entire name is a number, treat it as an ifindex. 2474 */ 2475 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2476 unit = unit * 10 + (*cp - '0'); 2477 } 2478 2479 /* 2480 * If the number took all of the name, then it's a valid ifindex. 2481 */ 2482 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) { 2483 if (unit >= if_indexlim) 2484 return NULL; 2485 ifp = ifindex2ifnet[unit]; 2486 if (ifp == NULL || if_is_deactivated(ifp)) 2487 return NULL; 2488 return ifp; 2489 } 2490 2491 ifp = NULL; 2492 s = pserialize_read_enter(); 2493 IFNET_READER_FOREACH(ifp) { 2494 if (if_is_deactivated(ifp)) 2495 continue; 2496 if (strcmp(ifp->if_xname, name) == 0) 2497 goto out; 2498 } 2499 out: 2500 pserialize_read_exit(s); 2501 return ifp; 2502 } 2503 2504 /* 2505 * Get a reference of an ifnet object by an interface name. 2506 * The returned reference is protected by psref(9). The caller 2507 * must release a returned reference by if_put after use. 2508 */ 2509 struct ifnet * 2510 if_get(const char *name, struct psref *psref) 2511 { 2512 struct ifnet *ifp; 2513 const char *cp = name; 2514 u_int unit = 0; 2515 u_int i; 2516 int s; 2517 2518 /* 2519 * If the entire name is a number, treat it as an ifindex. 2520 */ 2521 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) { 2522 unit = unit * 10 + (*cp - '0'); 2523 } 2524 2525 /* 2526 * If the number took all of the name, then it's a valid ifindex. 2527 */ 2528 if (i == IFNAMSIZ || (cp != name && *cp == '\0')) { 2529 if (unit >= if_indexlim) 2530 return NULL; 2531 ifp = ifindex2ifnet[unit]; 2532 if (ifp == NULL || if_is_deactivated(ifp)) 2533 return NULL; 2534 return ifp; 2535 } 2536 2537 ifp = NULL; 2538 s = pserialize_read_enter(); 2539 IFNET_READER_FOREACH(ifp) { 2540 if (if_is_deactivated(ifp)) 2541 continue; 2542 if (strcmp(ifp->if_xname, name) == 0) { 2543 psref_acquire(psref, &ifp->if_psref, 2544 ifnet_psref_class); 2545 goto out; 2546 } 2547 } 2548 out: 2549 pserialize_read_exit(s); 2550 return ifp; 2551 } 2552 2553 /* 2554 * Release a reference of an ifnet object given by if_get or 2555 * if_get_byindex. 2556 */ 2557 void 2558 if_put(const struct ifnet *ifp, struct psref *psref) 2559 { 2560 2561 if (ifp == NULL) 2562 return; 2563 2564 psref_release(psref, &ifp->if_psref, ifnet_psref_class); 2565 } 2566 2567 ifnet_t * 2568 if_byindex(u_int idx) 2569 { 2570 ifnet_t *ifp; 2571 2572 ifp = (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL; 2573 if (ifp != NULL && if_is_deactivated(ifp)) 2574 ifp = NULL; 2575 return ifp; 2576 } 2577 2578 /* 2579 * Get a reference of an ifnet object by an interface index. 2580 * The returned reference is protected by psref(9). The caller 2581 * must release a returned reference by if_put after use. 2582 */ 2583 ifnet_t * 2584 if_get_byindex(u_int idx, struct psref *psref) 2585 { 2586 ifnet_t *ifp; 2587 int s; 2588 2589 s = pserialize_read_enter(); 2590 ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL; 2591 if (ifp != NULL && if_is_deactivated(ifp)) 2592 ifp = NULL; 2593 if (__predict_true(ifp != NULL)) 2594 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2595 pserialize_read_exit(s); 2596 2597 return ifp; 2598 } 2599 2600 /* 2601 * XXX it's safe only if the passed ifp is guaranteed to not be freed, 2602 * for example the ifp is already held or some other object is held which 2603 * guarantes the ifp to not be freed indirectly. 2604 */ 2605 void 2606 if_acquire_NOMPSAFE(struct ifnet *ifp, struct psref *psref) 2607 { 2608 2609 KASSERT(ifp->if_index != 0); 2610 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class); 2611 } 2612 2613 bool 2614 if_held(struct ifnet *ifp) 2615 { 2616 2617 return psref_held(&ifp->if_psref, ifnet_psref_class); 2618 } 2619 2620 2621 /* common */ 2622 int 2623 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data) 2624 { 2625 int s; 2626 struct ifreq *ifr; 2627 struct ifcapreq *ifcr; 2628 struct ifdatareq *ifdr; 2629 2630 switch (cmd) { 2631 case SIOCSIFCAP: 2632 ifcr = data; 2633 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0) 2634 return EINVAL; 2635 2636 if (ifcr->ifcr_capenable == ifp->if_capenable) 2637 return 0; 2638 2639 ifp->if_capenable = ifcr->ifcr_capenable; 2640 2641 /* Pre-compute the checksum flags mask. */ 2642 ifp->if_csum_flags_tx = 0; 2643 ifp->if_csum_flags_rx = 0; 2644 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) { 2645 ifp->if_csum_flags_tx |= M_CSUM_IPv4; 2646 } 2647 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { 2648 ifp->if_csum_flags_rx |= M_CSUM_IPv4; 2649 } 2650 2651 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) { 2652 ifp->if_csum_flags_tx |= M_CSUM_TCPv4; 2653 } 2654 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) { 2655 ifp->if_csum_flags_rx |= M_CSUM_TCPv4; 2656 } 2657 2658 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) { 2659 ifp->if_csum_flags_tx |= M_CSUM_UDPv4; 2660 } 2661 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) { 2662 ifp->if_csum_flags_rx |= M_CSUM_UDPv4; 2663 } 2664 2665 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) { 2666 ifp->if_csum_flags_tx |= M_CSUM_TCPv6; 2667 } 2668 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) { 2669 ifp->if_csum_flags_rx |= M_CSUM_TCPv6; 2670 } 2671 2672 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) { 2673 ifp->if_csum_flags_tx |= M_CSUM_UDPv6; 2674 } 2675 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) { 2676 ifp->if_csum_flags_rx |= M_CSUM_UDPv6; 2677 } 2678 if (ifp->if_flags & IFF_UP) 2679 return ENETRESET; 2680 return 0; 2681 case SIOCSIFFLAGS: 2682 ifr = data; 2683 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) { 2684 s = splnet(); 2685 if_down(ifp); 2686 splx(s); 2687 } 2688 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { 2689 s = splnet(); 2690 if_up(ifp); 2691 splx(s); 2692 } 2693 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | 2694 (ifr->ifr_flags &~ IFF_CANTCHANGE); 2695 break; 2696 case SIOCGIFFLAGS: 2697 ifr = data; 2698 ifr->ifr_flags = ifp->if_flags; 2699 break; 2700 2701 case SIOCGIFMETRIC: 2702 ifr = data; 2703 ifr->ifr_metric = ifp->if_metric; 2704 break; 2705 2706 case SIOCGIFMTU: 2707 ifr = data; 2708 ifr->ifr_mtu = ifp->if_mtu; 2709 break; 2710 2711 case SIOCGIFDLT: 2712 ifr = data; 2713 ifr->ifr_dlt = ifp->if_dlt; 2714 break; 2715 2716 case SIOCGIFCAP: 2717 ifcr = data; 2718 ifcr->ifcr_capabilities = ifp->if_capabilities; 2719 ifcr->ifcr_capenable = ifp->if_capenable; 2720 break; 2721 2722 case SIOCSIFMETRIC: 2723 ifr = data; 2724 ifp->if_metric = ifr->ifr_metric; 2725 break; 2726 2727 case SIOCGIFDATA: 2728 ifdr = data; 2729 ifdr->ifdr_data = ifp->if_data; 2730 break; 2731 2732 case SIOCGIFINDEX: 2733 ifr = data; 2734 ifr->ifr_index = ifp->if_index; 2735 break; 2736 2737 case SIOCZIFDATA: 2738 ifdr = data; 2739 ifdr->ifdr_data = ifp->if_data; 2740 /* 2741 * Assumes that the volatile counters that can be 2742 * zero'ed are at the end of if_data. 2743 */ 2744 memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) - 2745 offsetof(struct if_data, ifi_ipackets)); 2746 /* 2747 * The memset() clears to the bottm of if_data. In the area, 2748 * if_lastchange is included. Please be careful if new entry 2749 * will be added into if_data or rewite this. 2750 * 2751 * And also, update if_lastchnage. 2752 */ 2753 getnanotime(&ifp->if_lastchange); 2754 break; 2755 case SIOCSIFMTU: 2756 ifr = data; 2757 if (ifp->if_mtu == ifr->ifr_mtu) 2758 break; 2759 ifp->if_mtu = ifr->ifr_mtu; 2760 /* 2761 * If the link MTU changed, do network layer specific procedure. 2762 */ 2763 #ifdef INET6 2764 if (in6_present) 2765 nd6_setmtu(ifp); 2766 #endif 2767 return ENETRESET; 2768 default: 2769 return ENOTTY; 2770 } 2771 return 0; 2772 } 2773 2774 int 2775 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp) 2776 { 2777 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data; 2778 struct ifaddr *ifa; 2779 const struct sockaddr *any, *sa; 2780 union { 2781 struct sockaddr sa; 2782 struct sockaddr_storage ss; 2783 } u, v; 2784 int s, error = 0; 2785 2786 switch (cmd) { 2787 case SIOCSIFADDRPREF: 2788 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, 2789 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, 2790 NULL) != 0) 2791 return EPERM; 2792 case SIOCGIFADDRPREF: 2793 break; 2794 default: 2795 return EOPNOTSUPP; 2796 } 2797 2798 /* sanity checks */ 2799 if (data == NULL || ifp == NULL) { 2800 panic("invalid argument to %s", __func__); 2801 /*NOTREACHED*/ 2802 } 2803 2804 /* address must be specified on ADD and DELETE */ 2805 sa = sstocsa(&ifap->ifap_addr); 2806 if (sa->sa_family != sofamily(so)) 2807 return EINVAL; 2808 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len) 2809 return EINVAL; 2810 2811 sockaddr_externalize(&v.sa, sizeof(v.ss), sa); 2812 2813 s = pserialize_read_enter(); 2814 IFADDR_READER_FOREACH(ifa, ifp) { 2815 if (ifa->ifa_addr->sa_family != sa->sa_family) 2816 continue; 2817 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr); 2818 if (sockaddr_cmp(&u.sa, &v.sa) == 0) 2819 break; 2820 } 2821 if (ifa == NULL) { 2822 error = EADDRNOTAVAIL; 2823 goto out; 2824 } 2825 2826 switch (cmd) { 2827 case SIOCSIFADDRPREF: 2828 ifa->ifa_preference = ifap->ifap_preference; 2829 goto out; 2830 case SIOCGIFADDRPREF: 2831 /* fill in the if_laddrreq structure */ 2832 (void)sockaddr_copy(sstosa(&ifap->ifap_addr), 2833 sizeof(ifap->ifap_addr), ifa->ifa_addr); 2834 ifap->ifap_preference = ifa->ifa_preference; 2835 goto out; 2836 default: 2837 error = EOPNOTSUPP; 2838 } 2839 out: 2840 pserialize_read_exit(s); 2841 return error; 2842 } 2843 2844 /* 2845 * Interface ioctls. 2846 */ 2847 static int 2848 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l) 2849 { 2850 struct ifnet *ifp; 2851 struct ifreq *ifr; 2852 int error = 0; 2853 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ) 2854 u_long ocmd = cmd; 2855 #endif 2856 short oif_flags; 2857 #ifdef COMPAT_OIFREQ 2858 struct ifreq ifrb; 2859 struct oifreq *oifr = NULL; 2860 #endif 2861 int r; 2862 struct psref psref; 2863 int bound; 2864 2865 switch (cmd) { 2866 #ifdef COMPAT_OIFREQ 2867 case OSIOCGIFCONF: 2868 case OOSIOCGIFCONF: 2869 return compat_ifconf(cmd, data); 2870 #endif 2871 #ifdef COMPAT_OIFDATA 2872 case OSIOCGIFDATA: 2873 case OSIOCZIFDATA: 2874 return compat_ifdatareq(l, cmd, data); 2875 #endif 2876 case SIOCGIFCONF: 2877 return ifconf(cmd, data); 2878 case SIOCINITIFADDR: 2879 return EPERM; 2880 } 2881 2882 #ifdef COMPAT_OIFREQ 2883 cmd = (*vec_compat_cvtcmd)(cmd); 2884 if (cmd != ocmd) { 2885 oifr = data; 2886 data = ifr = &ifrb; 2887 ifreqo2n(oifr, ifr); 2888 } else 2889 #endif 2890 ifr = data; 2891 2892 switch (cmd) { 2893 case SIOCIFCREATE: 2894 case SIOCIFDESTROY: 2895 bound = curlwp_bind(); 2896 if (l != NULL) { 2897 ifp = if_get(ifr->ifr_name, &psref); 2898 error = kauth_authorize_network(l->l_cred, 2899 KAUTH_NETWORK_INTERFACE, 2900 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 2901 (void *)cmd, NULL); 2902 if (ifp != NULL) 2903 if_put(ifp, &psref); 2904 if (error != 0) { 2905 curlwp_bindx(bound); 2906 return error; 2907 } 2908 } 2909 mutex_enter(&if_clone_mtx); 2910 r = (cmd == SIOCIFCREATE) ? 2911 if_clone_create(ifr->ifr_name) : 2912 if_clone_destroy(ifr->ifr_name); 2913 mutex_exit(&if_clone_mtx); 2914 curlwp_bindx(bound); 2915 return r; 2916 2917 case SIOCIFGCLONERS: 2918 { 2919 struct if_clonereq *req = (struct if_clonereq *)data; 2920 return if_clone_list(req->ifcr_count, req->ifcr_buffer, 2921 &req->ifcr_total); 2922 } 2923 } 2924 2925 bound = curlwp_bind(); 2926 ifp = if_get(ifr->ifr_name, &psref); 2927 if (ifp == NULL) { 2928 curlwp_bindx(bound); 2929 return ENXIO; 2930 } 2931 2932 switch (cmd) { 2933 case SIOCALIFADDR: 2934 case SIOCDLIFADDR: 2935 case SIOCSIFADDRPREF: 2936 case SIOCSIFFLAGS: 2937 case SIOCSIFCAP: 2938 case SIOCSIFMETRIC: 2939 case SIOCZIFDATA: 2940 case SIOCSIFMTU: 2941 case SIOCSIFPHYADDR: 2942 case SIOCDIFPHYADDR: 2943 #ifdef INET6 2944 case SIOCSIFPHYADDR_IN6: 2945 #endif 2946 case SIOCSLIFPHYADDR: 2947 case SIOCADDMULTI: 2948 case SIOCDELMULTI: 2949 case SIOCSIFMEDIA: 2950 case SIOCSDRVSPEC: 2951 case SIOCG80211: 2952 case SIOCS80211: 2953 case SIOCS80211NWID: 2954 case SIOCS80211NWKEY: 2955 case SIOCS80211POWER: 2956 case SIOCS80211BSSID: 2957 case SIOCS80211CHANNEL: 2958 case SIOCSLINKSTR: 2959 if (l != NULL) { 2960 error = kauth_authorize_network(l->l_cred, 2961 KAUTH_NETWORK_INTERFACE, 2962 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 2963 (void *)cmd, NULL); 2964 if (error != 0) 2965 goto out; 2966 } 2967 } 2968 2969 oif_flags = ifp->if_flags; 2970 2971 mutex_enter(ifp->if_ioctl_lock); 2972 2973 error = (*ifp->if_ioctl)(ifp, cmd, data); 2974 if (error != ENOTTY) 2975 ; 2976 else if (so->so_proto == NULL) 2977 error = EOPNOTSUPP; 2978 else { 2979 #ifdef COMPAT_OSOCK 2980 if (vec_compat_ifioctl != NULL) 2981 error = (*vec_compat_ifioctl)(so, ocmd, cmd, data, l); 2982 else 2983 #endif 2984 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so, 2985 cmd, data, ifp); 2986 } 2987 2988 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) { 2989 if ((ifp->if_flags & IFF_UP) != 0) { 2990 int s = splnet(); 2991 if_up(ifp); 2992 splx(s); 2993 } 2994 } 2995 #ifdef COMPAT_OIFREQ 2996 if (cmd != ocmd) 2997 ifreqn2o(oifr, ifr); 2998 #endif 2999 3000 mutex_exit(ifp->if_ioctl_lock); 3001 out: 3002 if_put(ifp, &psref); 3003 curlwp_bindx(bound); 3004 return error; 3005 } 3006 3007 /* 3008 * Return interface configuration 3009 * of system. List may be used 3010 * in later ioctl's (above) to get 3011 * other information. 3012 * 3013 * Each record is a struct ifreq. Before the addition of 3014 * sockaddr_storage, the API rule was that sockaddr flavors that did 3015 * not fit would extend beyond the struct ifreq, with the next struct 3016 * ifreq starting sa_len beyond the struct sockaddr. Because the 3017 * union in struct ifreq includes struct sockaddr_storage, every kind 3018 * of sockaddr must fit. Thus, there are no longer any overlength 3019 * records. 3020 * 3021 * Records are added to the user buffer if they fit, and ifc_len is 3022 * adjusted to the length that was written. Thus, the user is only 3023 * assured of getting the complete list if ifc_len on return is at 3024 * least sizeof(struct ifreq) less than it was on entry. 3025 * 3026 * If the user buffer pointer is NULL, this routine copies no data and 3027 * returns the amount of space that would be needed. 3028 * 3029 * Invariants: 3030 * ifrp points to the next part of the user's buffer to be used. If 3031 * ifrp != NULL, space holds the number of bytes remaining that we may 3032 * write at ifrp. Otherwise, space holds the number of bytes that 3033 * would have been written had there been adequate space. 3034 */ 3035 /*ARGSUSED*/ 3036 static int 3037 ifconf(u_long cmd, void *data) 3038 { 3039 struct ifconf *ifc = (struct ifconf *)data; 3040 struct ifnet *ifp; 3041 struct ifaddr *ifa; 3042 struct ifreq ifr, *ifrp = NULL; 3043 int space = 0, error = 0; 3044 const int sz = (int)sizeof(struct ifreq); 3045 const bool docopy = ifc->ifc_req != NULL; 3046 int s; 3047 int bound; 3048 struct psref psref; 3049 3050 if (docopy) { 3051 space = ifc->ifc_len; 3052 ifrp = ifc->ifc_req; 3053 } 3054 3055 bound = curlwp_bind(); 3056 s = pserialize_read_enter(); 3057 IFNET_READER_FOREACH(ifp) { 3058 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class); 3059 pserialize_read_exit(s); 3060 3061 (void)strncpy(ifr.ifr_name, ifp->if_xname, 3062 sizeof(ifr.ifr_name)); 3063 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') { 3064 error = ENAMETOOLONG; 3065 goto release_exit; 3066 } 3067 if (IFADDR_READER_EMPTY(ifp)) { 3068 /* Interface with no addresses - send zero sockaddr. */ 3069 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr)); 3070 if (!docopy) { 3071 space += sz; 3072 continue; 3073 } 3074 if (space >= sz) { 3075 error = copyout(&ifr, ifrp, sz); 3076 if (error != 0) 3077 goto release_exit; 3078 ifrp++; 3079 space -= sz; 3080 } 3081 } 3082 3083 IFADDR_READER_FOREACH(ifa, ifp) { 3084 struct sockaddr *sa = ifa->ifa_addr; 3085 /* all sockaddrs must fit in sockaddr_storage */ 3086 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru)); 3087 3088 if (!docopy) { 3089 space += sz; 3090 continue; 3091 } 3092 memcpy(&ifr.ifr_space, sa, sa->sa_len); 3093 if (space >= sz) { 3094 error = copyout(&ifr, ifrp, sz); 3095 if (error != 0) 3096 goto release_exit; 3097 ifrp++; space -= sz; 3098 } 3099 } 3100 3101 s = pserialize_read_enter(); 3102 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3103 } 3104 pserialize_read_exit(s); 3105 curlwp_bindx(bound); 3106 3107 if (docopy) { 3108 KASSERT(0 <= space && space <= ifc->ifc_len); 3109 ifc->ifc_len -= space; 3110 } else { 3111 KASSERT(space >= 0); 3112 ifc->ifc_len = space; 3113 } 3114 return (0); 3115 3116 release_exit: 3117 psref_release(&psref, &ifp->if_psref, ifnet_psref_class); 3118 curlwp_bindx(bound); 3119 return error; 3120 } 3121 3122 int 3123 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa) 3124 { 3125 uint8_t len; 3126 #ifdef COMPAT_OIFREQ 3127 struct ifreq ifrb; 3128 struct oifreq *oifr = NULL; 3129 u_long ocmd = cmd; 3130 cmd = (*vec_compat_cvtcmd)(cmd); 3131 if (cmd != ocmd) { 3132 oifr = (struct oifreq *)(void *)ifr; 3133 ifr = &ifrb; 3134 ifreqo2n(oifr, ifr); 3135 len = sizeof(oifr->ifr_addr); 3136 } else 3137 #endif 3138 len = sizeof(ifr->ifr_ifru.ifru_space); 3139 3140 if (len < sa->sa_len) 3141 return EFBIG; 3142 3143 memset(&ifr->ifr_addr, 0, len); 3144 sockaddr_copy(&ifr->ifr_addr, len, sa); 3145 3146 #ifdef COMPAT_OIFREQ 3147 if (cmd != ocmd) 3148 ifreqn2o(oifr, ifr); 3149 #endif 3150 return 0; 3151 } 3152 3153 /* 3154 * wrapper function for the drivers which doesn't have if_transmit(). 3155 */ 3156 static int 3157 if_transmit(struct ifnet *ifp, struct mbuf *m) 3158 { 3159 int s, error; 3160 3161 s = splnet(); 3162 3163 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3164 if (error != 0) { 3165 /* mbuf is already freed */ 3166 goto out; 3167 } 3168 3169 ifp->if_obytes += m->m_pkthdr.len;; 3170 if (m->m_flags & M_MCAST) 3171 ifp->if_omcasts++; 3172 3173 if ((ifp->if_flags & IFF_OACTIVE) == 0) 3174 if_start_lock(ifp); 3175 out: 3176 splx(s); 3177 3178 return error; 3179 } 3180 3181 int 3182 if_transmit_lock(struct ifnet *ifp, struct mbuf *m) 3183 { 3184 int error; 3185 3186 #ifdef ALTQ 3187 KERNEL_LOCK(1, NULL); 3188 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 3189 error = if_transmit(ifp, m); 3190 KERNEL_UNLOCK_ONE(NULL); 3191 } else { 3192 KERNEL_UNLOCK_ONE(NULL); 3193 error = (*ifp->if_transmit)(ifp, m); 3194 } 3195 #else /* !ALTQ */ 3196 error = (*ifp->if_transmit)(ifp, m); 3197 #endif /* !ALTQ */ 3198 3199 return error; 3200 } 3201 3202 /* 3203 * Queue message on interface, and start output if interface 3204 * not yet active. 3205 */ 3206 int 3207 ifq_enqueue(struct ifnet *ifp, struct mbuf *m) 3208 { 3209 3210 return if_transmit_lock(ifp, m); 3211 } 3212 3213 /* 3214 * Queue message on interface, possibly using a second fast queue 3215 */ 3216 int 3217 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m) 3218 { 3219 int error = 0; 3220 3221 if (ifq != NULL 3222 #ifdef ALTQ 3223 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0 3224 #endif 3225 ) { 3226 if (IF_QFULL(ifq)) { 3227 IF_DROP(&ifp->if_snd); 3228 m_freem(m); 3229 if (error == 0) 3230 error = ENOBUFS; 3231 } else 3232 IF_ENQUEUE(ifq, m); 3233 } else 3234 IFQ_ENQUEUE(&ifp->if_snd, m, error); 3235 if (error != 0) { 3236 ++ifp->if_oerrors; 3237 return error; 3238 } 3239 return 0; 3240 } 3241 3242 int 3243 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src) 3244 { 3245 int rc; 3246 3247 if (ifp->if_initaddr != NULL) 3248 rc = (*ifp->if_initaddr)(ifp, ifa, src); 3249 else if (src || 3250 /* FIXME: may not hold if_ioctl_lock */ 3251 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY) 3252 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa); 3253 3254 return rc; 3255 } 3256 3257 int 3258 if_do_dad(struct ifnet *ifp) 3259 { 3260 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 3261 return 0; 3262 3263 switch (ifp->if_type) { 3264 case IFT_FAITH: 3265 /* 3266 * These interfaces do not have the IFF_LOOPBACK flag, 3267 * but loop packets back. We do not have to do DAD on such 3268 * interfaces. We should even omit it, because loop-backed 3269 * responses would confuse the DAD procedure. 3270 */ 3271 return 0; 3272 default: 3273 /* 3274 * Our DAD routine requires the interface up and running. 3275 * However, some interfaces can be up before the RUNNING 3276 * status. Additionaly, users may try to assign addresses 3277 * before the interface becomes up (or running). 3278 * We simply skip DAD in such a case as a work around. 3279 * XXX: we should rather mark "tentative" on such addresses, 3280 * and do DAD after the interface becomes ready. 3281 */ 3282 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != 3283 (IFF_UP|IFF_RUNNING)) 3284 return 0; 3285 3286 return 1; 3287 } 3288 } 3289 3290 int 3291 if_flags_set(ifnet_t *ifp, const short flags) 3292 { 3293 int rc; 3294 3295 if (ifp->if_setflags != NULL) 3296 rc = (*ifp->if_setflags)(ifp, flags); 3297 else { 3298 short cantflags, chgdflags; 3299 struct ifreq ifr; 3300 3301 chgdflags = ifp->if_flags ^ flags; 3302 cantflags = chgdflags & IFF_CANTCHANGE; 3303 3304 if (cantflags != 0) 3305 ifp->if_flags ^= cantflags; 3306 3307 /* Traditionally, we do not call if_ioctl after 3308 * setting/clearing only IFF_PROMISC if the interface 3309 * isn't IFF_UP. Uphold that tradition. 3310 */ 3311 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0) 3312 return 0; 3313 3314 memset(&ifr, 0, sizeof(ifr)); 3315 3316 ifr.ifr_flags = flags & ~IFF_CANTCHANGE; 3317 /* FIXME: may not hold if_ioctl_lock */ 3318 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr); 3319 3320 if (rc != 0 && cantflags != 0) 3321 ifp->if_flags ^= cantflags; 3322 } 3323 3324 return rc; 3325 } 3326 3327 int 3328 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa) 3329 { 3330 int rc; 3331 struct ifreq ifr; 3332 3333 if (ifp->if_mcastop != NULL) 3334 rc = (*ifp->if_mcastop)(ifp, cmd, sa); 3335 else { 3336 ifreq_setaddr(cmd, &ifr, sa); 3337 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr); 3338 } 3339 3340 return rc; 3341 } 3342 3343 static void 3344 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname, 3345 struct ifaltq *ifq) 3346 { 3347 const struct sysctlnode *cnode, *rnode; 3348 3349 if (sysctl_createv(clog, 0, NULL, &rnode, 3350 CTLFLAG_PERMANENT, 3351 CTLTYPE_NODE, "interfaces", 3352 SYSCTL_DESCR("Per-interface controls"), 3353 NULL, 0, NULL, 0, 3354 CTL_NET, CTL_CREATE, CTL_EOL) != 0) 3355 goto bad; 3356 3357 if (sysctl_createv(clog, 0, &rnode, &rnode, 3358 CTLFLAG_PERMANENT, 3359 CTLTYPE_NODE, ifname, 3360 SYSCTL_DESCR("Interface controls"), 3361 NULL, 0, NULL, 0, 3362 CTL_CREATE, CTL_EOL) != 0) 3363 goto bad; 3364 3365 if (sysctl_createv(clog, 0, &rnode, &rnode, 3366 CTLFLAG_PERMANENT, 3367 CTLTYPE_NODE, "sndq", 3368 SYSCTL_DESCR("Interface output queue controls"), 3369 NULL, 0, NULL, 0, 3370 CTL_CREATE, CTL_EOL) != 0) 3371 goto bad; 3372 3373 if (sysctl_createv(clog, 0, &rnode, &cnode, 3374 CTLFLAG_PERMANENT, 3375 CTLTYPE_INT, "len", 3376 SYSCTL_DESCR("Current output queue length"), 3377 NULL, 0, &ifq->ifq_len, 0, 3378 CTL_CREATE, CTL_EOL) != 0) 3379 goto bad; 3380 3381 if (sysctl_createv(clog, 0, &rnode, &cnode, 3382 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3383 CTLTYPE_INT, "maxlen", 3384 SYSCTL_DESCR("Maximum allowed output queue length"), 3385 NULL, 0, &ifq->ifq_maxlen, 0, 3386 CTL_CREATE, CTL_EOL) != 0) 3387 goto bad; 3388 3389 if (sysctl_createv(clog, 0, &rnode, &cnode, 3390 CTLFLAG_PERMANENT, 3391 CTLTYPE_INT, "drops", 3392 SYSCTL_DESCR("Packets dropped due to full output queue"), 3393 NULL, 0, &ifq->ifq_drops, 0, 3394 CTL_CREATE, CTL_EOL) != 0) 3395 goto bad; 3396 3397 return; 3398 bad: 3399 printf("%s: could not attach sysctl nodes\n", ifname); 3400 return; 3401 } 3402 3403 #if defined(INET) || defined(INET6) 3404 3405 #define SYSCTL_NET_PKTQ(q, cn, c) \ 3406 static int \ 3407 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \ 3408 { \ 3409 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \ 3410 } 3411 3412 #if defined(INET) 3413 static int 3414 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS) 3415 { 3416 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq); 3417 } 3418 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS) 3419 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS) 3420 #endif 3421 3422 #if defined(INET6) 3423 static int 3424 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS) 3425 { 3426 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq); 3427 } 3428 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS) 3429 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS) 3430 #endif 3431 3432 static void 3433 sysctl_net_pktq_setup(struct sysctllog **clog, int pf) 3434 { 3435 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL; 3436 const char *pfname = NULL, *ipname = NULL; 3437 int ipn = 0, qid = 0; 3438 3439 switch (pf) { 3440 #if defined(INET) 3441 case PF_INET: 3442 len_func = sysctl_net_ip_pktq_items; 3443 maxlen_func = sysctl_net_ip_pktq_maxlen; 3444 drops_func = sysctl_net_ip_pktq_drops; 3445 pfname = "inet", ipn = IPPROTO_IP; 3446 ipname = "ip", qid = IPCTL_IFQ; 3447 break; 3448 #endif 3449 #if defined(INET6) 3450 case PF_INET6: 3451 len_func = sysctl_net_ip6_pktq_items; 3452 maxlen_func = sysctl_net_ip6_pktq_maxlen; 3453 drops_func = sysctl_net_ip6_pktq_drops; 3454 pfname = "inet6", ipn = IPPROTO_IPV6; 3455 ipname = "ip6", qid = IPV6CTL_IFQ; 3456 break; 3457 #endif 3458 default: 3459 KASSERT(false); 3460 } 3461 3462 sysctl_createv(clog, 0, NULL, NULL, 3463 CTLFLAG_PERMANENT, 3464 CTLTYPE_NODE, pfname, NULL, 3465 NULL, 0, NULL, 0, 3466 CTL_NET, pf, CTL_EOL); 3467 sysctl_createv(clog, 0, NULL, NULL, 3468 CTLFLAG_PERMANENT, 3469 CTLTYPE_NODE, ipname, NULL, 3470 NULL, 0, NULL, 0, 3471 CTL_NET, pf, ipn, CTL_EOL); 3472 sysctl_createv(clog, 0, NULL, NULL, 3473 CTLFLAG_PERMANENT, 3474 CTLTYPE_NODE, "ifq", 3475 SYSCTL_DESCR("Protocol input queue controls"), 3476 NULL, 0, NULL, 0, 3477 CTL_NET, pf, ipn, qid, CTL_EOL); 3478 3479 sysctl_createv(clog, 0, NULL, NULL, 3480 CTLFLAG_PERMANENT, 3481 CTLTYPE_INT, "len", 3482 SYSCTL_DESCR("Current input queue length"), 3483 len_func, 0, NULL, 0, 3484 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL); 3485 sysctl_createv(clog, 0, NULL, NULL, 3486 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 3487 CTLTYPE_INT, "maxlen", 3488 SYSCTL_DESCR("Maximum allowed input queue length"), 3489 maxlen_func, 0, NULL, 0, 3490 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL); 3491 sysctl_createv(clog, 0, NULL, NULL, 3492 CTLFLAG_PERMANENT, 3493 CTLTYPE_INT, "drops", 3494 SYSCTL_DESCR("Packets dropped due to full input queue"), 3495 drops_func, 0, NULL, 0, 3496 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL); 3497 } 3498 #endif /* INET || INET6 */ 3499 3500 static int 3501 if_sdl_sysctl(SYSCTLFN_ARGS) 3502 { 3503 struct ifnet *ifp; 3504 const struct sockaddr_dl *sdl; 3505 struct psref psref; 3506 int error = 0; 3507 int bound; 3508 3509 if (namelen != 1) 3510 return EINVAL; 3511 3512 bound = curlwp_bind(); 3513 ifp = if_get_byindex(name[0], &psref); 3514 if (ifp == NULL) { 3515 error = ENODEV; 3516 goto out0; 3517 } 3518 3519 sdl = ifp->if_sadl; 3520 if (sdl == NULL) { 3521 *oldlenp = 0; 3522 goto out1; 3523 } 3524 3525 if (oldp == NULL) { 3526 *oldlenp = sdl->sdl_alen; 3527 goto out1; 3528 } 3529 3530 if (*oldlenp >= sdl->sdl_alen) 3531 *oldlenp = sdl->sdl_alen; 3532 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp); 3533 out1: 3534 if_put(ifp, &psref); 3535 out0: 3536 curlwp_bindx(bound); 3537 return error; 3538 } 3539 3540 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup") 3541 { 3542 const struct sysctlnode *rnode = NULL; 3543 3544 sysctl_createv(clog, 0, NULL, &rnode, 3545 CTLFLAG_PERMANENT, 3546 CTLTYPE_NODE, "sdl", 3547 SYSCTL_DESCR("Get active link-layer address"), 3548 if_sdl_sysctl, 0, NULL, 0, 3549 CTL_NET, CTL_CREATE, CTL_EOL); 3550 } 3551