xref: /netbsd-src/sys/net/bpf_filter.c (revision e5548b402ae4c44fb816de42c7bba9581ce23ef5)
1 /*	$NetBSD: bpf_filter.c,v 1.28 2005/12/14 20:33:46 rpaulo Exp $	*/
2 
3 /*-
4  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from the Stanford/CMU enet packet filter,
8  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10  * Berkeley Laboratory.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)bpf_filter.c	8.1 (Berkeley) 6/10/93
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: bpf_filter.c,v 1.28 2005/12/14 20:33:46 rpaulo Exp $");
41 
42 #if 0
43 #if !(defined(lint) || defined(KERNEL))
44 static const char rcsid[] =
45     "@(#) Header: bpf_filter.c,v 1.33 97/04/26 13:37:18 leres Exp  (LBL)";
46 #endif
47 #endif
48 
49 #include <sys/param.h>
50 #include <sys/time.h>
51 
52 #if !defined(UNALIGNED_ACCESS)
53 #define BPF_ALIGN
54 #endif
55 
56 #ifndef BPF_ALIGN
57 #define EXTRACT_SHORT(p)	((uint16_t)ntohs(*(uint16_t *)p))
58 #define EXTRACT_LONG(p)		(ntohl(*(uint32_t *)p))
59 #else
60 #define EXTRACT_SHORT(p)			\
61 	((uint16_t)				\
62 		((uint16_t)*((u_char *)p+0)<<8|	\
63 		 (uint16_t)*((u_char *)p+1)<<0))
64 #define EXTRACT_LONG(p)				\
65 		((uint32_t)*((u_char *)p+0)<<24|\
66 		 (uint32_t)*((u_char *)p+1)<<16|\
67 		 (uint32_t)*((u_char *)p+2)<<8|	\
68 		 (uint32_t)*((u_char *)p+3)<<0)
69 #endif
70 
71 #ifdef _KERNEL
72 #include <sys/mbuf.h>
73 #define MINDEX(len, m, k) 		\
74 { 					\
75 	len = m->m_len; 		\
76 	while (k >= len) { 		\
77 		k -= len; 		\
78 		m = m->m_next; 		\
79 		if (m == 0) 		\
80 			return 0; 	\
81 		len = m->m_len; 	\
82 	} 				\
83 }
84 
85 static int m_xword (struct mbuf *, uint32_t, int *);
86 static int m_xhalf (struct mbuf *, uint32_t, int *);
87 
88 static int
89 m_xword(struct mbuf *m, uint32_t k, int *err)
90 {
91 	int len;
92 	u_char *cp, *np;
93 	struct mbuf *m0;
94 
95 	MINDEX(len, m, k);
96 	cp = mtod(m, u_char *) + k;
97 	if (len >= k + 4) {
98 		*err = 0;
99 		return EXTRACT_LONG(cp);
100 	}
101 	m0 = m->m_next;
102 	if (m0 == 0 || m0->m_len + len - k < 4)
103 		goto bad;
104 	*err = 0;
105 	np = mtod(m0, u_char *);
106 	switch (len - k) {
107 
108 	case 1:
109 		return (cp[0] << 24) | (np[0] << 16) | (np[1] << 8) | np[2];
110 
111 	case 2:
112 		return (cp[0] << 24) | (cp[1] << 16) | (np[0] << 8) | np[1];
113 
114 	default:
115 		return (cp[0] << 24) | (cp[1] << 16) | (cp[2] << 8) | np[0];
116 	}
117     bad:
118 	*err = 1;
119 
120 	return 0;
121 }
122 
123 static int
124 m_xhalf(struct mbuf *m, uint32_t k, int *err)
125 {
126 	int len;
127 	u_char *cp;
128 	struct mbuf *m0;
129 
130 	MINDEX(len, m, k);
131 	cp = mtod(m, u_char *) + k;
132 	if (len >= k + 2) {
133 		*err = 0;
134 		return EXTRACT_SHORT(cp);
135 	}
136 	m0 = m->m_next;
137 	if (m0 == 0)
138 		goto bad;
139 	*err = 0;
140 	return (cp[0] << 8) | mtod(m0, u_char *)[0];
141  bad:
142 	*err = 1;
143 
144 	return 0;
145 }
146 #else /* _KERNEL */
147 #include <stdlib.h>
148 #endif /* !_KERNEL */
149 
150 #include <net/bpf.h>
151 
152 /*
153  * Execute the filter program starting at pc on the packet p
154  * wirelen is the length of the original packet
155  * buflen is the amount of data present
156  */
157 u_int
158 bpf_filter(struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
159 {
160 	uint32_t A, X, k;
161 	int32_t mem[BPF_MEMWORDS];
162 
163 	if (pc == 0)
164 		/*
165 		 * No filter means accept all.
166 		 */
167 		return (u_int)-1;
168 	A = 0;
169 	X = 0;
170 	--pc;
171 	while (1) {
172 		++pc;
173 		switch (pc->code) {
174 
175 		default:
176 #ifdef _KERNEL
177 			return 0;
178 #else
179 			abort();
180 #endif
181 		case BPF_RET|BPF_K:
182 			return (u_int)pc->k;
183 
184 		case BPF_RET|BPF_A:
185 			return (u_int)A;
186 
187 		case BPF_LD|BPF_W|BPF_ABS:
188 			k = pc->k;
189 			if (k + sizeof(int32_t) > buflen) {
190 #ifdef _KERNEL
191 				int merr;
192 
193 				if (buflen != 0)
194 					return 0;
195 				A = m_xword((struct mbuf *)p, k, &merr);
196 				if (merr != 0)
197 					return 0;
198 				continue;
199 #else
200 				return 0;
201 #endif
202 			}
203 			A = EXTRACT_LONG(&p[k]);
204 			continue;
205 
206 		case BPF_LD|BPF_H|BPF_ABS:
207 			k = pc->k;
208 			if (k + sizeof(int16_t) > buflen) {
209 #ifdef _KERNEL
210 				int merr;
211 
212 				if (buflen != 0)
213 					return 0;
214 				A = m_xhalf((struct mbuf *)p, k, &merr);
215 				continue;
216 #else
217 				return 0;
218 #endif
219 			}
220 			A = EXTRACT_SHORT(&p[k]);
221 			continue;
222 
223 		case BPF_LD|BPF_B|BPF_ABS:
224 			k = pc->k;
225 			if (k >= buflen) {
226 #ifdef _KERNEL
227 				struct mbuf *m;
228 				int len;
229 
230 				if (buflen != 0)
231 					return 0;
232 				m = (struct mbuf *)p;
233 				MINDEX(len, m, k);
234 				A = mtod(m, u_char *)[k];
235 				continue;
236 #else
237 				return 0;
238 #endif
239 			}
240 			A = p[k];
241 			continue;
242 
243 		case BPF_LD|BPF_W|BPF_LEN:
244 			A = wirelen;
245 			continue;
246 
247 		case BPF_LDX|BPF_W|BPF_LEN:
248 			X = wirelen;
249 			continue;
250 
251 		case BPF_LD|BPF_W|BPF_IND:
252 			k = X + pc->k;
253 			if (k + sizeof(int32_t) > buflen) {
254 #ifdef _KERNEL
255 				int merr;
256 
257 				if (buflen != 0)
258 					return 0;
259 				A = m_xword((struct mbuf *)p, k, &merr);
260 				if (merr != 0)
261 					return 0;
262 				continue;
263 #else
264 				return 0;
265 #endif
266 			}
267 			A = EXTRACT_LONG(&p[k]);
268 			continue;
269 
270 		case BPF_LD|BPF_H|BPF_IND:
271 			k = X + pc->k;
272 			if (k + sizeof(int16_t) > buflen) {
273 #ifdef _KERNEL
274 				int merr;
275 
276 				if (buflen != 0)
277 					return 0;
278 				A = m_xhalf((struct mbuf *)p, k, &merr);
279 				if (merr != 0)
280 					return 0;
281 				continue;
282 #else
283 				return 0;
284 #endif
285 			}
286 			A = EXTRACT_SHORT(&p[k]);
287 			continue;
288 
289 		case BPF_LD|BPF_B|BPF_IND:
290 			k = X + pc->k;
291 			if (k >= buflen) {
292 #ifdef _KERNEL
293 				struct mbuf *m;
294 				int len;
295 
296 				if (buflen != 0)
297 					return 0;
298 				m = (struct mbuf *)p;
299 				MINDEX(len, m, k);
300 				A = mtod(m, u_char *)[k];
301 				continue;
302 #else
303 				return 0;
304 #endif
305 			}
306 			A = p[k];
307 			continue;
308 
309 		case BPF_LDX|BPF_MSH|BPF_B:
310 			k = pc->k;
311 			if (k >= buflen) {
312 #ifdef _KERNEL
313 				struct mbuf *m;
314 				int len;
315 
316 				if (buflen != 0)
317 					return 0;
318 				m = (struct mbuf *)p;
319 				MINDEX(len, m, k);
320 				X = (mtod(m, char *)[k] & 0xf) << 2;
321 				continue;
322 #else
323 				return 0;
324 #endif
325 			}
326 			X = (p[pc->k] & 0xf) << 2;
327 			continue;
328 
329 		case BPF_LD|BPF_IMM:
330 			A = pc->k;
331 			continue;
332 
333 		case BPF_LDX|BPF_IMM:
334 			X = pc->k;
335 			continue;
336 
337 		case BPF_LD|BPF_MEM:
338 			A = mem[pc->k];
339 			continue;
340 
341 		case BPF_LDX|BPF_MEM:
342 			X = mem[pc->k];
343 			continue;
344 
345 		case BPF_ST:
346 			mem[pc->k] = A;
347 			continue;
348 
349 		case BPF_STX:
350 			mem[pc->k] = X;
351 			continue;
352 
353 		case BPF_JMP|BPF_JA:
354 			pc += pc->k;
355 			continue;
356 
357 		case BPF_JMP|BPF_JGT|BPF_K:
358 			pc += (A > pc->k) ? pc->jt : pc->jf;
359 			continue;
360 
361 		case BPF_JMP|BPF_JGE|BPF_K:
362 			pc += (A >= pc->k) ? pc->jt : pc->jf;
363 			continue;
364 
365 		case BPF_JMP|BPF_JEQ|BPF_K:
366 			pc += (A == pc->k) ? pc->jt : pc->jf;
367 			continue;
368 
369 		case BPF_JMP|BPF_JSET|BPF_K:
370 			pc += (A & pc->k) ? pc->jt : pc->jf;
371 			continue;
372 
373 		case BPF_JMP|BPF_JGT|BPF_X:
374 			pc += (A > X) ? pc->jt : pc->jf;
375 			continue;
376 
377 		case BPF_JMP|BPF_JGE|BPF_X:
378 			pc += (A >= X) ? pc->jt : pc->jf;
379 			continue;
380 
381 		case BPF_JMP|BPF_JEQ|BPF_X:
382 			pc += (A == X) ? pc->jt : pc->jf;
383 			continue;
384 
385 		case BPF_JMP|BPF_JSET|BPF_X:
386 			pc += (A & X) ? pc->jt : pc->jf;
387 			continue;
388 
389 		case BPF_ALU|BPF_ADD|BPF_X:
390 			A += X;
391 			continue;
392 
393 		case BPF_ALU|BPF_SUB|BPF_X:
394 			A -= X;
395 			continue;
396 
397 		case BPF_ALU|BPF_MUL|BPF_X:
398 			A *= X;
399 			continue;
400 
401 		case BPF_ALU|BPF_DIV|BPF_X:
402 			if (X == 0)
403 				return 0;
404 			A /= X;
405 			continue;
406 
407 		case BPF_ALU|BPF_AND|BPF_X:
408 			A &= X;
409 			continue;
410 
411 		case BPF_ALU|BPF_OR|BPF_X:
412 			A |= X;
413 			continue;
414 
415 		case BPF_ALU|BPF_LSH|BPF_X:
416 			A <<= X;
417 			continue;
418 
419 		case BPF_ALU|BPF_RSH|BPF_X:
420 			A >>= X;
421 			continue;
422 
423 		case BPF_ALU|BPF_ADD|BPF_K:
424 			A += pc->k;
425 			continue;
426 
427 		case BPF_ALU|BPF_SUB|BPF_K:
428 			A -= pc->k;
429 			continue;
430 
431 		case BPF_ALU|BPF_MUL|BPF_K:
432 			A *= pc->k;
433 			continue;
434 
435 		case BPF_ALU|BPF_DIV|BPF_K:
436 			A /= pc->k;
437 			continue;
438 
439 		case BPF_ALU|BPF_AND|BPF_K:
440 			A &= pc->k;
441 			continue;
442 
443 		case BPF_ALU|BPF_OR|BPF_K:
444 			A |= pc->k;
445 			continue;
446 
447 		case BPF_ALU|BPF_LSH|BPF_K:
448 			A <<= pc->k;
449 			continue;
450 
451 		case BPF_ALU|BPF_RSH|BPF_K:
452 			A >>= pc->k;
453 			continue;
454 
455 		case BPF_ALU|BPF_NEG:
456 			A = -A;
457 			continue;
458 
459 		case BPF_MISC|BPF_TAX:
460 			X = A;
461 			continue;
462 
463 		case BPF_MISC|BPF_TXA:
464 			A = X;
465 			continue;
466 		}
467 	}
468 }
469 
470 #ifdef _KERNEL
471 /*
472  * Return true if the 'fcode' is a valid filter program.
473  * The constraints are that each jump be forward and to a valid
474  * code.  The code must terminate with either an accept or reject.
475  * 'valid' is an array for use by the routine (it must be at least
476  * 'len' bytes long).
477  *
478  * The kernel needs to be able to verify an application's filter code.
479  * Otherwise, a bogus program could easily crash the system.
480  */
481 int
482 bpf_validate(struct bpf_insn *f, int len)
483 {
484 	u_int i, from;
485 	struct bpf_insn *p;
486 
487 
488 	if (len < 1 || len > BPF_MAXINSNS)
489 		return 0;
490 
491 	for (i = 0; i < len; ++i) {
492 		p = &f[i];
493 		switch (BPF_CLASS(p->code)) {
494 		/*
495 		 * Check that memory operations use valid addresses.
496 		 */
497 		case BPF_LD:
498 		case BPF_LDX:
499 			switch (BPF_MODE(p->code)) {
500 			case BPF_MEM:
501 				if (p->k >= BPF_MEMWORDS)
502 					return 0;
503 				break;
504 			case BPF_ABS:
505 			case BPF_IND:
506 			case BPF_MSH:
507 			case BPF_IMM:
508 			case BPF_LEN:
509 				break;
510 			default:
511 				return 0;
512 			}
513 			break;
514 		case BPF_ST:
515 		case BPF_STX:
516 			if (p->k >= BPF_MEMWORDS)
517 				return 0;
518 			break;
519 		case BPF_ALU:
520 			switch (BPF_OP(p->code)) {
521 			case BPF_ADD:
522 			case BPF_SUB:
523 			case BPF_OR:
524 			case BPF_AND:
525 			case BPF_LSH:
526 			case BPF_RSH:
527 			case BPF_NEG:
528 				break;
529 			case BPF_DIV:
530 				/*
531 				 * Check for constant division by 0.
532 				 */
533 				if (BPF_RVAL(p->code) == BPF_K && p->k == 0)
534 					return 0;
535 			default:
536 				return 0;
537 			}
538 			break;
539 		case BPF_JMP:
540 			/*
541 			 * Check that jumps are within the code block,
542 			 * and that unconditional branches don't go
543 			 * backwards as a result of an overflow.
544 			 * Unconditional branches have a 32-bit offset,
545 			 * so they could overflow; we check to make
546 			 * sure they don't.  Conditional branches have
547 			 * an 8-bit offset, and the from address is <=
548 			 * BPF_MAXINSNS, and we assume that BPF_MAXINSNS
549 			 * is sufficiently small that adding 255 to it
550 			 * won't overflow.
551 			 *
552 			 * We know that len is <= BPF_MAXINSNS, and we
553 			 * assume that BPF_MAXINSNS is < the maximum size
554 			 * of a u_int, so that i + 1 doesn't overflow.
555 			 */
556 			from = i + 1;
557 			switch (BPF_OP(p->code)) {
558 			case BPF_JA:
559 				if (from + p->k < from || from + p->k >= len)
560 					return 0;
561 				break;
562 			case BPF_JEQ:
563 			case BPF_JGT:
564 			case BPF_JGE:
565 			case BPF_JSET:
566 				if (from + p->jt >= len || from + p->jf >= len)
567 					return 0;
568 				break;
569 			default:
570 				return 0;
571 			}
572 			break;
573 		case BPF_RET:
574 			break;
575 		case BPF_MISC:
576 			break;
577 		default:
578 			return 0;
579 		}
580 	}
581 
582 	return BPF_CLASS(f[len - 1].code) == BPF_RET;
583 }
584 #endif
585