xref: /netbsd-src/sys/net/bpf.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*	$NetBSD: bpf.c,v 1.228 2018/09/03 16:29:35 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from the Stanford/CMU enet packet filter,
8  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10  * Berkeley Laboratory.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)bpf.c	8.4 (Berkeley) 1/9/95
37  * static char rcsid[] =
38  * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.228 2018/09/03 16:29:35 riastradh Exp $");
43 
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "strip.h"
48 #include "opt_net_mpsafe.h"
49 #endif
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/mbuf.h>
54 #include <sys/buf.h>
55 #include <sys/time.h>
56 #include <sys/proc.h>
57 #include <sys/ioctl.h>
58 #include <sys/conf.h>
59 #include <sys/vnode.h>
60 #include <sys/queue.h>
61 #include <sys/stat.h>
62 #include <sys/module.h>
63 #include <sys/atomic.h>
64 #include <sys/cpu.h>
65 
66 #include <sys/file.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/uio.h>
70 
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/errno.h>
74 #include <sys/kernel.h>
75 #include <sys/poll.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78 #include <sys/syslog.h>
79 #include <sys/percpu.h>
80 #include <sys/pserialize.h>
81 #include <sys/lwp.h>
82 
83 #include <net/if.h>
84 #include <net/slip.h>
85 
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #include <net/bpfjit.h>
89 
90 #include <net/if_arc.h>
91 #include <net/if_ether.h>
92 
93 #include <netinet/in.h>
94 #include <netinet/if_inarp.h>
95 
96 
97 #include <compat/sys/sockio.h>
98 
99 #ifndef BPF_BUFSIZE
100 /*
101  * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
102  * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
103  */
104 # define BPF_BUFSIZE 32768
105 #endif
106 
107 #define PRINET  26			/* interruptible */
108 
109 /*
110  * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
111  * XXX the default values should be computed dynamically based
112  * on available memory size and available mbuf clusters.
113  */
114 static int bpf_bufsize = BPF_BUFSIZE;
115 static int bpf_maxbufsize = BPF_DFLTBUFSIZE;	/* XXX set dynamically, see above */
116 static bool bpf_jit = false;
117 
118 struct bpfjit_ops bpfjit_module_ops = {
119 	.bj_generate_code = NULL,
120 	.bj_free_code = NULL
121 };
122 
123 /*
124  * Global BPF statistics returned by net.bpf.stats sysctl.
125  */
126 static struct percpu	*bpf_gstats_percpu; /* struct bpf_stat */
127 
128 #define BPF_STATINC(id)					\
129 	{						\
130 		struct bpf_stat *__stats =		\
131 		    percpu_getref(bpf_gstats_percpu);	\
132 		__stats->bs_##id++;			\
133 		percpu_putref(bpf_gstats_percpu);	\
134 	}
135 
136 /*
137  * Locking notes:
138  * - bpf_mtx (adaptive mutex) protects:
139  *   - Gobal lists: bpf_iflist and bpf_dlist
140  *   - struct bpf_if
141  *   - bpf_close
142  *   - bpf_psz (pserialize)
143  * - struct bpf_d has two mutexes:
144  *   - bd_buf_mtx (spin mutex) protects the buffers that can be accessed
145  *     on packet tapping
146  *   - bd_mtx (adaptive mutex) protects member variables other than the buffers
147  * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx
148  * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is
149  *   never freed because struct bpf_d is only freed in bpf_close and
150  *   bpf_close never be called while executing bpf_read and bpf_write
151  * - A filter that is assigned to bpf_d can be replaced with another filter
152  *   while tapping packets, so it needs to be done atomically
153  * - struct bpf_d is iterated on bpf_dlist with psz
154  * - struct bpf_if is iterated on bpf_iflist with psz or psref
155  */
156 /*
157  * Use a mutex to avoid a race condition between gathering the stats/peers
158  * and opening/closing the device.
159  */
160 static kmutex_t bpf_mtx;
161 
162 static struct psref_class	*bpf_psref_class __read_mostly;
163 static pserialize_t		bpf_psz;
164 
165 static inline void
166 bpf_if_acquire(struct bpf_if *bp, struct psref *psref)
167 {
168 
169 	psref_acquire(psref, &bp->bif_psref, bpf_psref_class);
170 }
171 
172 static inline void
173 bpf_if_release(struct bpf_if *bp, struct psref *psref)
174 {
175 
176 	psref_release(psref, &bp->bif_psref, bpf_psref_class);
177 }
178 
179 /*
180  *  bpf_iflist is the list of interfaces; each corresponds to an ifnet
181  *  bpf_dtab holds the descriptors, indexed by minor device #
182  */
183 static struct pslist_head bpf_iflist;
184 static struct pslist_head bpf_dlist;
185 
186 /* Macros for bpf_d on bpf_dlist */
187 #define BPF_DLIST_WRITER_INSERT_HEAD(__d)				\
188 	PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
189 #define BPF_DLIST_READER_FOREACH(__d)					\
190 	PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d,		\
191 	                      bd_bpf_dlist_entry)
192 #define BPF_DLIST_WRITER_FOREACH(__d)					\
193 	PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d,		\
194 	                      bd_bpf_dlist_entry)
195 #define BPF_DLIST_ENTRY_INIT(__d)					\
196 	PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
197 #define BPF_DLIST_WRITER_REMOVE(__d)					\
198 	PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
199 #define BPF_DLIST_ENTRY_DESTROY(__d)					\
200 	PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
201 
202 /* Macros for bpf_if on bpf_iflist */
203 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp)				\
204 	PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
205 #define BPF_IFLIST_READER_FOREACH(__bp)					\
206 	PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if,	\
207 	                      bif_iflist_entry)
208 #define BPF_IFLIST_WRITER_FOREACH(__bp)					\
209 	PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if,	\
210 	                      bif_iflist_entry)
211 #define BPF_IFLIST_WRITER_REMOVE(__bp)					\
212 	PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
213 #define BPF_IFLIST_ENTRY_INIT(__bp)					\
214 	PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
215 #define BPF_IFLIST_ENTRY_DESTROY(__bp)					\
216 	PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
217 
218 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
219 #define BPFIF_DLIST_READER_FOREACH(__d, __bp)				\
220 	PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
221 	                      bd_bif_dlist_entry)
222 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d)			\
223 	PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d),	\
224 	                          bd_bif_dlist_entry)
225 #define BPFIF_DLIST_WRITER_REMOVE(__d)					\
226 	PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
227 #define BPFIF_DLIST_ENTRY_INIT(__d)					\
228 	PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
229 #define	BPFIF_DLIST_READER_EMPTY(__bp)					\
230 	(PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d,	\
231 	                     bd_bif_dlist_entry) == NULL)
232 #define	BPFIF_DLIST_WRITER_EMPTY(__bp)					\
233 	(PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d,	\
234 	                     bd_bif_dlist_entry) == NULL)
235 #define BPFIF_DLIST_ENTRY_DESTROY(__d)					\
236 	PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
237 
238 static int	bpf_allocbufs(struct bpf_d *);
239 static void	bpf_deliver(struct bpf_if *,
240 		            void *(*cpfn)(void *, const void *, size_t),
241 		            void *, u_int, u_int, const u_int);
242 static void	bpf_freed(struct bpf_d *);
243 static void	bpf_free_filter(struct bpf_filter *);
244 static void	bpf_ifname(struct ifnet *, struct ifreq *);
245 static void	*bpf_mcpy(void *, const void *, size_t);
246 static int	bpf_movein(struct uio *, int, uint64_t,
247 			        struct mbuf **, struct sockaddr *);
248 static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
249 static void	bpf_detachd(struct bpf_d *);
250 static int	bpf_setif(struct bpf_d *, struct ifreq *);
251 static int	bpf_setf(struct bpf_d *, struct bpf_program *);
252 static void	bpf_timed_out(void *);
253 static inline void
254 		bpf_wakeup(struct bpf_d *);
255 static int	bpf_hdrlen(struct bpf_d *);
256 static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
257     void *(*)(void *, const void *, size_t), struct timespec *);
258 static void	reset_d(struct bpf_d *);
259 static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
260 static int	bpf_setdlt(struct bpf_d *, u_int);
261 
262 static int	bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
263     int);
264 static int	bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
265     int);
266 static int	bpf_ioctl(struct file *, u_long, void *);
267 static int	bpf_poll(struct file *, int);
268 static int	bpf_stat(struct file *, struct stat *);
269 static int	bpf_close(struct file *);
270 static int	bpf_kqfilter(struct file *, struct knote *);
271 
272 static const struct fileops bpf_fileops = {
273 	.fo_name = "bpf",
274 	.fo_read = bpf_read,
275 	.fo_write = bpf_write,
276 	.fo_ioctl = bpf_ioctl,
277 	.fo_fcntl = fnullop_fcntl,
278 	.fo_poll = bpf_poll,
279 	.fo_stat = bpf_stat,
280 	.fo_close = bpf_close,
281 	.fo_kqfilter = bpf_kqfilter,
282 	.fo_restart = fnullop_restart,
283 };
284 
285 dev_type_open(bpfopen);
286 
287 const struct cdevsw bpf_cdevsw = {
288 	.d_open = bpfopen,
289 	.d_close = noclose,
290 	.d_read = noread,
291 	.d_write = nowrite,
292 	.d_ioctl = noioctl,
293 	.d_stop = nostop,
294 	.d_tty = notty,
295 	.d_poll = nopoll,
296 	.d_mmap = nommap,
297 	.d_kqfilter = nokqfilter,
298 	.d_discard = nodiscard,
299 	.d_flag = D_OTHER | D_MPSAFE
300 };
301 
302 bpfjit_func_t
303 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
304 {
305 
306 	membar_consumer();
307 	if (bpfjit_module_ops.bj_generate_code != NULL) {
308 		return bpfjit_module_ops.bj_generate_code(bc, code, size);
309 	}
310 	return NULL;
311 }
312 
313 void
314 bpf_jit_freecode(bpfjit_func_t jcode)
315 {
316 	KASSERT(bpfjit_module_ops.bj_free_code != NULL);
317 	bpfjit_module_ops.bj_free_code(jcode);
318 }
319 
320 static int
321 bpf_movein(struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
322 	   struct sockaddr *sockp)
323 {
324 	struct mbuf *m;
325 	int error;
326 	size_t len;
327 	size_t hlen;
328 	size_t align;
329 
330 	/*
331 	 * Build a sockaddr based on the data link layer type.
332 	 * We do this at this level because the ethernet header
333 	 * is copied directly into the data field of the sockaddr.
334 	 * In the case of SLIP, there is no header and the packet
335 	 * is forwarded as is.
336 	 * Also, we are careful to leave room at the front of the mbuf
337 	 * for the link level header.
338 	 */
339 	switch (linktype) {
340 
341 	case DLT_SLIP:
342 		sockp->sa_family = AF_INET;
343 		hlen = 0;
344 		align = 0;
345 		break;
346 
347 	case DLT_PPP:
348 		sockp->sa_family = AF_UNSPEC;
349 		hlen = 0;
350 		align = 0;
351 		break;
352 
353 	case DLT_EN10MB:
354 		sockp->sa_family = AF_UNSPEC;
355 		/* XXX Would MAXLINKHDR be better? */
356  		/* 6(dst)+6(src)+2(type) */
357 		hlen = sizeof(struct ether_header);
358 		align = 2;
359 		break;
360 
361 	case DLT_ARCNET:
362 		sockp->sa_family = AF_UNSPEC;
363 		hlen = ARC_HDRLEN;
364 		align = 5;
365 		break;
366 
367 	case DLT_FDDI:
368 		sockp->sa_family = AF_LINK;
369 		/* XXX 4(FORMAC)+6(dst)+6(src) */
370 		hlen = 16;
371 		align = 0;
372 		break;
373 
374 	case DLT_ECONET:
375 		sockp->sa_family = AF_UNSPEC;
376 		hlen = 6;
377 		align = 2;
378 		break;
379 
380 	case DLT_NULL:
381 		sockp->sa_family = AF_UNSPEC;
382 		hlen = 0;
383 		align = 0;
384 		break;
385 
386 	default:
387 		return (EIO);
388 	}
389 
390 	len = uio->uio_resid;
391 	/*
392 	 * If there aren't enough bytes for a link level header or the
393 	 * packet length exceeds the interface mtu, return an error.
394 	 */
395 	if (len - hlen > mtu)
396 		return (EMSGSIZE);
397 
398 	/*
399 	 * XXX Avoid complicated buffer chaining ---
400 	 * bail if it won't fit in a single mbuf.
401 	 * (Take into account possible alignment bytes)
402 	 */
403 	if (len + align > MCLBYTES)
404 		return (EIO);
405 
406 	m = m_gethdr(M_WAIT, MT_DATA);
407 	m_reset_rcvif(m);
408 	m->m_pkthdr.len = (int)(len - hlen);
409 	if (len + align > MHLEN) {
410 		m_clget(m, M_WAIT);
411 		if ((m->m_flags & M_EXT) == 0) {
412 			error = ENOBUFS;
413 			goto bad;
414 		}
415 	}
416 
417 	/* Insure the data is properly aligned */
418 	if (align > 0) {
419 		m->m_data += align;
420 		m->m_len -= (int)align;
421 	}
422 
423 	error = uiomove(mtod(m, void *), len, uio);
424 	if (error)
425 		goto bad;
426 	if (hlen != 0) {
427 		memcpy(sockp->sa_data, mtod(m, void *), hlen);
428 		m->m_data += hlen; /* XXX */
429 		len -= hlen;
430 	}
431 	m->m_len = (int)len;
432 	*mp = m;
433 	return (0);
434 
435 bad:
436 	m_freem(m);
437 	return (error);
438 }
439 
440 /*
441  * Attach file to the bpf interface, i.e. make d listen on bp.
442  */
443 static void
444 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
445 {
446 
447 	KASSERT(mutex_owned(&bpf_mtx));
448 	KASSERT(mutex_owned(d->bd_mtx));
449 	/*
450 	 * Point d at bp, and add d to the interface's list of listeners.
451 	 * Finally, point the driver's bpf cookie at the interface so
452 	 * it will divert packets to bpf.
453 	 */
454 	d->bd_bif = bp;
455 	BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
456 
457 	*bp->bif_driverp = bp;
458 }
459 
460 /*
461  * Detach a file from its interface.
462  */
463 static void
464 bpf_detachd(struct bpf_d *d)
465 {
466 	struct bpf_if *bp;
467 
468 	KASSERT(mutex_owned(&bpf_mtx));
469 	KASSERT(mutex_owned(d->bd_mtx));
470 
471 	bp = d->bd_bif;
472 	/*
473 	 * Check if this descriptor had requested promiscuous mode.
474 	 * If so, turn it off.
475 	 */
476 	if (d->bd_promisc) {
477 		int error __diagused;
478 
479 		d->bd_promisc = 0;
480 		/*
481 		 * Take device out of promiscuous mode.  Since we were
482 		 * able to enter promiscuous mode, we should be able
483 		 * to turn it off.  But we can get an error if
484 		 * the interface was configured down, so only panic
485 		 * if we don't get an unexpected error.
486 		 */
487 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
488   		error = ifpromisc(bp->bif_ifp, 0);
489 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
490 #ifdef DIAGNOSTIC
491 		if (error)
492 			printf("%s: ifpromisc failed: %d", __func__, error);
493 #endif
494 	}
495 
496 	/* Remove d from the interface's descriptor list. */
497 	BPFIF_DLIST_WRITER_REMOVE(d);
498 
499 	pserialize_perform(bpf_psz);
500 
501 	if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
502 		/*
503 		 * Let the driver know that there are no more listeners.
504 		 */
505 		*d->bd_bif->bif_driverp = NULL;
506 	}
507 	d->bd_bif = NULL;
508 }
509 
510 static void
511 bpf_init(void)
512 {
513 
514 	mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
515 	bpf_psz = pserialize_create();
516 	bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET);
517 
518 	PSLIST_INIT(&bpf_iflist);
519 	PSLIST_INIT(&bpf_dlist);
520 
521 	bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
522 
523 	return;
524 }
525 
526 /*
527  * bpfilterattach() is called at boot time.  We don't need to do anything
528  * here, since any initialization will happen as part of module init code.
529  */
530 /* ARGSUSED */
531 void
532 bpfilterattach(int n)
533 {
534 
535 }
536 
537 /*
538  * Open ethernet device. Clones.
539  */
540 /* ARGSUSED */
541 int
542 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
543 {
544 	struct bpf_d *d;
545 	struct file *fp;
546 	int error, fd;
547 
548 	/* falloc() will fill in the descriptor for us. */
549 	if ((error = fd_allocfile(&fp, &fd)) != 0)
550 		return error;
551 
552 	d = kmem_zalloc(sizeof(*d), KM_SLEEP);
553 	d->bd_bufsize = bpf_bufsize;
554 	d->bd_direction = BPF_D_INOUT;
555 	d->bd_feedback = 0;
556 	d->bd_pid = l->l_proc->p_pid;
557 #ifdef _LP64
558 	if (curproc->p_flag & PK_32)
559 		d->bd_compat32 = 1;
560 #endif
561 	getnanotime(&d->bd_btime);
562 	d->bd_atime = d->bd_mtime = d->bd_btime;
563 	callout_init(&d->bd_callout, CALLOUT_MPSAFE);
564 	selinit(&d->bd_sel);
565 	d->bd_jitcode = NULL;
566 	d->bd_filter = NULL;
567 	BPF_DLIST_ENTRY_INIT(d);
568 	BPFIF_DLIST_ENTRY_INIT(d);
569 	d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
570 	d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
571 	cv_init(&d->bd_cv, "bpf");
572 
573 	mutex_enter(&bpf_mtx);
574 	BPF_DLIST_WRITER_INSERT_HEAD(d);
575 	mutex_exit(&bpf_mtx);
576 
577 	return fd_clone(fp, fd, flag, &bpf_fileops, d);
578 }
579 
580 /*
581  * Close the descriptor by detaching it from its interface,
582  * deallocating its buffers, and marking it free.
583  */
584 /* ARGSUSED */
585 static int
586 bpf_close(struct file *fp)
587 {
588 	struct bpf_d *d;
589 
590 	mutex_enter(&bpf_mtx);
591 
592 	if ((d = fp->f_bpf) == NULL) {
593 		mutex_exit(&bpf_mtx);
594 		return 0;
595 	}
596 
597 	/*
598 	 * Refresh the PID associated with this bpf file.
599 	 */
600 	d->bd_pid = curproc->p_pid;
601 
602 	mutex_enter(d->bd_mtx);
603 	if (d->bd_state == BPF_WAITING)
604 		callout_halt(&d->bd_callout, d->bd_mtx);
605 	d->bd_state = BPF_IDLE;
606 	if (d->bd_bif)
607 		bpf_detachd(d);
608 	mutex_exit(d->bd_mtx);
609 
610 	BPF_DLIST_WRITER_REMOVE(d);
611 
612 	pserialize_perform(bpf_psz);
613 	mutex_exit(&bpf_mtx);
614 
615 	BPFIF_DLIST_ENTRY_DESTROY(d);
616 	BPF_DLIST_ENTRY_DESTROY(d);
617 	fp->f_bpf = NULL;
618 	bpf_freed(d);
619 	callout_destroy(&d->bd_callout);
620 	seldestroy(&d->bd_sel);
621 	mutex_obj_free(d->bd_mtx);
622 	mutex_obj_free(d->bd_buf_mtx);
623 	cv_destroy(&d->bd_cv);
624 
625 	kmem_free(d, sizeof(*d));
626 
627 	return (0);
628 }
629 
630 /*
631  * Rotate the packet buffers in descriptor d.  Move the store buffer
632  * into the hold slot, and the free buffer into the store slot.
633  * Zero the length of the new store buffer.
634  */
635 #define ROTATE_BUFFERS(d) \
636 	(d)->bd_hbuf = (d)->bd_sbuf; \
637 	(d)->bd_hlen = (d)->bd_slen; \
638 	(d)->bd_sbuf = (d)->bd_fbuf; \
639 	(d)->bd_slen = 0; \
640 	(d)->bd_fbuf = NULL;
641 /*
642  *  bpfread - read next chunk of packets from buffers
643  */
644 static int
645 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
646     kauth_cred_t cred, int flags)
647 {
648 	struct bpf_d *d = fp->f_bpf;
649 	int timed_out;
650 	int error;
651 
652 	getnanotime(&d->bd_atime);
653 	/*
654 	 * Restrict application to use a buffer the same size as
655 	 * the kernel buffers.
656 	 */
657 	if (uio->uio_resid != d->bd_bufsize)
658 		return (EINVAL);
659 
660 	mutex_enter(d->bd_mtx);
661 	if (d->bd_state == BPF_WAITING)
662 		callout_halt(&d->bd_callout, d->bd_mtx);
663 	timed_out = (d->bd_state == BPF_TIMED_OUT);
664 	d->bd_state = BPF_IDLE;
665 	mutex_exit(d->bd_mtx);
666 	/*
667 	 * If the hold buffer is empty, then do a timed sleep, which
668 	 * ends when the timeout expires or when enough packets
669 	 * have arrived to fill the store buffer.
670 	 */
671 	mutex_enter(d->bd_buf_mtx);
672 	while (d->bd_hbuf == NULL) {
673 		if (fp->f_flag & FNONBLOCK) {
674 			if (d->bd_slen == 0) {
675 				error = EWOULDBLOCK;
676 				goto out;
677 			}
678 			ROTATE_BUFFERS(d);
679 			break;
680 		}
681 
682 		if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
683 			/*
684 			 * A packet(s) either arrived since the previous
685 			 * read or arrived while we were asleep.
686 			 * Rotate the buffers and return what's here.
687 			 */
688 			ROTATE_BUFFERS(d);
689 			break;
690 		}
691 
692 		error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout);
693 
694 		if (error == EINTR || error == ERESTART)
695 			goto out;
696 
697 		if (error == EWOULDBLOCK) {
698 			/*
699 			 * On a timeout, return what's in the buffer,
700 			 * which may be nothing.  If there is something
701 			 * in the store buffer, we can rotate the buffers.
702 			 */
703 			if (d->bd_hbuf)
704 				/*
705 				 * We filled up the buffer in between
706 				 * getting the timeout and arriving
707 				 * here, so we don't need to rotate.
708 				 */
709 				break;
710 
711 			if (d->bd_slen == 0) {
712 				error = 0;
713 				goto out;
714 			}
715 			ROTATE_BUFFERS(d);
716 			break;
717 		}
718 		if (error != 0)
719 			goto out;
720 	}
721 	/*
722 	 * At this point, we know we have something in the hold slot.
723 	 */
724 	mutex_exit(d->bd_buf_mtx);
725 
726 	/*
727 	 * Move data from hold buffer into user space.
728 	 * We know the entire buffer is transferred since
729 	 * we checked above that the read buffer is bpf_bufsize bytes.
730 	 */
731 	error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
732 
733 	mutex_enter(d->bd_buf_mtx);
734 	d->bd_fbuf = d->bd_hbuf;
735 	d->bd_hbuf = NULL;
736 	d->bd_hlen = 0;
737 out:
738 	mutex_exit(d->bd_buf_mtx);
739 	return (error);
740 }
741 
742 
743 /*
744  * If there are processes sleeping on this descriptor, wake them up.
745  */
746 static inline void
747 bpf_wakeup(struct bpf_d *d)
748 {
749 
750 	mutex_enter(d->bd_buf_mtx);
751 	cv_broadcast(&d->bd_cv);
752 	mutex_exit(d->bd_buf_mtx);
753 
754 	if (d->bd_async)
755 		fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
756 	selnotify(&d->bd_sel, 0, 0);
757 }
758 
759 static void
760 bpf_timed_out(void *arg)
761 {
762 	struct bpf_d *d = arg;
763 
764 	mutex_enter(d->bd_mtx);
765 	if (d->bd_state == BPF_WAITING) {
766 		d->bd_state = BPF_TIMED_OUT;
767 		if (d->bd_slen != 0)
768 			bpf_wakeup(d);
769 	}
770 	mutex_exit(d->bd_mtx);
771 }
772 
773 
774 static int
775 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
776     kauth_cred_t cred, int flags)
777 {
778 	struct bpf_d *d = fp->f_bpf;
779 	struct bpf_if *bp;
780 	struct ifnet *ifp;
781 	struct mbuf *m, *mc;
782 	int error;
783 	static struct sockaddr_storage dst;
784 	struct psref psref;
785 	int bound;
786 
787 	m = NULL;	/* XXX gcc */
788 
789 	bound = curlwp_bind();
790 	mutex_enter(d->bd_mtx);
791 	bp = d->bd_bif;
792 	if (bp == NULL) {
793 		mutex_exit(d->bd_mtx);
794 		error = ENXIO;
795 		goto out_bindx;
796 	}
797 	bpf_if_acquire(bp, &psref);
798 	mutex_exit(d->bd_mtx);
799 
800 	getnanotime(&d->bd_mtime);
801 
802 	ifp = bp->bif_ifp;
803 	if (if_is_deactivated(ifp)) {
804 		error = ENXIO;
805 		goto out;
806 	}
807 
808 	if (uio->uio_resid == 0) {
809 		error = 0;
810 		goto out;
811 	}
812 
813 	error = bpf_movein(uio, (int)bp->bif_dlt, ifp->if_mtu, &m,
814 		(struct sockaddr *) &dst);
815 	if (error)
816 		goto out;
817 
818 	if (m->m_pkthdr.len > ifp->if_mtu) {
819 		m_freem(m);
820 		error = EMSGSIZE;
821 		goto out;
822 	}
823 
824 	if (d->bd_hdrcmplt)
825 		dst.ss_family = pseudo_AF_HDRCMPLT;
826 
827 	if (d->bd_feedback) {
828 		mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
829 		if (mc != NULL)
830 			m_set_rcvif(mc, ifp);
831 		/* Set M_PROMISC for outgoing packets to be discarded. */
832 		if (1 /*d->bd_direction == BPF_D_INOUT*/)
833 			m->m_flags |= M_PROMISC;
834 	} else
835 		mc = NULL;
836 
837 	error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
838 
839 	if (mc != NULL) {
840 		if (error == 0) {
841 			int s = splsoftnet();
842 			KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
843 			ifp->_if_input(ifp, mc);
844 			KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
845 			splx(s);
846 		} else
847 			m_freem(mc);
848 	}
849 	/*
850 	 * The driver frees the mbuf.
851 	 */
852 out:
853 	bpf_if_release(bp, &psref);
854 out_bindx:
855 	curlwp_bindx(bound);
856 	return error;
857 }
858 
859 /*
860  * Reset a descriptor by flushing its packet buffer and clearing the
861  * receive and drop counts.
862  */
863 static void
864 reset_d(struct bpf_d *d)
865 {
866 
867 	KASSERT(mutex_owned(d->bd_mtx));
868 
869 	mutex_enter(d->bd_buf_mtx);
870 	if (d->bd_hbuf) {
871 		/* Free the hold buffer. */
872 		d->bd_fbuf = d->bd_hbuf;
873 		d->bd_hbuf = NULL;
874 	}
875 	d->bd_slen = 0;
876 	d->bd_hlen = 0;
877 	d->bd_rcount = 0;
878 	d->bd_dcount = 0;
879 	d->bd_ccount = 0;
880 	mutex_exit(d->bd_buf_mtx);
881 }
882 
883 /*
884  *  FIONREAD		Check for read packet available.
885  *  BIOCGBLEN		Get buffer len [for read()].
886  *  BIOCSETF		Set ethernet read filter.
887  *  BIOCFLUSH		Flush read packet buffer.
888  *  BIOCPROMISC		Put interface into promiscuous mode.
889  *  BIOCGDLT		Get link layer type.
890  *  BIOCGETIF		Get interface name.
891  *  BIOCSETIF		Set interface.
892  *  BIOCSRTIMEOUT	Set read timeout.
893  *  BIOCGRTIMEOUT	Get read timeout.
894  *  BIOCGSTATS		Get packet stats.
895  *  BIOCIMMEDIATE	Set immediate mode.
896  *  BIOCVERSION		Get filter language version.
897  *  BIOCGHDRCMPLT	Get "header already complete" flag.
898  *  BIOCSHDRCMPLT	Set "header already complete" flag.
899  *  BIOCSFEEDBACK	Set packet feedback mode.
900  *  BIOCGFEEDBACK	Get packet feedback mode.
901  *  BIOCGDIRECTION	Get packet direction flag
902  *  BIOCSDIRECTION	Set packet direction flag
903  */
904 /* ARGSUSED */
905 static int
906 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
907 {
908 	struct bpf_d *d = fp->f_bpf;
909 	int error = 0;
910 
911 	/*
912 	 * Refresh the PID associated with this bpf file.
913 	 */
914 	d->bd_pid = curproc->p_pid;
915 #ifdef _LP64
916 	if (curproc->p_flag & PK_32)
917 		d->bd_compat32 = 1;
918 	else
919 		d->bd_compat32 = 0;
920 #endif
921 
922 	mutex_enter(d->bd_mtx);
923 	if (d->bd_state == BPF_WAITING)
924 		callout_halt(&d->bd_callout, d->bd_mtx);
925 	d->bd_state = BPF_IDLE;
926 	mutex_exit(d->bd_mtx);
927 
928 	switch (cmd) {
929 
930 	default:
931 		error = EINVAL;
932 		break;
933 
934 	/*
935 	 * Check for read packet available.
936 	 */
937 	case FIONREAD:
938 		{
939 			int n;
940 
941 			mutex_enter(d->bd_buf_mtx);
942 			n = d->bd_slen;
943 			if (d->bd_hbuf)
944 				n += d->bd_hlen;
945 			mutex_exit(d->bd_buf_mtx);
946 
947 			*(int *)addr = n;
948 			break;
949 		}
950 
951 	/*
952 	 * Get buffer len [for read()].
953 	 */
954 	case BIOCGBLEN:
955 		*(u_int *)addr = d->bd_bufsize;
956 		break;
957 
958 	/*
959 	 * Set buffer length.
960 	 */
961 	case BIOCSBLEN:
962 		/*
963 		 * Forbid to change the buffer length if buffers are already
964 		 * allocated.
965 		 */
966 		mutex_enter(d->bd_mtx);
967 		mutex_enter(d->bd_buf_mtx);
968 		if (d->bd_bif != NULL || d->bd_sbuf != NULL)
969 			error = EINVAL;
970 		else {
971 			u_int size = *(u_int *)addr;
972 
973 			if (size > bpf_maxbufsize)
974 				*(u_int *)addr = size = bpf_maxbufsize;
975 			else if (size < BPF_MINBUFSIZE)
976 				*(u_int *)addr = size = BPF_MINBUFSIZE;
977 			d->bd_bufsize = size;
978 		}
979 		mutex_exit(d->bd_buf_mtx);
980 		mutex_exit(d->bd_mtx);
981 		break;
982 
983 	/*
984 	 * Set link layer read filter.
985 	 */
986 	case BIOCSETF:
987 		error = bpf_setf(d, addr);
988 		break;
989 
990 	/*
991 	 * Flush read packet buffer.
992 	 */
993 	case BIOCFLUSH:
994 		mutex_enter(d->bd_mtx);
995 		reset_d(d);
996 		mutex_exit(d->bd_mtx);
997 		break;
998 
999 	/*
1000 	 * Put interface into promiscuous mode.
1001 	 */
1002 	case BIOCPROMISC:
1003 		mutex_enter(d->bd_mtx);
1004 		if (d->bd_bif == NULL) {
1005 			mutex_exit(d->bd_mtx);
1006 			/*
1007 			 * No interface attached yet.
1008 			 */
1009 			error = EINVAL;
1010 			break;
1011 		}
1012 		if (d->bd_promisc == 0) {
1013 			KERNEL_LOCK_UNLESS_NET_MPSAFE();
1014 			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1015 			KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
1016 			if (error == 0)
1017 				d->bd_promisc = 1;
1018 		}
1019 		mutex_exit(d->bd_mtx);
1020 		break;
1021 
1022 	/*
1023 	 * Get device parameters.
1024 	 */
1025 	case BIOCGDLT:
1026 		mutex_enter(d->bd_mtx);
1027 		if (d->bd_bif == NULL)
1028 			error = EINVAL;
1029 		else
1030 			*(u_int *)addr = d->bd_bif->bif_dlt;
1031 		mutex_exit(d->bd_mtx);
1032 		break;
1033 
1034 	/*
1035 	 * Get a list of supported device parameters.
1036 	 */
1037 	case BIOCGDLTLIST:
1038 		mutex_enter(d->bd_mtx);
1039 		if (d->bd_bif == NULL)
1040 			error = EINVAL;
1041 		else
1042 			error = bpf_getdltlist(d, addr);
1043 		mutex_exit(d->bd_mtx);
1044 		break;
1045 
1046 	/*
1047 	 * Set device parameters.
1048 	 */
1049 	case BIOCSDLT:
1050 		mutex_enter(&bpf_mtx);
1051 		mutex_enter(d->bd_mtx);
1052 		if (d->bd_bif == NULL)
1053 			error = EINVAL;
1054 		else
1055 			error = bpf_setdlt(d, *(u_int *)addr);
1056 		mutex_exit(d->bd_mtx);
1057 		mutex_exit(&bpf_mtx);
1058 		break;
1059 
1060 	/*
1061 	 * Set interface name.
1062 	 */
1063 #ifdef OBIOCGETIF
1064 	case OBIOCGETIF:
1065 #endif
1066 	case BIOCGETIF:
1067 		mutex_enter(d->bd_mtx);
1068 		if (d->bd_bif == NULL)
1069 			error = EINVAL;
1070 		else
1071 			bpf_ifname(d->bd_bif->bif_ifp, addr);
1072 		mutex_exit(d->bd_mtx);
1073 		break;
1074 
1075 	/*
1076 	 * Set interface.
1077 	 */
1078 #ifdef OBIOCSETIF
1079 	case OBIOCSETIF:
1080 #endif
1081 	case BIOCSETIF:
1082 		mutex_enter(&bpf_mtx);
1083 		error = bpf_setif(d, addr);
1084 		mutex_exit(&bpf_mtx);
1085 		break;
1086 
1087 	/*
1088 	 * Set read timeout.
1089 	 */
1090 	case BIOCSRTIMEOUT:
1091 		{
1092 			struct timeval *tv = addr;
1093 
1094 			/* Compute number of ticks. */
1095 			d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1096 			if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1097 				d->bd_rtout = 1;
1098 			break;
1099 		}
1100 
1101 #ifdef BIOCGORTIMEOUT
1102 	/*
1103 	 * Get read timeout.
1104 	 */
1105 	case BIOCGORTIMEOUT:
1106 		{
1107 			struct timeval50 *tv = addr;
1108 
1109 			tv->tv_sec = d->bd_rtout / hz;
1110 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1111 			break;
1112 		}
1113 #endif
1114 
1115 #ifdef BIOCSORTIMEOUT
1116 	/*
1117 	 * Set read timeout.
1118 	 */
1119 	case BIOCSORTIMEOUT:
1120 		{
1121 			struct timeval50 *tv = addr;
1122 
1123 			/* Compute number of ticks. */
1124 			d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1125 			if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1126 				d->bd_rtout = 1;
1127 			break;
1128 		}
1129 #endif
1130 
1131 	/*
1132 	 * Get read timeout.
1133 	 */
1134 	case BIOCGRTIMEOUT:
1135 		{
1136 			struct timeval *tv = addr;
1137 
1138 			tv->tv_sec = d->bd_rtout / hz;
1139 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1140 			break;
1141 		}
1142 	/*
1143 	 * Get packet stats.
1144 	 */
1145 	case BIOCGSTATS:
1146 		{
1147 			struct bpf_stat *bs = addr;
1148 
1149 			bs->bs_recv = d->bd_rcount;
1150 			bs->bs_drop = d->bd_dcount;
1151 			bs->bs_capt = d->bd_ccount;
1152 			break;
1153 		}
1154 
1155 	case BIOCGSTATSOLD:
1156 		{
1157 			struct bpf_stat_old *bs = addr;
1158 
1159 			bs->bs_recv = d->bd_rcount;
1160 			bs->bs_drop = d->bd_dcount;
1161 			break;
1162 		}
1163 
1164 	/*
1165 	 * Set immediate mode.
1166 	 */
1167 	case BIOCIMMEDIATE:
1168 		d->bd_immediate = *(u_int *)addr;
1169 		break;
1170 
1171 	case BIOCVERSION:
1172 		{
1173 			struct bpf_version *bv = addr;
1174 
1175 			bv->bv_major = BPF_MAJOR_VERSION;
1176 			bv->bv_minor = BPF_MINOR_VERSION;
1177 			break;
1178 		}
1179 
1180 	case BIOCGHDRCMPLT:	/* get "header already complete" flag */
1181 		*(u_int *)addr = d->bd_hdrcmplt;
1182 		break;
1183 
1184 	case BIOCSHDRCMPLT:	/* set "header already complete" flag */
1185 		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1186 		break;
1187 
1188 	/*
1189 	 * Get packet direction flag
1190 	 */
1191 	case BIOCGDIRECTION:
1192 		*(u_int *)addr = d->bd_direction;
1193 		break;
1194 
1195 	/*
1196 	 * Set packet direction flag
1197 	 */
1198 	case BIOCSDIRECTION:
1199 		{
1200 			u_int	direction;
1201 
1202 			direction = *(u_int *)addr;
1203 			switch (direction) {
1204 			case BPF_D_IN:
1205 			case BPF_D_INOUT:
1206 			case BPF_D_OUT:
1207 				d->bd_direction = direction;
1208 				break;
1209 			default:
1210 				error = EINVAL;
1211 			}
1212 		}
1213 		break;
1214 
1215 	/*
1216 	 * Set "feed packets from bpf back to input" mode
1217 	 */
1218 	case BIOCSFEEDBACK:
1219 		d->bd_feedback = *(u_int *)addr;
1220 		break;
1221 
1222 	/*
1223 	 * Get "feed packets from bpf back to input" mode
1224 	 */
1225 	case BIOCGFEEDBACK:
1226 		*(u_int *)addr = d->bd_feedback;
1227 		break;
1228 
1229 	case FIONBIO:		/* Non-blocking I/O */
1230 		/*
1231 		 * No need to do anything special as we use IO_NDELAY in
1232 		 * bpfread() as an indication of whether or not to block
1233 		 * the read.
1234 		 */
1235 		break;
1236 
1237 	case FIOASYNC:		/* Send signal on receive packets */
1238 		mutex_enter(d->bd_mtx);
1239 		d->bd_async = *(int *)addr;
1240 		mutex_exit(d->bd_mtx);
1241 		break;
1242 
1243 	case TIOCSPGRP:		/* Process or group to send signals to */
1244 	case FIOSETOWN:
1245 		error = fsetown(&d->bd_pgid, cmd, addr);
1246 		break;
1247 
1248 	case TIOCGPGRP:
1249 	case FIOGETOWN:
1250 		error = fgetown(d->bd_pgid, cmd, addr);
1251 		break;
1252 	}
1253 	return (error);
1254 }
1255 
1256 /*
1257  * Set d's packet filter program to fp.  If this file already has a filter,
1258  * free it and replace it.  Returns EINVAL for bogus requests.
1259  */
1260 static int
1261 bpf_setf(struct bpf_d *d, struct bpf_program *fp)
1262 {
1263 	struct bpf_insn *fcode;
1264 	bpfjit_func_t jcode;
1265 	size_t flen, size = 0;
1266 	struct bpf_filter *oldf, *newf;
1267 
1268 	jcode = NULL;
1269 	flen = fp->bf_len;
1270 
1271 	if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1272 		return EINVAL;
1273 	}
1274 
1275 	if (flen) {
1276 		/*
1277 		 * Allocate the buffer, copy the byte-code from
1278 		 * userspace and validate it.
1279 		 */
1280 		size = flen * sizeof(*fp->bf_insns);
1281 		fcode = kmem_alloc(size, KM_SLEEP);
1282 		if (copyin(fp->bf_insns, fcode, size) != 0 ||
1283 		    !bpf_validate(fcode, (int)flen)) {
1284 			kmem_free(fcode, size);
1285 			return EINVAL;
1286 		}
1287 		membar_consumer();
1288 		if (bpf_jit)
1289 			jcode = bpf_jit_generate(NULL, fcode, flen);
1290 	} else {
1291 		fcode = NULL;
1292 	}
1293 
1294 	newf = kmem_alloc(sizeof(*newf), KM_SLEEP);
1295 	newf->bf_insn = fcode;
1296 	newf->bf_size = size;
1297 	newf->bf_jitcode = jcode;
1298 	d->bd_jitcode = jcode; /* XXX just for kvm(3) users */
1299 
1300 	/* Need to hold bpf_mtx for pserialize_perform */
1301 	mutex_enter(&bpf_mtx);
1302 	mutex_enter(d->bd_mtx);
1303 	oldf = d->bd_filter;
1304 	d->bd_filter = newf;
1305 	membar_producer();
1306 	reset_d(d);
1307 	pserialize_perform(bpf_psz);
1308 	mutex_exit(d->bd_mtx);
1309 	mutex_exit(&bpf_mtx);
1310 
1311 	if (oldf != NULL)
1312 		bpf_free_filter(oldf);
1313 
1314 	return 0;
1315 }
1316 
1317 /*
1318  * Detach a file from its current interface (if attached at all) and attach
1319  * to the interface indicated by the name stored in ifr.
1320  * Return an errno or 0.
1321  */
1322 static int
1323 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1324 {
1325 	struct bpf_if *bp;
1326 	char *cp;
1327 	int unit_seen, i, error;
1328 
1329 	KASSERT(mutex_owned(&bpf_mtx));
1330 	/*
1331 	 * Make sure the provided name has a unit number, and default
1332 	 * it to '0' if not specified.
1333 	 * XXX This is ugly ... do this differently?
1334 	 */
1335 	unit_seen = 0;
1336 	cp = ifr->ifr_name;
1337 	cp[sizeof(ifr->ifr_name) - 1] = '\0';	/* sanity */
1338 	while (*cp++)
1339 		if (*cp >= '0' && *cp <= '9')
1340 			unit_seen = 1;
1341 	if (!unit_seen) {
1342 		/* Make sure to leave room for the '\0'. */
1343 		for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1344 			if ((ifr->ifr_name[i] >= 'a' &&
1345 			     ifr->ifr_name[i] <= 'z') ||
1346 			    (ifr->ifr_name[i] >= 'A' &&
1347 			     ifr->ifr_name[i] <= 'Z'))
1348 				continue;
1349 			ifr->ifr_name[i] = '0';
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * Look through attached interfaces for the named one.
1355 	 */
1356 	BPF_IFLIST_WRITER_FOREACH(bp) {
1357 		struct ifnet *ifp = bp->bif_ifp;
1358 
1359 		if (ifp == NULL ||
1360 		    strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1361 			continue;
1362 		/* skip additional entry */
1363 		if (bp->bif_driverp != &ifp->if_bpf)
1364 			continue;
1365 		/*
1366 		 * We found the requested interface.
1367 		 * Allocate the packet buffers if we need to.
1368 		 * If we're already attached to requested interface,
1369 		 * just flush the buffer.
1370 		 */
1371 		/*
1372 		 * bpf_allocbufs is called only here. bpf_mtx ensures that
1373 		 * no race condition happen on d->bd_sbuf.
1374 		 */
1375 		if (d->bd_sbuf == NULL) {
1376 			error = bpf_allocbufs(d);
1377 			if (error != 0)
1378 				return (error);
1379 		}
1380 		mutex_enter(d->bd_mtx);
1381 		if (bp != d->bd_bif) {
1382 			if (d->bd_bif) {
1383 				/*
1384 				 * Detach if attached to something else.
1385 				 */
1386 				bpf_detachd(d);
1387 				BPFIF_DLIST_ENTRY_INIT(d);
1388 			}
1389 
1390 			bpf_attachd(d, bp);
1391 		}
1392 		reset_d(d);
1393 		mutex_exit(d->bd_mtx);
1394 		return (0);
1395 	}
1396 	/* Not found. */
1397 	return (ENXIO);
1398 }
1399 
1400 /*
1401  * Copy the interface name to the ifreq.
1402  */
1403 static void
1404 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1405 {
1406 	memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1407 }
1408 
1409 static int
1410 bpf_stat(struct file *fp, struct stat *st)
1411 {
1412 	struct bpf_d *d = fp->f_bpf;
1413 
1414 	(void)memset(st, 0, sizeof(*st));
1415 	mutex_enter(d->bd_mtx);
1416 	st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1417 	st->st_atimespec = d->bd_atime;
1418 	st->st_mtimespec = d->bd_mtime;
1419 	st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1420 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
1421 	st->st_gid = kauth_cred_getegid(fp->f_cred);
1422 	st->st_mode = S_IFCHR;
1423 	mutex_exit(d->bd_mtx);
1424 	return 0;
1425 }
1426 
1427 /*
1428  * Support for poll() system call
1429  *
1430  * Return true iff the specific operation will not block indefinitely - with
1431  * the assumption that it is safe to positively acknowledge a request for the
1432  * ability to write to the BPF device.
1433  * Otherwise, return false but make a note that a selnotify() must be done.
1434  */
1435 static int
1436 bpf_poll(struct file *fp, int events)
1437 {
1438 	struct bpf_d *d = fp->f_bpf;
1439 	int revents;
1440 
1441 	/*
1442 	 * Refresh the PID associated with this bpf file.
1443 	 */
1444 	mutex_enter(&bpf_mtx);
1445 	d->bd_pid = curproc->p_pid;
1446 
1447 	revents = events & (POLLOUT | POLLWRNORM);
1448 	if (events & (POLLIN | POLLRDNORM)) {
1449 		/*
1450 		 * An imitation of the FIONREAD ioctl code.
1451 		 */
1452 		mutex_enter(d->bd_mtx);
1453 		if (d->bd_hlen != 0 ||
1454 		    ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1455 		     d->bd_slen != 0)) {
1456 			revents |= events & (POLLIN | POLLRDNORM);
1457 		} else {
1458 			selrecord(curlwp, &d->bd_sel);
1459 			/* Start the read timeout if necessary */
1460 			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1461 				callout_reset(&d->bd_callout, d->bd_rtout,
1462 					      bpf_timed_out, d);
1463 				d->bd_state = BPF_WAITING;
1464 			}
1465 		}
1466 		mutex_exit(d->bd_mtx);
1467 	}
1468 
1469 	mutex_exit(&bpf_mtx);
1470 	return (revents);
1471 }
1472 
1473 static void
1474 filt_bpfrdetach(struct knote *kn)
1475 {
1476 	struct bpf_d *d = kn->kn_hook;
1477 
1478 	mutex_enter(d->bd_buf_mtx);
1479 	SLIST_REMOVE(&d->bd_sel.sel_klist, kn, knote, kn_selnext);
1480 	mutex_exit(d->bd_buf_mtx);
1481 }
1482 
1483 static int
1484 filt_bpfread(struct knote *kn, long hint)
1485 {
1486 	struct bpf_d *d = kn->kn_hook;
1487 	int rv;
1488 
1489 	mutex_enter(d->bd_buf_mtx);
1490 	kn->kn_data = d->bd_hlen;
1491 	if (d->bd_immediate)
1492 		kn->kn_data += d->bd_slen;
1493 	rv = (kn->kn_data > 0);
1494 	mutex_exit(d->bd_buf_mtx);
1495 	return rv;
1496 }
1497 
1498 static const struct filterops bpfread_filtops = {
1499 	.f_isfd = 1,
1500 	.f_attach = NULL,
1501 	.f_detach = filt_bpfrdetach,
1502 	.f_event = filt_bpfread,
1503 };
1504 
1505 static int
1506 bpf_kqfilter(struct file *fp, struct knote *kn)
1507 {
1508 	struct bpf_d *d = fp->f_bpf;
1509 	struct klist *klist;
1510 
1511 	mutex_enter(d->bd_buf_mtx);
1512 	switch (kn->kn_filter) {
1513 	case EVFILT_READ:
1514 		klist = &d->bd_sel.sel_klist;
1515 		kn->kn_fop = &bpfread_filtops;
1516 		break;
1517 
1518 	default:
1519 		mutex_exit(d->bd_buf_mtx);
1520 		return (EINVAL);
1521 	}
1522 
1523 	kn->kn_hook = d;
1524 
1525 	SLIST_INSERT_HEAD(klist, kn, kn_selnext);
1526 	mutex_exit(d->bd_buf_mtx);
1527 
1528 	return (0);
1529 }
1530 
1531 /*
1532  * Copy data from an mbuf chain into a buffer.  This code is derived
1533  * from m_copydata in sys/uipc_mbuf.c.
1534  */
1535 static void *
1536 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1537 {
1538 	const struct mbuf *m;
1539 	u_int count;
1540 	u_char *dst;
1541 
1542 	m = src_arg;
1543 	dst = dst_arg;
1544 	while (len > 0) {
1545 		if (m == NULL)
1546 			panic("bpf_mcpy");
1547 		count = uimin(m->m_len, len);
1548 		memcpy(dst, mtod(m, const void *), count);
1549 		m = m->m_next;
1550 		dst += count;
1551 		len -= count;
1552 	}
1553 	return dst_arg;
1554 }
1555 
1556 /*
1557  * Dispatch a packet to all the listeners on interface bp.
1558  *
1559  * pkt       pointer to the packet, either a data buffer or an mbuf chain
1560  * buflen    buffer length, if pkt is a data buffer
1561  * cpfn      a function that can copy pkt into the listener's buffer
1562  * pktlen    length of the packet
1563  * direction BPF_D_IN or BPF_D_OUT
1564  */
1565 static inline void
1566 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1567     void *pkt, u_int pktlen, u_int buflen, const u_int direction)
1568 {
1569 	uint32_t mem[BPF_MEMWORDS];
1570 	bpf_args_t args = {
1571 		.pkt = (const uint8_t *)pkt,
1572 		.wirelen = pktlen,
1573 		.buflen = buflen,
1574 		.mem = mem,
1575 		.arg = NULL
1576 	};
1577 	bool gottime = false;
1578 	struct timespec ts;
1579 	struct bpf_d *d;
1580 	int s;
1581 
1582 	KASSERT(!cpu_intr_p());
1583 
1584 	/*
1585 	 * Note that the IPL does not have to be raised at this point.
1586 	 * The only problem that could arise here is that if two different
1587 	 * interfaces shared any data.  This is not the case.
1588 	 */
1589 	s = pserialize_read_enter();
1590 	BPFIF_DLIST_READER_FOREACH(d, bp) {
1591 		u_int slen = 0;
1592 		struct bpf_filter *filter;
1593 
1594 		if (direction == BPF_D_IN) {
1595 			if (d->bd_direction == BPF_D_OUT)
1596 				continue;
1597 		} else { /* BPF_D_OUT */
1598 			if (d->bd_direction == BPF_D_IN)
1599 				continue;
1600 		}
1601 
1602 		atomic_inc_ulong(&d->bd_rcount);
1603 		BPF_STATINC(recv);
1604 
1605 		filter = d->bd_filter;
1606 		membar_datadep_consumer();
1607 		if (filter != NULL) {
1608 			if (filter->bf_jitcode != NULL)
1609 				slen = filter->bf_jitcode(NULL, &args);
1610 			else
1611 				slen = bpf_filter_ext(NULL, filter->bf_insn,
1612 				    &args);
1613 		}
1614 
1615 		if (!slen) {
1616 			continue;
1617 		}
1618 		if (!gottime) {
1619 			gottime = true;
1620 			nanotime(&ts);
1621 		}
1622 		/* Assume catchpacket doesn't sleep */
1623 		catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1624 	}
1625 	pserialize_read_exit(s);
1626 }
1627 
1628 /*
1629  * Incoming linkage from device drivers, when the head of the packet is in
1630  * a buffer, and the tail is in an mbuf chain.
1631  */
1632 static void
1633 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m,
1634 	u_int direction)
1635 {
1636 	u_int pktlen;
1637 	struct mbuf mb;
1638 
1639 	/* Skip outgoing duplicate packets. */
1640 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1641 		m->m_flags &= ~M_PROMISC;
1642 		return;
1643 	}
1644 
1645 	pktlen = m_length(m) + dlen;
1646 
1647 	/*
1648 	 * Craft on-stack mbuf suitable for passing to bpf_filter.
1649 	 * Note that we cut corners here; we only setup what's
1650 	 * absolutely needed--this mbuf should never go anywhere else.
1651 	 */
1652 	(void)memset(&mb, 0, sizeof(mb));
1653 	mb.m_type = MT_DATA;
1654 	mb.m_next = m;
1655 	mb.m_data = data;
1656 	mb.m_len = dlen;
1657 
1658 	bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, direction);
1659 }
1660 
1661 /*
1662  * Incoming linkage from device drivers, when packet is in an mbuf chain.
1663  */
1664 static void
1665 _bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
1666 {
1667 	void *(*cpfn)(void *, const void *, size_t);
1668 	u_int pktlen, buflen;
1669 	void *marg;
1670 
1671 	/* Skip outgoing duplicate packets. */
1672 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1673 		m->m_flags &= ~M_PROMISC;
1674 		return;
1675 	}
1676 
1677 	pktlen = m_length(m);
1678 
1679 	if (pktlen == m->m_len) {
1680 		cpfn = (void *)memcpy;
1681 		marg = mtod(m, void *);
1682 		buflen = pktlen;
1683 	} else {
1684 		cpfn = bpf_mcpy;
1685 		marg = m;
1686 		buflen = 0;
1687 	}
1688 
1689 	bpf_deliver(bp, cpfn, marg, pktlen, buflen, direction);
1690 }
1691 
1692 /*
1693  * We need to prepend the address family as
1694  * a four byte field.  Cons up a dummy header
1695  * to pacify bpf.  This is safe because bpf
1696  * will only read from the mbuf (i.e., it won't
1697  * try to free it or keep a pointer a to it).
1698  */
1699 static void
1700 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m, u_int direction)
1701 {
1702 	struct mbuf m0;
1703 
1704 	m0.m_type = MT_DATA;
1705 	m0.m_flags = 0;
1706 	m0.m_next = m;
1707 	m0.m_nextpkt = NULL;
1708 	m0.m_owner = NULL;
1709 	m0.m_len = 4;
1710 	m0.m_data = (char *)&af;
1711 
1712 	_bpf_mtap(bp, &m0, direction);
1713 }
1714 
1715 /*
1716  * Put the SLIP pseudo-"link header" in place.
1717  * Note this M_PREPEND() should never fail,
1718  * swince we know we always have enough space
1719  * in the input buffer.
1720  */
1721 static void
1722 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1723 {
1724 	u_char *hp;
1725 
1726 	M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1727 	if (*m == NULL)
1728 		return;
1729 
1730 	hp = mtod(*m, u_char *);
1731 	hp[SLX_DIR] = SLIPDIR_IN;
1732 	(void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1733 
1734 	_bpf_mtap(bp, *m, BPF_D_IN);
1735 
1736 	m_adj(*m, SLIP_HDRLEN);
1737 }
1738 
1739 /*
1740  * Put the SLIP pseudo-"link header" in
1741  * place.  The compressed header is now
1742  * at the beginning of the mbuf.
1743  */
1744 static void
1745 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1746 {
1747 	struct mbuf m0;
1748 	u_char *hp;
1749 
1750 	m0.m_type = MT_DATA;
1751 	m0.m_flags = 0;
1752 	m0.m_next = m;
1753 	m0.m_nextpkt = NULL;
1754 	m0.m_owner = NULL;
1755 	m0.m_data = m0.m_dat;
1756 	m0.m_len = SLIP_HDRLEN;
1757 
1758 	hp = mtod(&m0, u_char *);
1759 
1760 	hp[SLX_DIR] = SLIPDIR_OUT;
1761 	(void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1762 
1763 	_bpf_mtap(bp, &m0, BPF_D_OUT);
1764 	m_freem(m);
1765 }
1766 
1767 static struct mbuf *
1768 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1769 {
1770 	struct mbuf *dup;
1771 
1772 	dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1773 	if (dup == NULL)
1774 		return NULL;
1775 
1776 	if (bp->bif_mbuf_tail != NULL) {
1777 		bp->bif_mbuf_tail->m_nextpkt = dup;
1778 	} else {
1779 		bp->bif_mbuf_head = dup;
1780 	}
1781 	bp->bif_mbuf_tail = dup;
1782 #ifdef BPF_MTAP_SOFTINT_DEBUG
1783 	log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1784 	    __func__, dup, bp->bif_ifp->if_xname);
1785 #endif
1786 
1787 	return dup;
1788 }
1789 
1790 static struct mbuf *
1791 bpf_mbuf_dequeue(struct bpf_if *bp)
1792 {
1793 	struct mbuf *m;
1794 	int s;
1795 
1796 	/* XXX NOMPSAFE: assumed running on one CPU */
1797 	s = splnet();
1798 	m = bp->bif_mbuf_head;
1799 	if (m != NULL) {
1800 		bp->bif_mbuf_head = m->m_nextpkt;
1801 		m->m_nextpkt = NULL;
1802 
1803 		if (bp->bif_mbuf_head == NULL)
1804 			bp->bif_mbuf_tail = NULL;
1805 #ifdef BPF_MTAP_SOFTINT_DEBUG
1806 		log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1807 		    __func__, m, bp->bif_ifp->if_xname);
1808 #endif
1809 	}
1810 	splx(s);
1811 
1812 	return m;
1813 }
1814 
1815 static void
1816 bpf_mtap_si(void *arg)
1817 {
1818 	struct bpf_if *bp = arg;
1819 	struct mbuf *m;
1820 
1821 	while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1822 #ifdef BPF_MTAP_SOFTINT_DEBUG
1823 		log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1824 		    __func__, m, bp->bif_ifp->if_xname);
1825 #endif
1826 		bpf_ops->bpf_mtap(bp, m, BPF_D_IN);
1827 		m_freem(m);
1828 	}
1829 }
1830 
1831 static void
1832 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1833 {
1834 	struct bpf_if *bp = ifp->if_bpf;
1835 	struct mbuf *dup;
1836 
1837 	KASSERT(cpu_intr_p());
1838 
1839 	/* To avoid extra invocations of the softint */
1840 	if (BPFIF_DLIST_READER_EMPTY(bp))
1841 		return;
1842 	KASSERT(bp->bif_si != NULL);
1843 
1844 	dup = bpf_mbuf_enqueue(bp, m);
1845 	if (dup != NULL)
1846 		softint_schedule(bp->bif_si);
1847 }
1848 
1849 static int
1850 bpf_hdrlen(struct bpf_d *d)
1851 {
1852 	int hdrlen = d->bd_bif->bif_hdrlen;
1853 	/*
1854 	 * Compute the length of the bpf header.  This is not necessarily
1855 	 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1856 	 * that the network layer header begins on a longword boundary (for
1857 	 * performance reasons and to alleviate alignment restrictions).
1858 	 */
1859 #ifdef _LP64
1860 	if (d->bd_compat32)
1861 		return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1862 	else
1863 #endif
1864 		return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1865 }
1866 
1867 /*
1868  * Move the packet data from interface memory (pkt) into the
1869  * store buffer. Call the wakeup functions if it's time to wakeup
1870  * a listener (buffer full), "cpfn" is the routine called to do the
1871  * actual data transfer. memcpy is passed in to copy contiguous chunks,
1872  * while bpf_mcpy is passed in to copy mbuf chains.  In the latter case,
1873  * pkt is really an mbuf.
1874  */
1875 static void
1876 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1877     void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
1878 {
1879 	char *h;
1880 	int totlen, curlen, caplen;
1881 	int hdrlen = bpf_hdrlen(d);
1882 	int do_wakeup = 0;
1883 
1884 	atomic_inc_ulong(&d->bd_ccount);
1885 	BPF_STATINC(capt);
1886 	/*
1887 	 * Figure out how many bytes to move.  If the packet is
1888 	 * greater or equal to the snapshot length, transfer that
1889 	 * much.  Otherwise, transfer the whole packet (unless
1890 	 * we hit the buffer size limit).
1891 	 */
1892 	totlen = hdrlen + uimin(snaplen, pktlen);
1893 	if (totlen > d->bd_bufsize)
1894 		totlen = d->bd_bufsize;
1895 	/*
1896 	 * If we adjusted totlen to fit the bufsize, it could be that
1897 	 * totlen is smaller than hdrlen because of the link layer header.
1898 	 */
1899 	caplen = totlen - hdrlen;
1900 	if (caplen < 0)
1901 		caplen = 0;
1902 
1903 	mutex_enter(d->bd_buf_mtx);
1904 	/*
1905 	 * Round up the end of the previous packet to the next longword.
1906 	 */
1907 #ifdef _LP64
1908 	if (d->bd_compat32)
1909 		curlen = BPF_WORDALIGN32(d->bd_slen);
1910 	else
1911 #endif
1912 		curlen = BPF_WORDALIGN(d->bd_slen);
1913 	if (curlen + totlen > d->bd_bufsize) {
1914 		/*
1915 		 * This packet will overflow the storage buffer.
1916 		 * Rotate the buffers if we can, then wakeup any
1917 		 * pending reads.
1918 		 */
1919 		if (d->bd_fbuf == NULL) {
1920 			mutex_exit(d->bd_buf_mtx);
1921 			/*
1922 			 * We haven't completed the previous read yet,
1923 			 * so drop the packet.
1924 			 */
1925 			atomic_inc_ulong(&d->bd_dcount);
1926 			BPF_STATINC(drop);
1927 			return;
1928 		}
1929 		ROTATE_BUFFERS(d);
1930 		do_wakeup = 1;
1931 		curlen = 0;
1932 	} else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
1933 		/*
1934 		 * Immediate mode is set, or the read timeout has
1935 		 * already expired during a select call.  A packet
1936 		 * arrived, so the reader should be woken up.
1937 		 */
1938 		do_wakeup = 1;
1939 	}
1940 
1941 	/*
1942 	 * Append the bpf header.
1943 	 */
1944 	h = (char *)d->bd_sbuf + curlen;
1945 #ifdef _LP64
1946 	if (d->bd_compat32) {
1947 		struct bpf_hdr32 *hp32;
1948 
1949 		hp32 = (struct bpf_hdr32 *)h;
1950 		hp32->bh_tstamp.tv_sec = ts->tv_sec;
1951 		hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1952 		hp32->bh_datalen = pktlen;
1953 		hp32->bh_hdrlen = hdrlen;
1954 		hp32->bh_caplen = caplen;
1955 	} else
1956 #endif
1957 	{
1958 		struct bpf_hdr *hp;
1959 
1960 		hp = (struct bpf_hdr *)h;
1961 		hp->bh_tstamp.tv_sec = ts->tv_sec;
1962 		hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
1963 		hp->bh_datalen = pktlen;
1964 		hp->bh_hdrlen = hdrlen;
1965 		hp->bh_caplen = caplen;
1966 	}
1967 
1968 	/*
1969 	 * Copy the packet data into the store buffer and update its length.
1970 	 */
1971 	(*cpfn)(h + hdrlen, pkt, caplen);
1972 	d->bd_slen = curlen + totlen;
1973 	mutex_exit(d->bd_buf_mtx);
1974 
1975 	/*
1976 	 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
1977 	 * will cause filt_bpfread() to be called with it adjusted.
1978 	 */
1979 	if (do_wakeup)
1980 		bpf_wakeup(d);
1981 }
1982 
1983 /*
1984  * Initialize all nonzero fields of a descriptor.
1985  */
1986 static int
1987 bpf_allocbufs(struct bpf_d *d)
1988 {
1989 
1990 	d->bd_fbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1991 	if (!d->bd_fbuf)
1992 		return (ENOBUFS);
1993 	d->bd_sbuf = kmem_alloc(d->bd_bufsize, KM_NOSLEEP);
1994 	if (!d->bd_sbuf) {
1995 		kmem_free(d->bd_fbuf, d->bd_bufsize);
1996 		return (ENOBUFS);
1997 	}
1998 	d->bd_slen = 0;
1999 	d->bd_hlen = 0;
2000 	return (0);
2001 }
2002 
2003 static void
2004 bpf_free_filter(struct bpf_filter *filter)
2005 {
2006 
2007 	KASSERT(filter != NULL);
2008 	KASSERT(filter->bf_insn != NULL);
2009 
2010 	kmem_free(filter->bf_insn, filter->bf_size);
2011 	if (filter->bf_jitcode != NULL)
2012 		bpf_jit_freecode(filter->bf_jitcode);
2013 	kmem_free(filter, sizeof(*filter));
2014 }
2015 
2016 /*
2017  * Free buffers currently in use by a descriptor.
2018  * Called on close.
2019  */
2020 static void
2021 bpf_freed(struct bpf_d *d)
2022 {
2023 	/*
2024 	 * We don't need to lock out interrupts since this descriptor has
2025 	 * been detached from its interface and it yet hasn't been marked
2026 	 * free.
2027 	 */
2028 	if (d->bd_sbuf != NULL) {
2029 		kmem_free(d->bd_sbuf, d->bd_bufsize);
2030 		if (d->bd_hbuf != NULL)
2031 			kmem_free(d->bd_hbuf, d->bd_bufsize);
2032 		if (d->bd_fbuf != NULL)
2033 			kmem_free(d->bd_fbuf, d->bd_bufsize);
2034 	}
2035 	if (d->bd_filter != NULL) {
2036 		bpf_free_filter(d->bd_filter);
2037 		d->bd_filter = NULL;
2038 	}
2039 	d->bd_jitcode = NULL;
2040 }
2041 
2042 /*
2043  * Attach an interface to bpf.  dlt is the link layer type;
2044  * hdrlen is the fixed size of the link header for the specified dlt
2045  * (variable length headers not yet supported).
2046  */
2047 static void
2048 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2049 {
2050 	struct bpf_if *bp;
2051 	bp = kmem_alloc(sizeof(*bp), KM_NOSLEEP);
2052 	if (bp == NULL)
2053 		panic("bpfattach");
2054 
2055 	mutex_enter(&bpf_mtx);
2056 	bp->bif_driverp = driverp;
2057 	bp->bif_ifp = ifp;
2058 	bp->bif_dlt = dlt;
2059 	bp->bif_si = NULL;
2060 	BPF_IFLIST_ENTRY_INIT(bp);
2061 	PSLIST_INIT(&bp->bif_dlist_head);
2062 	psref_target_init(&bp->bif_psref, bpf_psref_class);
2063 
2064 	BPF_IFLIST_WRITER_INSERT_HEAD(bp);
2065 
2066 	*bp->bif_driverp = NULL;
2067 
2068 	bp->bif_hdrlen = hdrlen;
2069 	mutex_exit(&bpf_mtx);
2070 #if 0
2071 	printf("bpf: %s attached\n", ifp->if_xname);
2072 #endif
2073 }
2074 
2075 static void
2076 _bpf_mtap_softint_init(struct ifnet *ifp)
2077 {
2078 	struct bpf_if *bp;
2079 
2080 	mutex_enter(&bpf_mtx);
2081 	BPF_IFLIST_WRITER_FOREACH(bp) {
2082 		if (bp->bif_ifp != ifp)
2083 			continue;
2084 
2085 		bp->bif_mbuf_head = NULL;
2086 		bp->bif_mbuf_tail = NULL;
2087 		bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
2088 		if (bp->bif_si == NULL)
2089 			panic("%s: softint_establish() failed", __func__);
2090 		break;
2091 	}
2092 	mutex_exit(&bpf_mtx);
2093 
2094 	if (bp == NULL)
2095 		panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
2096 }
2097 
2098 /*
2099  * Remove an interface from bpf.
2100  */
2101 static void
2102 _bpfdetach(struct ifnet *ifp)
2103 {
2104 	struct bpf_if *bp;
2105 	struct bpf_d *d;
2106 	int s;
2107 
2108 	mutex_enter(&bpf_mtx);
2109 	/* Nuke the vnodes for any open instances */
2110   again_d:
2111 	BPF_DLIST_WRITER_FOREACH(d) {
2112 		mutex_enter(d->bd_mtx);
2113 		if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2114 			/*
2115 			 * Detach the descriptor from an interface now.
2116 			 * It will be free'ed later by close routine.
2117 			 */
2118 			d->bd_promisc = 0;	/* we can't touch device. */
2119 			bpf_detachd(d);
2120 			mutex_exit(d->bd_mtx);
2121 			goto again_d;
2122 		}
2123 		mutex_exit(d->bd_mtx);
2124 	}
2125 
2126   again:
2127 	BPF_IFLIST_WRITER_FOREACH(bp) {
2128 		if (bp->bif_ifp == ifp) {
2129 			BPF_IFLIST_WRITER_REMOVE(bp);
2130 
2131 			pserialize_perform(bpf_psz);
2132 			psref_target_destroy(&bp->bif_psref, bpf_psref_class);
2133 
2134 			BPF_IFLIST_ENTRY_DESTROY(bp);
2135 			if (bp->bif_si != NULL) {
2136 				/* XXX NOMPSAFE: assumed running on one CPU */
2137 				s = splnet();
2138 				while (bp->bif_mbuf_head != NULL) {
2139 					struct mbuf *m = bp->bif_mbuf_head;
2140 					bp->bif_mbuf_head = m->m_nextpkt;
2141 					m_freem(m);
2142 				}
2143 				splx(s);
2144 				softint_disestablish(bp->bif_si);
2145 			}
2146 			kmem_free(bp, sizeof(*bp));
2147 			goto again;
2148 		}
2149 	}
2150 	mutex_exit(&bpf_mtx);
2151 }
2152 
2153 /*
2154  * Change the data link type of a interface.
2155  */
2156 static void
2157 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2158 {
2159 	struct bpf_if *bp;
2160 
2161 	mutex_enter(&bpf_mtx);
2162 	BPF_IFLIST_WRITER_FOREACH(bp) {
2163 		if (bp->bif_driverp == &ifp->if_bpf)
2164 			break;
2165 	}
2166 	if (bp == NULL)
2167 		panic("bpf_change_type");
2168 
2169 	bp->bif_dlt = dlt;
2170 
2171 	bp->bif_hdrlen = hdrlen;
2172 	mutex_exit(&bpf_mtx);
2173 }
2174 
2175 /*
2176  * Get a list of available data link type of the interface.
2177  */
2178 static int
2179 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2180 {
2181 	int n, error;
2182 	struct ifnet *ifp;
2183 	struct bpf_if *bp;
2184 	int s, bound;
2185 
2186 	KASSERT(mutex_owned(d->bd_mtx));
2187 
2188 	ifp = d->bd_bif->bif_ifp;
2189 	n = 0;
2190 	error = 0;
2191 
2192 	bound = curlwp_bind();
2193 	s = pserialize_read_enter();
2194 	BPF_IFLIST_READER_FOREACH(bp) {
2195 		if (bp->bif_ifp != ifp)
2196 			continue;
2197 		if (bfl->bfl_list != NULL) {
2198 			struct psref psref;
2199 
2200 			if (n >= bfl->bfl_len) {
2201 				pserialize_read_exit(s);
2202 				return ENOMEM;
2203 			}
2204 
2205 			bpf_if_acquire(bp, &psref);
2206 			pserialize_read_exit(s);
2207 
2208 			error = copyout(&bp->bif_dlt,
2209 			    bfl->bfl_list + n, sizeof(u_int));
2210 
2211 			s = pserialize_read_enter();
2212 			bpf_if_release(bp, &psref);
2213 		}
2214 		n++;
2215 	}
2216 	pserialize_read_exit(s);
2217 	curlwp_bindx(bound);
2218 
2219 	bfl->bfl_len = n;
2220 	return error;
2221 }
2222 
2223 /*
2224  * Set the data link type of a BPF instance.
2225  */
2226 static int
2227 bpf_setdlt(struct bpf_d *d, u_int dlt)
2228 {
2229 	int error, opromisc;
2230 	struct ifnet *ifp;
2231 	struct bpf_if *bp;
2232 
2233 	KASSERT(mutex_owned(&bpf_mtx));
2234 	KASSERT(mutex_owned(d->bd_mtx));
2235 
2236 	if (d->bd_bif->bif_dlt == dlt)
2237 		return 0;
2238 	ifp = d->bd_bif->bif_ifp;
2239 	BPF_IFLIST_WRITER_FOREACH(bp) {
2240 		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2241 			break;
2242 	}
2243 	if (bp == NULL)
2244 		return EINVAL;
2245 	opromisc = d->bd_promisc;
2246 	bpf_detachd(d);
2247 	BPFIF_DLIST_ENTRY_INIT(d);
2248 	bpf_attachd(d, bp);
2249 	reset_d(d);
2250 	if (opromisc) {
2251 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
2252 		error = ifpromisc(bp->bif_ifp, 1);
2253 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2254 		if (error)
2255 			printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2256 			    bp->bif_ifp->if_xname, error);
2257 		else
2258 			d->bd_promisc = 1;
2259 	}
2260 	return 0;
2261 }
2262 
2263 static int
2264 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2265 {
2266 	int newsize, error;
2267 	struct sysctlnode node;
2268 
2269 	node = *rnode;
2270 	node.sysctl_data = &newsize;
2271 	newsize = bpf_maxbufsize;
2272 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2273 	if (error || newp == NULL)
2274 		return (error);
2275 
2276 	if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2277 		return (EINVAL);
2278 
2279 	bpf_maxbufsize = newsize;
2280 
2281 	return (0);
2282 }
2283 
2284 #if defined(MODULAR) || defined(BPFJIT)
2285 static int
2286 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2287 {
2288 	bool newval;
2289 	int error;
2290 	struct sysctlnode node;
2291 
2292 	node = *rnode;
2293 	node.sysctl_data = &newval;
2294 	newval = bpf_jit;
2295 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2296 	if (error != 0 || newp == NULL)
2297 		return error;
2298 
2299 	bpf_jit = newval;
2300 
2301 	/*
2302 	 * Do a full sync to publish new bpf_jit value and
2303 	 * update bpfjit_module_ops.bj_generate_code variable.
2304 	 */
2305 	membar_sync();
2306 
2307 	if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2308 		printf("JIT compilation is postponed "
2309 		    "until after bpfjit module is loaded\n");
2310 	}
2311 
2312 	return 0;
2313 }
2314 #endif
2315 
2316 static int
2317 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2318 {
2319 	int    error, elem_count;
2320 	struct bpf_d	 *dp;
2321 	struct bpf_d_ext  dpe;
2322 	size_t len, needed, elem_size, out_size;
2323 	char   *sp;
2324 
2325 	if (namelen == 1 && name[0] == CTL_QUERY)
2326 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
2327 
2328 	if (namelen != 2)
2329 		return (EINVAL);
2330 
2331 	/* BPF peers is privileged information. */
2332 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2333 	    KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2334 	if (error)
2335 		return (EPERM);
2336 
2337 	len = (oldp != NULL) ? *oldlenp : 0;
2338 	sp = oldp;
2339 	elem_size = name[0];
2340 	elem_count = name[1];
2341 	out_size = MIN(sizeof(dpe), elem_size);
2342 	needed = 0;
2343 
2344 	if (elem_size < 1 || elem_count < 0)
2345 		return (EINVAL);
2346 
2347 	mutex_enter(&bpf_mtx);
2348 	BPF_DLIST_WRITER_FOREACH(dp) {
2349 		if (len >= elem_size && elem_count > 0) {
2350 #define BPF_EXT(field)	dpe.bde_ ## field = dp->bd_ ## field
2351 			BPF_EXT(bufsize);
2352 			BPF_EXT(promisc);
2353 			BPF_EXT(state);
2354 			BPF_EXT(immediate);
2355 			BPF_EXT(hdrcmplt);
2356 			BPF_EXT(direction);
2357 			BPF_EXT(pid);
2358 			BPF_EXT(rcount);
2359 			BPF_EXT(dcount);
2360 			BPF_EXT(ccount);
2361 #undef BPF_EXT
2362 			mutex_enter(dp->bd_mtx);
2363 			if (dp->bd_bif)
2364 				(void)strlcpy(dpe.bde_ifname,
2365 				    dp->bd_bif->bif_ifp->if_xname,
2366 				    IFNAMSIZ - 1);
2367 			else
2368 				dpe.bde_ifname[0] = '\0';
2369 			mutex_exit(dp->bd_mtx);
2370 
2371 			error = copyout(&dpe, sp, out_size);
2372 			if (error)
2373 				break;
2374 			sp += elem_size;
2375 			len -= elem_size;
2376 		}
2377 		needed += elem_size;
2378 		if (elem_count > 0 && elem_count != INT_MAX)
2379 			elem_count--;
2380 	}
2381 	mutex_exit(&bpf_mtx);
2382 
2383 	*oldlenp = needed;
2384 
2385 	return (error);
2386 }
2387 
2388 static void
2389 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2390 {
2391 	struct bpf_stat *const stats = p;
2392 	struct bpf_stat *sum = arg;
2393 
2394 	sum->bs_recv += stats->bs_recv;
2395 	sum->bs_drop += stats->bs_drop;
2396 	sum->bs_capt += stats->bs_capt;
2397 }
2398 
2399 static int
2400 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2401 {
2402 	struct sysctlnode node;
2403 	int error;
2404 	struct bpf_stat sum;
2405 
2406 	memset(&sum, 0, sizeof(sum));
2407 	node = *rnode;
2408 
2409 	percpu_foreach(bpf_gstats_percpu, bpf_stats, &sum);
2410 
2411 	node.sysctl_data = &sum;
2412 	node.sysctl_size = sizeof(sum);
2413 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2414 	if (error != 0 || newp == NULL)
2415 		return error;
2416 
2417 	return 0;
2418 }
2419 
2420 static struct sysctllog *bpf_sysctllog;
2421 static void
2422 sysctl_net_bpf_setup(void)
2423 {
2424 	const struct sysctlnode *node;
2425 
2426 	node = NULL;
2427 	sysctl_createv(&bpf_sysctllog, 0, NULL, &node,
2428 		       CTLFLAG_PERMANENT,
2429 		       CTLTYPE_NODE, "bpf",
2430 		       SYSCTL_DESCR("BPF options"),
2431 		       NULL, 0, NULL, 0,
2432 		       CTL_NET, CTL_CREATE, CTL_EOL);
2433 	if (node != NULL) {
2434 #if defined(MODULAR) || defined(BPFJIT)
2435 		sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2436 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2437 			CTLTYPE_BOOL, "jit",
2438 			SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2439 			sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2440 			CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2441 #endif
2442 		sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2443 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2444 			CTLTYPE_INT, "maxbufsize",
2445 			SYSCTL_DESCR("Maximum size for data capture buffer"),
2446 			sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2447 			CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2448 		sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2449 			CTLFLAG_PERMANENT,
2450 			CTLTYPE_STRUCT, "stats",
2451 			SYSCTL_DESCR("BPF stats"),
2452 			bpf_sysctl_gstats_handler, 0, NULL, 0,
2453 			CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2454 		sysctl_createv(&bpf_sysctllog, 0, NULL, NULL,
2455 			CTLFLAG_PERMANENT,
2456 			CTLTYPE_STRUCT, "peers",
2457 			SYSCTL_DESCR("BPF peers"),
2458 			sysctl_net_bpf_peers, 0, NULL, 0,
2459 			CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2460 	}
2461 
2462 }
2463 
2464 struct bpf_ops bpf_ops_kernel = {
2465 	.bpf_attach =		_bpfattach,
2466 	.bpf_detach =		_bpfdetach,
2467 	.bpf_change_type =	_bpf_change_type,
2468 
2469 	.bpf_mtap =		_bpf_mtap,
2470 	.bpf_mtap2 =		_bpf_mtap2,
2471 	.bpf_mtap_af =		_bpf_mtap_af,
2472 	.bpf_mtap_sl_in =	_bpf_mtap_sl_in,
2473 	.bpf_mtap_sl_out =	_bpf_mtap_sl_out,
2474 
2475 	.bpf_mtap_softint =		_bpf_mtap_softint,
2476 	.bpf_mtap_softint_init =	_bpf_mtap_softint_init,
2477 };
2478 
2479 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2480 
2481 static int
2482 bpf_modcmd(modcmd_t cmd, void *arg)
2483 {
2484 #ifdef _MODULE
2485 	devmajor_t bmajor, cmajor;
2486 #endif
2487 	int error = 0;
2488 
2489 	switch (cmd) {
2490 	case MODULE_CMD_INIT:
2491 		bpf_init();
2492 #ifdef _MODULE
2493 		bmajor = cmajor = NODEVMAJOR;
2494 		error = devsw_attach("bpf", NULL, &bmajor,
2495 		    &bpf_cdevsw, &cmajor);
2496 		if (error)
2497 			break;
2498 #endif
2499 
2500 		bpf_ops_handover_enter(&bpf_ops_kernel);
2501 		atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2502 		bpf_ops_handover_exit();
2503 		sysctl_net_bpf_setup();
2504 		break;
2505 
2506 	case MODULE_CMD_FINI:
2507 		/*
2508 		 * While there is no reference counting for bpf callers,
2509 		 * unload could at least in theory be done similarly to
2510 		 * system call disestablishment.  This should even be
2511 		 * a little simpler:
2512 		 *
2513 		 * 1) replace op vector with stubs
2514 		 * 2) post update to all cpus with xc
2515 		 * 3) check that nobody is in bpf anymore
2516 		 *    (it's doubtful we'd want something like l_sysent,
2517 		 *     but we could do something like *signed* percpu
2518 		 *     counters.  if the sum is 0, we're good).
2519 		 * 4) if fail, unroll changes
2520 		 *
2521 		 * NOTE: change won't be atomic to the outside.  some
2522 		 * packets may be not captured even if unload is
2523 		 * not succesful.  I think packet capture not working
2524 		 * is a perfectly logical consequence of trying to
2525 		 * disable packet capture.
2526 		 */
2527 		error = EOPNOTSUPP;
2528 		/* insert sysctl teardown */
2529 		break;
2530 
2531 	default:
2532 		error = ENOTTY;
2533 		break;
2534 	}
2535 
2536 	return error;
2537 }
2538