1 /* $NetBSD: bpf.c,v 1.257 2024/08/19 07:47:16 ozaki-r Exp $ */ 2 3 /* 4 * Copyright (c) 1990, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from the Stanford/CMU enet packet filter, 8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed 9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence 10 * Berkeley Laboratory. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95 37 * static char rcsid[] = 38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp "; 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.257 2024/08/19 07:47:16 ozaki-r Exp $"); 43 44 #if defined(_KERNEL_OPT) 45 #include "opt_bpf.h" 46 #include "sl.h" 47 #include "opt_net_mpsafe.h" 48 #endif 49 50 #include <sys/param.h> 51 52 #include <sys/atomic.h> 53 #include <sys/buf.h> 54 #include <sys/conf.h> 55 #include <sys/cpu.h> 56 #include <sys/errno.h> 57 #include <sys/file.h> 58 #include <sys/filedesc.h> 59 #include <sys/ioctl.h> 60 #include <sys/kauth.h> 61 #include <sys/kernel.h> 62 #include <sys/lwp.h> 63 #include <sys/mbuf.h> 64 #include <sys/module.h> 65 #include <sys/percpu.h> 66 #include <sys/poll.h> 67 #include <sys/proc.h> 68 #include <sys/protosw.h> 69 #include <sys/pserialize.h> 70 #include <sys/queue.h> 71 #include <sys/socket.h> 72 #include <sys/stat.h> 73 #include <sys/sysctl.h> 74 #include <sys/syslog.h> 75 #include <sys/systm.h> 76 #include <sys/time.h> 77 #include <sys/tty.h> 78 #include <sys/uio.h> 79 #include <sys/vnode.h> 80 #include <sys/xcall.h> 81 82 #include <net/bpf.h> 83 #include <net/bpfdesc.h> 84 #include <net/bpfjit.h> 85 #include <net/if.h> 86 #include <net/if_arc.h> 87 #include <net/if_ether.h> 88 #include <net/if_types.h> 89 #include <net/slip.h> 90 91 #include <netinet/if_inarp.h> 92 #include <netinet/in.h> 93 94 #include <compat/sys/sockio.h> 95 96 #ifndef BPF_BUFSIZE 97 /* 98 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet 99 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k). 100 */ 101 # define BPF_BUFSIZE 32768 102 #endif 103 104 #define PRINET 26 /* interruptible */ 105 106 /* 107 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able. 108 * XXX the default values should be computed dynamically based 109 * on available memory size and available mbuf clusters. 110 */ 111 static int bpf_bufsize = BPF_BUFSIZE; 112 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */ 113 static bool bpf_jit = false; 114 115 struct bpfjit_ops bpfjit_module_ops = { 116 .bj_generate_code = NULL, 117 .bj_free_code = NULL 118 }; 119 120 /* 121 * Global BPF statistics returned by net.bpf.stats sysctl. 122 */ 123 static struct percpu *bpf_gstats_percpu; /* struct bpf_stat */ 124 125 #define BPF_STATINC(id) \ 126 { \ 127 struct bpf_stat *__stats = \ 128 percpu_getref(bpf_gstats_percpu); \ 129 __stats->bs_##id++; \ 130 percpu_putref(bpf_gstats_percpu); \ 131 } 132 133 /* 134 * Locking notes: 135 * - bpf_mtx (adaptive mutex) protects: 136 * - Gobal lists: bpf_iflist and bpf_dlist 137 * - struct bpf_if 138 * - bpf_close 139 * - bpf_psz (pserialize) 140 * - struct bpf_d has two mutexes: 141 * - bd_buf_mtx (spin mutex) protects the buffers that can be accessed 142 * on packet tapping 143 * - bd_mtx (adaptive mutex) protects member variables other than the buffers 144 * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx 145 * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is 146 * never freed because struct bpf_d is only freed in bpf_close and 147 * bpf_close never be called while executing bpf_read and bpf_write 148 * - A filter that is assigned to bpf_d can be replaced with another filter 149 * while tapping packets, so it needs to be done atomically 150 * - struct bpf_d is iterated on bpf_dlist with psz 151 * - struct bpf_if is iterated on bpf_iflist with psz or psref 152 */ 153 /* 154 * Use a mutex to avoid a race condition between gathering the stats/peers 155 * and opening/closing the device. 156 */ 157 static kmutex_t bpf_mtx; 158 159 static struct psref_class *bpf_psref_class __read_mostly; 160 static pserialize_t bpf_psz; 161 162 static inline void 163 bpf_if_acquire(struct bpf_if *bp, struct psref *psref) 164 { 165 166 psref_acquire(psref, &bp->bif_psref, bpf_psref_class); 167 } 168 169 static inline void 170 bpf_if_release(struct bpf_if *bp, struct psref *psref) 171 { 172 173 psref_release(psref, &bp->bif_psref, bpf_psref_class); 174 } 175 176 /* 177 * bpf_iflist is the list of interfaces; each corresponds to an ifnet 178 * bpf_dtab holds the descriptors, indexed by minor device # 179 */ 180 static struct pslist_head bpf_iflist; 181 static struct pslist_head bpf_dlist; 182 183 /* Macros for bpf_d on bpf_dlist */ 184 #define BPF_DLIST_WRITER_INSERT_HEAD(__d) \ 185 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry) 186 #define BPF_DLIST_READER_FOREACH(__d) \ 187 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \ 188 bd_bpf_dlist_entry) 189 #define BPF_DLIST_WRITER_FOREACH(__d) \ 190 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \ 191 bd_bpf_dlist_entry) 192 #define BPF_DLIST_ENTRY_INIT(__d) \ 193 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry) 194 #define BPF_DLIST_WRITER_REMOVE(__d) \ 195 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry) 196 #define BPF_DLIST_ENTRY_DESTROY(__d) \ 197 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry) 198 199 /* Macros for bpf_if on bpf_iflist */ 200 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \ 201 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry) 202 #define BPF_IFLIST_READER_FOREACH(__bp) \ 203 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \ 204 bif_iflist_entry) 205 #define BPF_IFLIST_WRITER_FOREACH(__bp) \ 206 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \ 207 bif_iflist_entry) 208 #define BPF_IFLIST_WRITER_REMOVE(__bp) \ 209 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry) 210 #define BPF_IFLIST_ENTRY_INIT(__bp) \ 211 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry) 212 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \ 213 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry) 214 215 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */ 216 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \ 217 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \ 218 bd_bif_dlist_entry) 219 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \ 220 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \ 221 bd_bif_dlist_entry) 222 #define BPFIF_DLIST_WRITER_REMOVE(__d) \ 223 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry) 224 #define BPFIF_DLIST_ENTRY_INIT(__d) \ 225 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry) 226 #define BPFIF_DLIST_READER_EMPTY(__bp) \ 227 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \ 228 bd_bif_dlist_entry) == NULL) 229 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \ 230 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \ 231 bd_bif_dlist_entry) == NULL) 232 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \ 233 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry) 234 235 static int bpf_allocbufs(struct bpf_d *); 236 static u_int bpf_xfilter(struct bpf_filter **, void *, u_int, u_int); 237 static void bpf_deliver(struct bpf_if *, 238 void *(*cpfn)(void *, const void *, size_t), 239 void *, u_int, u_int, const u_int); 240 static void bpf_freed(struct bpf_d *); 241 static void bpf_free_filter(struct bpf_filter *); 242 static void bpf_ifname(struct ifnet *, struct ifreq *); 243 static void *bpf_mcpy(void *, const void *, size_t); 244 static int bpf_movein(struct ifnet *, struct uio *, int, uint64_t, 245 struct mbuf **, struct sockaddr *, 246 struct bpf_filter **); 247 static void bpf_attachd(struct bpf_d *, struct bpf_if *); 248 static void bpf_detachd(struct bpf_d *); 249 static int bpf_setif(struct bpf_d *, struct ifreq *); 250 static int bpf_setf(struct bpf_d *, struct bpf_program *, u_long); 251 static void bpf_timed_out(void *); 252 static inline void 253 bpf_wakeup(struct bpf_d *); 254 static int bpf_hdrlen(struct bpf_d *); 255 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int, 256 void *(*)(void *, const void *, size_t), 257 struct timespec *); 258 static void reset_d(struct bpf_d *); 259 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *); 260 static int bpf_setdlt(struct bpf_d *, u_int); 261 262 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t, 263 int); 264 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t, 265 int); 266 static int bpf_ioctl(struct file *, u_long, void *); 267 static int bpf_poll(struct file *, int); 268 static int bpf_stat(struct file *, struct stat *); 269 static int bpf_close(struct file *); 270 static int bpf_kqfilter(struct file *, struct knote *); 271 static void bpf_softintr(void *); 272 273 static const struct fileops bpf_fileops = { 274 .fo_name = "bpf", 275 .fo_read = bpf_read, 276 .fo_write = bpf_write, 277 .fo_ioctl = bpf_ioctl, 278 .fo_fcntl = fnullop_fcntl, 279 .fo_poll = bpf_poll, 280 .fo_stat = bpf_stat, 281 .fo_close = bpf_close, 282 .fo_kqfilter = bpf_kqfilter, 283 .fo_restart = fnullop_restart, 284 }; 285 286 dev_type_open(bpfopen); 287 288 const struct cdevsw bpf_cdevsw = { 289 .d_open = bpfopen, 290 .d_close = noclose, 291 .d_read = noread, 292 .d_write = nowrite, 293 .d_ioctl = noioctl, 294 .d_stop = nostop, 295 .d_tty = notty, 296 .d_poll = nopoll, 297 .d_mmap = nommap, 298 .d_kqfilter = nokqfilter, 299 .d_discard = nodiscard, 300 .d_flag = D_OTHER | D_MPSAFE 301 }; 302 303 bpfjit_func_t 304 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size) 305 { 306 struct bpfjit_ops *ops = &bpfjit_module_ops; 307 bpfjit_func_t (*generate_code)(const bpf_ctx_t *, 308 const struct bpf_insn *, size_t); 309 310 generate_code = atomic_load_acquire(&ops->bj_generate_code); 311 if (generate_code != NULL) { 312 return generate_code(bc, code, size); 313 } 314 return NULL; 315 } 316 317 void 318 bpf_jit_freecode(bpfjit_func_t jcode) 319 { 320 KASSERT(bpfjit_module_ops.bj_free_code != NULL); 321 bpfjit_module_ops.bj_free_code(jcode); 322 } 323 324 static int 325 bpf_movein(struct ifnet *ifp, struct uio *uio, int linktype, uint64_t mtu, 326 struct mbuf **mp, struct sockaddr *sockp, struct bpf_filter **wfilter) 327 { 328 struct mbuf *m, *m0, *n; 329 int error; 330 size_t len; 331 size_t hlen; 332 size_t align; 333 u_int slen; 334 335 /* 336 * Build a sockaddr based on the data link layer type. 337 * We do this at this level because the ethernet header 338 * is copied directly into the data field of the sockaddr. 339 * In the case of SLIP, there is no header and the packet 340 * is forwarded as is. 341 * Also, we are careful to leave room at the front of the mbuf 342 * for the link level header. 343 */ 344 switch (linktype) { 345 346 case DLT_SLIP: 347 sockp->sa_family = AF_INET; 348 hlen = 0; 349 align = 0; 350 break; 351 352 case DLT_PPP: 353 sockp->sa_family = AF_UNSPEC; 354 hlen = 0; 355 align = 0; 356 break; 357 358 case DLT_EN10MB: 359 sockp->sa_family = AF_UNSPEC; 360 /* XXX Would MAXLINKHDR be better? */ 361 /* 6(dst)+6(src)+2(type) */ 362 hlen = sizeof(struct ether_header); 363 align = 2; 364 break; 365 366 case DLT_ARCNET: 367 sockp->sa_family = AF_UNSPEC; 368 hlen = ARC_HDRLEN; 369 align = 5; 370 break; 371 372 case DLT_FDDI: 373 sockp->sa_family = AF_LINK; 374 /* XXX 4(FORMAC)+6(dst)+6(src) */ 375 hlen = 16; 376 align = 0; 377 break; 378 379 case DLT_ECONET: 380 sockp->sa_family = AF_UNSPEC; 381 hlen = 6; 382 align = 2; 383 break; 384 385 case DLT_NULL: 386 sockp->sa_family = AF_UNSPEC; 387 if (ifp->if_type == IFT_LOOP) { 388 /* Set here to apply the following validations */ 389 hlen = sizeof(uint32_t); 390 } else 391 hlen = 0; 392 align = 0; 393 break; 394 395 default: 396 return (EIO); 397 } 398 399 len = uio->uio_resid; 400 /* 401 * If there aren't enough bytes for a link level header or the 402 * packet length exceeds the interface mtu, return an error. 403 */ 404 if (len - hlen > mtu) 405 return (EMSGSIZE); 406 407 m0 = m = m_gethdr(M_WAIT, MT_DATA); 408 m_reset_rcvif(m); 409 m->m_pkthdr.len = (int)(len - hlen); 410 if (len + align > MHLEN) { 411 m_clget(m, M_WAIT); 412 if ((m->m_flags & M_EXT) == 0) { 413 error = ENOBUFS; 414 goto bad; 415 } 416 } 417 418 /* Ensure the data is properly aligned */ 419 if (align > 0) 420 m->m_data += align; 421 422 for (;;) { 423 len = M_TRAILINGSPACE(m); 424 if (len > uio->uio_resid) 425 len = uio->uio_resid; 426 error = uiomove(mtod(m, void *), len, uio); 427 if (error) 428 goto bad; 429 m->m_len = len; 430 431 if (uio->uio_resid == 0) 432 break; 433 434 n = m_get(M_WAIT, MT_DATA); 435 m_clget(n, M_WAIT); /* if fails, there is no problem */ 436 m->m_next = n; 437 m = n; 438 } 439 440 slen = bpf_xfilter(wfilter, mtod(m, u_char *), len, len); 441 if (slen == 0) { 442 error = EPERM; 443 goto bad; 444 } 445 446 if (hlen != 0) { 447 if (linktype == DLT_NULL && ifp->if_type == IFT_LOOP) { 448 uint32_t af; 449 /* the link header indicates the address family */ 450 memcpy(&af, mtod(m0, void *), sizeof(af)); 451 sockp->sa_family = af; 452 } else { 453 /* move link level header in the top of mbuf to sa_data */ 454 memcpy(sockp->sa_data, mtod(m0, void *), hlen); 455 } 456 m0->m_data += hlen; 457 m0->m_len -= hlen; 458 } 459 460 *mp = m0; 461 return (0); 462 463 bad: 464 m_freem(m0); 465 return (error); 466 } 467 468 /* 469 * Attach file to the bpf interface, i.e. make d listen on bp. 470 */ 471 static void 472 bpf_attachd(struct bpf_d *d, struct bpf_if *bp) 473 { 474 struct bpf_event_tracker *t; 475 476 KASSERT(mutex_owned(&bpf_mtx)); 477 KASSERT(mutex_owned(d->bd_mtx)); 478 /* 479 * Point d at bp, and add d to the interface's list of listeners. 480 * Finally, point the driver's bpf cookie at the interface so 481 * it will divert packets to bpf. 482 */ 483 d->bd_bif = bp; 484 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d); 485 486 *bp->bif_driverp = bp; 487 488 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) { 489 t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt, 490 BPF_TRACK_EVENT_ATTACH); 491 } 492 } 493 494 /* 495 * Detach a file from its interface. 496 */ 497 static void 498 bpf_detachd(struct bpf_d *d) 499 { 500 struct bpf_if *bp; 501 struct bpf_event_tracker *t; 502 503 KASSERT(mutex_owned(&bpf_mtx)); 504 KASSERT(mutex_owned(d->bd_mtx)); 505 506 bp = d->bd_bif; 507 /* 508 * Check if this descriptor had requested promiscuous mode. 509 * If so, turn it off. 510 */ 511 if (d->bd_promisc) { 512 int error __diagused; 513 514 d->bd_promisc = 0; 515 /* 516 * Take device out of promiscuous mode. Since we were 517 * able to enter promiscuous mode, we should be able 518 * to turn it off. But we can get an error if 519 * the interface was configured down, so only panic 520 * if we don't get an unexpected error. 521 */ 522 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 523 error = ifpromisc(bp->bif_ifp, 0); 524 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 525 #ifdef DIAGNOSTIC 526 if (error) 527 printf("%s: ifpromisc failed: %d", __func__, error); 528 #endif 529 } 530 531 /* Remove d from the interface's descriptor list. */ 532 BPFIF_DLIST_WRITER_REMOVE(d); 533 534 pserialize_perform(bpf_psz); 535 536 if (BPFIF_DLIST_WRITER_EMPTY(bp)) { 537 /* 538 * Let the driver know that there are no more listeners. 539 */ 540 *d->bd_bif->bif_driverp = NULL; 541 } 542 543 d->bd_bif = NULL; 544 545 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) { 546 t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt, 547 BPF_TRACK_EVENT_DETACH); 548 } 549 } 550 551 static void 552 bpf_init(void) 553 { 554 555 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE); 556 bpf_psz = pserialize_create(); 557 bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET); 558 559 PSLIST_INIT(&bpf_iflist); 560 PSLIST_INIT(&bpf_dlist); 561 562 bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat)); 563 564 return; 565 } 566 567 /* 568 * bpfilterattach() is called at boot time. We don't need to do anything 569 * here, since any initialization will happen as part of module init code. 570 */ 571 /* ARGSUSED */ 572 void 573 bpfilterattach(int n) 574 { 575 576 } 577 578 /* 579 * Open ethernet device. Clones. 580 */ 581 /* ARGSUSED */ 582 int 583 bpfopen(dev_t dev, int flag, int mode, struct lwp *l) 584 { 585 struct bpf_d *d; 586 struct file *fp; 587 int error, fd; 588 589 /* falloc() will fill in the descriptor for us. */ 590 if ((error = fd_allocfile(&fp, &fd)) != 0) 591 return error; 592 593 d = kmem_zalloc(sizeof(*d), KM_SLEEP); 594 d->bd_bufsize = bpf_bufsize; 595 d->bd_direction = BPF_D_INOUT; 596 d->bd_feedback = 0; 597 d->bd_pid = l->l_proc->p_pid; 598 #ifdef _LP64 599 if (curproc->p_flag & PK_32) 600 d->bd_compat32 = 1; 601 #endif 602 getnanotime(&d->bd_btime); 603 d->bd_atime = d->bd_mtime = d->bd_btime; 604 callout_init(&d->bd_callout, CALLOUT_MPSAFE); 605 selinit(&d->bd_sel); 606 d->bd_sih = softint_establish(SOFTINT_CLOCK, bpf_softintr, d); 607 d->bd_jitcode = NULL; 608 d->bd_rfilter = NULL; 609 d->bd_wfilter = NULL; 610 d->bd_locked = 0; 611 BPF_DLIST_ENTRY_INIT(d); 612 BPFIF_DLIST_ENTRY_INIT(d); 613 d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET); 614 d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 615 cv_init(&d->bd_cv, "bpf"); 616 617 mutex_enter(&bpf_mtx); 618 BPF_DLIST_WRITER_INSERT_HEAD(d); 619 mutex_exit(&bpf_mtx); 620 621 return fd_clone(fp, fd, flag, &bpf_fileops, d); 622 } 623 624 /* 625 * Close the descriptor by detaching it from its interface, 626 * deallocating its buffers, and marking it free. 627 */ 628 /* ARGSUSED */ 629 static int 630 bpf_close(struct file *fp) 631 { 632 struct bpf_d *d; 633 634 mutex_enter(&bpf_mtx); 635 636 if ((d = fp->f_bpf) == NULL) { 637 mutex_exit(&bpf_mtx); 638 return 0; 639 } 640 641 /* 642 * Refresh the PID associated with this bpf file. 643 */ 644 d->bd_pid = curproc->p_pid; 645 646 mutex_enter(d->bd_buf_mtx); 647 if (d->bd_state == BPF_WAITING) 648 callout_halt(&d->bd_callout, d->bd_buf_mtx); 649 d->bd_state = BPF_IDLE; 650 mutex_exit(d->bd_buf_mtx); 651 mutex_enter(d->bd_mtx); 652 if (d->bd_bif) 653 bpf_detachd(d); 654 mutex_exit(d->bd_mtx); 655 656 BPF_DLIST_WRITER_REMOVE(d); 657 658 pserialize_perform(bpf_psz); 659 mutex_exit(&bpf_mtx); 660 661 BPFIF_DLIST_ENTRY_DESTROY(d); 662 BPF_DLIST_ENTRY_DESTROY(d); 663 fp->f_bpf = NULL; 664 bpf_freed(d); 665 callout_destroy(&d->bd_callout); 666 seldestroy(&d->bd_sel); 667 softint_disestablish(d->bd_sih); 668 mutex_obj_free(d->bd_mtx); 669 mutex_obj_free(d->bd_buf_mtx); 670 cv_destroy(&d->bd_cv); 671 672 kmem_free(d, sizeof(*d)); 673 674 return (0); 675 } 676 677 /* 678 * Rotate the packet buffers in descriptor d. Move the store buffer 679 * into the hold slot, and the free buffer into the store slot. 680 * Zero the length of the new store buffer. 681 */ 682 #define ROTATE_BUFFERS(d) \ 683 (d)->bd_hbuf = (d)->bd_sbuf; \ 684 (d)->bd_hlen = (d)->bd_slen; \ 685 (d)->bd_sbuf = (d)->bd_fbuf; \ 686 (d)->bd_slen = 0; \ 687 (d)->bd_fbuf = NULL; 688 /* 689 * bpfread - read next chunk of packets from buffers 690 */ 691 static int 692 bpf_read(struct file *fp, off_t *offp, struct uio *uio, 693 kauth_cred_t cred, int flags) 694 { 695 struct bpf_d *d = fp->f_bpf; 696 int timed_out; 697 int error; 698 699 /* 700 * Refresh the PID associated with this bpf file. 701 */ 702 d->bd_pid = curproc->p_pid; 703 704 getnanotime(&d->bd_atime); 705 /* 706 * Restrict application to use a buffer the same size as 707 * the kernel buffers. 708 */ 709 if (uio->uio_resid != d->bd_bufsize) 710 return (EINVAL); 711 712 mutex_enter(d->bd_buf_mtx); 713 if (d->bd_state == BPF_WAITING) 714 callout_halt(&d->bd_callout, d->bd_buf_mtx); 715 timed_out = (d->bd_state == BPF_TIMED_OUT); 716 d->bd_state = BPF_IDLE; 717 mutex_exit(d->bd_buf_mtx); 718 /* 719 * If the hold buffer is empty, then do a timed sleep, which 720 * ends when the timeout expires or when enough packets 721 * have arrived to fill the store buffer. 722 */ 723 mutex_enter(d->bd_buf_mtx); 724 while (d->bd_hbuf == NULL) { 725 if (fp->f_flag & FNONBLOCK) { 726 if (d->bd_slen == 0) { 727 error = EWOULDBLOCK; 728 goto out; 729 } 730 ROTATE_BUFFERS(d); 731 break; 732 } 733 734 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) { 735 /* 736 * A packet(s) either arrived since the previous 737 * read or arrived while we were asleep. 738 * Rotate the buffers and return what's here. 739 */ 740 ROTATE_BUFFERS(d); 741 break; 742 } 743 744 error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout); 745 746 if (error == EINTR || error == ERESTART) 747 goto out; 748 749 if (error == EWOULDBLOCK) { 750 /* 751 * On a timeout, return what's in the buffer, 752 * which may be nothing. If there is something 753 * in the store buffer, we can rotate the buffers. 754 */ 755 if (d->bd_hbuf) 756 /* 757 * We filled up the buffer in between 758 * getting the timeout and arriving 759 * here, so we don't need to rotate. 760 */ 761 break; 762 763 if (d->bd_slen == 0) { 764 error = 0; 765 goto out; 766 } 767 ROTATE_BUFFERS(d); 768 break; 769 } 770 if (error != 0) 771 goto out; 772 } 773 /* 774 * At this point, we know we have something in the hold slot. 775 */ 776 mutex_exit(d->bd_buf_mtx); 777 778 /* 779 * Move data from hold buffer into user space. 780 * We know the entire buffer is transferred since 781 * we checked above that the read buffer is bpf_bufsize bytes. 782 */ 783 error = uiomove(d->bd_hbuf, d->bd_hlen, uio); 784 785 mutex_enter(d->bd_buf_mtx); 786 d->bd_fbuf = d->bd_hbuf; 787 d->bd_hbuf = NULL; 788 d->bd_hlen = 0; 789 out: 790 mutex_exit(d->bd_buf_mtx); 791 return (error); 792 } 793 794 /* 795 * If there are processes sleeping on this descriptor, wake them up. 796 */ 797 static inline void 798 bpf_wakeup(struct bpf_d *d) 799 { 800 801 KASSERT(mutex_owned(d->bd_buf_mtx)); 802 803 cv_broadcast(&d->bd_cv); 804 805 if (d->bd_async) 806 softint_schedule(d->bd_sih); 807 selnotify(&d->bd_sel, 0, NOTE_SUBMIT); 808 } 809 810 static void 811 bpf_softintr(void *cookie) 812 { 813 struct bpf_d *d; 814 815 d = cookie; 816 if (d->bd_async) 817 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL); 818 } 819 820 static void 821 bpf_timed_out(void *arg) 822 { 823 struct bpf_d *d = arg; 824 825 mutex_enter(d->bd_buf_mtx); 826 if (d->bd_state == BPF_WAITING) { 827 d->bd_state = BPF_TIMED_OUT; 828 if (d->bd_slen != 0) 829 bpf_wakeup(d); 830 } 831 mutex_exit(d->bd_buf_mtx); 832 } 833 834 static int 835 bpf_write(struct file *fp, off_t *offp, struct uio *uio, 836 kauth_cred_t cred, int flags) 837 { 838 struct bpf_d *d = fp->f_bpf; 839 struct bpf_if *bp; 840 struct ifnet *ifp; 841 struct mbuf *m, *mc; 842 int error; 843 static struct sockaddr_storage dst; 844 struct psref psref; 845 int bound; 846 847 /* 848 * Refresh the PID associated with this bpf file. 849 */ 850 d->bd_pid = curproc->p_pid; 851 852 m = NULL; /* XXX gcc */ 853 854 bound = curlwp_bind(); 855 mutex_enter(d->bd_mtx); 856 bp = d->bd_bif; 857 if (bp == NULL) { 858 mutex_exit(d->bd_mtx); 859 error = ENXIO; 860 goto out_bindx; 861 } 862 bpf_if_acquire(bp, &psref); 863 mutex_exit(d->bd_mtx); 864 865 getnanotime(&d->bd_mtime); 866 867 ifp = bp->bif_ifp; 868 if (if_is_deactivated(ifp)) { 869 error = ENXIO; 870 goto out; 871 } 872 873 if (uio->uio_resid == 0) { 874 error = 0; 875 goto out; 876 } 877 878 error = bpf_movein(ifp, uio, (int)bp->bif_dlt, ifp->if_mtu, &m, 879 (struct sockaddr *) &dst, &d->bd_wfilter); 880 if (error) 881 goto out; 882 883 if (m->m_pkthdr.len > ifp->if_mtu) { 884 m_freem(m); 885 error = EMSGSIZE; 886 goto out; 887 } 888 889 /* 890 * If writing to a loopback interface, the address family has 891 * already been specially computed in bpf_movein(), so don't 892 * clobber it, or the loopback will reject it in looutput(). 893 */ 894 if (d->bd_hdrcmplt && ifp->if_type != IFT_LOOP) 895 dst.ss_family = pseudo_AF_HDRCMPLT; 896 897 if (d->bd_feedback) { 898 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT); 899 if (mc != NULL) 900 m_set_rcvif(mc, ifp); 901 /* Set M_PROMISC for outgoing packets to be discarded. */ 902 if (1 /*d->bd_direction == BPF_D_INOUT*/) 903 m->m_flags |= M_PROMISC; 904 } else 905 mc = NULL; 906 907 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL); 908 909 if (mc != NULL) { 910 if (error == 0) { 911 int s = splsoftnet(); 912 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); 913 ifp->_if_input(ifp, mc); 914 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); 915 splx(s); 916 } else 917 m_freem(mc); 918 } 919 /* 920 * The driver frees the mbuf. 921 */ 922 out: 923 bpf_if_release(bp, &psref); 924 out_bindx: 925 curlwp_bindx(bound); 926 return error; 927 } 928 929 /* 930 * Reset a descriptor by flushing its packet buffer and clearing the 931 * receive and drop counts. 932 */ 933 static void 934 reset_d(struct bpf_d *d) 935 { 936 937 KASSERT(mutex_owned(d->bd_mtx)); 938 939 mutex_enter(d->bd_buf_mtx); 940 if (d->bd_hbuf) { 941 /* Free the hold buffer. */ 942 d->bd_fbuf = d->bd_hbuf; 943 d->bd_hbuf = NULL; 944 } 945 d->bd_slen = 0; 946 d->bd_hlen = 0; 947 d->bd_rcount = 0; 948 d->bd_dcount = 0; 949 d->bd_ccount = 0; 950 mutex_exit(d->bd_buf_mtx); 951 } 952 953 /* 954 * FIONREAD Check for read packet available. 955 * BIOCGBLEN Get buffer len [for read()]. 956 * BIOCSETF Set ethernet read filter. 957 * BIOCFLUSH Flush read packet buffer. 958 * BIOCPROMISC Put interface into promiscuous mode. 959 * BIOCGDLT Get link layer type. 960 * BIOCGETIF Get interface name. 961 * BIOCSETIF Set interface. 962 * BIOCSRTIMEOUT Set read timeout. 963 * BIOCGRTIMEOUT Get read timeout. 964 * BIOCGSTATS Get packet stats. 965 * BIOCIMMEDIATE Set immediate mode. 966 * BIOCVERSION Get filter language version. 967 * BIOCGHDRCMPLT Get "header already complete" flag. 968 * BIOCSHDRCMPLT Set "header already complete" flag. 969 * BIOCSFEEDBACK Set packet feedback mode. 970 * BIOCGFEEDBACK Get packet feedback mode. 971 * BIOCGDIRECTION Get packet direction flag 972 * BIOCSDIRECTION Set packet direction flag 973 */ 974 /* ARGSUSED */ 975 static int 976 bpf_ioctl(struct file *fp, u_long cmd, void *addr) 977 { 978 struct bpf_d *d = fp->f_bpf; 979 int error = 0; 980 981 /* 982 * Refresh the PID associated with this bpf file. 983 */ 984 d->bd_pid = curproc->p_pid; 985 #ifdef _LP64 986 if (curproc->p_flag & PK_32) 987 d->bd_compat32 = 1; 988 else 989 d->bd_compat32 = 0; 990 #endif 991 992 mutex_enter(d->bd_buf_mtx); 993 if (d->bd_state == BPF_WAITING) 994 callout_halt(&d->bd_callout, d->bd_buf_mtx); 995 d->bd_state = BPF_IDLE; 996 mutex_exit(d->bd_buf_mtx); 997 998 if (d->bd_locked) { 999 switch (cmd) { 1000 case BIOCGBLEN: /* FALLTHROUGH */ 1001 case BIOCFLUSH: /* FALLTHROUGH */ 1002 case BIOCGDLT: /* FALLTHROUGH */ 1003 case BIOCGDLTLIST: /* FALLTHROUGH */ 1004 case BIOCGETIF: /* FALLTHROUGH */ 1005 case BIOCGRTIMEOUT: /* FALLTHROUGH */ 1006 case BIOCGSTATS: /* FALLTHROUGH */ 1007 case BIOCVERSION: /* FALLTHROUGH */ 1008 case BIOCGHDRCMPLT: /* FALLTHROUGH */ 1009 case FIONREAD: /* FALLTHROUGH */ 1010 case BIOCLOCK: /* FALLTHROUGH */ 1011 case BIOCSRTIMEOUT: /* FALLTHROUGH */ 1012 case BIOCIMMEDIATE: /* FALLTHROUGH */ 1013 case TIOCGPGRP: 1014 break; 1015 default: 1016 return EPERM; 1017 } 1018 } 1019 1020 switch (cmd) { 1021 1022 default: 1023 error = EINVAL; 1024 break; 1025 1026 /* 1027 * Check for read packet available. 1028 */ 1029 case FIONREAD: { 1030 int n; 1031 1032 mutex_enter(d->bd_buf_mtx); 1033 n = d->bd_slen; 1034 if (d->bd_hbuf) 1035 n += d->bd_hlen; 1036 mutex_exit(d->bd_buf_mtx); 1037 1038 *(int *)addr = n; 1039 break; 1040 } 1041 1042 /* 1043 * Get buffer len [for read()]. 1044 */ 1045 case BIOCGBLEN: 1046 *(u_int *)addr = d->bd_bufsize; 1047 break; 1048 1049 /* 1050 * Set buffer length. 1051 */ 1052 case BIOCSBLEN: 1053 /* 1054 * Forbid to change the buffer length if buffers are already 1055 * allocated. 1056 */ 1057 mutex_enter(d->bd_mtx); 1058 mutex_enter(d->bd_buf_mtx); 1059 if (d->bd_bif != NULL || d->bd_sbuf != NULL) 1060 error = EINVAL; 1061 else { 1062 u_int size = *(u_int *)addr; 1063 1064 if (size > bpf_maxbufsize) 1065 *(u_int *)addr = size = bpf_maxbufsize; 1066 else if (size < BPF_MINBUFSIZE) 1067 *(u_int *)addr = size = BPF_MINBUFSIZE; 1068 d->bd_bufsize = size; 1069 } 1070 mutex_exit(d->bd_buf_mtx); 1071 mutex_exit(d->bd_mtx); 1072 break; 1073 1074 /* 1075 * Set link layer read filter. 1076 */ 1077 case BIOCSETF: /* FALLTHROUGH */ 1078 case BIOCSETWF: 1079 error = bpf_setf(d, addr, cmd); 1080 break; 1081 1082 case BIOCLOCK: 1083 d->bd_locked = 1; 1084 break; 1085 1086 /* 1087 * Flush read packet buffer. 1088 */ 1089 case BIOCFLUSH: 1090 mutex_enter(d->bd_mtx); 1091 reset_d(d); 1092 mutex_exit(d->bd_mtx); 1093 break; 1094 1095 /* 1096 * Put interface into promiscuous mode. 1097 */ 1098 case BIOCPROMISC: 1099 mutex_enter(d->bd_mtx); 1100 if (d->bd_bif == NULL) { 1101 mutex_exit(d->bd_mtx); 1102 /* 1103 * No interface attached yet. 1104 */ 1105 error = EINVAL; 1106 break; 1107 } 1108 if (d->bd_promisc == 0) { 1109 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 1110 error = ifpromisc(d->bd_bif->bif_ifp, 1); 1111 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 1112 if (error == 0) 1113 d->bd_promisc = 1; 1114 } 1115 mutex_exit(d->bd_mtx); 1116 break; 1117 1118 /* 1119 * Get device parameters. 1120 */ 1121 case BIOCGDLT: 1122 mutex_enter(d->bd_mtx); 1123 if (d->bd_bif == NULL) 1124 error = EINVAL; 1125 else 1126 *(u_int *)addr = d->bd_bif->bif_dlt; 1127 mutex_exit(d->bd_mtx); 1128 break; 1129 1130 /* 1131 * Get a list of supported device parameters. 1132 */ 1133 case BIOCGDLTLIST: 1134 mutex_enter(d->bd_mtx); 1135 if (d->bd_bif == NULL) 1136 error = EINVAL; 1137 else 1138 error = bpf_getdltlist(d, addr); 1139 mutex_exit(d->bd_mtx); 1140 break; 1141 1142 /* 1143 * Set device parameters. 1144 */ 1145 case BIOCSDLT: 1146 mutex_enter(&bpf_mtx); 1147 mutex_enter(d->bd_mtx); 1148 if (d->bd_bif == NULL) 1149 error = EINVAL; 1150 else 1151 error = bpf_setdlt(d, *(u_int *)addr); 1152 mutex_exit(d->bd_mtx); 1153 mutex_exit(&bpf_mtx); 1154 break; 1155 1156 /* 1157 * Set interface name. 1158 */ 1159 #ifdef OBIOCGETIF 1160 case OBIOCGETIF: 1161 #endif 1162 case BIOCGETIF: 1163 mutex_enter(d->bd_mtx); 1164 if (d->bd_bif == NULL) 1165 error = EINVAL; 1166 else 1167 bpf_ifname(d->bd_bif->bif_ifp, addr); 1168 mutex_exit(d->bd_mtx); 1169 break; 1170 1171 /* 1172 * Set interface. 1173 */ 1174 #ifdef OBIOCSETIF 1175 case OBIOCSETIF: 1176 #endif 1177 case BIOCSETIF: 1178 mutex_enter(&bpf_mtx); 1179 error = bpf_setif(d, addr); 1180 mutex_exit(&bpf_mtx); 1181 break; 1182 1183 /* 1184 * Set read timeout. 1185 */ 1186 case BIOCSRTIMEOUT: { 1187 struct timeval *tv = addr; 1188 1189 /* Compute number of ticks. */ 1190 if (tv->tv_sec < 0 || 1191 tv->tv_usec < 0 || tv->tv_usec >= 1000000) { 1192 error = EINVAL; 1193 break; 1194 } else if (tv->tv_sec > INT_MAX/hz - 1) { 1195 d->bd_rtout = INT_MAX; 1196 } else { 1197 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick; 1198 } 1199 if ((d->bd_rtout == 0) && (tv->tv_usec != 0)) 1200 d->bd_rtout = 1; 1201 break; 1202 } 1203 1204 #ifdef BIOCGORTIMEOUT 1205 /* 1206 * Get read timeout. 1207 */ 1208 case BIOCGORTIMEOUT: { 1209 struct timeval50 *tv = addr; 1210 1211 tv->tv_sec = d->bd_rtout / hz; 1212 tv->tv_usec = (d->bd_rtout % hz) * tick; 1213 break; 1214 } 1215 #endif 1216 1217 #ifdef BIOCSORTIMEOUT 1218 /* 1219 * Set read timeout. 1220 */ 1221 case BIOCSORTIMEOUT: { 1222 struct timeval50 *tv = addr; 1223 1224 /* Compute number of ticks. */ 1225 if (tv->tv_sec < 0 || 1226 tv->tv_usec < 0 || tv->tv_usec >= 1000000) { 1227 error = EINVAL; 1228 break; 1229 } else if (tv->tv_sec > INT_MAX/hz - 1) { 1230 d->bd_rtout = INT_MAX; 1231 } else { 1232 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick; 1233 } 1234 if ((d->bd_rtout == 0) && (tv->tv_usec != 0)) 1235 d->bd_rtout = 1; 1236 break; 1237 } 1238 #endif 1239 1240 /* 1241 * Get read timeout. 1242 */ 1243 case BIOCGRTIMEOUT: { 1244 struct timeval *tv = addr; 1245 1246 tv->tv_sec = d->bd_rtout / hz; 1247 tv->tv_usec = (d->bd_rtout % hz) * tick; 1248 break; 1249 } 1250 /* 1251 * Get packet stats. 1252 */ 1253 case BIOCGSTATS: { 1254 struct bpf_stat *bs = addr; 1255 1256 bs->bs_recv = d->bd_rcount; 1257 bs->bs_drop = d->bd_dcount; 1258 bs->bs_capt = d->bd_ccount; 1259 break; 1260 } 1261 1262 case BIOCGSTATS_30: { 1263 struct bpf_stat30 *bs = addr; 1264 1265 bs->bs_recv = d->bd_rcount; 1266 bs->bs_drop = d->bd_dcount; 1267 break; 1268 } 1269 1270 /* 1271 * Set immediate mode. 1272 */ 1273 case BIOCIMMEDIATE: 1274 d->bd_immediate = *(u_int *)addr; 1275 break; 1276 1277 case BIOCVERSION: { 1278 struct bpf_version *bv = addr; 1279 1280 bv->bv_major = BPF_MAJOR_VERSION; 1281 bv->bv_minor = BPF_MINOR_VERSION; 1282 break; 1283 } 1284 1285 case BIOCGHDRCMPLT: /* get "header already complete" flag */ 1286 *(u_int *)addr = d->bd_hdrcmplt; 1287 break; 1288 1289 case BIOCSHDRCMPLT: /* set "header already complete" flag */ 1290 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0; 1291 break; 1292 1293 /* 1294 * Get packet direction flag 1295 */ 1296 case BIOCGDIRECTION: 1297 *(u_int *)addr = d->bd_direction; 1298 break; 1299 1300 /* 1301 * Set packet direction flag 1302 */ 1303 case BIOCSDIRECTION: { 1304 u_int direction; 1305 1306 direction = *(u_int *)addr; 1307 switch (direction) { 1308 case BPF_D_IN: 1309 case BPF_D_INOUT: 1310 case BPF_D_OUT: 1311 d->bd_direction = direction; 1312 break; 1313 default: 1314 error = EINVAL; 1315 } 1316 } 1317 break; 1318 1319 /* 1320 * Set "feed packets from bpf back to input" mode 1321 */ 1322 case BIOCSFEEDBACK: 1323 d->bd_feedback = *(u_int *)addr; 1324 break; 1325 1326 /* 1327 * Get "feed packets from bpf back to input" mode 1328 */ 1329 case BIOCGFEEDBACK: 1330 *(u_int *)addr = d->bd_feedback; 1331 break; 1332 1333 case FIONBIO: /* Non-blocking I/O */ 1334 /* 1335 * No need to do anything special as we use IO_NDELAY in 1336 * bpfread() as an indication of whether or not to block 1337 * the read. 1338 */ 1339 break; 1340 1341 case FIOASYNC: /* Send signal on receive packets */ 1342 mutex_enter(d->bd_mtx); 1343 d->bd_async = *(int *)addr; 1344 mutex_exit(d->bd_mtx); 1345 break; 1346 1347 case TIOCSPGRP: /* Process or group to send signals to */ 1348 case FIOSETOWN: 1349 error = fsetown(&d->bd_pgid, cmd, addr); 1350 break; 1351 1352 case TIOCGPGRP: 1353 case FIOGETOWN: 1354 error = fgetown(d->bd_pgid, cmd, addr); 1355 break; 1356 } 1357 return (error); 1358 } 1359 1360 /* 1361 * Set d's packet filter program to fp. If this file already has a filter, 1362 * free it and replace it. Returns EINVAL for bogus requests. 1363 */ 1364 static int 1365 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd) 1366 { 1367 struct bpf_insn *fcode; 1368 bpfjit_func_t jcode; 1369 size_t flen, size = 0; 1370 struct bpf_filter *oldf, *newf, **storef; 1371 1372 jcode = NULL; 1373 flen = fp->bf_len; 1374 1375 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) { 1376 return EINVAL; 1377 } 1378 1379 if (flen) { 1380 /* 1381 * Allocate the buffer, copy the byte-code from 1382 * userspace and validate it. 1383 */ 1384 size = flen * sizeof(*fp->bf_insns); 1385 fcode = kmem_alloc(size, KM_SLEEP); 1386 if (copyin(fp->bf_insns, fcode, size) != 0 || 1387 !bpf_validate(fcode, (int)flen)) { 1388 kmem_free(fcode, size); 1389 return EINVAL; 1390 } 1391 if (bpf_jit) 1392 jcode = bpf_jit_generate(NULL, fcode, flen); 1393 } else { 1394 fcode = NULL; 1395 } 1396 1397 newf = kmem_alloc(sizeof(*newf), KM_SLEEP); 1398 newf->bf_insn = fcode; 1399 newf->bf_size = size; 1400 newf->bf_jitcode = jcode; 1401 if (cmd == BIOCSETF) 1402 d->bd_jitcode = jcode; /* XXX just for kvm(3) users */ 1403 1404 /* Need to hold bpf_mtx for pserialize_perform */ 1405 mutex_enter(&bpf_mtx); 1406 mutex_enter(d->bd_mtx); 1407 if (cmd == BIOCSETWF) { 1408 oldf = d->bd_wfilter; 1409 storef = &d->bd_wfilter; 1410 } else { 1411 oldf = d->bd_rfilter; 1412 storef = &d->bd_rfilter; 1413 } 1414 atomic_store_release(storef, newf); 1415 reset_d(d); 1416 pserialize_perform(bpf_psz); 1417 mutex_exit(d->bd_mtx); 1418 mutex_exit(&bpf_mtx); 1419 1420 if (oldf != NULL) 1421 bpf_free_filter(oldf); 1422 1423 return 0; 1424 } 1425 1426 /* 1427 * Detach a file from its current interface (if attached at all) and attach 1428 * to the interface indicated by the name stored in ifr. 1429 * Return an errno or 0. 1430 */ 1431 static int 1432 bpf_setif(struct bpf_d *d, struct ifreq *ifr) 1433 { 1434 struct bpf_if *bp; 1435 char *cp; 1436 int unit_seen, i, error; 1437 1438 KASSERT(mutex_owned(&bpf_mtx)); 1439 /* 1440 * Make sure the provided name has a unit number, and default 1441 * it to '0' if not specified. 1442 * XXX This is ugly ... do this differently? 1443 */ 1444 unit_seen = 0; 1445 cp = ifr->ifr_name; 1446 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */ 1447 while (*cp++) 1448 if (*cp >= '0' && *cp <= '9') 1449 unit_seen = 1; 1450 if (!unit_seen) { 1451 /* Make sure to leave room for the '\0'. */ 1452 for (i = 0; i < (IFNAMSIZ - 1); ++i) { 1453 if ((ifr->ifr_name[i] >= 'a' && 1454 ifr->ifr_name[i] <= 'z') || 1455 (ifr->ifr_name[i] >= 'A' && 1456 ifr->ifr_name[i] <= 'Z')) 1457 continue; 1458 ifr->ifr_name[i] = '0'; 1459 } 1460 } 1461 1462 /* 1463 * Look through attached interfaces for the named one. 1464 */ 1465 BPF_IFLIST_WRITER_FOREACH(bp) { 1466 struct ifnet *ifp = bp->bif_ifp; 1467 1468 if (ifp == NULL || 1469 strcmp(ifp->if_xname, ifr->ifr_name) != 0) 1470 continue; 1471 /* skip additional entry */ 1472 if (bp->bif_driverp != &ifp->if_bpf) 1473 continue; 1474 /* 1475 * We found the requested interface. 1476 * Allocate the packet buffers if we need to. 1477 * If we're already attached to requested interface, 1478 * just flush the buffer. 1479 */ 1480 /* 1481 * bpf_allocbufs is called only here. bpf_mtx ensures that 1482 * no race condition happen on d->bd_sbuf. 1483 */ 1484 if (d->bd_sbuf == NULL) { 1485 error = bpf_allocbufs(d); 1486 if (error != 0) 1487 return (error); 1488 } 1489 mutex_enter(d->bd_mtx); 1490 if (bp != d->bd_bif) { 1491 if (d->bd_bif) { 1492 /* 1493 * Detach if attached to something else. 1494 */ 1495 bpf_detachd(d); 1496 BPFIF_DLIST_ENTRY_INIT(d); 1497 } 1498 1499 bpf_attachd(d, bp); 1500 } 1501 reset_d(d); 1502 mutex_exit(d->bd_mtx); 1503 return (0); 1504 } 1505 /* Not found. */ 1506 return (ENXIO); 1507 } 1508 1509 /* 1510 * Copy the interface name to the ifreq. 1511 */ 1512 static void 1513 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr) 1514 { 1515 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); 1516 } 1517 1518 static int 1519 bpf_stat(struct file *fp, struct stat *st) 1520 { 1521 struct bpf_d *d = fp->f_bpf; 1522 1523 (void)memset(st, 0, sizeof(*st)); 1524 mutex_enter(d->bd_mtx); 1525 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid); 1526 st->st_atimespec = d->bd_atime; 1527 st->st_mtimespec = d->bd_mtime; 1528 st->st_ctimespec = st->st_birthtimespec = d->bd_btime; 1529 st->st_uid = kauth_cred_geteuid(fp->f_cred); 1530 st->st_gid = kauth_cred_getegid(fp->f_cred); 1531 st->st_mode = S_IFCHR; 1532 mutex_exit(d->bd_mtx); 1533 return 0; 1534 } 1535 1536 /* 1537 * Support for poll() system call 1538 * 1539 * Return true iff the specific operation will not block indefinitely - with 1540 * the assumption that it is safe to positively acknowledge a request for the 1541 * ability to write to the BPF device. 1542 * Otherwise, return false but make a note that a selnotify() must be done. 1543 */ 1544 static int 1545 bpf_poll(struct file *fp, int events) 1546 { 1547 struct bpf_d *d = fp->f_bpf; 1548 int revents; 1549 1550 /* 1551 * Refresh the PID associated with this bpf file. 1552 */ 1553 mutex_enter(&bpf_mtx); 1554 d->bd_pid = curproc->p_pid; 1555 1556 revents = events & (POLLOUT | POLLWRNORM); 1557 if (events & (POLLIN | POLLRDNORM)) { 1558 /* 1559 * An imitation of the FIONREAD ioctl code. 1560 */ 1561 mutex_enter(d->bd_mtx); 1562 mutex_enter(d->bd_buf_mtx); 1563 if (d->bd_hlen != 0 || 1564 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) && 1565 d->bd_slen != 0)) { 1566 revents |= events & (POLLIN | POLLRDNORM); 1567 } else { 1568 selrecord(curlwp, &d->bd_sel); 1569 /* Start the read timeout if necessary */ 1570 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) { 1571 callout_reset(&d->bd_callout, d->bd_rtout, 1572 bpf_timed_out, d); 1573 d->bd_state = BPF_WAITING; 1574 } 1575 } 1576 mutex_exit(d->bd_buf_mtx); 1577 mutex_exit(d->bd_mtx); 1578 } 1579 1580 mutex_exit(&bpf_mtx); 1581 return (revents); 1582 } 1583 1584 static void 1585 filt_bpfrdetach(struct knote *kn) 1586 { 1587 struct bpf_d *d = kn->kn_hook; 1588 1589 mutex_enter(d->bd_buf_mtx); 1590 selremove_knote(&d->bd_sel, kn); 1591 mutex_exit(d->bd_buf_mtx); 1592 } 1593 1594 static int 1595 filt_bpfread(struct knote *kn, long hint) 1596 { 1597 struct bpf_d *d = kn->kn_hook; 1598 int rv; 1599 1600 /* 1601 * Refresh the PID associated with this bpf file. 1602 */ 1603 d->bd_pid = curproc->p_pid; 1604 1605 if (hint & NOTE_SUBMIT) 1606 KASSERT(mutex_owned(d->bd_buf_mtx)); 1607 else 1608 mutex_enter(d->bd_buf_mtx); 1609 kn->kn_data = d->bd_hlen; 1610 if (d->bd_immediate) 1611 kn->kn_data += d->bd_slen; 1612 rv = (kn->kn_data > 0); 1613 if (hint & NOTE_SUBMIT) 1614 KASSERT(mutex_owned(d->bd_buf_mtx)); 1615 else 1616 mutex_exit(d->bd_buf_mtx); 1617 return rv; 1618 } 1619 1620 static const struct filterops bpfread_filtops = { 1621 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 1622 .f_attach = NULL, 1623 .f_detach = filt_bpfrdetach, 1624 .f_event = filt_bpfread, 1625 }; 1626 1627 static int 1628 bpf_kqfilter(struct file *fp, struct knote *kn) 1629 { 1630 struct bpf_d *d = fp->f_bpf; 1631 1632 switch (kn->kn_filter) { 1633 case EVFILT_READ: 1634 kn->kn_fop = &bpfread_filtops; 1635 break; 1636 1637 default: 1638 return (EINVAL); 1639 } 1640 1641 kn->kn_hook = d; 1642 1643 mutex_enter(d->bd_buf_mtx); 1644 selrecord_knote(&d->bd_sel, kn); 1645 mutex_exit(d->bd_buf_mtx); 1646 1647 return (0); 1648 } 1649 1650 /* 1651 * Copy data from an mbuf chain into a buffer. This code is derived 1652 * from m_copydata in sys/uipc_mbuf.c. 1653 */ 1654 static void * 1655 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len) 1656 { 1657 const struct mbuf *m; 1658 u_int count; 1659 u_char *dst; 1660 1661 m = src_arg; 1662 dst = dst_arg; 1663 while (len > 0) { 1664 if (m == NULL) 1665 panic("bpf_mcpy"); 1666 count = uimin(m->m_len, len); 1667 memcpy(dst, mtod(m, const void *), count); 1668 m = m->m_next; 1669 dst += count; 1670 len -= count; 1671 } 1672 return dst_arg; 1673 } 1674 1675 static inline u_int 1676 bpf_xfilter(struct bpf_filter **filter, void *pkt, u_int pktlen, u_int buflen) 1677 { 1678 struct bpf_filter *filt; 1679 uint32_t mem[BPF_MEMWORDS]; 1680 bpf_args_t args = { 1681 .pkt = (const uint8_t *)pkt, 1682 .wirelen = pktlen, 1683 .buflen = buflen, 1684 .mem = mem, 1685 .arg = NULL 1686 }; 1687 u_int slen; 1688 1689 filt = atomic_load_consume(filter); 1690 if (filt == NULL) /* No filter means accept all. */ 1691 return (u_int)-1; 1692 1693 if (filt->bf_jitcode != NULL) 1694 slen = filt->bf_jitcode(NULL, &args); 1695 else 1696 slen = bpf_filter_ext(NULL, filt->bf_insn, &args); 1697 return slen; 1698 } 1699 1700 /* 1701 * Dispatch a packet to all the listeners on interface bp. 1702 * 1703 * pkt pointer to the packet, either a data buffer or an mbuf chain 1704 * buflen buffer length, if pkt is a data buffer 1705 * cpfn a function that can copy pkt into the listener's buffer 1706 * pktlen length of the packet 1707 * direction BPF_D_IN or BPF_D_OUT 1708 */ 1709 static inline void 1710 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t), 1711 void *pkt, u_int pktlen, u_int buflen, const u_int direction) 1712 { 1713 bool gottime = false; 1714 struct timespec ts; 1715 struct bpf_d *d; 1716 int s; 1717 u_int slen; 1718 1719 KASSERT(!cpu_intr_p()); 1720 1721 /* 1722 * Note that the IPL does not have to be raised at this point. 1723 * The only problem that could arise here is that if two different 1724 * interfaces shared any data. This is not the case. 1725 */ 1726 s = pserialize_read_enter(); 1727 BPFIF_DLIST_READER_FOREACH(d, bp) { 1728 if (direction == BPF_D_IN) { 1729 if (d->bd_direction == BPF_D_OUT) 1730 continue; 1731 } else { /* BPF_D_OUT */ 1732 if (d->bd_direction == BPF_D_IN) 1733 continue; 1734 } 1735 1736 atomic_inc_ulong(&d->bd_rcount); 1737 BPF_STATINC(recv); 1738 1739 slen = bpf_xfilter(&d->bd_rfilter, pkt, pktlen, buflen); 1740 if (slen == 0) 1741 continue; 1742 1743 if (!gottime) { 1744 gottime = true; 1745 nanotime(&ts); 1746 } 1747 /* Assume catchpacket doesn't sleep */ 1748 catchpacket(d, pkt, pktlen, slen, cpfn, &ts); 1749 } 1750 pserialize_read_exit(s); 1751 } 1752 1753 /* 1754 * Incoming linkage from device drivers, when the head of the packet is in 1755 * a buffer, and the tail is in an mbuf chain. 1756 */ 1757 static void 1758 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m, 1759 u_int direction) 1760 { 1761 u_int pktlen; 1762 struct mbuf mb; 1763 1764 /* Skip outgoing duplicate packets. */ 1765 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) { 1766 m->m_flags &= ~M_PROMISC; 1767 return; 1768 } 1769 1770 pktlen = m_length(m) + dlen; 1771 1772 /* 1773 * Craft on-stack mbuf suitable for passing to bpf_filter. 1774 * Note that we cut corners here; we only set up what's 1775 * absolutely needed--this mbuf should never go anywhere else. 1776 */ 1777 (void)memset(&mb, 0, sizeof(mb)); 1778 mb.m_type = MT_DATA; 1779 mb.m_next = m; 1780 mb.m_data = data; 1781 mb.m_len = dlen; 1782 1783 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, direction); 1784 } 1785 1786 /* 1787 * Incoming linkage from device drivers, when packet is in an mbuf chain. 1788 */ 1789 static void 1790 _bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction) 1791 { 1792 void *(*cpfn)(void *, const void *, size_t); 1793 u_int pktlen, buflen; 1794 void *marg; 1795 1796 /* Skip outgoing duplicate packets. */ 1797 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) { 1798 m->m_flags &= ~M_PROMISC; 1799 return; 1800 } 1801 1802 pktlen = m_length(m); 1803 1804 /* Skip zero-sized packets. */ 1805 if (__predict_false(pktlen == 0)) { 1806 return; 1807 } 1808 1809 if (pktlen == m->m_len) { 1810 cpfn = (void *)memcpy; 1811 marg = mtod(m, void *); 1812 buflen = pktlen; 1813 KASSERT(buflen != 0); 1814 } else { 1815 cpfn = bpf_mcpy; 1816 marg = m; 1817 buflen = 0; 1818 } 1819 1820 bpf_deliver(bp, cpfn, marg, pktlen, buflen, direction); 1821 } 1822 1823 /* 1824 * We need to prepend the address family as 1825 * a four byte field. Cons up a dummy header 1826 * to pacify bpf. This is safe because bpf 1827 * will only read from the mbuf (i.e., it won't 1828 * try to free it or keep a pointer a to it). 1829 */ 1830 static void 1831 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m, u_int direction) 1832 { 1833 struct mbuf m0; 1834 1835 m0.m_type = MT_DATA; 1836 m0.m_flags = 0; 1837 m0.m_next = m; 1838 m0.m_nextpkt = NULL; 1839 m0.m_owner = NULL; 1840 m0.m_len = 4; 1841 m0.m_data = (char *)⁡ 1842 1843 _bpf_mtap(bp, &m0, direction); 1844 } 1845 1846 /* 1847 * Put the SLIP pseudo-"link header" in place. 1848 * Note this M_PREPEND() should never fail, 1849 * since we know we always have enough space 1850 * in the input buffer. 1851 */ 1852 static void 1853 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m) 1854 { 1855 u_char *hp; 1856 1857 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT); 1858 if (*m == NULL) 1859 return; 1860 1861 hp = mtod(*m, u_char *); 1862 hp[SLX_DIR] = SLIPDIR_IN; 1863 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN); 1864 1865 _bpf_mtap(bp, *m, BPF_D_IN); 1866 1867 m_adj(*m, SLIP_HDRLEN); 1868 } 1869 1870 /* 1871 * Put the SLIP pseudo-"link header" in 1872 * place. The compressed header is now 1873 * at the beginning of the mbuf. 1874 */ 1875 static void 1876 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m) 1877 { 1878 struct mbuf m0; 1879 u_char *hp; 1880 1881 m0.m_type = MT_DATA; 1882 m0.m_flags = 0; 1883 m0.m_next = m; 1884 m0.m_nextpkt = NULL; 1885 m0.m_owner = NULL; 1886 m0.m_data = m0.m_dat; 1887 m0.m_len = SLIP_HDRLEN; 1888 1889 hp = mtod(&m0, u_char *); 1890 1891 hp[SLX_DIR] = SLIPDIR_OUT; 1892 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN); 1893 1894 _bpf_mtap(bp, &m0, BPF_D_OUT); 1895 m_freem(m); 1896 } 1897 1898 static struct mbuf * 1899 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m) 1900 { 1901 struct mbuf *dup; 1902 1903 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT); 1904 if (dup == NULL) 1905 return NULL; 1906 1907 if (bp->bif_mbuf_tail != NULL) { 1908 bp->bif_mbuf_tail->m_nextpkt = dup; 1909 } else { 1910 bp->bif_mbuf_head = dup; 1911 } 1912 bp->bif_mbuf_tail = dup; 1913 #ifdef BPF_MTAP_SOFTINT_DEBUG 1914 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n", 1915 __func__, dup, bp->bif_ifp->if_xname); 1916 #endif 1917 1918 return dup; 1919 } 1920 1921 static struct mbuf * 1922 bpf_mbuf_dequeue(struct bpf_if *bp) 1923 { 1924 struct mbuf *m; 1925 int s; 1926 1927 /* XXX NOMPSAFE: assumed running on one CPU */ 1928 s = splnet(); 1929 m = bp->bif_mbuf_head; 1930 if (m != NULL) { 1931 bp->bif_mbuf_head = m->m_nextpkt; 1932 m->m_nextpkt = NULL; 1933 1934 if (bp->bif_mbuf_head == NULL) 1935 bp->bif_mbuf_tail = NULL; 1936 #ifdef BPF_MTAP_SOFTINT_DEBUG 1937 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n", 1938 __func__, m, bp->bif_ifp->if_xname); 1939 #endif 1940 } 1941 splx(s); 1942 1943 return m; 1944 } 1945 1946 static void 1947 bpf_mtap_si(void *arg) 1948 { 1949 struct bpf_if *bp = arg; 1950 struct mbuf *m; 1951 1952 while ((m = bpf_mbuf_dequeue(bp)) != NULL) { 1953 #ifdef BPF_MTAP_SOFTINT_DEBUG 1954 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n", 1955 __func__, m, bp->bif_ifp->if_xname); 1956 #endif 1957 bpf_ops->bpf_mtap(bp, m, BPF_D_IN); 1958 m_freem(m); 1959 } 1960 } 1961 1962 static void 1963 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m) 1964 { 1965 struct bpf_if *bp = ifp->if_bpf; 1966 struct mbuf *dup; 1967 1968 KASSERT(cpu_intr_p()); 1969 1970 /* To avoid extra invocations of the softint */ 1971 if (BPFIF_DLIST_READER_EMPTY(bp)) 1972 return; 1973 KASSERT(bp->bif_si != NULL); 1974 1975 dup = bpf_mbuf_enqueue(bp, m); 1976 if (dup != NULL) 1977 softint_schedule(bp->bif_si); 1978 } 1979 1980 static int 1981 bpf_hdrlen(struct bpf_d *d) 1982 { 1983 int hdrlen = d->bd_bif->bif_hdrlen; 1984 /* 1985 * Compute the length of the bpf header. This is not necessarily 1986 * equal to SIZEOF_BPF_HDR because we want to insert spacing such 1987 * that the network layer header begins on a longword boundary (for 1988 * performance reasons and to alleviate alignment restrictions). 1989 */ 1990 #ifdef _LP64 1991 if (d->bd_compat32) 1992 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen); 1993 else 1994 #endif 1995 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen); 1996 } 1997 1998 /* 1999 * Move the packet data from interface memory (pkt) into the 2000 * store buffer. Call the wakeup functions if it's time to wake up 2001 * a listener (buffer full), "cpfn" is the routine called to do the 2002 * actual data transfer. memcpy is passed in to copy contiguous chunks, 2003 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case, 2004 * pkt is really an mbuf. 2005 */ 2006 static void 2007 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen, 2008 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts) 2009 { 2010 char *h; 2011 int totlen, curlen, caplen; 2012 int hdrlen = bpf_hdrlen(d); 2013 int do_wakeup = 0; 2014 2015 atomic_inc_ulong(&d->bd_ccount); 2016 BPF_STATINC(capt); 2017 /* 2018 * Figure out how many bytes to move. If the packet is 2019 * greater or equal to the snapshot length, transfer that 2020 * much. Otherwise, transfer the whole packet (unless 2021 * we hit the buffer size limit). 2022 */ 2023 totlen = hdrlen + uimin(snaplen, pktlen); 2024 if (totlen > d->bd_bufsize) 2025 totlen = d->bd_bufsize; 2026 /* 2027 * If we adjusted totlen to fit the bufsize, it could be that 2028 * totlen is smaller than hdrlen because of the link layer header. 2029 */ 2030 caplen = totlen - hdrlen; 2031 if (caplen < 0) 2032 caplen = 0; 2033 2034 mutex_enter(d->bd_buf_mtx); 2035 /* 2036 * Round up the end of the previous packet to the next longword. 2037 */ 2038 #ifdef _LP64 2039 if (d->bd_compat32) 2040 curlen = BPF_WORDALIGN32(d->bd_slen); 2041 else 2042 #endif 2043 curlen = BPF_WORDALIGN(d->bd_slen); 2044 if (curlen + totlen > d->bd_bufsize) { 2045 /* 2046 * This packet will overflow the storage buffer. 2047 * Rotate the buffers if we can, then wakeup any 2048 * pending reads. 2049 */ 2050 if (d->bd_fbuf == NULL) { 2051 mutex_exit(d->bd_buf_mtx); 2052 /* 2053 * We haven't completed the previous read yet, 2054 * so drop the packet. 2055 */ 2056 atomic_inc_ulong(&d->bd_dcount); 2057 BPF_STATINC(drop); 2058 return; 2059 } 2060 ROTATE_BUFFERS(d); 2061 do_wakeup = 1; 2062 curlen = 0; 2063 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) { 2064 /* 2065 * Immediate mode is set, or the read timeout has 2066 * already expired during a select call. A packet 2067 * arrived, so the reader should be woken up. 2068 */ 2069 do_wakeup = 1; 2070 } 2071 2072 /* 2073 * Append the bpf header. 2074 */ 2075 h = (char *)d->bd_sbuf + curlen; 2076 #ifdef _LP64 2077 if (d->bd_compat32) { 2078 struct bpf_hdr32 *hp32; 2079 2080 hp32 = (struct bpf_hdr32 *)h; 2081 hp32->bh_tstamp.tv_sec = ts->tv_sec; 2082 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000; 2083 hp32->bh_datalen = pktlen; 2084 hp32->bh_hdrlen = hdrlen; 2085 hp32->bh_caplen = caplen; 2086 } else 2087 #endif 2088 { 2089 struct bpf_hdr *hp; 2090 2091 hp = (struct bpf_hdr *)h; 2092 hp->bh_tstamp.tv_sec = ts->tv_sec; 2093 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000; 2094 hp->bh_datalen = pktlen; 2095 hp->bh_hdrlen = hdrlen; 2096 hp->bh_caplen = caplen; 2097 } 2098 2099 /* 2100 * Copy the packet data into the store buffer and update its length. 2101 */ 2102 (*cpfn)(h + hdrlen, pkt, caplen); 2103 d->bd_slen = curlen + totlen; 2104 2105 /* 2106 * Call bpf_wakeup after bd_slen has been updated so that kevent(2) 2107 * will cause filt_bpfread() to be called with it adjusted. 2108 */ 2109 if (do_wakeup) 2110 bpf_wakeup(d); 2111 2112 mutex_exit(d->bd_buf_mtx); 2113 } 2114 2115 /* 2116 * Initialize all nonzero fields of a descriptor. 2117 */ 2118 static int 2119 bpf_allocbufs(struct bpf_d *d) 2120 { 2121 2122 d->bd_fbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP); 2123 if (!d->bd_fbuf) 2124 return (ENOBUFS); 2125 d->bd_sbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP); 2126 if (!d->bd_sbuf) { 2127 kmem_free(d->bd_fbuf, d->bd_bufsize); 2128 return (ENOBUFS); 2129 } 2130 d->bd_slen = 0; 2131 d->bd_hlen = 0; 2132 return (0); 2133 } 2134 2135 static void 2136 bpf_free_filter(struct bpf_filter *filter) 2137 { 2138 2139 KASSERT(filter != NULL); 2140 2141 if (filter->bf_insn != NULL) 2142 kmem_free(filter->bf_insn, filter->bf_size); 2143 if (filter->bf_jitcode != NULL) 2144 bpf_jit_freecode(filter->bf_jitcode); 2145 kmem_free(filter, sizeof(*filter)); 2146 } 2147 2148 /* 2149 * Free buffers currently in use by a descriptor. 2150 * Called on close. 2151 */ 2152 static void 2153 bpf_freed(struct bpf_d *d) 2154 { 2155 /* 2156 * We don't need to lock out interrupts since this descriptor has 2157 * been detached from its interface and it yet hasn't been marked 2158 * free. 2159 */ 2160 if (d->bd_sbuf != NULL) { 2161 kmem_free(d->bd_sbuf, d->bd_bufsize); 2162 if (d->bd_hbuf != NULL) 2163 kmem_free(d->bd_hbuf, d->bd_bufsize); 2164 if (d->bd_fbuf != NULL) 2165 kmem_free(d->bd_fbuf, d->bd_bufsize); 2166 } 2167 if (d->bd_rfilter != NULL) { 2168 bpf_free_filter(d->bd_rfilter); 2169 d->bd_rfilter = NULL; 2170 } 2171 if (d->bd_wfilter != NULL) { 2172 bpf_free_filter(d->bd_wfilter); 2173 d->bd_wfilter = NULL; 2174 } 2175 d->bd_jitcode = NULL; 2176 } 2177 2178 /* 2179 * Attach an interface to bpf. dlt is the link layer type; 2180 * hdrlen is the fixed size of the link header for the specified dlt 2181 * (variable length headers not yet supported). 2182 */ 2183 static void 2184 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp) 2185 { 2186 struct bpf_if *bp; 2187 2188 bp = kmem_alloc(sizeof(*bp), KM_SLEEP); 2189 2190 mutex_enter(&bpf_mtx); 2191 bp->bif_driverp = driverp; 2192 bp->bif_ifp = ifp; 2193 bp->bif_dlt = dlt; 2194 bp->bif_si = NULL; 2195 BPF_IFLIST_ENTRY_INIT(bp); 2196 PSLIST_INIT(&bp->bif_dlist_head); 2197 psref_target_init(&bp->bif_psref, bpf_psref_class); 2198 SLIST_INIT(&bp->bif_trackers); 2199 2200 BPF_IFLIST_WRITER_INSERT_HEAD(bp); 2201 2202 *bp->bif_driverp = NULL; 2203 2204 bp->bif_hdrlen = hdrlen; 2205 mutex_exit(&bpf_mtx); 2206 #if 0 2207 printf("bpf: %s attached with dlt %x\n", ifp->if_xname, dlt); 2208 #endif 2209 } 2210 2211 static void 2212 _bpf_mtap_softint_init(struct ifnet *ifp) 2213 { 2214 struct bpf_if *bp; 2215 2216 mutex_enter(&bpf_mtx); 2217 BPF_IFLIST_WRITER_FOREACH(bp) { 2218 if (bp->bif_ifp != ifp) 2219 continue; 2220 2221 bp->bif_mbuf_head = NULL; 2222 bp->bif_mbuf_tail = NULL; 2223 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp); 2224 if (bp->bif_si == NULL) 2225 panic("%s: softint_establish() failed", __func__); 2226 break; 2227 } 2228 mutex_exit(&bpf_mtx); 2229 2230 if (bp == NULL) 2231 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname); 2232 } 2233 2234 /* 2235 * Remove an interface from bpf. 2236 */ 2237 static void 2238 _bpfdetach(struct ifnet *ifp) 2239 { 2240 struct bpf_if *bp; 2241 struct bpf_d *d; 2242 int s; 2243 2244 mutex_enter(&bpf_mtx); 2245 /* Nuke the vnodes for any open instances */ 2246 again_d: 2247 BPF_DLIST_WRITER_FOREACH(d) { 2248 mutex_enter(d->bd_mtx); 2249 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) { 2250 /* 2251 * Detach the descriptor from an interface now. 2252 * It will be free'ed later by close routine. 2253 */ 2254 bpf_detachd(d); 2255 mutex_exit(d->bd_mtx); 2256 goto again_d; 2257 } 2258 mutex_exit(d->bd_mtx); 2259 } 2260 2261 again: 2262 BPF_IFLIST_WRITER_FOREACH(bp) { 2263 if (bp->bif_ifp == ifp) { 2264 BPF_IFLIST_WRITER_REMOVE(bp); 2265 2266 pserialize_perform(bpf_psz); 2267 psref_target_destroy(&bp->bif_psref, bpf_psref_class); 2268 2269 while (!SLIST_EMPTY(&bp->bif_trackers)) { 2270 struct bpf_event_tracker *t = 2271 SLIST_FIRST(&bp->bif_trackers); 2272 SLIST_REMOVE_HEAD(&bp->bif_trackers, 2273 bet_entries); 2274 kmem_free(t, sizeof(*t)); 2275 } 2276 2277 BPF_IFLIST_ENTRY_DESTROY(bp); 2278 if (bp->bif_si != NULL) { 2279 /* XXX NOMPSAFE: assumed running on one CPU */ 2280 s = splnet(); 2281 while (bp->bif_mbuf_head != NULL) { 2282 struct mbuf *m = bp->bif_mbuf_head; 2283 bp->bif_mbuf_head = m->m_nextpkt; 2284 m_freem(m); 2285 } 2286 splx(s); 2287 softint_disestablish(bp->bif_si); 2288 } 2289 kmem_free(bp, sizeof(*bp)); 2290 goto again; 2291 } 2292 } 2293 mutex_exit(&bpf_mtx); 2294 } 2295 2296 /* 2297 * Change the data link type of a interface. 2298 */ 2299 static void 2300 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen) 2301 { 2302 struct bpf_if *bp; 2303 2304 mutex_enter(&bpf_mtx); 2305 BPF_IFLIST_WRITER_FOREACH(bp) { 2306 if (bp->bif_driverp == &ifp->if_bpf) 2307 break; 2308 } 2309 if (bp == NULL) 2310 panic("bpf_change_type"); 2311 2312 bp->bif_dlt = dlt; 2313 2314 bp->bif_hdrlen = hdrlen; 2315 mutex_exit(&bpf_mtx); 2316 } 2317 2318 /* 2319 * Get a list of available data link type of the interface. 2320 */ 2321 static int 2322 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl) 2323 { 2324 int n, error; 2325 struct ifnet *ifp; 2326 struct bpf_if *bp; 2327 int s, bound; 2328 2329 KASSERT(mutex_owned(d->bd_mtx)); 2330 2331 ifp = d->bd_bif->bif_ifp; 2332 n = 0; 2333 error = 0; 2334 2335 bound = curlwp_bind(); 2336 s = pserialize_read_enter(); 2337 BPF_IFLIST_READER_FOREACH(bp) { 2338 if (bp->bif_ifp != ifp) 2339 continue; 2340 if (bfl->bfl_list != NULL) { 2341 struct psref psref; 2342 2343 if (n >= bfl->bfl_len) { 2344 pserialize_read_exit(s); 2345 return ENOMEM; 2346 } 2347 2348 bpf_if_acquire(bp, &psref); 2349 pserialize_read_exit(s); 2350 2351 error = copyout(&bp->bif_dlt, 2352 bfl->bfl_list + n, sizeof(u_int)); 2353 2354 s = pserialize_read_enter(); 2355 bpf_if_release(bp, &psref); 2356 } 2357 n++; 2358 } 2359 pserialize_read_exit(s); 2360 curlwp_bindx(bound); 2361 2362 bfl->bfl_len = n; 2363 return error; 2364 } 2365 2366 /* 2367 * Set the data link type of a BPF instance. 2368 */ 2369 static int 2370 bpf_setdlt(struct bpf_d *d, u_int dlt) 2371 { 2372 int error, opromisc; 2373 struct ifnet *ifp; 2374 struct bpf_if *bp; 2375 2376 KASSERT(mutex_owned(&bpf_mtx)); 2377 KASSERT(mutex_owned(d->bd_mtx)); 2378 2379 if (d->bd_bif->bif_dlt == dlt) 2380 return 0; 2381 ifp = d->bd_bif->bif_ifp; 2382 BPF_IFLIST_WRITER_FOREACH(bp) { 2383 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt) 2384 break; 2385 } 2386 if (bp == NULL) 2387 return EINVAL; 2388 opromisc = d->bd_promisc; 2389 bpf_detachd(d); 2390 BPFIF_DLIST_ENTRY_INIT(d); 2391 bpf_attachd(d, bp); 2392 reset_d(d); 2393 if (opromisc) { 2394 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2395 error = ifpromisc(bp->bif_ifp, 1); 2396 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2397 if (error) 2398 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n", 2399 bp->bif_ifp->if_xname, error); 2400 else 2401 d->bd_promisc = 1; 2402 } 2403 return 0; 2404 } 2405 2406 static int 2407 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS) 2408 { 2409 int newsize, error; 2410 struct sysctlnode node; 2411 2412 node = *rnode; 2413 node.sysctl_data = &newsize; 2414 newsize = bpf_maxbufsize; 2415 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2416 if (error || newp == NULL) 2417 return (error); 2418 2419 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE) 2420 return (EINVAL); 2421 2422 bpf_maxbufsize = newsize; 2423 2424 return (0); 2425 } 2426 2427 #if defined(MODULAR) || defined(BPFJIT) 2428 static int 2429 sysctl_net_bpf_jit(SYSCTLFN_ARGS) 2430 { 2431 bool newval; 2432 int error; 2433 struct sysctlnode node; 2434 2435 node = *rnode; 2436 node.sysctl_data = &newval; 2437 newval = bpf_jit; 2438 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2439 if (error != 0 || newp == NULL) 2440 return error; 2441 2442 bpf_jit = newval; 2443 if (newval && bpfjit_module_ops.bj_generate_code == NULL) { 2444 printf("JIT compilation is postponed " 2445 "until after bpfjit module is loaded\n"); 2446 } 2447 2448 return 0; 2449 } 2450 #endif 2451 2452 static int 2453 sysctl_net_bpf_peers(SYSCTLFN_ARGS) 2454 { 2455 int error, elem_count; 2456 struct bpf_d *dp; 2457 struct bpf_d_ext dpe; 2458 size_t len, needed, elem_size, out_size; 2459 char *sp; 2460 2461 if (namelen == 1 && name[0] == CTL_QUERY) 2462 return (sysctl_query(SYSCTLFN_CALL(rnode))); 2463 2464 if (namelen != 2) 2465 return (EINVAL); 2466 2467 /* BPF peers is privileged information. */ 2468 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE, 2469 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL); 2470 if (error) 2471 return (EPERM); 2472 2473 len = (oldp != NULL) ? *oldlenp : 0; 2474 sp = oldp; 2475 elem_size = name[0]; 2476 elem_count = name[1]; 2477 out_size = MIN(sizeof(dpe), elem_size); 2478 needed = 0; 2479 2480 if (elem_size < 1 || elem_count < 0) 2481 return (EINVAL); 2482 2483 mutex_enter(&bpf_mtx); 2484 BPF_DLIST_WRITER_FOREACH(dp) { 2485 if (len >= elem_size && elem_count > 0) { 2486 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field 2487 BPF_EXT(bufsize); 2488 BPF_EXT(promisc); 2489 BPF_EXT(state); 2490 BPF_EXT(immediate); 2491 BPF_EXT(hdrcmplt); 2492 BPF_EXT(direction); 2493 BPF_EXT(pid); 2494 BPF_EXT(rcount); 2495 BPF_EXT(dcount); 2496 BPF_EXT(ccount); 2497 #undef BPF_EXT 2498 mutex_enter(dp->bd_mtx); 2499 if (dp->bd_bif) 2500 (void)strlcpy(dpe.bde_ifname, 2501 dp->bd_bif->bif_ifp->if_xname, 2502 IFNAMSIZ - 1); 2503 else 2504 dpe.bde_ifname[0] = '\0'; 2505 dpe.bde_locked = dp->bd_locked; 2506 mutex_exit(dp->bd_mtx); 2507 2508 error = copyout(&dpe, sp, out_size); 2509 if (error) 2510 break; 2511 sp += elem_size; 2512 len -= elem_size; 2513 } 2514 needed += elem_size; 2515 if (elem_count > 0 && elem_count != INT_MAX) 2516 elem_count--; 2517 } 2518 mutex_exit(&bpf_mtx); 2519 2520 *oldlenp = needed; 2521 2522 return (error); 2523 } 2524 2525 static void 2526 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused) 2527 { 2528 struct bpf_stat *const stats = p; 2529 struct bpf_stat *sum = arg; 2530 2531 int s = splnet(); 2532 2533 sum->bs_recv += stats->bs_recv; 2534 sum->bs_drop += stats->bs_drop; 2535 sum->bs_capt += stats->bs_capt; 2536 2537 splx(s); 2538 } 2539 2540 static int 2541 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS) 2542 { 2543 struct sysctlnode node; 2544 int error; 2545 struct bpf_stat sum; 2546 2547 memset(&sum, 0, sizeof(sum)); 2548 node = *rnode; 2549 2550 percpu_foreach_xcall(bpf_gstats_percpu, XC_HIGHPRI_IPL(IPL_SOFTNET), 2551 bpf_stats, &sum); 2552 2553 node.sysctl_data = ∑ 2554 node.sysctl_size = sizeof(sum); 2555 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2556 if (error != 0 || newp == NULL) 2557 return error; 2558 2559 return 0; 2560 } 2561 2562 SYSCTL_SETUP(sysctl_net_bpf_setup, "bpf sysctls") 2563 { 2564 const struct sysctlnode *node; 2565 2566 node = NULL; 2567 sysctl_createv(clog, 0, NULL, &node, 2568 CTLFLAG_PERMANENT, 2569 CTLTYPE_NODE, "bpf", 2570 SYSCTL_DESCR("BPF options"), 2571 NULL, 0, NULL, 0, 2572 CTL_NET, CTL_CREATE, CTL_EOL); 2573 if (node != NULL) { 2574 #if defined(MODULAR) || defined(BPFJIT) 2575 sysctl_createv(clog, 0, NULL, NULL, 2576 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2577 CTLTYPE_BOOL, "jit", 2578 SYSCTL_DESCR("Toggle Just-In-Time compilation"), 2579 sysctl_net_bpf_jit, 0, &bpf_jit, 0, 2580 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2581 #endif 2582 sysctl_createv(clog, 0, NULL, NULL, 2583 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2584 CTLTYPE_INT, "maxbufsize", 2585 SYSCTL_DESCR("Maximum size for data capture buffer"), 2586 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0, 2587 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2588 sysctl_createv(clog, 0, NULL, NULL, 2589 CTLFLAG_PERMANENT, 2590 CTLTYPE_STRUCT, "stats", 2591 SYSCTL_DESCR("BPF stats"), 2592 bpf_sysctl_gstats_handler, 0, NULL, 0, 2593 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2594 sysctl_createv(clog, 0, NULL, NULL, 2595 CTLFLAG_PERMANENT, 2596 CTLTYPE_STRUCT, "peers", 2597 SYSCTL_DESCR("BPF peers"), 2598 sysctl_net_bpf_peers, 0, NULL, 0, 2599 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2600 } 2601 2602 } 2603 2604 static int 2605 _bpf_register_track_event(struct bpf_if **driverp, 2606 void (*_fun)(struct bpf_if *, struct ifnet *, int, int)) 2607 { 2608 struct bpf_if *bp; 2609 struct bpf_event_tracker *t; 2610 int ret = ENOENT; 2611 2612 t = kmem_zalloc(sizeof(*t), KM_SLEEP); 2613 if (!t) 2614 return ENOMEM; 2615 t->bet_notify = _fun; 2616 2617 mutex_enter(&bpf_mtx); 2618 BPF_IFLIST_WRITER_FOREACH(bp) { 2619 if (bp->bif_driverp != driverp) 2620 continue; 2621 SLIST_INSERT_HEAD(&bp->bif_trackers, t, bet_entries); 2622 ret = 0; 2623 break; 2624 } 2625 mutex_exit(&bpf_mtx); 2626 2627 return ret; 2628 } 2629 2630 static int 2631 _bpf_deregister_track_event(struct bpf_if **driverp, 2632 void (*_fun)(struct bpf_if *, struct ifnet *, int, int)) 2633 { 2634 struct bpf_if *bp; 2635 struct bpf_event_tracker *t = NULL; 2636 int ret = ENOENT; 2637 2638 mutex_enter(&bpf_mtx); 2639 BPF_IFLIST_WRITER_FOREACH(bp) { 2640 if (bp->bif_driverp != driverp) 2641 continue; 2642 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) { 2643 if (t->bet_notify == _fun) { 2644 ret = 0; 2645 break; 2646 } 2647 } 2648 if (ret == 0) 2649 break; 2650 } 2651 if (ret == 0 && t && t->bet_notify == _fun) { 2652 SLIST_REMOVE(&bp->bif_trackers, t, bpf_event_tracker, 2653 bet_entries); 2654 } 2655 mutex_exit(&bpf_mtx); 2656 if (ret == 0) 2657 kmem_free(t, sizeof(*t)); 2658 return ret; 2659 } 2660 2661 struct bpf_ops bpf_ops_kernel = { 2662 .bpf_attach = _bpfattach, 2663 .bpf_detach = _bpfdetach, 2664 .bpf_change_type = _bpf_change_type, 2665 .bpf_register_track_event = _bpf_register_track_event, 2666 .bpf_deregister_track_event = _bpf_deregister_track_event, 2667 2668 .bpf_mtap = _bpf_mtap, 2669 .bpf_mtap2 = _bpf_mtap2, 2670 .bpf_mtap_af = _bpf_mtap_af, 2671 .bpf_mtap_sl_in = _bpf_mtap_sl_in, 2672 .bpf_mtap_sl_out = _bpf_mtap_sl_out, 2673 2674 .bpf_mtap_softint = _bpf_mtap_softint, 2675 .bpf_mtap_softint_init = _bpf_mtap_softint_init, 2676 }; 2677 2678 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter"); 2679 2680 static int 2681 bpf_modcmd(modcmd_t cmd, void *arg) 2682 { 2683 #ifdef _MODULE 2684 devmajor_t bmajor, cmajor; 2685 #endif 2686 int error = 0; 2687 2688 switch (cmd) { 2689 case MODULE_CMD_INIT: 2690 bpf_init(); 2691 #ifdef _MODULE 2692 bmajor = cmajor = NODEVMAJOR; 2693 error = devsw_attach("bpf", NULL, &bmajor, 2694 &bpf_cdevsw, &cmajor); 2695 if (error) 2696 break; 2697 #endif 2698 2699 bpf_ops_handover_enter(&bpf_ops_kernel); 2700 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel); 2701 bpf_ops_handover_exit(); 2702 break; 2703 2704 case MODULE_CMD_FINI: 2705 /* 2706 * While there is no reference counting for bpf callers, 2707 * unload could at least in theory be done similarly to 2708 * system call disestablishment. This should even be 2709 * a little simpler: 2710 * 2711 * 1) replace op vector with stubs 2712 * 2) post update to all cpus with xc 2713 * 3) check that nobody is in bpf anymore 2714 * (it's doubtful we'd want something like l_sysent, 2715 * but we could do something like *signed* percpu 2716 * counters. if the sum is 0, we're good). 2717 * 4) if fail, unroll changes 2718 * 2719 * NOTE: change won't be atomic to the outside. some 2720 * packets may be not captured even if unload is 2721 * not successful. I think packet capture not working 2722 * is a perfectly logical consequence of trying to 2723 * disable packet capture. 2724 */ 2725 error = EOPNOTSUPP; 2726 break; 2727 2728 default: 2729 error = ENOTTY; 2730 break; 2731 } 2732 2733 return error; 2734 } 2735