xref: /netbsd-src/sys/net/bpf.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: bpf.c,v 1.243 2021/09/26 01:16:10 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from the Stanford/CMU enet packet filter,
8  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10  * Berkeley Laboratory.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)bpf.c	8.4 (Berkeley) 1/9/95
37  * static char rcsid[] =
38  * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.243 2021/09/26 01:16:10 thorpej Exp $");
43 
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "opt_net_mpsafe.h"
48 #endif
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/mbuf.h>
53 #include <sys/buf.h>
54 #include <sys/time.h>
55 #include <sys/proc.h>
56 #include <sys/ioctl.h>
57 #include <sys/conf.h>
58 #include <sys/vnode.h>
59 #include <sys/queue.h>
60 #include <sys/stat.h>
61 #include <sys/module.h>
62 #include <sys/atomic.h>
63 #include <sys/cpu.h>
64 
65 #include <sys/file.h>
66 #include <sys/filedesc.h>
67 #include <sys/tty.h>
68 #include <sys/uio.h>
69 
70 #include <sys/protosw.h>
71 #include <sys/socket.h>
72 #include <sys/errno.h>
73 #include <sys/kernel.h>
74 #include <sys/poll.h>
75 #include <sys/sysctl.h>
76 #include <sys/kauth.h>
77 #include <sys/syslog.h>
78 #include <sys/percpu.h>
79 #include <sys/pserialize.h>
80 #include <sys/lwp.h>
81 #include <sys/xcall.h>
82 
83 #include <net/if.h>
84 #include <net/slip.h>
85 
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #include <net/bpfjit.h>
89 
90 #include <net/if_arc.h>
91 #include <net/if_ether.h>
92 
93 #include <netinet/in.h>
94 #include <netinet/if_inarp.h>
95 
96 
97 #include <compat/sys/sockio.h>
98 
99 #ifndef BPF_BUFSIZE
100 /*
101  * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
102  * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
103  */
104 # define BPF_BUFSIZE 32768
105 #endif
106 
107 #define PRINET  26			/* interruptible */
108 
109 /*
110  * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
111  * XXX the default values should be computed dynamically based
112  * on available memory size and available mbuf clusters.
113  */
114 static int bpf_bufsize = BPF_BUFSIZE;
115 static int bpf_maxbufsize = BPF_DFLTBUFSIZE;	/* XXX set dynamically, see above */
116 static bool bpf_jit = false;
117 
118 struct bpfjit_ops bpfjit_module_ops = {
119 	.bj_generate_code = NULL,
120 	.bj_free_code = NULL
121 };
122 
123 /*
124  * Global BPF statistics returned by net.bpf.stats sysctl.
125  */
126 static struct percpu	*bpf_gstats_percpu; /* struct bpf_stat */
127 
128 #define BPF_STATINC(id)					\
129 	{						\
130 		struct bpf_stat *__stats =		\
131 		    percpu_getref(bpf_gstats_percpu);	\
132 		__stats->bs_##id++;			\
133 		percpu_putref(bpf_gstats_percpu);	\
134 	}
135 
136 /*
137  * Locking notes:
138  * - bpf_mtx (adaptive mutex) protects:
139  *   - Gobal lists: bpf_iflist and bpf_dlist
140  *   - struct bpf_if
141  *   - bpf_close
142  *   - bpf_psz (pserialize)
143  * - struct bpf_d has two mutexes:
144  *   - bd_buf_mtx (spin mutex) protects the buffers that can be accessed
145  *     on packet tapping
146  *   - bd_mtx (adaptive mutex) protects member variables other than the buffers
147  * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx
148  * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is
149  *   never freed because struct bpf_d is only freed in bpf_close and
150  *   bpf_close never be called while executing bpf_read and bpf_write
151  * - A filter that is assigned to bpf_d can be replaced with another filter
152  *   while tapping packets, so it needs to be done atomically
153  * - struct bpf_d is iterated on bpf_dlist with psz
154  * - struct bpf_if is iterated on bpf_iflist with psz or psref
155  */
156 /*
157  * Use a mutex to avoid a race condition between gathering the stats/peers
158  * and opening/closing the device.
159  */
160 static kmutex_t bpf_mtx;
161 
162 static struct psref_class	*bpf_psref_class __read_mostly;
163 static pserialize_t		bpf_psz;
164 
165 static inline void
166 bpf_if_acquire(struct bpf_if *bp, struct psref *psref)
167 {
168 
169 	psref_acquire(psref, &bp->bif_psref, bpf_psref_class);
170 }
171 
172 static inline void
173 bpf_if_release(struct bpf_if *bp, struct psref *psref)
174 {
175 
176 	psref_release(psref, &bp->bif_psref, bpf_psref_class);
177 }
178 
179 /*
180  *  bpf_iflist is the list of interfaces; each corresponds to an ifnet
181  *  bpf_dtab holds the descriptors, indexed by minor device #
182  */
183 static struct pslist_head bpf_iflist;
184 static struct pslist_head bpf_dlist;
185 
186 /* Macros for bpf_d on bpf_dlist */
187 #define BPF_DLIST_WRITER_INSERT_HEAD(__d)				\
188 	PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
189 #define BPF_DLIST_READER_FOREACH(__d)					\
190 	PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d,		\
191 	                      bd_bpf_dlist_entry)
192 #define BPF_DLIST_WRITER_FOREACH(__d)					\
193 	PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d,		\
194 	                      bd_bpf_dlist_entry)
195 #define BPF_DLIST_ENTRY_INIT(__d)					\
196 	PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
197 #define BPF_DLIST_WRITER_REMOVE(__d)					\
198 	PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
199 #define BPF_DLIST_ENTRY_DESTROY(__d)					\
200 	PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
201 
202 /* Macros for bpf_if on bpf_iflist */
203 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp)				\
204 	PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
205 #define BPF_IFLIST_READER_FOREACH(__bp)					\
206 	PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if,	\
207 	                      bif_iflist_entry)
208 #define BPF_IFLIST_WRITER_FOREACH(__bp)					\
209 	PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if,	\
210 	                      bif_iflist_entry)
211 #define BPF_IFLIST_WRITER_REMOVE(__bp)					\
212 	PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
213 #define BPF_IFLIST_ENTRY_INIT(__bp)					\
214 	PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
215 #define BPF_IFLIST_ENTRY_DESTROY(__bp)					\
216 	PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
217 
218 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
219 #define BPFIF_DLIST_READER_FOREACH(__d, __bp)				\
220 	PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
221 	                      bd_bif_dlist_entry)
222 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d)			\
223 	PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d),	\
224 	                          bd_bif_dlist_entry)
225 #define BPFIF_DLIST_WRITER_REMOVE(__d)					\
226 	PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
227 #define BPFIF_DLIST_ENTRY_INIT(__d)					\
228 	PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
229 #define	BPFIF_DLIST_READER_EMPTY(__bp)					\
230 	(PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d,	\
231 	                     bd_bif_dlist_entry) == NULL)
232 #define	BPFIF_DLIST_WRITER_EMPTY(__bp)					\
233 	(PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d,	\
234 	                     bd_bif_dlist_entry) == NULL)
235 #define BPFIF_DLIST_ENTRY_DESTROY(__d)					\
236 	PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
237 
238 static int	bpf_allocbufs(struct bpf_d *);
239 static u_int	bpf_xfilter(struct bpf_filter **, void *, u_int, u_int);
240 static void	bpf_deliver(struct bpf_if *,
241 		            void *(*cpfn)(void *, const void *, size_t),
242 		            void *, u_int, u_int, const u_int);
243 static void	bpf_freed(struct bpf_d *);
244 static void	bpf_free_filter(struct bpf_filter *);
245 static void	bpf_ifname(struct ifnet *, struct ifreq *);
246 static void	*bpf_mcpy(void *, const void *, size_t);
247 static int	bpf_movein(struct uio *, int, uint64_t,
248 			        struct mbuf **, struct sockaddr *,
249 				struct bpf_filter **);
250 static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
251 static void	bpf_detachd(struct bpf_d *);
252 static int	bpf_setif(struct bpf_d *, struct ifreq *);
253 static int	bpf_setf(struct bpf_d *, struct bpf_program *, u_long);
254 static void	bpf_timed_out(void *);
255 static inline void
256 		bpf_wakeup(struct bpf_d *);
257 static int	bpf_hdrlen(struct bpf_d *);
258 static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
259     void *(*)(void *, const void *, size_t), struct timespec *);
260 static void	reset_d(struct bpf_d *);
261 static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
262 static int	bpf_setdlt(struct bpf_d *, u_int);
263 
264 static int	bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
265     int);
266 static int	bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
267     int);
268 static int	bpf_ioctl(struct file *, u_long, void *);
269 static int	bpf_poll(struct file *, int);
270 static int	bpf_stat(struct file *, struct stat *);
271 static int	bpf_close(struct file *);
272 static int	bpf_kqfilter(struct file *, struct knote *);
273 
274 static const struct fileops bpf_fileops = {
275 	.fo_name = "bpf",
276 	.fo_read = bpf_read,
277 	.fo_write = bpf_write,
278 	.fo_ioctl = bpf_ioctl,
279 	.fo_fcntl = fnullop_fcntl,
280 	.fo_poll = bpf_poll,
281 	.fo_stat = bpf_stat,
282 	.fo_close = bpf_close,
283 	.fo_kqfilter = bpf_kqfilter,
284 	.fo_restart = fnullop_restart,
285 };
286 
287 dev_type_open(bpfopen);
288 
289 const struct cdevsw bpf_cdevsw = {
290 	.d_open = bpfopen,
291 	.d_close = noclose,
292 	.d_read = noread,
293 	.d_write = nowrite,
294 	.d_ioctl = noioctl,
295 	.d_stop = nostop,
296 	.d_tty = notty,
297 	.d_poll = nopoll,
298 	.d_mmap = nommap,
299 	.d_kqfilter = nokqfilter,
300 	.d_discard = nodiscard,
301 	.d_flag = D_OTHER | D_MPSAFE
302 };
303 
304 bpfjit_func_t
305 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
306 {
307 	struct bpfjit_ops *ops = &bpfjit_module_ops;
308 	bpfjit_func_t (*generate_code)(const bpf_ctx_t *,
309 	    const struct bpf_insn *, size_t);
310 
311 	generate_code = atomic_load_acquire(&ops->bj_generate_code);
312 	if (generate_code != NULL) {
313 		return generate_code(bc, code, size);
314 	}
315 	return NULL;
316 }
317 
318 void
319 bpf_jit_freecode(bpfjit_func_t jcode)
320 {
321 	KASSERT(bpfjit_module_ops.bj_free_code != NULL);
322 	bpfjit_module_ops.bj_free_code(jcode);
323 }
324 
325 static int
326 bpf_movein(struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
327 	   struct sockaddr *sockp, struct bpf_filter **wfilter)
328 {
329 	struct mbuf *m, *m0, *n;
330 	int error;
331 	size_t len;
332 	size_t hlen;
333 	size_t align;
334 	u_int slen;
335 
336 	/*
337 	 * Build a sockaddr based on the data link layer type.
338 	 * We do this at this level because the ethernet header
339 	 * is copied directly into the data field of the sockaddr.
340 	 * In the case of SLIP, there is no header and the packet
341 	 * is forwarded as is.
342 	 * Also, we are careful to leave room at the front of the mbuf
343 	 * for the link level header.
344 	 */
345 	switch (linktype) {
346 
347 	case DLT_SLIP:
348 		sockp->sa_family = AF_INET;
349 		hlen = 0;
350 		align = 0;
351 		break;
352 
353 	case DLT_PPP:
354 		sockp->sa_family = AF_UNSPEC;
355 		hlen = 0;
356 		align = 0;
357 		break;
358 
359 	case DLT_EN10MB:
360 		sockp->sa_family = AF_UNSPEC;
361 		/* XXX Would MAXLINKHDR be better? */
362  		/* 6(dst)+6(src)+2(type) */
363 		hlen = sizeof(struct ether_header);
364 		align = 2;
365 		break;
366 
367 	case DLT_ARCNET:
368 		sockp->sa_family = AF_UNSPEC;
369 		hlen = ARC_HDRLEN;
370 		align = 5;
371 		break;
372 
373 	case DLT_FDDI:
374 		sockp->sa_family = AF_LINK;
375 		/* XXX 4(FORMAC)+6(dst)+6(src) */
376 		hlen = 16;
377 		align = 0;
378 		break;
379 
380 	case DLT_ECONET:
381 		sockp->sa_family = AF_UNSPEC;
382 		hlen = 6;
383 		align = 2;
384 		break;
385 
386 	case DLT_NULL:
387 		sockp->sa_family = AF_UNSPEC;
388 		hlen = 0;
389 		align = 0;
390 		break;
391 
392 	default:
393 		return (EIO);
394 	}
395 
396 	len = uio->uio_resid;
397 	/*
398 	 * If there aren't enough bytes for a link level header or the
399 	 * packet length exceeds the interface mtu, return an error.
400 	 */
401 	if (len - hlen > mtu)
402 		return (EMSGSIZE);
403 
404 	m0 = m = m_gethdr(M_WAIT, MT_DATA);
405 	m_reset_rcvif(m);
406 	m->m_pkthdr.len = (int)(len - hlen);
407 	if (len + align > MHLEN) {
408 		m_clget(m, M_WAIT);
409 		if ((m->m_flags & M_EXT) == 0) {
410 			error = ENOBUFS;
411 			goto bad;
412 		}
413 	}
414 
415 	/* Insure the data is properly aligned */
416 	if (align > 0)
417 		m->m_data += align;
418 
419 	for (;;) {
420 		len = M_TRAILINGSPACE(m);
421 		if (len > uio->uio_resid)
422 			len = uio->uio_resid;
423 		error = uiomove(mtod(m, void *), len, uio);
424 		if (error)
425 			goto bad;
426 		m->m_len = len;
427 
428 		if (uio->uio_resid == 0)
429 			break;
430 
431 		n = m_get(M_WAIT, MT_DATA);
432 		m_clget(n, M_WAIT);	/* if fails, there is no problem */
433 		m->m_next = n;
434 		m = n;
435 	}
436 
437 	slen = bpf_xfilter(wfilter, mtod(m, u_char *), len, len);
438 	if (slen == 0) {
439 		error = EPERM;
440 		goto bad;
441 	}
442 
443 	if (hlen != 0) {
444 		/* move link level header in the top of mbuf to sa_data */
445 		memcpy(sockp->sa_data, mtod(m0, void *), hlen);
446 		m0->m_data += hlen;
447 		m0->m_len -= hlen;
448 	}
449 
450 	*mp = m0;
451 	return (0);
452 
453 bad:
454 	m_freem(m0);
455 	return (error);
456 }
457 
458 /*
459  * Attach file to the bpf interface, i.e. make d listen on bp.
460  */
461 static void
462 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
463 {
464 	struct bpf_event_tracker *t;
465 
466 	KASSERT(mutex_owned(&bpf_mtx));
467 	KASSERT(mutex_owned(d->bd_mtx));
468 	/*
469 	 * Point d at bp, and add d to the interface's list of listeners.
470 	 * Finally, point the driver's bpf cookie at the interface so
471 	 * it will divert packets to bpf.
472 	 */
473 	d->bd_bif = bp;
474 	BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
475 
476 	*bp->bif_driverp = bp;
477 
478 	SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
479 		t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt,
480 		    BPF_TRACK_EVENT_ATTACH);
481 	}
482 }
483 
484 /*
485  * Detach a file from its interface.
486  */
487 static void
488 bpf_detachd(struct bpf_d *d)
489 {
490 	struct bpf_if *bp;
491 	struct bpf_event_tracker *t;
492 
493 	KASSERT(mutex_owned(&bpf_mtx));
494 	KASSERT(mutex_owned(d->bd_mtx));
495 
496 	bp = d->bd_bif;
497 	/*
498 	 * Check if this descriptor had requested promiscuous mode.
499 	 * If so, turn it off.
500 	 */
501 	if (d->bd_promisc) {
502 		int error __diagused;
503 
504 		d->bd_promisc = 0;
505 		/*
506 		 * Take device out of promiscuous mode.  Since we were
507 		 * able to enter promiscuous mode, we should be able
508 		 * to turn it off.  But we can get an error if
509 		 * the interface was configured down, so only panic
510 		 * if we don't get an unexpected error.
511 		 */
512 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
513   		error = ifpromisc(bp->bif_ifp, 0);
514 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
515 #ifdef DIAGNOSTIC
516 		if (error)
517 			printf("%s: ifpromisc failed: %d", __func__, error);
518 #endif
519 	}
520 
521 	/* Remove d from the interface's descriptor list. */
522 	BPFIF_DLIST_WRITER_REMOVE(d);
523 
524 	pserialize_perform(bpf_psz);
525 
526 	if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
527 		/*
528 		 * Let the driver know that there are no more listeners.
529 		 */
530 		*d->bd_bif->bif_driverp = NULL;
531 	}
532 
533 	d->bd_bif = NULL;
534 
535 	SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
536 		t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt,
537 		    BPF_TRACK_EVENT_DETACH);
538 	}
539 }
540 
541 static void
542 bpf_init(void)
543 {
544 
545 	mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
546 	bpf_psz = pserialize_create();
547 	bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET);
548 
549 	PSLIST_INIT(&bpf_iflist);
550 	PSLIST_INIT(&bpf_dlist);
551 
552 	bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
553 
554 	return;
555 }
556 
557 /*
558  * bpfilterattach() is called at boot time.  We don't need to do anything
559  * here, since any initialization will happen as part of module init code.
560  */
561 /* ARGSUSED */
562 void
563 bpfilterattach(int n)
564 {
565 
566 }
567 
568 /*
569  * Open ethernet device. Clones.
570  */
571 /* ARGSUSED */
572 int
573 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
574 {
575 	struct bpf_d *d;
576 	struct file *fp;
577 	int error, fd;
578 
579 	/* falloc() will fill in the descriptor for us. */
580 	if ((error = fd_allocfile(&fp, &fd)) != 0)
581 		return error;
582 
583 	d = kmem_zalloc(sizeof(*d), KM_SLEEP);
584 	d->bd_bufsize = bpf_bufsize;
585 	d->bd_direction = BPF_D_INOUT;
586 	d->bd_feedback = 0;
587 	d->bd_pid = l->l_proc->p_pid;
588 #ifdef _LP64
589 	if (curproc->p_flag & PK_32)
590 		d->bd_compat32 = 1;
591 #endif
592 	getnanotime(&d->bd_btime);
593 	d->bd_atime = d->bd_mtime = d->bd_btime;
594 	callout_init(&d->bd_callout, CALLOUT_MPSAFE);
595 	selinit(&d->bd_sel);
596 	d->bd_jitcode = NULL;
597 	d->bd_rfilter = NULL;
598 	d->bd_wfilter = NULL;
599 	d->bd_locked = 0;
600 	BPF_DLIST_ENTRY_INIT(d);
601 	BPFIF_DLIST_ENTRY_INIT(d);
602 	d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
603 	d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
604 	cv_init(&d->bd_cv, "bpf");
605 
606 	mutex_enter(&bpf_mtx);
607 	BPF_DLIST_WRITER_INSERT_HEAD(d);
608 	mutex_exit(&bpf_mtx);
609 
610 	return fd_clone(fp, fd, flag, &bpf_fileops, d);
611 }
612 
613 /*
614  * Close the descriptor by detaching it from its interface,
615  * deallocating its buffers, and marking it free.
616  */
617 /* ARGSUSED */
618 static int
619 bpf_close(struct file *fp)
620 {
621 	struct bpf_d *d;
622 
623 	mutex_enter(&bpf_mtx);
624 
625 	if ((d = fp->f_bpf) == NULL) {
626 		mutex_exit(&bpf_mtx);
627 		return 0;
628 	}
629 
630 	/*
631 	 * Refresh the PID associated with this bpf file.
632 	 */
633 	d->bd_pid = curproc->p_pid;
634 
635 	mutex_enter(d->bd_mtx);
636 	if (d->bd_state == BPF_WAITING)
637 		callout_halt(&d->bd_callout, d->bd_mtx);
638 	d->bd_state = BPF_IDLE;
639 	if (d->bd_bif)
640 		bpf_detachd(d);
641 	mutex_exit(d->bd_mtx);
642 
643 	BPF_DLIST_WRITER_REMOVE(d);
644 
645 	pserialize_perform(bpf_psz);
646 	mutex_exit(&bpf_mtx);
647 
648 	BPFIF_DLIST_ENTRY_DESTROY(d);
649 	BPF_DLIST_ENTRY_DESTROY(d);
650 	fp->f_bpf = NULL;
651 	bpf_freed(d);
652 	callout_destroy(&d->bd_callout);
653 	seldestroy(&d->bd_sel);
654 	mutex_obj_free(d->bd_mtx);
655 	mutex_obj_free(d->bd_buf_mtx);
656 	cv_destroy(&d->bd_cv);
657 
658 	kmem_free(d, sizeof(*d));
659 
660 	return (0);
661 }
662 
663 /*
664  * Rotate the packet buffers in descriptor d.  Move the store buffer
665  * into the hold slot, and the free buffer into the store slot.
666  * Zero the length of the new store buffer.
667  */
668 #define ROTATE_BUFFERS(d) \
669 	(d)->bd_hbuf = (d)->bd_sbuf; \
670 	(d)->bd_hlen = (d)->bd_slen; \
671 	(d)->bd_sbuf = (d)->bd_fbuf; \
672 	(d)->bd_slen = 0; \
673 	(d)->bd_fbuf = NULL;
674 /*
675  *  bpfread - read next chunk of packets from buffers
676  */
677 static int
678 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
679     kauth_cred_t cred, int flags)
680 {
681 	struct bpf_d *d = fp->f_bpf;
682 	int timed_out;
683 	int error;
684 
685 	getnanotime(&d->bd_atime);
686 	/*
687 	 * Restrict application to use a buffer the same size as
688 	 * the kernel buffers.
689 	 */
690 	if (uio->uio_resid != d->bd_bufsize)
691 		return (EINVAL);
692 
693 	mutex_enter(d->bd_mtx);
694 	if (d->bd_state == BPF_WAITING)
695 		callout_halt(&d->bd_callout, d->bd_mtx);
696 	timed_out = (d->bd_state == BPF_TIMED_OUT);
697 	d->bd_state = BPF_IDLE;
698 	mutex_exit(d->bd_mtx);
699 	/*
700 	 * If the hold buffer is empty, then do a timed sleep, which
701 	 * ends when the timeout expires or when enough packets
702 	 * have arrived to fill the store buffer.
703 	 */
704 	mutex_enter(d->bd_buf_mtx);
705 	while (d->bd_hbuf == NULL) {
706 		if (fp->f_flag & FNONBLOCK) {
707 			if (d->bd_slen == 0) {
708 				error = EWOULDBLOCK;
709 				goto out;
710 			}
711 			ROTATE_BUFFERS(d);
712 			break;
713 		}
714 
715 		if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
716 			/*
717 			 * A packet(s) either arrived since the previous
718 			 * read or arrived while we were asleep.
719 			 * Rotate the buffers and return what's here.
720 			 */
721 			ROTATE_BUFFERS(d);
722 			break;
723 		}
724 
725 		error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout);
726 
727 		if (error == EINTR || error == ERESTART)
728 			goto out;
729 
730 		if (error == EWOULDBLOCK) {
731 			/*
732 			 * On a timeout, return what's in the buffer,
733 			 * which may be nothing.  If there is something
734 			 * in the store buffer, we can rotate the buffers.
735 			 */
736 			if (d->bd_hbuf)
737 				/*
738 				 * We filled up the buffer in between
739 				 * getting the timeout and arriving
740 				 * here, so we don't need to rotate.
741 				 */
742 				break;
743 
744 			if (d->bd_slen == 0) {
745 				error = 0;
746 				goto out;
747 			}
748 			ROTATE_BUFFERS(d);
749 			break;
750 		}
751 		if (error != 0)
752 			goto out;
753 	}
754 	/*
755 	 * At this point, we know we have something in the hold slot.
756 	 */
757 	mutex_exit(d->bd_buf_mtx);
758 
759 	/*
760 	 * Move data from hold buffer into user space.
761 	 * We know the entire buffer is transferred since
762 	 * we checked above that the read buffer is bpf_bufsize bytes.
763 	 */
764 	error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
765 
766 	mutex_enter(d->bd_buf_mtx);
767 	d->bd_fbuf = d->bd_hbuf;
768 	d->bd_hbuf = NULL;
769 	d->bd_hlen = 0;
770 out:
771 	mutex_exit(d->bd_buf_mtx);
772 	return (error);
773 }
774 
775 
776 /*
777  * If there are processes sleeping on this descriptor, wake them up.
778  */
779 static inline void
780 bpf_wakeup(struct bpf_d *d)
781 {
782 
783 	mutex_enter(d->bd_buf_mtx);
784 	cv_broadcast(&d->bd_cv);
785 	mutex_exit(d->bd_buf_mtx);
786 
787 	if (d->bd_async)
788 		fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
789 	selnotify(&d->bd_sel, 0, 0);
790 }
791 
792 static void
793 bpf_timed_out(void *arg)
794 {
795 	struct bpf_d *d = arg;
796 
797 	mutex_enter(d->bd_mtx);
798 	if (d->bd_state == BPF_WAITING) {
799 		d->bd_state = BPF_TIMED_OUT;
800 		if (d->bd_slen != 0)
801 			bpf_wakeup(d);
802 	}
803 	mutex_exit(d->bd_mtx);
804 }
805 
806 
807 static int
808 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
809     kauth_cred_t cred, int flags)
810 {
811 	struct bpf_d *d = fp->f_bpf;
812 	struct bpf_if *bp;
813 	struct ifnet *ifp;
814 	struct mbuf *m, *mc;
815 	int error;
816 	static struct sockaddr_storage dst;
817 	struct psref psref;
818 	int bound;
819 
820 	m = NULL;	/* XXX gcc */
821 
822 	bound = curlwp_bind();
823 	mutex_enter(d->bd_mtx);
824 	bp = d->bd_bif;
825 	if (bp == NULL) {
826 		mutex_exit(d->bd_mtx);
827 		error = ENXIO;
828 		goto out_bindx;
829 	}
830 	bpf_if_acquire(bp, &psref);
831 	mutex_exit(d->bd_mtx);
832 
833 	getnanotime(&d->bd_mtime);
834 
835 	ifp = bp->bif_ifp;
836 	if (if_is_deactivated(ifp)) {
837 		error = ENXIO;
838 		goto out;
839 	}
840 
841 	if (uio->uio_resid == 0) {
842 		error = 0;
843 		goto out;
844 	}
845 
846 	error = bpf_movein(uio, (int)bp->bif_dlt, ifp->if_mtu, &m,
847 		(struct sockaddr *) &dst, &d->bd_wfilter);
848 	if (error)
849 		goto out;
850 
851 	if (m->m_pkthdr.len > ifp->if_mtu) {
852 		m_freem(m);
853 		error = EMSGSIZE;
854 		goto out;
855 	}
856 
857 	if (d->bd_hdrcmplt)
858 		dst.ss_family = pseudo_AF_HDRCMPLT;
859 
860 	if (d->bd_feedback) {
861 		mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
862 		if (mc != NULL)
863 			m_set_rcvif(mc, ifp);
864 		/* Set M_PROMISC for outgoing packets to be discarded. */
865 		if (1 /*d->bd_direction == BPF_D_INOUT*/)
866 			m->m_flags |= M_PROMISC;
867 	} else
868 		mc = NULL;
869 
870 	error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
871 
872 	if (mc != NULL) {
873 		if (error == 0) {
874 			int s = splsoftnet();
875 			KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
876 			ifp->_if_input(ifp, mc);
877 			KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
878 			splx(s);
879 		} else
880 			m_freem(mc);
881 	}
882 	/*
883 	 * The driver frees the mbuf.
884 	 */
885 out:
886 	bpf_if_release(bp, &psref);
887 out_bindx:
888 	curlwp_bindx(bound);
889 	return error;
890 }
891 
892 /*
893  * Reset a descriptor by flushing its packet buffer and clearing the
894  * receive and drop counts.
895  */
896 static void
897 reset_d(struct bpf_d *d)
898 {
899 
900 	KASSERT(mutex_owned(d->bd_mtx));
901 
902 	mutex_enter(d->bd_buf_mtx);
903 	if (d->bd_hbuf) {
904 		/* Free the hold buffer. */
905 		d->bd_fbuf = d->bd_hbuf;
906 		d->bd_hbuf = NULL;
907 	}
908 	d->bd_slen = 0;
909 	d->bd_hlen = 0;
910 	d->bd_rcount = 0;
911 	d->bd_dcount = 0;
912 	d->bd_ccount = 0;
913 	mutex_exit(d->bd_buf_mtx);
914 }
915 
916 /*
917  *  FIONREAD		Check for read packet available.
918  *  BIOCGBLEN		Get buffer len [for read()].
919  *  BIOCSETF		Set ethernet read filter.
920  *  BIOCFLUSH		Flush read packet buffer.
921  *  BIOCPROMISC		Put interface into promiscuous mode.
922  *  BIOCGDLT		Get link layer type.
923  *  BIOCGETIF		Get interface name.
924  *  BIOCSETIF		Set interface.
925  *  BIOCSRTIMEOUT	Set read timeout.
926  *  BIOCGRTIMEOUT	Get read timeout.
927  *  BIOCGSTATS		Get packet stats.
928  *  BIOCIMMEDIATE	Set immediate mode.
929  *  BIOCVERSION		Get filter language version.
930  *  BIOCGHDRCMPLT	Get "header already complete" flag.
931  *  BIOCSHDRCMPLT	Set "header already complete" flag.
932  *  BIOCSFEEDBACK	Set packet feedback mode.
933  *  BIOCGFEEDBACK	Get packet feedback mode.
934  *  BIOCGDIRECTION	Get packet direction flag
935  *  BIOCSDIRECTION	Set packet direction flag
936  */
937 /* ARGSUSED */
938 static int
939 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
940 {
941 	struct bpf_d *d = fp->f_bpf;
942 	int error = 0;
943 
944 	/*
945 	 * Refresh the PID associated with this bpf file.
946 	 */
947 	d->bd_pid = curproc->p_pid;
948 #ifdef _LP64
949 	if (curproc->p_flag & PK_32)
950 		d->bd_compat32 = 1;
951 	else
952 		d->bd_compat32 = 0;
953 #endif
954 
955 	mutex_enter(d->bd_mtx);
956 	if (d->bd_state == BPF_WAITING)
957 		callout_halt(&d->bd_callout, d->bd_mtx);
958 	d->bd_state = BPF_IDLE;
959 	mutex_exit(d->bd_mtx);
960 
961 	if (d->bd_locked) {
962 		switch (cmd) {
963 		case BIOCGBLEN:		/* FALLTHROUGH */
964 		case BIOCFLUSH:		/* FALLTHROUGH */
965 		case BIOCGDLT:		/* FALLTHROUGH */
966 		case BIOCGDLTLIST:	/* FALLTHROUGH */
967 		case BIOCGETIF:		/* FALLTHROUGH */
968 		case BIOCGRTIMEOUT:	/* FALLTHROUGH */
969 		case BIOCGSTATS:	/* FALLTHROUGH */
970 		case BIOCVERSION:	/* FALLTHROUGH */
971 		case BIOCGHDRCMPLT:	/* FALLTHROUGH */
972 		case FIONREAD:		/* FALLTHROUGH */
973 		case BIOCLOCK:		/* FALLTHROUGH */
974 		case BIOCSRTIMEOUT:	/* FALLTHROUGH */
975 		case BIOCIMMEDIATE:	/* FALLTHROUGH */
976 		case TIOCGPGRP:
977 			break;
978 		default:
979 			return EPERM;
980 		}
981 	}
982 
983 	switch (cmd) {
984 
985 	default:
986 		error = EINVAL;
987 		break;
988 
989 	/*
990 	 * Check for read packet available.
991 	 */
992 	case FIONREAD:
993 		{
994 			int n;
995 
996 			mutex_enter(d->bd_buf_mtx);
997 			n = d->bd_slen;
998 			if (d->bd_hbuf)
999 				n += d->bd_hlen;
1000 			mutex_exit(d->bd_buf_mtx);
1001 
1002 			*(int *)addr = n;
1003 			break;
1004 		}
1005 
1006 	/*
1007 	 * Get buffer len [for read()].
1008 	 */
1009 	case BIOCGBLEN:
1010 		*(u_int *)addr = d->bd_bufsize;
1011 		break;
1012 
1013 	/*
1014 	 * Set buffer length.
1015 	 */
1016 	case BIOCSBLEN:
1017 		/*
1018 		 * Forbid to change the buffer length if buffers are already
1019 		 * allocated.
1020 		 */
1021 		mutex_enter(d->bd_mtx);
1022 		mutex_enter(d->bd_buf_mtx);
1023 		if (d->bd_bif != NULL || d->bd_sbuf != NULL)
1024 			error = EINVAL;
1025 		else {
1026 			u_int size = *(u_int *)addr;
1027 
1028 			if (size > bpf_maxbufsize)
1029 				*(u_int *)addr = size = bpf_maxbufsize;
1030 			else if (size < BPF_MINBUFSIZE)
1031 				*(u_int *)addr = size = BPF_MINBUFSIZE;
1032 			d->bd_bufsize = size;
1033 		}
1034 		mutex_exit(d->bd_buf_mtx);
1035 		mutex_exit(d->bd_mtx);
1036 		break;
1037 
1038 	/*
1039 	 * Set link layer read filter.
1040 	 */
1041 	case BIOCSETF:		/* FALLTHROUGH */
1042 	case BIOCSETWF:
1043 		error = bpf_setf(d, addr, cmd);
1044 		break;
1045 
1046 	case BIOCLOCK:
1047 		d->bd_locked = 1;
1048 		break;
1049 
1050 	/*
1051 	 * Flush read packet buffer.
1052 	 */
1053 	case BIOCFLUSH:
1054 		mutex_enter(d->bd_mtx);
1055 		reset_d(d);
1056 		mutex_exit(d->bd_mtx);
1057 		break;
1058 
1059 	/*
1060 	 * Put interface into promiscuous mode.
1061 	 */
1062 	case BIOCPROMISC:
1063 		mutex_enter(d->bd_mtx);
1064 		if (d->bd_bif == NULL) {
1065 			mutex_exit(d->bd_mtx);
1066 			/*
1067 			 * No interface attached yet.
1068 			 */
1069 			error = EINVAL;
1070 			break;
1071 		}
1072 		if (d->bd_promisc == 0) {
1073 			KERNEL_LOCK_UNLESS_NET_MPSAFE();
1074 			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1075 			KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
1076 			if (error == 0)
1077 				d->bd_promisc = 1;
1078 		}
1079 		mutex_exit(d->bd_mtx);
1080 		break;
1081 
1082 	/*
1083 	 * Get device parameters.
1084 	 */
1085 	case BIOCGDLT:
1086 		mutex_enter(d->bd_mtx);
1087 		if (d->bd_bif == NULL)
1088 			error = EINVAL;
1089 		else
1090 			*(u_int *)addr = d->bd_bif->bif_dlt;
1091 		mutex_exit(d->bd_mtx);
1092 		break;
1093 
1094 	/*
1095 	 * Get a list of supported device parameters.
1096 	 */
1097 	case BIOCGDLTLIST:
1098 		mutex_enter(d->bd_mtx);
1099 		if (d->bd_bif == NULL)
1100 			error = EINVAL;
1101 		else
1102 			error = bpf_getdltlist(d, addr);
1103 		mutex_exit(d->bd_mtx);
1104 		break;
1105 
1106 	/*
1107 	 * Set device parameters.
1108 	 */
1109 	case BIOCSDLT:
1110 		mutex_enter(&bpf_mtx);
1111 		mutex_enter(d->bd_mtx);
1112 		if (d->bd_bif == NULL)
1113 			error = EINVAL;
1114 		else
1115 			error = bpf_setdlt(d, *(u_int *)addr);
1116 		mutex_exit(d->bd_mtx);
1117 		mutex_exit(&bpf_mtx);
1118 		break;
1119 
1120 	/*
1121 	 * Set interface name.
1122 	 */
1123 #ifdef OBIOCGETIF
1124 	case OBIOCGETIF:
1125 #endif
1126 	case BIOCGETIF:
1127 		mutex_enter(d->bd_mtx);
1128 		if (d->bd_bif == NULL)
1129 			error = EINVAL;
1130 		else
1131 			bpf_ifname(d->bd_bif->bif_ifp, addr);
1132 		mutex_exit(d->bd_mtx);
1133 		break;
1134 
1135 	/*
1136 	 * Set interface.
1137 	 */
1138 #ifdef OBIOCSETIF
1139 	case OBIOCSETIF:
1140 #endif
1141 	case BIOCSETIF:
1142 		mutex_enter(&bpf_mtx);
1143 		error = bpf_setif(d, addr);
1144 		mutex_exit(&bpf_mtx);
1145 		break;
1146 
1147 	/*
1148 	 * Set read timeout.
1149 	 */
1150 	case BIOCSRTIMEOUT:
1151 		{
1152 			struct timeval *tv = addr;
1153 
1154 			/* Compute number of ticks. */
1155 			d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1156 			if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1157 				d->bd_rtout = 1;
1158 			break;
1159 		}
1160 
1161 #ifdef BIOCGORTIMEOUT
1162 	/*
1163 	 * Get read timeout.
1164 	 */
1165 	case BIOCGORTIMEOUT:
1166 		{
1167 			struct timeval50 *tv = addr;
1168 
1169 			tv->tv_sec = d->bd_rtout / hz;
1170 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1171 			break;
1172 		}
1173 #endif
1174 
1175 #ifdef BIOCSORTIMEOUT
1176 	/*
1177 	 * Set read timeout.
1178 	 */
1179 	case BIOCSORTIMEOUT:
1180 		{
1181 			struct timeval50 *tv = addr;
1182 
1183 			/* Compute number of ticks. */
1184 			d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick;
1185 			if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1186 				d->bd_rtout = 1;
1187 			break;
1188 		}
1189 #endif
1190 
1191 	/*
1192 	 * Get read timeout.
1193 	 */
1194 	case BIOCGRTIMEOUT:
1195 		{
1196 			struct timeval *tv = addr;
1197 
1198 			tv->tv_sec = d->bd_rtout / hz;
1199 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1200 			break;
1201 		}
1202 	/*
1203 	 * Get packet stats.
1204 	 */
1205 	case BIOCGSTATS:
1206 		{
1207 			struct bpf_stat *bs = addr;
1208 
1209 			bs->bs_recv = d->bd_rcount;
1210 			bs->bs_drop = d->bd_dcount;
1211 			bs->bs_capt = d->bd_ccount;
1212 			break;
1213 		}
1214 
1215 	case BIOCGSTATSOLD:
1216 		{
1217 			struct bpf_stat_old *bs = addr;
1218 
1219 			bs->bs_recv = d->bd_rcount;
1220 			bs->bs_drop = d->bd_dcount;
1221 			break;
1222 		}
1223 
1224 	/*
1225 	 * Set immediate mode.
1226 	 */
1227 	case BIOCIMMEDIATE:
1228 		d->bd_immediate = *(u_int *)addr;
1229 		break;
1230 
1231 	case BIOCVERSION:
1232 		{
1233 			struct bpf_version *bv = addr;
1234 
1235 			bv->bv_major = BPF_MAJOR_VERSION;
1236 			bv->bv_minor = BPF_MINOR_VERSION;
1237 			break;
1238 		}
1239 
1240 	case BIOCGHDRCMPLT:	/* get "header already complete" flag */
1241 		*(u_int *)addr = d->bd_hdrcmplt;
1242 		break;
1243 
1244 	case BIOCSHDRCMPLT:	/* set "header already complete" flag */
1245 		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1246 		break;
1247 
1248 	/*
1249 	 * Get packet direction flag
1250 	 */
1251 	case BIOCGDIRECTION:
1252 		*(u_int *)addr = d->bd_direction;
1253 		break;
1254 
1255 	/*
1256 	 * Set packet direction flag
1257 	 */
1258 	case BIOCSDIRECTION:
1259 		{
1260 			u_int	direction;
1261 
1262 			direction = *(u_int *)addr;
1263 			switch (direction) {
1264 			case BPF_D_IN:
1265 			case BPF_D_INOUT:
1266 			case BPF_D_OUT:
1267 				d->bd_direction = direction;
1268 				break;
1269 			default:
1270 				error = EINVAL;
1271 			}
1272 		}
1273 		break;
1274 
1275 	/*
1276 	 * Set "feed packets from bpf back to input" mode
1277 	 */
1278 	case BIOCSFEEDBACK:
1279 		d->bd_feedback = *(u_int *)addr;
1280 		break;
1281 
1282 	/*
1283 	 * Get "feed packets from bpf back to input" mode
1284 	 */
1285 	case BIOCGFEEDBACK:
1286 		*(u_int *)addr = d->bd_feedback;
1287 		break;
1288 
1289 	case FIONBIO:		/* Non-blocking I/O */
1290 		/*
1291 		 * No need to do anything special as we use IO_NDELAY in
1292 		 * bpfread() as an indication of whether or not to block
1293 		 * the read.
1294 		 */
1295 		break;
1296 
1297 	case FIOASYNC:		/* Send signal on receive packets */
1298 		mutex_enter(d->bd_mtx);
1299 		d->bd_async = *(int *)addr;
1300 		mutex_exit(d->bd_mtx);
1301 		break;
1302 
1303 	case TIOCSPGRP:		/* Process or group to send signals to */
1304 	case FIOSETOWN:
1305 		error = fsetown(&d->bd_pgid, cmd, addr);
1306 		break;
1307 
1308 	case TIOCGPGRP:
1309 	case FIOGETOWN:
1310 		error = fgetown(d->bd_pgid, cmd, addr);
1311 		break;
1312 	}
1313 	return (error);
1314 }
1315 
1316 /*
1317  * Set d's packet filter program to fp.  If this file already has a filter,
1318  * free it and replace it.  Returns EINVAL for bogus requests.
1319  */
1320 static int
1321 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1322 {
1323 	struct bpf_insn *fcode;
1324 	bpfjit_func_t jcode;
1325 	size_t flen, size = 0;
1326 	struct bpf_filter *oldf, *newf, **storef;
1327 
1328 	jcode = NULL;
1329 	flen = fp->bf_len;
1330 
1331 	if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1332 		return EINVAL;
1333 	}
1334 
1335 	if (flen) {
1336 		/*
1337 		 * Allocate the buffer, copy the byte-code from
1338 		 * userspace and validate it.
1339 		 */
1340 		size = flen * sizeof(*fp->bf_insns);
1341 		fcode = kmem_alloc(size, KM_SLEEP);
1342 		if (copyin(fp->bf_insns, fcode, size) != 0 ||
1343 		    !bpf_validate(fcode, (int)flen)) {
1344 			kmem_free(fcode, size);
1345 			return EINVAL;
1346 		}
1347 		if (bpf_jit)
1348 			jcode = bpf_jit_generate(NULL, fcode, flen);
1349 	} else {
1350 		fcode = NULL;
1351 	}
1352 
1353 	newf = kmem_alloc(sizeof(*newf), KM_SLEEP);
1354 	newf->bf_insn = fcode;
1355 	newf->bf_size = size;
1356 	newf->bf_jitcode = jcode;
1357 	if (cmd == BIOCSETF)
1358 		d->bd_jitcode = jcode; /* XXX just for kvm(3) users */
1359 
1360 	/* Need to hold bpf_mtx for pserialize_perform */
1361 	mutex_enter(&bpf_mtx);
1362 	mutex_enter(d->bd_mtx);
1363 	if (cmd == BIOCSETWF) {
1364 		oldf = d->bd_wfilter;
1365 		storef = &d->bd_wfilter;
1366 	} else {
1367 		oldf = d->bd_rfilter;
1368 		storef = &d->bd_rfilter;
1369 	}
1370 	atomic_store_release(storef, newf);
1371 	reset_d(d);
1372 	pserialize_perform(bpf_psz);
1373 	mutex_exit(d->bd_mtx);
1374 	mutex_exit(&bpf_mtx);
1375 
1376 	if (oldf != NULL)
1377 		bpf_free_filter(oldf);
1378 
1379 	return 0;
1380 }
1381 
1382 /*
1383  * Detach a file from its current interface (if attached at all) and attach
1384  * to the interface indicated by the name stored in ifr.
1385  * Return an errno or 0.
1386  */
1387 static int
1388 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1389 {
1390 	struct bpf_if *bp;
1391 	char *cp;
1392 	int unit_seen, i, error;
1393 
1394 	KASSERT(mutex_owned(&bpf_mtx));
1395 	/*
1396 	 * Make sure the provided name has a unit number, and default
1397 	 * it to '0' if not specified.
1398 	 * XXX This is ugly ... do this differently?
1399 	 */
1400 	unit_seen = 0;
1401 	cp = ifr->ifr_name;
1402 	cp[sizeof(ifr->ifr_name) - 1] = '\0';	/* sanity */
1403 	while (*cp++)
1404 		if (*cp >= '0' && *cp <= '9')
1405 			unit_seen = 1;
1406 	if (!unit_seen) {
1407 		/* Make sure to leave room for the '\0'. */
1408 		for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1409 			if ((ifr->ifr_name[i] >= 'a' &&
1410 			     ifr->ifr_name[i] <= 'z') ||
1411 			    (ifr->ifr_name[i] >= 'A' &&
1412 			     ifr->ifr_name[i] <= 'Z'))
1413 				continue;
1414 			ifr->ifr_name[i] = '0';
1415 		}
1416 	}
1417 
1418 	/*
1419 	 * Look through attached interfaces for the named one.
1420 	 */
1421 	BPF_IFLIST_WRITER_FOREACH(bp) {
1422 		struct ifnet *ifp = bp->bif_ifp;
1423 
1424 		if (ifp == NULL ||
1425 		    strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1426 			continue;
1427 		/* skip additional entry */
1428 		if (bp->bif_driverp != &ifp->if_bpf)
1429 			continue;
1430 		/*
1431 		 * We found the requested interface.
1432 		 * Allocate the packet buffers if we need to.
1433 		 * If we're already attached to requested interface,
1434 		 * just flush the buffer.
1435 		 */
1436 		/*
1437 		 * bpf_allocbufs is called only here. bpf_mtx ensures that
1438 		 * no race condition happen on d->bd_sbuf.
1439 		 */
1440 		if (d->bd_sbuf == NULL) {
1441 			error = bpf_allocbufs(d);
1442 			if (error != 0)
1443 				return (error);
1444 		}
1445 		mutex_enter(d->bd_mtx);
1446 		if (bp != d->bd_bif) {
1447 			if (d->bd_bif) {
1448 				/*
1449 				 * Detach if attached to something else.
1450 				 */
1451 				bpf_detachd(d);
1452 				BPFIF_DLIST_ENTRY_INIT(d);
1453 			}
1454 
1455 			bpf_attachd(d, bp);
1456 		}
1457 		reset_d(d);
1458 		mutex_exit(d->bd_mtx);
1459 		return (0);
1460 	}
1461 	/* Not found. */
1462 	return (ENXIO);
1463 }
1464 
1465 /*
1466  * Copy the interface name to the ifreq.
1467  */
1468 static void
1469 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1470 {
1471 	memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1472 }
1473 
1474 static int
1475 bpf_stat(struct file *fp, struct stat *st)
1476 {
1477 	struct bpf_d *d = fp->f_bpf;
1478 
1479 	(void)memset(st, 0, sizeof(*st));
1480 	mutex_enter(d->bd_mtx);
1481 	st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1482 	st->st_atimespec = d->bd_atime;
1483 	st->st_mtimespec = d->bd_mtime;
1484 	st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1485 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
1486 	st->st_gid = kauth_cred_getegid(fp->f_cred);
1487 	st->st_mode = S_IFCHR;
1488 	mutex_exit(d->bd_mtx);
1489 	return 0;
1490 }
1491 
1492 /*
1493  * Support for poll() system call
1494  *
1495  * Return true iff the specific operation will not block indefinitely - with
1496  * the assumption that it is safe to positively acknowledge a request for the
1497  * ability to write to the BPF device.
1498  * Otherwise, return false but make a note that a selnotify() must be done.
1499  */
1500 static int
1501 bpf_poll(struct file *fp, int events)
1502 {
1503 	struct bpf_d *d = fp->f_bpf;
1504 	int revents;
1505 
1506 	/*
1507 	 * Refresh the PID associated with this bpf file.
1508 	 */
1509 	mutex_enter(&bpf_mtx);
1510 	d->bd_pid = curproc->p_pid;
1511 
1512 	revents = events & (POLLOUT | POLLWRNORM);
1513 	if (events & (POLLIN | POLLRDNORM)) {
1514 		/*
1515 		 * An imitation of the FIONREAD ioctl code.
1516 		 */
1517 		mutex_enter(d->bd_mtx);
1518 		if (d->bd_hlen != 0 ||
1519 		    ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1520 		     d->bd_slen != 0)) {
1521 			revents |= events & (POLLIN | POLLRDNORM);
1522 		} else {
1523 			selrecord(curlwp, &d->bd_sel);
1524 			/* Start the read timeout if necessary */
1525 			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1526 				callout_reset(&d->bd_callout, d->bd_rtout,
1527 					      bpf_timed_out, d);
1528 				d->bd_state = BPF_WAITING;
1529 			}
1530 		}
1531 		mutex_exit(d->bd_mtx);
1532 	}
1533 
1534 	mutex_exit(&bpf_mtx);
1535 	return (revents);
1536 }
1537 
1538 static void
1539 filt_bpfrdetach(struct knote *kn)
1540 {
1541 	struct bpf_d *d = kn->kn_hook;
1542 
1543 	mutex_enter(d->bd_buf_mtx);
1544 	selremove_knote(&d->bd_sel, kn);
1545 	mutex_exit(d->bd_buf_mtx);
1546 }
1547 
1548 static int
1549 filt_bpfread(struct knote *kn, long hint)
1550 {
1551 	struct bpf_d *d = kn->kn_hook;
1552 	int rv;
1553 
1554 	mutex_enter(d->bd_buf_mtx);
1555 	kn->kn_data = d->bd_hlen;
1556 	if (d->bd_immediate)
1557 		kn->kn_data += d->bd_slen;
1558 	rv = (kn->kn_data > 0);
1559 	mutex_exit(d->bd_buf_mtx);
1560 	return rv;
1561 }
1562 
1563 static const struct filterops bpfread_filtops = {
1564 	.f_flags = FILTEROP_ISFD,
1565 	.f_attach = NULL,
1566 	.f_detach = filt_bpfrdetach,
1567 	.f_event = filt_bpfread,
1568 };
1569 
1570 static int
1571 bpf_kqfilter(struct file *fp, struct knote *kn)
1572 {
1573 	struct bpf_d *d = fp->f_bpf;
1574 
1575 	switch (kn->kn_filter) {
1576 	case EVFILT_READ:
1577 		kn->kn_fop = &bpfread_filtops;
1578 		break;
1579 
1580 	default:
1581 		return (EINVAL);
1582 	}
1583 
1584 	kn->kn_hook = d;
1585 
1586 	mutex_enter(d->bd_buf_mtx);
1587 	selrecord_knote(&d->bd_sel, kn);
1588 	mutex_exit(d->bd_buf_mtx);
1589 
1590 	return (0);
1591 }
1592 
1593 /*
1594  * Copy data from an mbuf chain into a buffer.  This code is derived
1595  * from m_copydata in sys/uipc_mbuf.c.
1596  */
1597 static void *
1598 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1599 {
1600 	const struct mbuf *m;
1601 	u_int count;
1602 	u_char *dst;
1603 
1604 	m = src_arg;
1605 	dst = dst_arg;
1606 	while (len > 0) {
1607 		if (m == NULL)
1608 			panic("bpf_mcpy");
1609 		count = uimin(m->m_len, len);
1610 		memcpy(dst, mtod(m, const void *), count);
1611 		m = m->m_next;
1612 		dst += count;
1613 		len -= count;
1614 	}
1615 	return dst_arg;
1616 }
1617 
1618 static inline u_int
1619 bpf_xfilter(struct bpf_filter **filter, void *pkt, u_int pktlen, u_int buflen)
1620 {
1621 	struct bpf_filter *filt;
1622 	uint32_t mem[BPF_MEMWORDS];
1623 	bpf_args_t args = {
1624 		.pkt = (const uint8_t *)pkt,
1625 		.wirelen = pktlen,
1626 		.buflen = buflen,
1627 		.mem = mem,
1628 		.arg = NULL
1629 	};
1630 	u_int slen;
1631 
1632 	filt = atomic_load_consume(filter);
1633 	if (filt == NULL) /* No filter means accept all. */
1634 		return (u_int)-1;
1635 
1636 	if (filt->bf_jitcode != NULL)
1637 		slen = filt->bf_jitcode(NULL, &args);
1638 	else
1639 		slen = bpf_filter_ext(NULL, filt->bf_insn, &args);
1640 	return slen;
1641 }
1642 
1643 /*
1644  * Dispatch a packet to all the listeners on interface bp.
1645  *
1646  * pkt       pointer to the packet, either a data buffer or an mbuf chain
1647  * buflen    buffer length, if pkt is a data buffer
1648  * cpfn      a function that can copy pkt into the listener's buffer
1649  * pktlen    length of the packet
1650  * direction BPF_D_IN or BPF_D_OUT
1651  */
1652 static inline void
1653 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1654     void *pkt, u_int pktlen, u_int buflen, const u_int direction)
1655 {
1656 	bool gottime = false;
1657 	struct timespec ts;
1658 	struct bpf_d *d;
1659 	int s;
1660 	u_int slen;
1661 
1662 	KASSERT(!cpu_intr_p());
1663 
1664 	/*
1665 	 * Note that the IPL does not have to be raised at this point.
1666 	 * The only problem that could arise here is that if two different
1667 	 * interfaces shared any data.  This is not the case.
1668 	 */
1669 	s = pserialize_read_enter();
1670 	BPFIF_DLIST_READER_FOREACH(d, bp) {
1671 		if (direction == BPF_D_IN) {
1672 			if (d->bd_direction == BPF_D_OUT)
1673 				continue;
1674 		} else { /* BPF_D_OUT */
1675 			if (d->bd_direction == BPF_D_IN)
1676 				continue;
1677 		}
1678 
1679 		atomic_inc_ulong(&d->bd_rcount);
1680 		BPF_STATINC(recv);
1681 
1682 		slen = bpf_xfilter(&d->bd_rfilter, pkt, pktlen, buflen);
1683 		if (slen == 0)
1684 			continue;
1685 
1686 		if (!gottime) {
1687 			gottime = true;
1688 			nanotime(&ts);
1689 		}
1690 		/* Assume catchpacket doesn't sleep */
1691 		catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1692 	}
1693 	pserialize_read_exit(s);
1694 }
1695 
1696 /*
1697  * Incoming linkage from device drivers, when the head of the packet is in
1698  * a buffer, and the tail is in an mbuf chain.
1699  */
1700 static void
1701 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m,
1702 	u_int direction)
1703 {
1704 	u_int pktlen;
1705 	struct mbuf mb;
1706 
1707 	/* Skip outgoing duplicate packets. */
1708 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1709 		m->m_flags &= ~M_PROMISC;
1710 		return;
1711 	}
1712 
1713 	pktlen = m_length(m) + dlen;
1714 
1715 	/*
1716 	 * Craft on-stack mbuf suitable for passing to bpf_filter.
1717 	 * Note that we cut corners here; we only setup what's
1718 	 * absolutely needed--this mbuf should never go anywhere else.
1719 	 */
1720 	(void)memset(&mb, 0, sizeof(mb));
1721 	mb.m_type = MT_DATA;
1722 	mb.m_next = m;
1723 	mb.m_data = data;
1724 	mb.m_len = dlen;
1725 
1726 	bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, direction);
1727 }
1728 
1729 /*
1730  * Incoming linkage from device drivers, when packet is in an mbuf chain.
1731  */
1732 static void
1733 _bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
1734 {
1735 	void *(*cpfn)(void *, const void *, size_t);
1736 	u_int pktlen, buflen;
1737 	void *marg;
1738 
1739 	/* Skip outgoing duplicate packets. */
1740 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1741 		m->m_flags &= ~M_PROMISC;
1742 		return;
1743 	}
1744 
1745 	pktlen = m_length(m);
1746 
1747 	/* Skip zero-sized packets. */
1748 	if (__predict_false(pktlen == 0)) {
1749 		return;
1750 	}
1751 
1752 	if (pktlen == m->m_len) {
1753 		cpfn = (void *)memcpy;
1754 		marg = mtod(m, void *);
1755 		buflen = pktlen;
1756 		KASSERT(buflen != 0);
1757 	} else {
1758 		cpfn = bpf_mcpy;
1759 		marg = m;
1760 		buflen = 0;
1761 	}
1762 
1763 	bpf_deliver(bp, cpfn, marg, pktlen, buflen, direction);
1764 }
1765 
1766 /*
1767  * We need to prepend the address family as
1768  * a four byte field.  Cons up a dummy header
1769  * to pacify bpf.  This is safe because bpf
1770  * will only read from the mbuf (i.e., it won't
1771  * try to free it or keep a pointer a to it).
1772  */
1773 static void
1774 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m, u_int direction)
1775 {
1776 	struct mbuf m0;
1777 
1778 	m0.m_type = MT_DATA;
1779 	m0.m_flags = 0;
1780 	m0.m_next = m;
1781 	m0.m_nextpkt = NULL;
1782 	m0.m_owner = NULL;
1783 	m0.m_len = 4;
1784 	m0.m_data = (char *)&af;
1785 
1786 	_bpf_mtap(bp, &m0, direction);
1787 }
1788 
1789 /*
1790  * Put the SLIP pseudo-"link header" in place.
1791  * Note this M_PREPEND() should never fail,
1792  * swince we know we always have enough space
1793  * in the input buffer.
1794  */
1795 static void
1796 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1797 {
1798 	u_char *hp;
1799 
1800 	M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1801 	if (*m == NULL)
1802 		return;
1803 
1804 	hp = mtod(*m, u_char *);
1805 	hp[SLX_DIR] = SLIPDIR_IN;
1806 	(void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1807 
1808 	_bpf_mtap(bp, *m, BPF_D_IN);
1809 
1810 	m_adj(*m, SLIP_HDRLEN);
1811 }
1812 
1813 /*
1814  * Put the SLIP pseudo-"link header" in
1815  * place.  The compressed header is now
1816  * at the beginning of the mbuf.
1817  */
1818 static void
1819 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1820 {
1821 	struct mbuf m0;
1822 	u_char *hp;
1823 
1824 	m0.m_type = MT_DATA;
1825 	m0.m_flags = 0;
1826 	m0.m_next = m;
1827 	m0.m_nextpkt = NULL;
1828 	m0.m_owner = NULL;
1829 	m0.m_data = m0.m_dat;
1830 	m0.m_len = SLIP_HDRLEN;
1831 
1832 	hp = mtod(&m0, u_char *);
1833 
1834 	hp[SLX_DIR] = SLIPDIR_OUT;
1835 	(void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1836 
1837 	_bpf_mtap(bp, &m0, BPF_D_OUT);
1838 	m_freem(m);
1839 }
1840 
1841 static struct mbuf *
1842 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1843 {
1844 	struct mbuf *dup;
1845 
1846 	dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1847 	if (dup == NULL)
1848 		return NULL;
1849 
1850 	if (bp->bif_mbuf_tail != NULL) {
1851 		bp->bif_mbuf_tail->m_nextpkt = dup;
1852 	} else {
1853 		bp->bif_mbuf_head = dup;
1854 	}
1855 	bp->bif_mbuf_tail = dup;
1856 #ifdef BPF_MTAP_SOFTINT_DEBUG
1857 	log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1858 	    __func__, dup, bp->bif_ifp->if_xname);
1859 #endif
1860 
1861 	return dup;
1862 }
1863 
1864 static struct mbuf *
1865 bpf_mbuf_dequeue(struct bpf_if *bp)
1866 {
1867 	struct mbuf *m;
1868 	int s;
1869 
1870 	/* XXX NOMPSAFE: assumed running on one CPU */
1871 	s = splnet();
1872 	m = bp->bif_mbuf_head;
1873 	if (m != NULL) {
1874 		bp->bif_mbuf_head = m->m_nextpkt;
1875 		m->m_nextpkt = NULL;
1876 
1877 		if (bp->bif_mbuf_head == NULL)
1878 			bp->bif_mbuf_tail = NULL;
1879 #ifdef BPF_MTAP_SOFTINT_DEBUG
1880 		log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1881 		    __func__, m, bp->bif_ifp->if_xname);
1882 #endif
1883 	}
1884 	splx(s);
1885 
1886 	return m;
1887 }
1888 
1889 static void
1890 bpf_mtap_si(void *arg)
1891 {
1892 	struct bpf_if *bp = arg;
1893 	struct mbuf *m;
1894 
1895 	while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1896 #ifdef BPF_MTAP_SOFTINT_DEBUG
1897 		log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1898 		    __func__, m, bp->bif_ifp->if_xname);
1899 #endif
1900 		bpf_ops->bpf_mtap(bp, m, BPF_D_IN);
1901 		m_freem(m);
1902 	}
1903 }
1904 
1905 static void
1906 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1907 {
1908 	struct bpf_if *bp = ifp->if_bpf;
1909 	struct mbuf *dup;
1910 
1911 	KASSERT(cpu_intr_p());
1912 
1913 	/* To avoid extra invocations of the softint */
1914 	if (BPFIF_DLIST_READER_EMPTY(bp))
1915 		return;
1916 	KASSERT(bp->bif_si != NULL);
1917 
1918 	dup = bpf_mbuf_enqueue(bp, m);
1919 	if (dup != NULL)
1920 		softint_schedule(bp->bif_si);
1921 }
1922 
1923 static int
1924 bpf_hdrlen(struct bpf_d *d)
1925 {
1926 	int hdrlen = d->bd_bif->bif_hdrlen;
1927 	/*
1928 	 * Compute the length of the bpf header.  This is not necessarily
1929 	 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1930 	 * that the network layer header begins on a longword boundary (for
1931 	 * performance reasons and to alleviate alignment restrictions).
1932 	 */
1933 #ifdef _LP64
1934 	if (d->bd_compat32)
1935 		return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1936 	else
1937 #endif
1938 		return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1939 }
1940 
1941 /*
1942  * Move the packet data from interface memory (pkt) into the
1943  * store buffer. Call the wakeup functions if it's time to wakeup
1944  * a listener (buffer full), "cpfn" is the routine called to do the
1945  * actual data transfer. memcpy is passed in to copy contiguous chunks,
1946  * while bpf_mcpy is passed in to copy mbuf chains.  In the latter case,
1947  * pkt is really an mbuf.
1948  */
1949 static void
1950 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
1951     void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
1952 {
1953 	char *h;
1954 	int totlen, curlen, caplen;
1955 	int hdrlen = bpf_hdrlen(d);
1956 	int do_wakeup = 0;
1957 
1958 	atomic_inc_ulong(&d->bd_ccount);
1959 	BPF_STATINC(capt);
1960 	/*
1961 	 * Figure out how many bytes to move.  If the packet is
1962 	 * greater or equal to the snapshot length, transfer that
1963 	 * much.  Otherwise, transfer the whole packet (unless
1964 	 * we hit the buffer size limit).
1965 	 */
1966 	totlen = hdrlen + uimin(snaplen, pktlen);
1967 	if (totlen > d->bd_bufsize)
1968 		totlen = d->bd_bufsize;
1969 	/*
1970 	 * If we adjusted totlen to fit the bufsize, it could be that
1971 	 * totlen is smaller than hdrlen because of the link layer header.
1972 	 */
1973 	caplen = totlen - hdrlen;
1974 	if (caplen < 0)
1975 		caplen = 0;
1976 
1977 	mutex_enter(d->bd_buf_mtx);
1978 	/*
1979 	 * Round up the end of the previous packet to the next longword.
1980 	 */
1981 #ifdef _LP64
1982 	if (d->bd_compat32)
1983 		curlen = BPF_WORDALIGN32(d->bd_slen);
1984 	else
1985 #endif
1986 		curlen = BPF_WORDALIGN(d->bd_slen);
1987 	if (curlen + totlen > d->bd_bufsize) {
1988 		/*
1989 		 * This packet will overflow the storage buffer.
1990 		 * Rotate the buffers if we can, then wakeup any
1991 		 * pending reads.
1992 		 */
1993 		if (d->bd_fbuf == NULL) {
1994 			mutex_exit(d->bd_buf_mtx);
1995 			/*
1996 			 * We haven't completed the previous read yet,
1997 			 * so drop the packet.
1998 			 */
1999 			atomic_inc_ulong(&d->bd_dcount);
2000 			BPF_STATINC(drop);
2001 			return;
2002 		}
2003 		ROTATE_BUFFERS(d);
2004 		do_wakeup = 1;
2005 		curlen = 0;
2006 	} else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
2007 		/*
2008 		 * Immediate mode is set, or the read timeout has
2009 		 * already expired during a select call.  A packet
2010 		 * arrived, so the reader should be woken up.
2011 		 */
2012 		do_wakeup = 1;
2013 	}
2014 
2015 	/*
2016 	 * Append the bpf header.
2017 	 */
2018 	h = (char *)d->bd_sbuf + curlen;
2019 #ifdef _LP64
2020 	if (d->bd_compat32) {
2021 		struct bpf_hdr32 *hp32;
2022 
2023 		hp32 = (struct bpf_hdr32 *)h;
2024 		hp32->bh_tstamp.tv_sec = ts->tv_sec;
2025 		hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
2026 		hp32->bh_datalen = pktlen;
2027 		hp32->bh_hdrlen = hdrlen;
2028 		hp32->bh_caplen = caplen;
2029 	} else
2030 #endif
2031 	{
2032 		struct bpf_hdr *hp;
2033 
2034 		hp = (struct bpf_hdr *)h;
2035 		hp->bh_tstamp.tv_sec = ts->tv_sec;
2036 		hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
2037 		hp->bh_datalen = pktlen;
2038 		hp->bh_hdrlen = hdrlen;
2039 		hp->bh_caplen = caplen;
2040 	}
2041 
2042 	/*
2043 	 * Copy the packet data into the store buffer and update its length.
2044 	 */
2045 	(*cpfn)(h + hdrlen, pkt, caplen);
2046 	d->bd_slen = curlen + totlen;
2047 	mutex_exit(d->bd_buf_mtx);
2048 
2049 	/*
2050 	 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
2051 	 * will cause filt_bpfread() to be called with it adjusted.
2052 	 */
2053 	if (do_wakeup)
2054 		bpf_wakeup(d);
2055 }
2056 
2057 /*
2058  * Initialize all nonzero fields of a descriptor.
2059  */
2060 static int
2061 bpf_allocbufs(struct bpf_d *d)
2062 {
2063 
2064 	d->bd_fbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2065 	if (!d->bd_fbuf)
2066 		return (ENOBUFS);
2067 	d->bd_sbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2068 	if (!d->bd_sbuf) {
2069 		kmem_free(d->bd_fbuf, d->bd_bufsize);
2070 		return (ENOBUFS);
2071 	}
2072 	d->bd_slen = 0;
2073 	d->bd_hlen = 0;
2074 	return (0);
2075 }
2076 
2077 static void
2078 bpf_free_filter(struct bpf_filter *filter)
2079 {
2080 
2081 	KASSERT(filter != NULL);
2082 	KASSERT(filter->bf_insn != NULL);
2083 
2084 	kmem_free(filter->bf_insn, filter->bf_size);
2085 	if (filter->bf_jitcode != NULL)
2086 		bpf_jit_freecode(filter->bf_jitcode);
2087 	kmem_free(filter, sizeof(*filter));
2088 }
2089 
2090 /*
2091  * Free buffers currently in use by a descriptor.
2092  * Called on close.
2093  */
2094 static void
2095 bpf_freed(struct bpf_d *d)
2096 {
2097 	/*
2098 	 * We don't need to lock out interrupts since this descriptor has
2099 	 * been detached from its interface and it yet hasn't been marked
2100 	 * free.
2101 	 */
2102 	if (d->bd_sbuf != NULL) {
2103 		kmem_free(d->bd_sbuf, d->bd_bufsize);
2104 		if (d->bd_hbuf != NULL)
2105 			kmem_free(d->bd_hbuf, d->bd_bufsize);
2106 		if (d->bd_fbuf != NULL)
2107 			kmem_free(d->bd_fbuf, d->bd_bufsize);
2108 	}
2109 	if (d->bd_rfilter != NULL) {
2110 		bpf_free_filter(d->bd_rfilter);
2111 		d->bd_rfilter = NULL;
2112 	}
2113 	if (d->bd_wfilter != NULL) {
2114 		bpf_free_filter(d->bd_wfilter);
2115 		d->bd_wfilter = NULL;
2116 	}
2117 	d->bd_jitcode = NULL;
2118 }
2119 
2120 /*
2121  * Attach an interface to bpf.  dlt is the link layer type;
2122  * hdrlen is the fixed size of the link header for the specified dlt
2123  * (variable length headers not yet supported).
2124  */
2125 static void
2126 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2127 {
2128 	struct bpf_if *bp;
2129 	bp = kmem_alloc(sizeof(*bp), KM_NOSLEEP);
2130 	if (bp == NULL)
2131 		panic("%s: out of memory", __func__);
2132 
2133 	mutex_enter(&bpf_mtx);
2134 	bp->bif_driverp = driverp;
2135 	bp->bif_ifp = ifp;
2136 	bp->bif_dlt = dlt;
2137 	bp->bif_si = NULL;
2138 	BPF_IFLIST_ENTRY_INIT(bp);
2139 	PSLIST_INIT(&bp->bif_dlist_head);
2140 	psref_target_init(&bp->bif_psref, bpf_psref_class);
2141 	SLIST_INIT(&bp->bif_trackers);
2142 
2143 	BPF_IFLIST_WRITER_INSERT_HEAD(bp);
2144 
2145 	*bp->bif_driverp = NULL;
2146 
2147 	bp->bif_hdrlen = hdrlen;
2148 	mutex_exit(&bpf_mtx);
2149 #if 0
2150 	printf("bpf: %s attached with dlt %x\n", ifp->if_xname, dlt);
2151 #endif
2152 }
2153 
2154 static void
2155 _bpf_mtap_softint_init(struct ifnet *ifp)
2156 {
2157 	struct bpf_if *bp;
2158 
2159 	mutex_enter(&bpf_mtx);
2160 	BPF_IFLIST_WRITER_FOREACH(bp) {
2161 		if (bp->bif_ifp != ifp)
2162 			continue;
2163 
2164 		bp->bif_mbuf_head = NULL;
2165 		bp->bif_mbuf_tail = NULL;
2166 		bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
2167 		if (bp->bif_si == NULL)
2168 			panic("%s: softint_establish() failed", __func__);
2169 		break;
2170 	}
2171 	mutex_exit(&bpf_mtx);
2172 
2173 	if (bp == NULL)
2174 		panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
2175 }
2176 
2177 /*
2178  * Remove an interface from bpf.
2179  */
2180 static void
2181 _bpfdetach(struct ifnet *ifp)
2182 {
2183 	struct bpf_if *bp;
2184 	struct bpf_d *d;
2185 	int s;
2186 
2187 	mutex_enter(&bpf_mtx);
2188 	/* Nuke the vnodes for any open instances */
2189   again_d:
2190 	BPF_DLIST_WRITER_FOREACH(d) {
2191 		mutex_enter(d->bd_mtx);
2192 		if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2193 			/*
2194 			 * Detach the descriptor from an interface now.
2195 			 * It will be free'ed later by close routine.
2196 			 */
2197 			bpf_detachd(d);
2198 			mutex_exit(d->bd_mtx);
2199 			goto again_d;
2200 		}
2201 		mutex_exit(d->bd_mtx);
2202 	}
2203 
2204   again:
2205 	BPF_IFLIST_WRITER_FOREACH(bp) {
2206 		if (bp->bif_ifp == ifp) {
2207 			BPF_IFLIST_WRITER_REMOVE(bp);
2208 
2209 			pserialize_perform(bpf_psz);
2210 			psref_target_destroy(&bp->bif_psref, bpf_psref_class);
2211 
2212 			while (!SLIST_EMPTY(&bp->bif_trackers)) {
2213 				struct bpf_event_tracker *t =
2214 				    SLIST_FIRST(&bp->bif_trackers);
2215 				SLIST_REMOVE_HEAD(&bp->bif_trackers,
2216 				    bet_entries);
2217 				kmem_free(t, sizeof(*t));
2218 			}
2219 
2220 			BPF_IFLIST_ENTRY_DESTROY(bp);
2221 			if (bp->bif_si != NULL) {
2222 				/* XXX NOMPSAFE: assumed running on one CPU */
2223 				s = splnet();
2224 				while (bp->bif_mbuf_head != NULL) {
2225 					struct mbuf *m = bp->bif_mbuf_head;
2226 					bp->bif_mbuf_head = m->m_nextpkt;
2227 					m_freem(m);
2228 				}
2229 				splx(s);
2230 				softint_disestablish(bp->bif_si);
2231 			}
2232 			kmem_free(bp, sizeof(*bp));
2233 			goto again;
2234 		}
2235 	}
2236 	mutex_exit(&bpf_mtx);
2237 }
2238 
2239 /*
2240  * Change the data link type of a interface.
2241  */
2242 static void
2243 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2244 {
2245 	struct bpf_if *bp;
2246 
2247 	mutex_enter(&bpf_mtx);
2248 	BPF_IFLIST_WRITER_FOREACH(bp) {
2249 		if (bp->bif_driverp == &ifp->if_bpf)
2250 			break;
2251 	}
2252 	if (bp == NULL)
2253 		panic("bpf_change_type");
2254 
2255 	bp->bif_dlt = dlt;
2256 
2257 	bp->bif_hdrlen = hdrlen;
2258 	mutex_exit(&bpf_mtx);
2259 }
2260 
2261 /*
2262  * Get a list of available data link type of the interface.
2263  */
2264 static int
2265 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2266 {
2267 	int n, error;
2268 	struct ifnet *ifp;
2269 	struct bpf_if *bp;
2270 	int s, bound;
2271 
2272 	KASSERT(mutex_owned(d->bd_mtx));
2273 
2274 	ifp = d->bd_bif->bif_ifp;
2275 	n = 0;
2276 	error = 0;
2277 
2278 	bound = curlwp_bind();
2279 	s = pserialize_read_enter();
2280 	BPF_IFLIST_READER_FOREACH(bp) {
2281 		if (bp->bif_ifp != ifp)
2282 			continue;
2283 		if (bfl->bfl_list != NULL) {
2284 			struct psref psref;
2285 
2286 			if (n >= bfl->bfl_len) {
2287 				pserialize_read_exit(s);
2288 				return ENOMEM;
2289 			}
2290 
2291 			bpf_if_acquire(bp, &psref);
2292 			pserialize_read_exit(s);
2293 
2294 			error = copyout(&bp->bif_dlt,
2295 			    bfl->bfl_list + n, sizeof(u_int));
2296 
2297 			s = pserialize_read_enter();
2298 			bpf_if_release(bp, &psref);
2299 		}
2300 		n++;
2301 	}
2302 	pserialize_read_exit(s);
2303 	curlwp_bindx(bound);
2304 
2305 	bfl->bfl_len = n;
2306 	return error;
2307 }
2308 
2309 /*
2310  * Set the data link type of a BPF instance.
2311  */
2312 static int
2313 bpf_setdlt(struct bpf_d *d, u_int dlt)
2314 {
2315 	int error, opromisc;
2316 	struct ifnet *ifp;
2317 	struct bpf_if *bp;
2318 
2319 	KASSERT(mutex_owned(&bpf_mtx));
2320 	KASSERT(mutex_owned(d->bd_mtx));
2321 
2322 	if (d->bd_bif->bif_dlt == dlt)
2323 		return 0;
2324 	ifp = d->bd_bif->bif_ifp;
2325 	BPF_IFLIST_WRITER_FOREACH(bp) {
2326 		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2327 			break;
2328 	}
2329 	if (bp == NULL)
2330 		return EINVAL;
2331 	opromisc = d->bd_promisc;
2332 	bpf_detachd(d);
2333 	BPFIF_DLIST_ENTRY_INIT(d);
2334 	bpf_attachd(d, bp);
2335 	reset_d(d);
2336 	if (opromisc) {
2337 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
2338 		error = ifpromisc(bp->bif_ifp, 1);
2339 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2340 		if (error)
2341 			printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2342 			    bp->bif_ifp->if_xname, error);
2343 		else
2344 			d->bd_promisc = 1;
2345 	}
2346 	return 0;
2347 }
2348 
2349 static int
2350 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2351 {
2352 	int newsize, error;
2353 	struct sysctlnode node;
2354 
2355 	node = *rnode;
2356 	node.sysctl_data = &newsize;
2357 	newsize = bpf_maxbufsize;
2358 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2359 	if (error || newp == NULL)
2360 		return (error);
2361 
2362 	if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2363 		return (EINVAL);
2364 
2365 	bpf_maxbufsize = newsize;
2366 
2367 	return (0);
2368 }
2369 
2370 #if defined(MODULAR) || defined(BPFJIT)
2371 static int
2372 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2373 {
2374 	bool newval;
2375 	int error;
2376 	struct sysctlnode node;
2377 
2378 	node = *rnode;
2379 	node.sysctl_data = &newval;
2380 	newval = bpf_jit;
2381 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2382 	if (error != 0 || newp == NULL)
2383 		return error;
2384 
2385 	bpf_jit = newval;
2386 	if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2387 		printf("JIT compilation is postponed "
2388 		    "until after bpfjit module is loaded\n");
2389 	}
2390 
2391 	return 0;
2392 }
2393 #endif
2394 
2395 static int
2396 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2397 {
2398 	int    error, elem_count;
2399 	struct bpf_d	 *dp;
2400 	struct bpf_d_ext  dpe;
2401 	size_t len, needed, elem_size, out_size;
2402 	char   *sp;
2403 
2404 	if (namelen == 1 && name[0] == CTL_QUERY)
2405 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
2406 
2407 	if (namelen != 2)
2408 		return (EINVAL);
2409 
2410 	/* BPF peers is privileged information. */
2411 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2412 	    KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2413 	if (error)
2414 		return (EPERM);
2415 
2416 	len = (oldp != NULL) ? *oldlenp : 0;
2417 	sp = oldp;
2418 	elem_size = name[0];
2419 	elem_count = name[1];
2420 	out_size = MIN(sizeof(dpe), elem_size);
2421 	needed = 0;
2422 
2423 	if (elem_size < 1 || elem_count < 0)
2424 		return (EINVAL);
2425 
2426 	mutex_enter(&bpf_mtx);
2427 	BPF_DLIST_WRITER_FOREACH(dp) {
2428 		if (len >= elem_size && elem_count > 0) {
2429 #define BPF_EXT(field)	dpe.bde_ ## field = dp->bd_ ## field
2430 			BPF_EXT(bufsize);
2431 			BPF_EXT(promisc);
2432 			BPF_EXT(state);
2433 			BPF_EXT(immediate);
2434 			BPF_EXT(hdrcmplt);
2435 			BPF_EXT(direction);
2436 			BPF_EXT(pid);
2437 			BPF_EXT(rcount);
2438 			BPF_EXT(dcount);
2439 			BPF_EXT(ccount);
2440 #undef BPF_EXT
2441 			mutex_enter(dp->bd_mtx);
2442 			if (dp->bd_bif)
2443 				(void)strlcpy(dpe.bde_ifname,
2444 				    dp->bd_bif->bif_ifp->if_xname,
2445 				    IFNAMSIZ - 1);
2446 			else
2447 				dpe.bde_ifname[0] = '\0';
2448 			dpe.bde_locked = dp->bd_locked;
2449 			mutex_exit(dp->bd_mtx);
2450 
2451 			error = copyout(&dpe, sp, out_size);
2452 			if (error)
2453 				break;
2454 			sp += elem_size;
2455 			len -= elem_size;
2456 		}
2457 		needed += elem_size;
2458 		if (elem_count > 0 && elem_count != INT_MAX)
2459 			elem_count--;
2460 	}
2461 	mutex_exit(&bpf_mtx);
2462 
2463 	*oldlenp = needed;
2464 
2465 	return (error);
2466 }
2467 
2468 static void
2469 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2470 {
2471 	struct bpf_stat *const stats = p;
2472 	struct bpf_stat *sum = arg;
2473 
2474 	int s = splnet();
2475 
2476 	sum->bs_recv += stats->bs_recv;
2477 	sum->bs_drop += stats->bs_drop;
2478 	sum->bs_capt += stats->bs_capt;
2479 
2480 	splx(s);
2481 }
2482 
2483 static int
2484 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2485 {
2486 	struct sysctlnode node;
2487 	int error;
2488 	struct bpf_stat sum;
2489 
2490 	memset(&sum, 0, sizeof(sum));
2491 	node = *rnode;
2492 
2493 	percpu_foreach_xcall(bpf_gstats_percpu, XC_HIGHPRI_IPL(IPL_SOFTNET),
2494 	    bpf_stats, &sum);
2495 
2496 	node.sysctl_data = &sum;
2497 	node.sysctl_size = sizeof(sum);
2498 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2499 	if (error != 0 || newp == NULL)
2500 		return error;
2501 
2502 	return 0;
2503 }
2504 
2505 SYSCTL_SETUP(sysctl_net_bpf_setup, "bpf sysctls")
2506 {
2507 	const struct sysctlnode *node;
2508 
2509 	node = NULL;
2510 	sysctl_createv(clog, 0, NULL, &node,
2511 		       CTLFLAG_PERMANENT,
2512 		       CTLTYPE_NODE, "bpf",
2513 		       SYSCTL_DESCR("BPF options"),
2514 		       NULL, 0, NULL, 0,
2515 		       CTL_NET, CTL_CREATE, CTL_EOL);
2516 	if (node != NULL) {
2517 #if defined(MODULAR) || defined(BPFJIT)
2518 		sysctl_createv(clog, 0, NULL, NULL,
2519 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2520 			CTLTYPE_BOOL, "jit",
2521 			SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2522 			sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2523 			CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2524 #endif
2525 		sysctl_createv(clog, 0, NULL, NULL,
2526 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2527 			CTLTYPE_INT, "maxbufsize",
2528 			SYSCTL_DESCR("Maximum size for data capture buffer"),
2529 			sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2530 			CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2531 		sysctl_createv(clog, 0, NULL, NULL,
2532 			CTLFLAG_PERMANENT,
2533 			CTLTYPE_STRUCT, "stats",
2534 			SYSCTL_DESCR("BPF stats"),
2535 			bpf_sysctl_gstats_handler, 0, NULL, 0,
2536 			CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2537 		sysctl_createv(clog, 0, NULL, NULL,
2538 			CTLFLAG_PERMANENT,
2539 			CTLTYPE_STRUCT, "peers",
2540 			SYSCTL_DESCR("BPF peers"),
2541 			sysctl_net_bpf_peers, 0, NULL, 0,
2542 			CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2543 	}
2544 
2545 }
2546 
2547 static int
2548 _bpf_register_track_event(struct bpf_if **driverp,
2549 	    void (*_fun)(struct bpf_if *, struct ifnet *, int, int))
2550 {
2551 	struct bpf_if *bp;
2552 	struct bpf_event_tracker *t;
2553 	int ret = ENOENT;
2554 
2555 	t = kmem_zalloc(sizeof(*t), KM_SLEEP);
2556 	if (!t)
2557 		return ENOMEM;
2558 	t->bet_notify = _fun;
2559 
2560 	mutex_enter(&bpf_mtx);
2561 	BPF_IFLIST_WRITER_FOREACH(bp) {
2562 		if (bp->bif_driverp != driverp)
2563 			continue;
2564 		SLIST_INSERT_HEAD(&bp->bif_trackers, t, bet_entries);
2565 		ret = 0;
2566 		break;
2567 	}
2568 	mutex_exit(&bpf_mtx);
2569 
2570 	return ret;
2571 }
2572 
2573 static int
2574 _bpf_deregister_track_event(struct bpf_if **driverp,
2575 	    void (*_fun)(struct bpf_if *, struct ifnet *, int, int))
2576 {
2577 	struct bpf_if *bp;
2578 	struct bpf_event_tracker *t = NULL;
2579 	int ret = ENOENT;
2580 
2581 	mutex_enter(&bpf_mtx);
2582 	BPF_IFLIST_WRITER_FOREACH(bp) {
2583 		if (bp->bif_driverp != driverp)
2584 			continue;
2585 		SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
2586 			if (t->bet_notify == _fun) {
2587 				ret = 0;
2588 				break;
2589 			}
2590 		}
2591 		if (ret == 0)
2592 			break;
2593 	}
2594 	if (ret == 0 && t && t->bet_notify == _fun) {
2595 		SLIST_REMOVE(&bp->bif_trackers, t, bpf_event_tracker,
2596 		    bet_entries);
2597 	}
2598 	mutex_exit(&bpf_mtx);
2599 	if (ret == 0)
2600 		kmem_free(t, sizeof(*t));
2601 	return ret;
2602 }
2603 
2604 struct bpf_ops bpf_ops_kernel = {
2605 	.bpf_attach =		_bpfattach,
2606 	.bpf_detach =		_bpfdetach,
2607 	.bpf_change_type =	_bpf_change_type,
2608 	.bpf_register_track_event = _bpf_register_track_event,
2609 	.bpf_deregister_track_event = _bpf_deregister_track_event,
2610 
2611 	.bpf_mtap =		_bpf_mtap,
2612 	.bpf_mtap2 =		_bpf_mtap2,
2613 	.bpf_mtap_af =		_bpf_mtap_af,
2614 	.bpf_mtap_sl_in =	_bpf_mtap_sl_in,
2615 	.bpf_mtap_sl_out =	_bpf_mtap_sl_out,
2616 
2617 	.bpf_mtap_softint =		_bpf_mtap_softint,
2618 	.bpf_mtap_softint_init =	_bpf_mtap_softint_init,
2619 };
2620 
2621 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2622 
2623 static int
2624 bpf_modcmd(modcmd_t cmd, void *arg)
2625 {
2626 #ifdef _MODULE
2627 	devmajor_t bmajor, cmajor;
2628 #endif
2629 	int error = 0;
2630 
2631 	switch (cmd) {
2632 	case MODULE_CMD_INIT:
2633 		bpf_init();
2634 #ifdef _MODULE
2635 		bmajor = cmajor = NODEVMAJOR;
2636 		error = devsw_attach("bpf", NULL, &bmajor,
2637 		    &bpf_cdevsw, &cmajor);
2638 		if (error)
2639 			break;
2640 #endif
2641 
2642 		bpf_ops_handover_enter(&bpf_ops_kernel);
2643 		atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2644 		bpf_ops_handover_exit();
2645 		break;
2646 
2647 	case MODULE_CMD_FINI:
2648 		/*
2649 		 * While there is no reference counting for bpf callers,
2650 		 * unload could at least in theory be done similarly to
2651 		 * system call disestablishment.  This should even be
2652 		 * a little simpler:
2653 		 *
2654 		 * 1) replace op vector with stubs
2655 		 * 2) post update to all cpus with xc
2656 		 * 3) check that nobody is in bpf anymore
2657 		 *    (it's doubtful we'd want something like l_sysent,
2658 		 *     but we could do something like *signed* percpu
2659 		 *     counters.  if the sum is 0, we're good).
2660 		 * 4) if fail, unroll changes
2661 		 *
2662 		 * NOTE: change won't be atomic to the outside.  some
2663 		 * packets may be not captured even if unload is
2664 		 * not successful.  I think packet capture not working
2665 		 * is a perfectly logical consequence of trying to
2666 		 * disable packet capture.
2667 		 */
2668 		error = EOPNOTSUPP;
2669 		break;
2670 
2671 	default:
2672 		error = ENOTTY;
2673 		break;
2674 	}
2675 
2676 	return error;
2677 }
2678