1 /* $NetBSD: bpf.c,v 1.243 2021/09/26 01:16:10 thorpej Exp $ */ 2 3 /* 4 * Copyright (c) 1990, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from the Stanford/CMU enet packet filter, 8 * (net/enet.c) distributed as part of 4.3BSD, and code contributed 9 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence 10 * Berkeley Laboratory. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)bpf.c 8.4 (Berkeley) 1/9/95 37 * static char rcsid[] = 38 * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp "; 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.243 2021/09/26 01:16:10 thorpej Exp $"); 43 44 #if defined(_KERNEL_OPT) 45 #include "opt_bpf.h" 46 #include "sl.h" 47 #include "opt_net_mpsafe.h" 48 #endif 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/mbuf.h> 53 #include <sys/buf.h> 54 #include <sys/time.h> 55 #include <sys/proc.h> 56 #include <sys/ioctl.h> 57 #include <sys/conf.h> 58 #include <sys/vnode.h> 59 #include <sys/queue.h> 60 #include <sys/stat.h> 61 #include <sys/module.h> 62 #include <sys/atomic.h> 63 #include <sys/cpu.h> 64 65 #include <sys/file.h> 66 #include <sys/filedesc.h> 67 #include <sys/tty.h> 68 #include <sys/uio.h> 69 70 #include <sys/protosw.h> 71 #include <sys/socket.h> 72 #include <sys/errno.h> 73 #include <sys/kernel.h> 74 #include <sys/poll.h> 75 #include <sys/sysctl.h> 76 #include <sys/kauth.h> 77 #include <sys/syslog.h> 78 #include <sys/percpu.h> 79 #include <sys/pserialize.h> 80 #include <sys/lwp.h> 81 #include <sys/xcall.h> 82 83 #include <net/if.h> 84 #include <net/slip.h> 85 86 #include <net/bpf.h> 87 #include <net/bpfdesc.h> 88 #include <net/bpfjit.h> 89 90 #include <net/if_arc.h> 91 #include <net/if_ether.h> 92 93 #include <netinet/in.h> 94 #include <netinet/if_inarp.h> 95 96 97 #include <compat/sys/sockio.h> 98 99 #ifndef BPF_BUFSIZE 100 /* 101 * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet 102 * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k). 103 */ 104 # define BPF_BUFSIZE 32768 105 #endif 106 107 #define PRINET 26 /* interruptible */ 108 109 /* 110 * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able. 111 * XXX the default values should be computed dynamically based 112 * on available memory size and available mbuf clusters. 113 */ 114 static int bpf_bufsize = BPF_BUFSIZE; 115 static int bpf_maxbufsize = BPF_DFLTBUFSIZE; /* XXX set dynamically, see above */ 116 static bool bpf_jit = false; 117 118 struct bpfjit_ops bpfjit_module_ops = { 119 .bj_generate_code = NULL, 120 .bj_free_code = NULL 121 }; 122 123 /* 124 * Global BPF statistics returned by net.bpf.stats sysctl. 125 */ 126 static struct percpu *bpf_gstats_percpu; /* struct bpf_stat */ 127 128 #define BPF_STATINC(id) \ 129 { \ 130 struct bpf_stat *__stats = \ 131 percpu_getref(bpf_gstats_percpu); \ 132 __stats->bs_##id++; \ 133 percpu_putref(bpf_gstats_percpu); \ 134 } 135 136 /* 137 * Locking notes: 138 * - bpf_mtx (adaptive mutex) protects: 139 * - Gobal lists: bpf_iflist and bpf_dlist 140 * - struct bpf_if 141 * - bpf_close 142 * - bpf_psz (pserialize) 143 * - struct bpf_d has two mutexes: 144 * - bd_buf_mtx (spin mutex) protects the buffers that can be accessed 145 * on packet tapping 146 * - bd_mtx (adaptive mutex) protects member variables other than the buffers 147 * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx 148 * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is 149 * never freed because struct bpf_d is only freed in bpf_close and 150 * bpf_close never be called while executing bpf_read and bpf_write 151 * - A filter that is assigned to bpf_d can be replaced with another filter 152 * while tapping packets, so it needs to be done atomically 153 * - struct bpf_d is iterated on bpf_dlist with psz 154 * - struct bpf_if is iterated on bpf_iflist with psz or psref 155 */ 156 /* 157 * Use a mutex to avoid a race condition between gathering the stats/peers 158 * and opening/closing the device. 159 */ 160 static kmutex_t bpf_mtx; 161 162 static struct psref_class *bpf_psref_class __read_mostly; 163 static pserialize_t bpf_psz; 164 165 static inline void 166 bpf_if_acquire(struct bpf_if *bp, struct psref *psref) 167 { 168 169 psref_acquire(psref, &bp->bif_psref, bpf_psref_class); 170 } 171 172 static inline void 173 bpf_if_release(struct bpf_if *bp, struct psref *psref) 174 { 175 176 psref_release(psref, &bp->bif_psref, bpf_psref_class); 177 } 178 179 /* 180 * bpf_iflist is the list of interfaces; each corresponds to an ifnet 181 * bpf_dtab holds the descriptors, indexed by minor device # 182 */ 183 static struct pslist_head bpf_iflist; 184 static struct pslist_head bpf_dlist; 185 186 /* Macros for bpf_d on bpf_dlist */ 187 #define BPF_DLIST_WRITER_INSERT_HEAD(__d) \ 188 PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry) 189 #define BPF_DLIST_READER_FOREACH(__d) \ 190 PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d, \ 191 bd_bpf_dlist_entry) 192 #define BPF_DLIST_WRITER_FOREACH(__d) \ 193 PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d, \ 194 bd_bpf_dlist_entry) 195 #define BPF_DLIST_ENTRY_INIT(__d) \ 196 PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry) 197 #define BPF_DLIST_WRITER_REMOVE(__d) \ 198 PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry) 199 #define BPF_DLIST_ENTRY_DESTROY(__d) \ 200 PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry) 201 202 /* Macros for bpf_if on bpf_iflist */ 203 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp) \ 204 PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry) 205 #define BPF_IFLIST_READER_FOREACH(__bp) \ 206 PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \ 207 bif_iflist_entry) 208 #define BPF_IFLIST_WRITER_FOREACH(__bp) \ 209 PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if, \ 210 bif_iflist_entry) 211 #define BPF_IFLIST_WRITER_REMOVE(__bp) \ 212 PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry) 213 #define BPF_IFLIST_ENTRY_INIT(__bp) \ 214 PSLIST_ENTRY_INIT((__bp), bif_iflist_entry) 215 #define BPF_IFLIST_ENTRY_DESTROY(__bp) \ 216 PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry) 217 218 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */ 219 #define BPFIF_DLIST_READER_FOREACH(__d, __bp) \ 220 PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \ 221 bd_bif_dlist_entry) 222 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d) \ 223 PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d), \ 224 bd_bif_dlist_entry) 225 #define BPFIF_DLIST_WRITER_REMOVE(__d) \ 226 PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry) 227 #define BPFIF_DLIST_ENTRY_INIT(__d) \ 228 PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry) 229 #define BPFIF_DLIST_READER_EMPTY(__bp) \ 230 (PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \ 231 bd_bif_dlist_entry) == NULL) 232 #define BPFIF_DLIST_WRITER_EMPTY(__bp) \ 233 (PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d, \ 234 bd_bif_dlist_entry) == NULL) 235 #define BPFIF_DLIST_ENTRY_DESTROY(__d) \ 236 PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry) 237 238 static int bpf_allocbufs(struct bpf_d *); 239 static u_int bpf_xfilter(struct bpf_filter **, void *, u_int, u_int); 240 static void bpf_deliver(struct bpf_if *, 241 void *(*cpfn)(void *, const void *, size_t), 242 void *, u_int, u_int, const u_int); 243 static void bpf_freed(struct bpf_d *); 244 static void bpf_free_filter(struct bpf_filter *); 245 static void bpf_ifname(struct ifnet *, struct ifreq *); 246 static void *bpf_mcpy(void *, const void *, size_t); 247 static int bpf_movein(struct uio *, int, uint64_t, 248 struct mbuf **, struct sockaddr *, 249 struct bpf_filter **); 250 static void bpf_attachd(struct bpf_d *, struct bpf_if *); 251 static void bpf_detachd(struct bpf_d *); 252 static int bpf_setif(struct bpf_d *, struct ifreq *); 253 static int bpf_setf(struct bpf_d *, struct bpf_program *, u_long); 254 static void bpf_timed_out(void *); 255 static inline void 256 bpf_wakeup(struct bpf_d *); 257 static int bpf_hdrlen(struct bpf_d *); 258 static void catchpacket(struct bpf_d *, u_char *, u_int, u_int, 259 void *(*)(void *, const void *, size_t), struct timespec *); 260 static void reset_d(struct bpf_d *); 261 static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *); 262 static int bpf_setdlt(struct bpf_d *, u_int); 263 264 static int bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t, 265 int); 266 static int bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t, 267 int); 268 static int bpf_ioctl(struct file *, u_long, void *); 269 static int bpf_poll(struct file *, int); 270 static int bpf_stat(struct file *, struct stat *); 271 static int bpf_close(struct file *); 272 static int bpf_kqfilter(struct file *, struct knote *); 273 274 static const struct fileops bpf_fileops = { 275 .fo_name = "bpf", 276 .fo_read = bpf_read, 277 .fo_write = bpf_write, 278 .fo_ioctl = bpf_ioctl, 279 .fo_fcntl = fnullop_fcntl, 280 .fo_poll = bpf_poll, 281 .fo_stat = bpf_stat, 282 .fo_close = bpf_close, 283 .fo_kqfilter = bpf_kqfilter, 284 .fo_restart = fnullop_restart, 285 }; 286 287 dev_type_open(bpfopen); 288 289 const struct cdevsw bpf_cdevsw = { 290 .d_open = bpfopen, 291 .d_close = noclose, 292 .d_read = noread, 293 .d_write = nowrite, 294 .d_ioctl = noioctl, 295 .d_stop = nostop, 296 .d_tty = notty, 297 .d_poll = nopoll, 298 .d_mmap = nommap, 299 .d_kqfilter = nokqfilter, 300 .d_discard = nodiscard, 301 .d_flag = D_OTHER | D_MPSAFE 302 }; 303 304 bpfjit_func_t 305 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size) 306 { 307 struct bpfjit_ops *ops = &bpfjit_module_ops; 308 bpfjit_func_t (*generate_code)(const bpf_ctx_t *, 309 const struct bpf_insn *, size_t); 310 311 generate_code = atomic_load_acquire(&ops->bj_generate_code); 312 if (generate_code != NULL) { 313 return generate_code(bc, code, size); 314 } 315 return NULL; 316 } 317 318 void 319 bpf_jit_freecode(bpfjit_func_t jcode) 320 { 321 KASSERT(bpfjit_module_ops.bj_free_code != NULL); 322 bpfjit_module_ops.bj_free_code(jcode); 323 } 324 325 static int 326 bpf_movein(struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp, 327 struct sockaddr *sockp, struct bpf_filter **wfilter) 328 { 329 struct mbuf *m, *m0, *n; 330 int error; 331 size_t len; 332 size_t hlen; 333 size_t align; 334 u_int slen; 335 336 /* 337 * Build a sockaddr based on the data link layer type. 338 * We do this at this level because the ethernet header 339 * is copied directly into the data field of the sockaddr. 340 * In the case of SLIP, there is no header and the packet 341 * is forwarded as is. 342 * Also, we are careful to leave room at the front of the mbuf 343 * for the link level header. 344 */ 345 switch (linktype) { 346 347 case DLT_SLIP: 348 sockp->sa_family = AF_INET; 349 hlen = 0; 350 align = 0; 351 break; 352 353 case DLT_PPP: 354 sockp->sa_family = AF_UNSPEC; 355 hlen = 0; 356 align = 0; 357 break; 358 359 case DLT_EN10MB: 360 sockp->sa_family = AF_UNSPEC; 361 /* XXX Would MAXLINKHDR be better? */ 362 /* 6(dst)+6(src)+2(type) */ 363 hlen = sizeof(struct ether_header); 364 align = 2; 365 break; 366 367 case DLT_ARCNET: 368 sockp->sa_family = AF_UNSPEC; 369 hlen = ARC_HDRLEN; 370 align = 5; 371 break; 372 373 case DLT_FDDI: 374 sockp->sa_family = AF_LINK; 375 /* XXX 4(FORMAC)+6(dst)+6(src) */ 376 hlen = 16; 377 align = 0; 378 break; 379 380 case DLT_ECONET: 381 sockp->sa_family = AF_UNSPEC; 382 hlen = 6; 383 align = 2; 384 break; 385 386 case DLT_NULL: 387 sockp->sa_family = AF_UNSPEC; 388 hlen = 0; 389 align = 0; 390 break; 391 392 default: 393 return (EIO); 394 } 395 396 len = uio->uio_resid; 397 /* 398 * If there aren't enough bytes for a link level header or the 399 * packet length exceeds the interface mtu, return an error. 400 */ 401 if (len - hlen > mtu) 402 return (EMSGSIZE); 403 404 m0 = m = m_gethdr(M_WAIT, MT_DATA); 405 m_reset_rcvif(m); 406 m->m_pkthdr.len = (int)(len - hlen); 407 if (len + align > MHLEN) { 408 m_clget(m, M_WAIT); 409 if ((m->m_flags & M_EXT) == 0) { 410 error = ENOBUFS; 411 goto bad; 412 } 413 } 414 415 /* Insure the data is properly aligned */ 416 if (align > 0) 417 m->m_data += align; 418 419 for (;;) { 420 len = M_TRAILINGSPACE(m); 421 if (len > uio->uio_resid) 422 len = uio->uio_resid; 423 error = uiomove(mtod(m, void *), len, uio); 424 if (error) 425 goto bad; 426 m->m_len = len; 427 428 if (uio->uio_resid == 0) 429 break; 430 431 n = m_get(M_WAIT, MT_DATA); 432 m_clget(n, M_WAIT); /* if fails, there is no problem */ 433 m->m_next = n; 434 m = n; 435 } 436 437 slen = bpf_xfilter(wfilter, mtod(m, u_char *), len, len); 438 if (slen == 0) { 439 error = EPERM; 440 goto bad; 441 } 442 443 if (hlen != 0) { 444 /* move link level header in the top of mbuf to sa_data */ 445 memcpy(sockp->sa_data, mtod(m0, void *), hlen); 446 m0->m_data += hlen; 447 m0->m_len -= hlen; 448 } 449 450 *mp = m0; 451 return (0); 452 453 bad: 454 m_freem(m0); 455 return (error); 456 } 457 458 /* 459 * Attach file to the bpf interface, i.e. make d listen on bp. 460 */ 461 static void 462 bpf_attachd(struct bpf_d *d, struct bpf_if *bp) 463 { 464 struct bpf_event_tracker *t; 465 466 KASSERT(mutex_owned(&bpf_mtx)); 467 KASSERT(mutex_owned(d->bd_mtx)); 468 /* 469 * Point d at bp, and add d to the interface's list of listeners. 470 * Finally, point the driver's bpf cookie at the interface so 471 * it will divert packets to bpf. 472 */ 473 d->bd_bif = bp; 474 BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d); 475 476 *bp->bif_driverp = bp; 477 478 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) { 479 t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt, 480 BPF_TRACK_EVENT_ATTACH); 481 } 482 } 483 484 /* 485 * Detach a file from its interface. 486 */ 487 static void 488 bpf_detachd(struct bpf_d *d) 489 { 490 struct bpf_if *bp; 491 struct bpf_event_tracker *t; 492 493 KASSERT(mutex_owned(&bpf_mtx)); 494 KASSERT(mutex_owned(d->bd_mtx)); 495 496 bp = d->bd_bif; 497 /* 498 * Check if this descriptor had requested promiscuous mode. 499 * If so, turn it off. 500 */ 501 if (d->bd_promisc) { 502 int error __diagused; 503 504 d->bd_promisc = 0; 505 /* 506 * Take device out of promiscuous mode. Since we were 507 * able to enter promiscuous mode, we should be able 508 * to turn it off. But we can get an error if 509 * the interface was configured down, so only panic 510 * if we don't get an unexpected error. 511 */ 512 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 513 error = ifpromisc(bp->bif_ifp, 0); 514 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 515 #ifdef DIAGNOSTIC 516 if (error) 517 printf("%s: ifpromisc failed: %d", __func__, error); 518 #endif 519 } 520 521 /* Remove d from the interface's descriptor list. */ 522 BPFIF_DLIST_WRITER_REMOVE(d); 523 524 pserialize_perform(bpf_psz); 525 526 if (BPFIF_DLIST_WRITER_EMPTY(bp)) { 527 /* 528 * Let the driver know that there are no more listeners. 529 */ 530 *d->bd_bif->bif_driverp = NULL; 531 } 532 533 d->bd_bif = NULL; 534 535 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) { 536 t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt, 537 BPF_TRACK_EVENT_DETACH); 538 } 539 } 540 541 static void 542 bpf_init(void) 543 { 544 545 mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE); 546 bpf_psz = pserialize_create(); 547 bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET); 548 549 PSLIST_INIT(&bpf_iflist); 550 PSLIST_INIT(&bpf_dlist); 551 552 bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat)); 553 554 return; 555 } 556 557 /* 558 * bpfilterattach() is called at boot time. We don't need to do anything 559 * here, since any initialization will happen as part of module init code. 560 */ 561 /* ARGSUSED */ 562 void 563 bpfilterattach(int n) 564 { 565 566 } 567 568 /* 569 * Open ethernet device. Clones. 570 */ 571 /* ARGSUSED */ 572 int 573 bpfopen(dev_t dev, int flag, int mode, struct lwp *l) 574 { 575 struct bpf_d *d; 576 struct file *fp; 577 int error, fd; 578 579 /* falloc() will fill in the descriptor for us. */ 580 if ((error = fd_allocfile(&fp, &fd)) != 0) 581 return error; 582 583 d = kmem_zalloc(sizeof(*d), KM_SLEEP); 584 d->bd_bufsize = bpf_bufsize; 585 d->bd_direction = BPF_D_INOUT; 586 d->bd_feedback = 0; 587 d->bd_pid = l->l_proc->p_pid; 588 #ifdef _LP64 589 if (curproc->p_flag & PK_32) 590 d->bd_compat32 = 1; 591 #endif 592 getnanotime(&d->bd_btime); 593 d->bd_atime = d->bd_mtime = d->bd_btime; 594 callout_init(&d->bd_callout, CALLOUT_MPSAFE); 595 selinit(&d->bd_sel); 596 d->bd_jitcode = NULL; 597 d->bd_rfilter = NULL; 598 d->bd_wfilter = NULL; 599 d->bd_locked = 0; 600 BPF_DLIST_ENTRY_INIT(d); 601 BPFIF_DLIST_ENTRY_INIT(d); 602 d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET); 603 d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET); 604 cv_init(&d->bd_cv, "bpf"); 605 606 mutex_enter(&bpf_mtx); 607 BPF_DLIST_WRITER_INSERT_HEAD(d); 608 mutex_exit(&bpf_mtx); 609 610 return fd_clone(fp, fd, flag, &bpf_fileops, d); 611 } 612 613 /* 614 * Close the descriptor by detaching it from its interface, 615 * deallocating its buffers, and marking it free. 616 */ 617 /* ARGSUSED */ 618 static int 619 bpf_close(struct file *fp) 620 { 621 struct bpf_d *d; 622 623 mutex_enter(&bpf_mtx); 624 625 if ((d = fp->f_bpf) == NULL) { 626 mutex_exit(&bpf_mtx); 627 return 0; 628 } 629 630 /* 631 * Refresh the PID associated with this bpf file. 632 */ 633 d->bd_pid = curproc->p_pid; 634 635 mutex_enter(d->bd_mtx); 636 if (d->bd_state == BPF_WAITING) 637 callout_halt(&d->bd_callout, d->bd_mtx); 638 d->bd_state = BPF_IDLE; 639 if (d->bd_bif) 640 bpf_detachd(d); 641 mutex_exit(d->bd_mtx); 642 643 BPF_DLIST_WRITER_REMOVE(d); 644 645 pserialize_perform(bpf_psz); 646 mutex_exit(&bpf_mtx); 647 648 BPFIF_DLIST_ENTRY_DESTROY(d); 649 BPF_DLIST_ENTRY_DESTROY(d); 650 fp->f_bpf = NULL; 651 bpf_freed(d); 652 callout_destroy(&d->bd_callout); 653 seldestroy(&d->bd_sel); 654 mutex_obj_free(d->bd_mtx); 655 mutex_obj_free(d->bd_buf_mtx); 656 cv_destroy(&d->bd_cv); 657 658 kmem_free(d, sizeof(*d)); 659 660 return (0); 661 } 662 663 /* 664 * Rotate the packet buffers in descriptor d. Move the store buffer 665 * into the hold slot, and the free buffer into the store slot. 666 * Zero the length of the new store buffer. 667 */ 668 #define ROTATE_BUFFERS(d) \ 669 (d)->bd_hbuf = (d)->bd_sbuf; \ 670 (d)->bd_hlen = (d)->bd_slen; \ 671 (d)->bd_sbuf = (d)->bd_fbuf; \ 672 (d)->bd_slen = 0; \ 673 (d)->bd_fbuf = NULL; 674 /* 675 * bpfread - read next chunk of packets from buffers 676 */ 677 static int 678 bpf_read(struct file *fp, off_t *offp, struct uio *uio, 679 kauth_cred_t cred, int flags) 680 { 681 struct bpf_d *d = fp->f_bpf; 682 int timed_out; 683 int error; 684 685 getnanotime(&d->bd_atime); 686 /* 687 * Restrict application to use a buffer the same size as 688 * the kernel buffers. 689 */ 690 if (uio->uio_resid != d->bd_bufsize) 691 return (EINVAL); 692 693 mutex_enter(d->bd_mtx); 694 if (d->bd_state == BPF_WAITING) 695 callout_halt(&d->bd_callout, d->bd_mtx); 696 timed_out = (d->bd_state == BPF_TIMED_OUT); 697 d->bd_state = BPF_IDLE; 698 mutex_exit(d->bd_mtx); 699 /* 700 * If the hold buffer is empty, then do a timed sleep, which 701 * ends when the timeout expires or when enough packets 702 * have arrived to fill the store buffer. 703 */ 704 mutex_enter(d->bd_buf_mtx); 705 while (d->bd_hbuf == NULL) { 706 if (fp->f_flag & FNONBLOCK) { 707 if (d->bd_slen == 0) { 708 error = EWOULDBLOCK; 709 goto out; 710 } 711 ROTATE_BUFFERS(d); 712 break; 713 } 714 715 if ((d->bd_immediate || timed_out) && d->bd_slen != 0) { 716 /* 717 * A packet(s) either arrived since the previous 718 * read or arrived while we were asleep. 719 * Rotate the buffers and return what's here. 720 */ 721 ROTATE_BUFFERS(d); 722 break; 723 } 724 725 error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout); 726 727 if (error == EINTR || error == ERESTART) 728 goto out; 729 730 if (error == EWOULDBLOCK) { 731 /* 732 * On a timeout, return what's in the buffer, 733 * which may be nothing. If there is something 734 * in the store buffer, we can rotate the buffers. 735 */ 736 if (d->bd_hbuf) 737 /* 738 * We filled up the buffer in between 739 * getting the timeout and arriving 740 * here, so we don't need to rotate. 741 */ 742 break; 743 744 if (d->bd_slen == 0) { 745 error = 0; 746 goto out; 747 } 748 ROTATE_BUFFERS(d); 749 break; 750 } 751 if (error != 0) 752 goto out; 753 } 754 /* 755 * At this point, we know we have something in the hold slot. 756 */ 757 mutex_exit(d->bd_buf_mtx); 758 759 /* 760 * Move data from hold buffer into user space. 761 * We know the entire buffer is transferred since 762 * we checked above that the read buffer is bpf_bufsize bytes. 763 */ 764 error = uiomove(d->bd_hbuf, d->bd_hlen, uio); 765 766 mutex_enter(d->bd_buf_mtx); 767 d->bd_fbuf = d->bd_hbuf; 768 d->bd_hbuf = NULL; 769 d->bd_hlen = 0; 770 out: 771 mutex_exit(d->bd_buf_mtx); 772 return (error); 773 } 774 775 776 /* 777 * If there are processes sleeping on this descriptor, wake them up. 778 */ 779 static inline void 780 bpf_wakeup(struct bpf_d *d) 781 { 782 783 mutex_enter(d->bd_buf_mtx); 784 cv_broadcast(&d->bd_cv); 785 mutex_exit(d->bd_buf_mtx); 786 787 if (d->bd_async) 788 fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL); 789 selnotify(&d->bd_sel, 0, 0); 790 } 791 792 static void 793 bpf_timed_out(void *arg) 794 { 795 struct bpf_d *d = arg; 796 797 mutex_enter(d->bd_mtx); 798 if (d->bd_state == BPF_WAITING) { 799 d->bd_state = BPF_TIMED_OUT; 800 if (d->bd_slen != 0) 801 bpf_wakeup(d); 802 } 803 mutex_exit(d->bd_mtx); 804 } 805 806 807 static int 808 bpf_write(struct file *fp, off_t *offp, struct uio *uio, 809 kauth_cred_t cred, int flags) 810 { 811 struct bpf_d *d = fp->f_bpf; 812 struct bpf_if *bp; 813 struct ifnet *ifp; 814 struct mbuf *m, *mc; 815 int error; 816 static struct sockaddr_storage dst; 817 struct psref psref; 818 int bound; 819 820 m = NULL; /* XXX gcc */ 821 822 bound = curlwp_bind(); 823 mutex_enter(d->bd_mtx); 824 bp = d->bd_bif; 825 if (bp == NULL) { 826 mutex_exit(d->bd_mtx); 827 error = ENXIO; 828 goto out_bindx; 829 } 830 bpf_if_acquire(bp, &psref); 831 mutex_exit(d->bd_mtx); 832 833 getnanotime(&d->bd_mtime); 834 835 ifp = bp->bif_ifp; 836 if (if_is_deactivated(ifp)) { 837 error = ENXIO; 838 goto out; 839 } 840 841 if (uio->uio_resid == 0) { 842 error = 0; 843 goto out; 844 } 845 846 error = bpf_movein(uio, (int)bp->bif_dlt, ifp->if_mtu, &m, 847 (struct sockaddr *) &dst, &d->bd_wfilter); 848 if (error) 849 goto out; 850 851 if (m->m_pkthdr.len > ifp->if_mtu) { 852 m_freem(m); 853 error = EMSGSIZE; 854 goto out; 855 } 856 857 if (d->bd_hdrcmplt) 858 dst.ss_family = pseudo_AF_HDRCMPLT; 859 860 if (d->bd_feedback) { 861 mc = m_dup(m, 0, M_COPYALL, M_NOWAIT); 862 if (mc != NULL) 863 m_set_rcvif(mc, ifp); 864 /* Set M_PROMISC for outgoing packets to be discarded. */ 865 if (1 /*d->bd_direction == BPF_D_INOUT*/) 866 m->m_flags |= M_PROMISC; 867 } else 868 mc = NULL; 869 870 error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL); 871 872 if (mc != NULL) { 873 if (error == 0) { 874 int s = splsoftnet(); 875 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp); 876 ifp->_if_input(ifp, mc); 877 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp); 878 splx(s); 879 } else 880 m_freem(mc); 881 } 882 /* 883 * The driver frees the mbuf. 884 */ 885 out: 886 bpf_if_release(bp, &psref); 887 out_bindx: 888 curlwp_bindx(bound); 889 return error; 890 } 891 892 /* 893 * Reset a descriptor by flushing its packet buffer and clearing the 894 * receive and drop counts. 895 */ 896 static void 897 reset_d(struct bpf_d *d) 898 { 899 900 KASSERT(mutex_owned(d->bd_mtx)); 901 902 mutex_enter(d->bd_buf_mtx); 903 if (d->bd_hbuf) { 904 /* Free the hold buffer. */ 905 d->bd_fbuf = d->bd_hbuf; 906 d->bd_hbuf = NULL; 907 } 908 d->bd_slen = 0; 909 d->bd_hlen = 0; 910 d->bd_rcount = 0; 911 d->bd_dcount = 0; 912 d->bd_ccount = 0; 913 mutex_exit(d->bd_buf_mtx); 914 } 915 916 /* 917 * FIONREAD Check for read packet available. 918 * BIOCGBLEN Get buffer len [for read()]. 919 * BIOCSETF Set ethernet read filter. 920 * BIOCFLUSH Flush read packet buffer. 921 * BIOCPROMISC Put interface into promiscuous mode. 922 * BIOCGDLT Get link layer type. 923 * BIOCGETIF Get interface name. 924 * BIOCSETIF Set interface. 925 * BIOCSRTIMEOUT Set read timeout. 926 * BIOCGRTIMEOUT Get read timeout. 927 * BIOCGSTATS Get packet stats. 928 * BIOCIMMEDIATE Set immediate mode. 929 * BIOCVERSION Get filter language version. 930 * BIOCGHDRCMPLT Get "header already complete" flag. 931 * BIOCSHDRCMPLT Set "header already complete" flag. 932 * BIOCSFEEDBACK Set packet feedback mode. 933 * BIOCGFEEDBACK Get packet feedback mode. 934 * BIOCGDIRECTION Get packet direction flag 935 * BIOCSDIRECTION Set packet direction flag 936 */ 937 /* ARGSUSED */ 938 static int 939 bpf_ioctl(struct file *fp, u_long cmd, void *addr) 940 { 941 struct bpf_d *d = fp->f_bpf; 942 int error = 0; 943 944 /* 945 * Refresh the PID associated with this bpf file. 946 */ 947 d->bd_pid = curproc->p_pid; 948 #ifdef _LP64 949 if (curproc->p_flag & PK_32) 950 d->bd_compat32 = 1; 951 else 952 d->bd_compat32 = 0; 953 #endif 954 955 mutex_enter(d->bd_mtx); 956 if (d->bd_state == BPF_WAITING) 957 callout_halt(&d->bd_callout, d->bd_mtx); 958 d->bd_state = BPF_IDLE; 959 mutex_exit(d->bd_mtx); 960 961 if (d->bd_locked) { 962 switch (cmd) { 963 case BIOCGBLEN: /* FALLTHROUGH */ 964 case BIOCFLUSH: /* FALLTHROUGH */ 965 case BIOCGDLT: /* FALLTHROUGH */ 966 case BIOCGDLTLIST: /* FALLTHROUGH */ 967 case BIOCGETIF: /* FALLTHROUGH */ 968 case BIOCGRTIMEOUT: /* FALLTHROUGH */ 969 case BIOCGSTATS: /* FALLTHROUGH */ 970 case BIOCVERSION: /* FALLTHROUGH */ 971 case BIOCGHDRCMPLT: /* FALLTHROUGH */ 972 case FIONREAD: /* FALLTHROUGH */ 973 case BIOCLOCK: /* FALLTHROUGH */ 974 case BIOCSRTIMEOUT: /* FALLTHROUGH */ 975 case BIOCIMMEDIATE: /* FALLTHROUGH */ 976 case TIOCGPGRP: 977 break; 978 default: 979 return EPERM; 980 } 981 } 982 983 switch (cmd) { 984 985 default: 986 error = EINVAL; 987 break; 988 989 /* 990 * Check for read packet available. 991 */ 992 case FIONREAD: 993 { 994 int n; 995 996 mutex_enter(d->bd_buf_mtx); 997 n = d->bd_slen; 998 if (d->bd_hbuf) 999 n += d->bd_hlen; 1000 mutex_exit(d->bd_buf_mtx); 1001 1002 *(int *)addr = n; 1003 break; 1004 } 1005 1006 /* 1007 * Get buffer len [for read()]. 1008 */ 1009 case BIOCGBLEN: 1010 *(u_int *)addr = d->bd_bufsize; 1011 break; 1012 1013 /* 1014 * Set buffer length. 1015 */ 1016 case BIOCSBLEN: 1017 /* 1018 * Forbid to change the buffer length if buffers are already 1019 * allocated. 1020 */ 1021 mutex_enter(d->bd_mtx); 1022 mutex_enter(d->bd_buf_mtx); 1023 if (d->bd_bif != NULL || d->bd_sbuf != NULL) 1024 error = EINVAL; 1025 else { 1026 u_int size = *(u_int *)addr; 1027 1028 if (size > bpf_maxbufsize) 1029 *(u_int *)addr = size = bpf_maxbufsize; 1030 else if (size < BPF_MINBUFSIZE) 1031 *(u_int *)addr = size = BPF_MINBUFSIZE; 1032 d->bd_bufsize = size; 1033 } 1034 mutex_exit(d->bd_buf_mtx); 1035 mutex_exit(d->bd_mtx); 1036 break; 1037 1038 /* 1039 * Set link layer read filter. 1040 */ 1041 case BIOCSETF: /* FALLTHROUGH */ 1042 case BIOCSETWF: 1043 error = bpf_setf(d, addr, cmd); 1044 break; 1045 1046 case BIOCLOCK: 1047 d->bd_locked = 1; 1048 break; 1049 1050 /* 1051 * Flush read packet buffer. 1052 */ 1053 case BIOCFLUSH: 1054 mutex_enter(d->bd_mtx); 1055 reset_d(d); 1056 mutex_exit(d->bd_mtx); 1057 break; 1058 1059 /* 1060 * Put interface into promiscuous mode. 1061 */ 1062 case BIOCPROMISC: 1063 mutex_enter(d->bd_mtx); 1064 if (d->bd_bif == NULL) { 1065 mutex_exit(d->bd_mtx); 1066 /* 1067 * No interface attached yet. 1068 */ 1069 error = EINVAL; 1070 break; 1071 } 1072 if (d->bd_promisc == 0) { 1073 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 1074 error = ifpromisc(d->bd_bif->bif_ifp, 1); 1075 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 1076 if (error == 0) 1077 d->bd_promisc = 1; 1078 } 1079 mutex_exit(d->bd_mtx); 1080 break; 1081 1082 /* 1083 * Get device parameters. 1084 */ 1085 case BIOCGDLT: 1086 mutex_enter(d->bd_mtx); 1087 if (d->bd_bif == NULL) 1088 error = EINVAL; 1089 else 1090 *(u_int *)addr = d->bd_bif->bif_dlt; 1091 mutex_exit(d->bd_mtx); 1092 break; 1093 1094 /* 1095 * Get a list of supported device parameters. 1096 */ 1097 case BIOCGDLTLIST: 1098 mutex_enter(d->bd_mtx); 1099 if (d->bd_bif == NULL) 1100 error = EINVAL; 1101 else 1102 error = bpf_getdltlist(d, addr); 1103 mutex_exit(d->bd_mtx); 1104 break; 1105 1106 /* 1107 * Set device parameters. 1108 */ 1109 case BIOCSDLT: 1110 mutex_enter(&bpf_mtx); 1111 mutex_enter(d->bd_mtx); 1112 if (d->bd_bif == NULL) 1113 error = EINVAL; 1114 else 1115 error = bpf_setdlt(d, *(u_int *)addr); 1116 mutex_exit(d->bd_mtx); 1117 mutex_exit(&bpf_mtx); 1118 break; 1119 1120 /* 1121 * Set interface name. 1122 */ 1123 #ifdef OBIOCGETIF 1124 case OBIOCGETIF: 1125 #endif 1126 case BIOCGETIF: 1127 mutex_enter(d->bd_mtx); 1128 if (d->bd_bif == NULL) 1129 error = EINVAL; 1130 else 1131 bpf_ifname(d->bd_bif->bif_ifp, addr); 1132 mutex_exit(d->bd_mtx); 1133 break; 1134 1135 /* 1136 * Set interface. 1137 */ 1138 #ifdef OBIOCSETIF 1139 case OBIOCSETIF: 1140 #endif 1141 case BIOCSETIF: 1142 mutex_enter(&bpf_mtx); 1143 error = bpf_setif(d, addr); 1144 mutex_exit(&bpf_mtx); 1145 break; 1146 1147 /* 1148 * Set read timeout. 1149 */ 1150 case BIOCSRTIMEOUT: 1151 { 1152 struct timeval *tv = addr; 1153 1154 /* Compute number of ticks. */ 1155 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick; 1156 if ((d->bd_rtout == 0) && (tv->tv_usec != 0)) 1157 d->bd_rtout = 1; 1158 break; 1159 } 1160 1161 #ifdef BIOCGORTIMEOUT 1162 /* 1163 * Get read timeout. 1164 */ 1165 case BIOCGORTIMEOUT: 1166 { 1167 struct timeval50 *tv = addr; 1168 1169 tv->tv_sec = d->bd_rtout / hz; 1170 tv->tv_usec = (d->bd_rtout % hz) * tick; 1171 break; 1172 } 1173 #endif 1174 1175 #ifdef BIOCSORTIMEOUT 1176 /* 1177 * Set read timeout. 1178 */ 1179 case BIOCSORTIMEOUT: 1180 { 1181 struct timeval50 *tv = addr; 1182 1183 /* Compute number of ticks. */ 1184 d->bd_rtout = tv->tv_sec * hz + tv->tv_usec / tick; 1185 if ((d->bd_rtout == 0) && (tv->tv_usec != 0)) 1186 d->bd_rtout = 1; 1187 break; 1188 } 1189 #endif 1190 1191 /* 1192 * Get read timeout. 1193 */ 1194 case BIOCGRTIMEOUT: 1195 { 1196 struct timeval *tv = addr; 1197 1198 tv->tv_sec = d->bd_rtout / hz; 1199 tv->tv_usec = (d->bd_rtout % hz) * tick; 1200 break; 1201 } 1202 /* 1203 * Get packet stats. 1204 */ 1205 case BIOCGSTATS: 1206 { 1207 struct bpf_stat *bs = addr; 1208 1209 bs->bs_recv = d->bd_rcount; 1210 bs->bs_drop = d->bd_dcount; 1211 bs->bs_capt = d->bd_ccount; 1212 break; 1213 } 1214 1215 case BIOCGSTATSOLD: 1216 { 1217 struct bpf_stat_old *bs = addr; 1218 1219 bs->bs_recv = d->bd_rcount; 1220 bs->bs_drop = d->bd_dcount; 1221 break; 1222 } 1223 1224 /* 1225 * Set immediate mode. 1226 */ 1227 case BIOCIMMEDIATE: 1228 d->bd_immediate = *(u_int *)addr; 1229 break; 1230 1231 case BIOCVERSION: 1232 { 1233 struct bpf_version *bv = addr; 1234 1235 bv->bv_major = BPF_MAJOR_VERSION; 1236 bv->bv_minor = BPF_MINOR_VERSION; 1237 break; 1238 } 1239 1240 case BIOCGHDRCMPLT: /* get "header already complete" flag */ 1241 *(u_int *)addr = d->bd_hdrcmplt; 1242 break; 1243 1244 case BIOCSHDRCMPLT: /* set "header already complete" flag */ 1245 d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0; 1246 break; 1247 1248 /* 1249 * Get packet direction flag 1250 */ 1251 case BIOCGDIRECTION: 1252 *(u_int *)addr = d->bd_direction; 1253 break; 1254 1255 /* 1256 * Set packet direction flag 1257 */ 1258 case BIOCSDIRECTION: 1259 { 1260 u_int direction; 1261 1262 direction = *(u_int *)addr; 1263 switch (direction) { 1264 case BPF_D_IN: 1265 case BPF_D_INOUT: 1266 case BPF_D_OUT: 1267 d->bd_direction = direction; 1268 break; 1269 default: 1270 error = EINVAL; 1271 } 1272 } 1273 break; 1274 1275 /* 1276 * Set "feed packets from bpf back to input" mode 1277 */ 1278 case BIOCSFEEDBACK: 1279 d->bd_feedback = *(u_int *)addr; 1280 break; 1281 1282 /* 1283 * Get "feed packets from bpf back to input" mode 1284 */ 1285 case BIOCGFEEDBACK: 1286 *(u_int *)addr = d->bd_feedback; 1287 break; 1288 1289 case FIONBIO: /* Non-blocking I/O */ 1290 /* 1291 * No need to do anything special as we use IO_NDELAY in 1292 * bpfread() as an indication of whether or not to block 1293 * the read. 1294 */ 1295 break; 1296 1297 case FIOASYNC: /* Send signal on receive packets */ 1298 mutex_enter(d->bd_mtx); 1299 d->bd_async = *(int *)addr; 1300 mutex_exit(d->bd_mtx); 1301 break; 1302 1303 case TIOCSPGRP: /* Process or group to send signals to */ 1304 case FIOSETOWN: 1305 error = fsetown(&d->bd_pgid, cmd, addr); 1306 break; 1307 1308 case TIOCGPGRP: 1309 case FIOGETOWN: 1310 error = fgetown(d->bd_pgid, cmd, addr); 1311 break; 1312 } 1313 return (error); 1314 } 1315 1316 /* 1317 * Set d's packet filter program to fp. If this file already has a filter, 1318 * free it and replace it. Returns EINVAL for bogus requests. 1319 */ 1320 static int 1321 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd) 1322 { 1323 struct bpf_insn *fcode; 1324 bpfjit_func_t jcode; 1325 size_t flen, size = 0; 1326 struct bpf_filter *oldf, *newf, **storef; 1327 1328 jcode = NULL; 1329 flen = fp->bf_len; 1330 1331 if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) { 1332 return EINVAL; 1333 } 1334 1335 if (flen) { 1336 /* 1337 * Allocate the buffer, copy the byte-code from 1338 * userspace and validate it. 1339 */ 1340 size = flen * sizeof(*fp->bf_insns); 1341 fcode = kmem_alloc(size, KM_SLEEP); 1342 if (copyin(fp->bf_insns, fcode, size) != 0 || 1343 !bpf_validate(fcode, (int)flen)) { 1344 kmem_free(fcode, size); 1345 return EINVAL; 1346 } 1347 if (bpf_jit) 1348 jcode = bpf_jit_generate(NULL, fcode, flen); 1349 } else { 1350 fcode = NULL; 1351 } 1352 1353 newf = kmem_alloc(sizeof(*newf), KM_SLEEP); 1354 newf->bf_insn = fcode; 1355 newf->bf_size = size; 1356 newf->bf_jitcode = jcode; 1357 if (cmd == BIOCSETF) 1358 d->bd_jitcode = jcode; /* XXX just for kvm(3) users */ 1359 1360 /* Need to hold bpf_mtx for pserialize_perform */ 1361 mutex_enter(&bpf_mtx); 1362 mutex_enter(d->bd_mtx); 1363 if (cmd == BIOCSETWF) { 1364 oldf = d->bd_wfilter; 1365 storef = &d->bd_wfilter; 1366 } else { 1367 oldf = d->bd_rfilter; 1368 storef = &d->bd_rfilter; 1369 } 1370 atomic_store_release(storef, newf); 1371 reset_d(d); 1372 pserialize_perform(bpf_psz); 1373 mutex_exit(d->bd_mtx); 1374 mutex_exit(&bpf_mtx); 1375 1376 if (oldf != NULL) 1377 bpf_free_filter(oldf); 1378 1379 return 0; 1380 } 1381 1382 /* 1383 * Detach a file from its current interface (if attached at all) and attach 1384 * to the interface indicated by the name stored in ifr. 1385 * Return an errno or 0. 1386 */ 1387 static int 1388 bpf_setif(struct bpf_d *d, struct ifreq *ifr) 1389 { 1390 struct bpf_if *bp; 1391 char *cp; 1392 int unit_seen, i, error; 1393 1394 KASSERT(mutex_owned(&bpf_mtx)); 1395 /* 1396 * Make sure the provided name has a unit number, and default 1397 * it to '0' if not specified. 1398 * XXX This is ugly ... do this differently? 1399 */ 1400 unit_seen = 0; 1401 cp = ifr->ifr_name; 1402 cp[sizeof(ifr->ifr_name) - 1] = '\0'; /* sanity */ 1403 while (*cp++) 1404 if (*cp >= '0' && *cp <= '9') 1405 unit_seen = 1; 1406 if (!unit_seen) { 1407 /* Make sure to leave room for the '\0'. */ 1408 for (i = 0; i < (IFNAMSIZ - 1); ++i) { 1409 if ((ifr->ifr_name[i] >= 'a' && 1410 ifr->ifr_name[i] <= 'z') || 1411 (ifr->ifr_name[i] >= 'A' && 1412 ifr->ifr_name[i] <= 'Z')) 1413 continue; 1414 ifr->ifr_name[i] = '0'; 1415 } 1416 } 1417 1418 /* 1419 * Look through attached interfaces for the named one. 1420 */ 1421 BPF_IFLIST_WRITER_FOREACH(bp) { 1422 struct ifnet *ifp = bp->bif_ifp; 1423 1424 if (ifp == NULL || 1425 strcmp(ifp->if_xname, ifr->ifr_name) != 0) 1426 continue; 1427 /* skip additional entry */ 1428 if (bp->bif_driverp != &ifp->if_bpf) 1429 continue; 1430 /* 1431 * We found the requested interface. 1432 * Allocate the packet buffers if we need to. 1433 * If we're already attached to requested interface, 1434 * just flush the buffer. 1435 */ 1436 /* 1437 * bpf_allocbufs is called only here. bpf_mtx ensures that 1438 * no race condition happen on d->bd_sbuf. 1439 */ 1440 if (d->bd_sbuf == NULL) { 1441 error = bpf_allocbufs(d); 1442 if (error != 0) 1443 return (error); 1444 } 1445 mutex_enter(d->bd_mtx); 1446 if (bp != d->bd_bif) { 1447 if (d->bd_bif) { 1448 /* 1449 * Detach if attached to something else. 1450 */ 1451 bpf_detachd(d); 1452 BPFIF_DLIST_ENTRY_INIT(d); 1453 } 1454 1455 bpf_attachd(d, bp); 1456 } 1457 reset_d(d); 1458 mutex_exit(d->bd_mtx); 1459 return (0); 1460 } 1461 /* Not found. */ 1462 return (ENXIO); 1463 } 1464 1465 /* 1466 * Copy the interface name to the ifreq. 1467 */ 1468 static void 1469 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr) 1470 { 1471 memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); 1472 } 1473 1474 static int 1475 bpf_stat(struct file *fp, struct stat *st) 1476 { 1477 struct bpf_d *d = fp->f_bpf; 1478 1479 (void)memset(st, 0, sizeof(*st)); 1480 mutex_enter(d->bd_mtx); 1481 st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid); 1482 st->st_atimespec = d->bd_atime; 1483 st->st_mtimespec = d->bd_mtime; 1484 st->st_ctimespec = st->st_birthtimespec = d->bd_btime; 1485 st->st_uid = kauth_cred_geteuid(fp->f_cred); 1486 st->st_gid = kauth_cred_getegid(fp->f_cred); 1487 st->st_mode = S_IFCHR; 1488 mutex_exit(d->bd_mtx); 1489 return 0; 1490 } 1491 1492 /* 1493 * Support for poll() system call 1494 * 1495 * Return true iff the specific operation will not block indefinitely - with 1496 * the assumption that it is safe to positively acknowledge a request for the 1497 * ability to write to the BPF device. 1498 * Otherwise, return false but make a note that a selnotify() must be done. 1499 */ 1500 static int 1501 bpf_poll(struct file *fp, int events) 1502 { 1503 struct bpf_d *d = fp->f_bpf; 1504 int revents; 1505 1506 /* 1507 * Refresh the PID associated with this bpf file. 1508 */ 1509 mutex_enter(&bpf_mtx); 1510 d->bd_pid = curproc->p_pid; 1511 1512 revents = events & (POLLOUT | POLLWRNORM); 1513 if (events & (POLLIN | POLLRDNORM)) { 1514 /* 1515 * An imitation of the FIONREAD ioctl code. 1516 */ 1517 mutex_enter(d->bd_mtx); 1518 if (d->bd_hlen != 0 || 1519 ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) && 1520 d->bd_slen != 0)) { 1521 revents |= events & (POLLIN | POLLRDNORM); 1522 } else { 1523 selrecord(curlwp, &d->bd_sel); 1524 /* Start the read timeout if necessary */ 1525 if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) { 1526 callout_reset(&d->bd_callout, d->bd_rtout, 1527 bpf_timed_out, d); 1528 d->bd_state = BPF_WAITING; 1529 } 1530 } 1531 mutex_exit(d->bd_mtx); 1532 } 1533 1534 mutex_exit(&bpf_mtx); 1535 return (revents); 1536 } 1537 1538 static void 1539 filt_bpfrdetach(struct knote *kn) 1540 { 1541 struct bpf_d *d = kn->kn_hook; 1542 1543 mutex_enter(d->bd_buf_mtx); 1544 selremove_knote(&d->bd_sel, kn); 1545 mutex_exit(d->bd_buf_mtx); 1546 } 1547 1548 static int 1549 filt_bpfread(struct knote *kn, long hint) 1550 { 1551 struct bpf_d *d = kn->kn_hook; 1552 int rv; 1553 1554 mutex_enter(d->bd_buf_mtx); 1555 kn->kn_data = d->bd_hlen; 1556 if (d->bd_immediate) 1557 kn->kn_data += d->bd_slen; 1558 rv = (kn->kn_data > 0); 1559 mutex_exit(d->bd_buf_mtx); 1560 return rv; 1561 } 1562 1563 static const struct filterops bpfread_filtops = { 1564 .f_flags = FILTEROP_ISFD, 1565 .f_attach = NULL, 1566 .f_detach = filt_bpfrdetach, 1567 .f_event = filt_bpfread, 1568 }; 1569 1570 static int 1571 bpf_kqfilter(struct file *fp, struct knote *kn) 1572 { 1573 struct bpf_d *d = fp->f_bpf; 1574 1575 switch (kn->kn_filter) { 1576 case EVFILT_READ: 1577 kn->kn_fop = &bpfread_filtops; 1578 break; 1579 1580 default: 1581 return (EINVAL); 1582 } 1583 1584 kn->kn_hook = d; 1585 1586 mutex_enter(d->bd_buf_mtx); 1587 selrecord_knote(&d->bd_sel, kn); 1588 mutex_exit(d->bd_buf_mtx); 1589 1590 return (0); 1591 } 1592 1593 /* 1594 * Copy data from an mbuf chain into a buffer. This code is derived 1595 * from m_copydata in sys/uipc_mbuf.c. 1596 */ 1597 static void * 1598 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len) 1599 { 1600 const struct mbuf *m; 1601 u_int count; 1602 u_char *dst; 1603 1604 m = src_arg; 1605 dst = dst_arg; 1606 while (len > 0) { 1607 if (m == NULL) 1608 panic("bpf_mcpy"); 1609 count = uimin(m->m_len, len); 1610 memcpy(dst, mtod(m, const void *), count); 1611 m = m->m_next; 1612 dst += count; 1613 len -= count; 1614 } 1615 return dst_arg; 1616 } 1617 1618 static inline u_int 1619 bpf_xfilter(struct bpf_filter **filter, void *pkt, u_int pktlen, u_int buflen) 1620 { 1621 struct bpf_filter *filt; 1622 uint32_t mem[BPF_MEMWORDS]; 1623 bpf_args_t args = { 1624 .pkt = (const uint8_t *)pkt, 1625 .wirelen = pktlen, 1626 .buflen = buflen, 1627 .mem = mem, 1628 .arg = NULL 1629 }; 1630 u_int slen; 1631 1632 filt = atomic_load_consume(filter); 1633 if (filt == NULL) /* No filter means accept all. */ 1634 return (u_int)-1; 1635 1636 if (filt->bf_jitcode != NULL) 1637 slen = filt->bf_jitcode(NULL, &args); 1638 else 1639 slen = bpf_filter_ext(NULL, filt->bf_insn, &args); 1640 return slen; 1641 } 1642 1643 /* 1644 * Dispatch a packet to all the listeners on interface bp. 1645 * 1646 * pkt pointer to the packet, either a data buffer or an mbuf chain 1647 * buflen buffer length, if pkt is a data buffer 1648 * cpfn a function that can copy pkt into the listener's buffer 1649 * pktlen length of the packet 1650 * direction BPF_D_IN or BPF_D_OUT 1651 */ 1652 static inline void 1653 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t), 1654 void *pkt, u_int pktlen, u_int buflen, const u_int direction) 1655 { 1656 bool gottime = false; 1657 struct timespec ts; 1658 struct bpf_d *d; 1659 int s; 1660 u_int slen; 1661 1662 KASSERT(!cpu_intr_p()); 1663 1664 /* 1665 * Note that the IPL does not have to be raised at this point. 1666 * The only problem that could arise here is that if two different 1667 * interfaces shared any data. This is not the case. 1668 */ 1669 s = pserialize_read_enter(); 1670 BPFIF_DLIST_READER_FOREACH(d, bp) { 1671 if (direction == BPF_D_IN) { 1672 if (d->bd_direction == BPF_D_OUT) 1673 continue; 1674 } else { /* BPF_D_OUT */ 1675 if (d->bd_direction == BPF_D_IN) 1676 continue; 1677 } 1678 1679 atomic_inc_ulong(&d->bd_rcount); 1680 BPF_STATINC(recv); 1681 1682 slen = bpf_xfilter(&d->bd_rfilter, pkt, pktlen, buflen); 1683 if (slen == 0) 1684 continue; 1685 1686 if (!gottime) { 1687 gottime = true; 1688 nanotime(&ts); 1689 } 1690 /* Assume catchpacket doesn't sleep */ 1691 catchpacket(d, pkt, pktlen, slen, cpfn, &ts); 1692 } 1693 pserialize_read_exit(s); 1694 } 1695 1696 /* 1697 * Incoming linkage from device drivers, when the head of the packet is in 1698 * a buffer, and the tail is in an mbuf chain. 1699 */ 1700 static void 1701 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m, 1702 u_int direction) 1703 { 1704 u_int pktlen; 1705 struct mbuf mb; 1706 1707 /* Skip outgoing duplicate packets. */ 1708 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) { 1709 m->m_flags &= ~M_PROMISC; 1710 return; 1711 } 1712 1713 pktlen = m_length(m) + dlen; 1714 1715 /* 1716 * Craft on-stack mbuf suitable for passing to bpf_filter. 1717 * Note that we cut corners here; we only setup what's 1718 * absolutely needed--this mbuf should never go anywhere else. 1719 */ 1720 (void)memset(&mb, 0, sizeof(mb)); 1721 mb.m_type = MT_DATA; 1722 mb.m_next = m; 1723 mb.m_data = data; 1724 mb.m_len = dlen; 1725 1726 bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, direction); 1727 } 1728 1729 /* 1730 * Incoming linkage from device drivers, when packet is in an mbuf chain. 1731 */ 1732 static void 1733 _bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction) 1734 { 1735 void *(*cpfn)(void *, const void *, size_t); 1736 u_int pktlen, buflen; 1737 void *marg; 1738 1739 /* Skip outgoing duplicate packets. */ 1740 if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) { 1741 m->m_flags &= ~M_PROMISC; 1742 return; 1743 } 1744 1745 pktlen = m_length(m); 1746 1747 /* Skip zero-sized packets. */ 1748 if (__predict_false(pktlen == 0)) { 1749 return; 1750 } 1751 1752 if (pktlen == m->m_len) { 1753 cpfn = (void *)memcpy; 1754 marg = mtod(m, void *); 1755 buflen = pktlen; 1756 KASSERT(buflen != 0); 1757 } else { 1758 cpfn = bpf_mcpy; 1759 marg = m; 1760 buflen = 0; 1761 } 1762 1763 bpf_deliver(bp, cpfn, marg, pktlen, buflen, direction); 1764 } 1765 1766 /* 1767 * We need to prepend the address family as 1768 * a four byte field. Cons up a dummy header 1769 * to pacify bpf. This is safe because bpf 1770 * will only read from the mbuf (i.e., it won't 1771 * try to free it or keep a pointer a to it). 1772 */ 1773 static void 1774 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m, u_int direction) 1775 { 1776 struct mbuf m0; 1777 1778 m0.m_type = MT_DATA; 1779 m0.m_flags = 0; 1780 m0.m_next = m; 1781 m0.m_nextpkt = NULL; 1782 m0.m_owner = NULL; 1783 m0.m_len = 4; 1784 m0.m_data = (char *)⁡ 1785 1786 _bpf_mtap(bp, &m0, direction); 1787 } 1788 1789 /* 1790 * Put the SLIP pseudo-"link header" in place. 1791 * Note this M_PREPEND() should never fail, 1792 * swince we know we always have enough space 1793 * in the input buffer. 1794 */ 1795 static void 1796 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m) 1797 { 1798 u_char *hp; 1799 1800 M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT); 1801 if (*m == NULL) 1802 return; 1803 1804 hp = mtod(*m, u_char *); 1805 hp[SLX_DIR] = SLIPDIR_IN; 1806 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN); 1807 1808 _bpf_mtap(bp, *m, BPF_D_IN); 1809 1810 m_adj(*m, SLIP_HDRLEN); 1811 } 1812 1813 /* 1814 * Put the SLIP pseudo-"link header" in 1815 * place. The compressed header is now 1816 * at the beginning of the mbuf. 1817 */ 1818 static void 1819 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m) 1820 { 1821 struct mbuf m0; 1822 u_char *hp; 1823 1824 m0.m_type = MT_DATA; 1825 m0.m_flags = 0; 1826 m0.m_next = m; 1827 m0.m_nextpkt = NULL; 1828 m0.m_owner = NULL; 1829 m0.m_data = m0.m_dat; 1830 m0.m_len = SLIP_HDRLEN; 1831 1832 hp = mtod(&m0, u_char *); 1833 1834 hp[SLX_DIR] = SLIPDIR_OUT; 1835 (void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN); 1836 1837 _bpf_mtap(bp, &m0, BPF_D_OUT); 1838 m_freem(m); 1839 } 1840 1841 static struct mbuf * 1842 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m) 1843 { 1844 struct mbuf *dup; 1845 1846 dup = m_dup(m, 0, M_COPYALL, M_NOWAIT); 1847 if (dup == NULL) 1848 return NULL; 1849 1850 if (bp->bif_mbuf_tail != NULL) { 1851 bp->bif_mbuf_tail->m_nextpkt = dup; 1852 } else { 1853 bp->bif_mbuf_head = dup; 1854 } 1855 bp->bif_mbuf_tail = dup; 1856 #ifdef BPF_MTAP_SOFTINT_DEBUG 1857 log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n", 1858 __func__, dup, bp->bif_ifp->if_xname); 1859 #endif 1860 1861 return dup; 1862 } 1863 1864 static struct mbuf * 1865 bpf_mbuf_dequeue(struct bpf_if *bp) 1866 { 1867 struct mbuf *m; 1868 int s; 1869 1870 /* XXX NOMPSAFE: assumed running on one CPU */ 1871 s = splnet(); 1872 m = bp->bif_mbuf_head; 1873 if (m != NULL) { 1874 bp->bif_mbuf_head = m->m_nextpkt; 1875 m->m_nextpkt = NULL; 1876 1877 if (bp->bif_mbuf_head == NULL) 1878 bp->bif_mbuf_tail = NULL; 1879 #ifdef BPF_MTAP_SOFTINT_DEBUG 1880 log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n", 1881 __func__, m, bp->bif_ifp->if_xname); 1882 #endif 1883 } 1884 splx(s); 1885 1886 return m; 1887 } 1888 1889 static void 1890 bpf_mtap_si(void *arg) 1891 { 1892 struct bpf_if *bp = arg; 1893 struct mbuf *m; 1894 1895 while ((m = bpf_mbuf_dequeue(bp)) != NULL) { 1896 #ifdef BPF_MTAP_SOFTINT_DEBUG 1897 log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n", 1898 __func__, m, bp->bif_ifp->if_xname); 1899 #endif 1900 bpf_ops->bpf_mtap(bp, m, BPF_D_IN); 1901 m_freem(m); 1902 } 1903 } 1904 1905 static void 1906 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m) 1907 { 1908 struct bpf_if *bp = ifp->if_bpf; 1909 struct mbuf *dup; 1910 1911 KASSERT(cpu_intr_p()); 1912 1913 /* To avoid extra invocations of the softint */ 1914 if (BPFIF_DLIST_READER_EMPTY(bp)) 1915 return; 1916 KASSERT(bp->bif_si != NULL); 1917 1918 dup = bpf_mbuf_enqueue(bp, m); 1919 if (dup != NULL) 1920 softint_schedule(bp->bif_si); 1921 } 1922 1923 static int 1924 bpf_hdrlen(struct bpf_d *d) 1925 { 1926 int hdrlen = d->bd_bif->bif_hdrlen; 1927 /* 1928 * Compute the length of the bpf header. This is not necessarily 1929 * equal to SIZEOF_BPF_HDR because we want to insert spacing such 1930 * that the network layer header begins on a longword boundary (for 1931 * performance reasons and to alleviate alignment restrictions). 1932 */ 1933 #ifdef _LP64 1934 if (d->bd_compat32) 1935 return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen); 1936 else 1937 #endif 1938 return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen); 1939 } 1940 1941 /* 1942 * Move the packet data from interface memory (pkt) into the 1943 * store buffer. Call the wakeup functions if it's time to wakeup 1944 * a listener (buffer full), "cpfn" is the routine called to do the 1945 * actual data transfer. memcpy is passed in to copy contiguous chunks, 1946 * while bpf_mcpy is passed in to copy mbuf chains. In the latter case, 1947 * pkt is really an mbuf. 1948 */ 1949 static void 1950 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen, 1951 void *(*cpfn)(void *, const void *, size_t), struct timespec *ts) 1952 { 1953 char *h; 1954 int totlen, curlen, caplen; 1955 int hdrlen = bpf_hdrlen(d); 1956 int do_wakeup = 0; 1957 1958 atomic_inc_ulong(&d->bd_ccount); 1959 BPF_STATINC(capt); 1960 /* 1961 * Figure out how many bytes to move. If the packet is 1962 * greater or equal to the snapshot length, transfer that 1963 * much. Otherwise, transfer the whole packet (unless 1964 * we hit the buffer size limit). 1965 */ 1966 totlen = hdrlen + uimin(snaplen, pktlen); 1967 if (totlen > d->bd_bufsize) 1968 totlen = d->bd_bufsize; 1969 /* 1970 * If we adjusted totlen to fit the bufsize, it could be that 1971 * totlen is smaller than hdrlen because of the link layer header. 1972 */ 1973 caplen = totlen - hdrlen; 1974 if (caplen < 0) 1975 caplen = 0; 1976 1977 mutex_enter(d->bd_buf_mtx); 1978 /* 1979 * Round up the end of the previous packet to the next longword. 1980 */ 1981 #ifdef _LP64 1982 if (d->bd_compat32) 1983 curlen = BPF_WORDALIGN32(d->bd_slen); 1984 else 1985 #endif 1986 curlen = BPF_WORDALIGN(d->bd_slen); 1987 if (curlen + totlen > d->bd_bufsize) { 1988 /* 1989 * This packet will overflow the storage buffer. 1990 * Rotate the buffers if we can, then wakeup any 1991 * pending reads. 1992 */ 1993 if (d->bd_fbuf == NULL) { 1994 mutex_exit(d->bd_buf_mtx); 1995 /* 1996 * We haven't completed the previous read yet, 1997 * so drop the packet. 1998 */ 1999 atomic_inc_ulong(&d->bd_dcount); 2000 BPF_STATINC(drop); 2001 return; 2002 } 2003 ROTATE_BUFFERS(d); 2004 do_wakeup = 1; 2005 curlen = 0; 2006 } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) { 2007 /* 2008 * Immediate mode is set, or the read timeout has 2009 * already expired during a select call. A packet 2010 * arrived, so the reader should be woken up. 2011 */ 2012 do_wakeup = 1; 2013 } 2014 2015 /* 2016 * Append the bpf header. 2017 */ 2018 h = (char *)d->bd_sbuf + curlen; 2019 #ifdef _LP64 2020 if (d->bd_compat32) { 2021 struct bpf_hdr32 *hp32; 2022 2023 hp32 = (struct bpf_hdr32 *)h; 2024 hp32->bh_tstamp.tv_sec = ts->tv_sec; 2025 hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000; 2026 hp32->bh_datalen = pktlen; 2027 hp32->bh_hdrlen = hdrlen; 2028 hp32->bh_caplen = caplen; 2029 } else 2030 #endif 2031 { 2032 struct bpf_hdr *hp; 2033 2034 hp = (struct bpf_hdr *)h; 2035 hp->bh_tstamp.tv_sec = ts->tv_sec; 2036 hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000; 2037 hp->bh_datalen = pktlen; 2038 hp->bh_hdrlen = hdrlen; 2039 hp->bh_caplen = caplen; 2040 } 2041 2042 /* 2043 * Copy the packet data into the store buffer and update its length. 2044 */ 2045 (*cpfn)(h + hdrlen, pkt, caplen); 2046 d->bd_slen = curlen + totlen; 2047 mutex_exit(d->bd_buf_mtx); 2048 2049 /* 2050 * Call bpf_wakeup after bd_slen has been updated so that kevent(2) 2051 * will cause filt_bpfread() to be called with it adjusted. 2052 */ 2053 if (do_wakeup) 2054 bpf_wakeup(d); 2055 } 2056 2057 /* 2058 * Initialize all nonzero fields of a descriptor. 2059 */ 2060 static int 2061 bpf_allocbufs(struct bpf_d *d) 2062 { 2063 2064 d->bd_fbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP); 2065 if (!d->bd_fbuf) 2066 return (ENOBUFS); 2067 d->bd_sbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP); 2068 if (!d->bd_sbuf) { 2069 kmem_free(d->bd_fbuf, d->bd_bufsize); 2070 return (ENOBUFS); 2071 } 2072 d->bd_slen = 0; 2073 d->bd_hlen = 0; 2074 return (0); 2075 } 2076 2077 static void 2078 bpf_free_filter(struct bpf_filter *filter) 2079 { 2080 2081 KASSERT(filter != NULL); 2082 KASSERT(filter->bf_insn != NULL); 2083 2084 kmem_free(filter->bf_insn, filter->bf_size); 2085 if (filter->bf_jitcode != NULL) 2086 bpf_jit_freecode(filter->bf_jitcode); 2087 kmem_free(filter, sizeof(*filter)); 2088 } 2089 2090 /* 2091 * Free buffers currently in use by a descriptor. 2092 * Called on close. 2093 */ 2094 static void 2095 bpf_freed(struct bpf_d *d) 2096 { 2097 /* 2098 * We don't need to lock out interrupts since this descriptor has 2099 * been detached from its interface and it yet hasn't been marked 2100 * free. 2101 */ 2102 if (d->bd_sbuf != NULL) { 2103 kmem_free(d->bd_sbuf, d->bd_bufsize); 2104 if (d->bd_hbuf != NULL) 2105 kmem_free(d->bd_hbuf, d->bd_bufsize); 2106 if (d->bd_fbuf != NULL) 2107 kmem_free(d->bd_fbuf, d->bd_bufsize); 2108 } 2109 if (d->bd_rfilter != NULL) { 2110 bpf_free_filter(d->bd_rfilter); 2111 d->bd_rfilter = NULL; 2112 } 2113 if (d->bd_wfilter != NULL) { 2114 bpf_free_filter(d->bd_wfilter); 2115 d->bd_wfilter = NULL; 2116 } 2117 d->bd_jitcode = NULL; 2118 } 2119 2120 /* 2121 * Attach an interface to bpf. dlt is the link layer type; 2122 * hdrlen is the fixed size of the link header for the specified dlt 2123 * (variable length headers not yet supported). 2124 */ 2125 static void 2126 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp) 2127 { 2128 struct bpf_if *bp; 2129 bp = kmem_alloc(sizeof(*bp), KM_NOSLEEP); 2130 if (bp == NULL) 2131 panic("%s: out of memory", __func__); 2132 2133 mutex_enter(&bpf_mtx); 2134 bp->bif_driverp = driverp; 2135 bp->bif_ifp = ifp; 2136 bp->bif_dlt = dlt; 2137 bp->bif_si = NULL; 2138 BPF_IFLIST_ENTRY_INIT(bp); 2139 PSLIST_INIT(&bp->bif_dlist_head); 2140 psref_target_init(&bp->bif_psref, bpf_psref_class); 2141 SLIST_INIT(&bp->bif_trackers); 2142 2143 BPF_IFLIST_WRITER_INSERT_HEAD(bp); 2144 2145 *bp->bif_driverp = NULL; 2146 2147 bp->bif_hdrlen = hdrlen; 2148 mutex_exit(&bpf_mtx); 2149 #if 0 2150 printf("bpf: %s attached with dlt %x\n", ifp->if_xname, dlt); 2151 #endif 2152 } 2153 2154 static void 2155 _bpf_mtap_softint_init(struct ifnet *ifp) 2156 { 2157 struct bpf_if *bp; 2158 2159 mutex_enter(&bpf_mtx); 2160 BPF_IFLIST_WRITER_FOREACH(bp) { 2161 if (bp->bif_ifp != ifp) 2162 continue; 2163 2164 bp->bif_mbuf_head = NULL; 2165 bp->bif_mbuf_tail = NULL; 2166 bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp); 2167 if (bp->bif_si == NULL) 2168 panic("%s: softint_establish() failed", __func__); 2169 break; 2170 } 2171 mutex_exit(&bpf_mtx); 2172 2173 if (bp == NULL) 2174 panic("%s: no bpf_if found for %s", __func__, ifp->if_xname); 2175 } 2176 2177 /* 2178 * Remove an interface from bpf. 2179 */ 2180 static void 2181 _bpfdetach(struct ifnet *ifp) 2182 { 2183 struct bpf_if *bp; 2184 struct bpf_d *d; 2185 int s; 2186 2187 mutex_enter(&bpf_mtx); 2188 /* Nuke the vnodes for any open instances */ 2189 again_d: 2190 BPF_DLIST_WRITER_FOREACH(d) { 2191 mutex_enter(d->bd_mtx); 2192 if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) { 2193 /* 2194 * Detach the descriptor from an interface now. 2195 * It will be free'ed later by close routine. 2196 */ 2197 bpf_detachd(d); 2198 mutex_exit(d->bd_mtx); 2199 goto again_d; 2200 } 2201 mutex_exit(d->bd_mtx); 2202 } 2203 2204 again: 2205 BPF_IFLIST_WRITER_FOREACH(bp) { 2206 if (bp->bif_ifp == ifp) { 2207 BPF_IFLIST_WRITER_REMOVE(bp); 2208 2209 pserialize_perform(bpf_psz); 2210 psref_target_destroy(&bp->bif_psref, bpf_psref_class); 2211 2212 while (!SLIST_EMPTY(&bp->bif_trackers)) { 2213 struct bpf_event_tracker *t = 2214 SLIST_FIRST(&bp->bif_trackers); 2215 SLIST_REMOVE_HEAD(&bp->bif_trackers, 2216 bet_entries); 2217 kmem_free(t, sizeof(*t)); 2218 } 2219 2220 BPF_IFLIST_ENTRY_DESTROY(bp); 2221 if (bp->bif_si != NULL) { 2222 /* XXX NOMPSAFE: assumed running on one CPU */ 2223 s = splnet(); 2224 while (bp->bif_mbuf_head != NULL) { 2225 struct mbuf *m = bp->bif_mbuf_head; 2226 bp->bif_mbuf_head = m->m_nextpkt; 2227 m_freem(m); 2228 } 2229 splx(s); 2230 softint_disestablish(bp->bif_si); 2231 } 2232 kmem_free(bp, sizeof(*bp)); 2233 goto again; 2234 } 2235 } 2236 mutex_exit(&bpf_mtx); 2237 } 2238 2239 /* 2240 * Change the data link type of a interface. 2241 */ 2242 static void 2243 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen) 2244 { 2245 struct bpf_if *bp; 2246 2247 mutex_enter(&bpf_mtx); 2248 BPF_IFLIST_WRITER_FOREACH(bp) { 2249 if (bp->bif_driverp == &ifp->if_bpf) 2250 break; 2251 } 2252 if (bp == NULL) 2253 panic("bpf_change_type"); 2254 2255 bp->bif_dlt = dlt; 2256 2257 bp->bif_hdrlen = hdrlen; 2258 mutex_exit(&bpf_mtx); 2259 } 2260 2261 /* 2262 * Get a list of available data link type of the interface. 2263 */ 2264 static int 2265 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl) 2266 { 2267 int n, error; 2268 struct ifnet *ifp; 2269 struct bpf_if *bp; 2270 int s, bound; 2271 2272 KASSERT(mutex_owned(d->bd_mtx)); 2273 2274 ifp = d->bd_bif->bif_ifp; 2275 n = 0; 2276 error = 0; 2277 2278 bound = curlwp_bind(); 2279 s = pserialize_read_enter(); 2280 BPF_IFLIST_READER_FOREACH(bp) { 2281 if (bp->bif_ifp != ifp) 2282 continue; 2283 if (bfl->bfl_list != NULL) { 2284 struct psref psref; 2285 2286 if (n >= bfl->bfl_len) { 2287 pserialize_read_exit(s); 2288 return ENOMEM; 2289 } 2290 2291 bpf_if_acquire(bp, &psref); 2292 pserialize_read_exit(s); 2293 2294 error = copyout(&bp->bif_dlt, 2295 bfl->bfl_list + n, sizeof(u_int)); 2296 2297 s = pserialize_read_enter(); 2298 bpf_if_release(bp, &psref); 2299 } 2300 n++; 2301 } 2302 pserialize_read_exit(s); 2303 curlwp_bindx(bound); 2304 2305 bfl->bfl_len = n; 2306 return error; 2307 } 2308 2309 /* 2310 * Set the data link type of a BPF instance. 2311 */ 2312 static int 2313 bpf_setdlt(struct bpf_d *d, u_int dlt) 2314 { 2315 int error, opromisc; 2316 struct ifnet *ifp; 2317 struct bpf_if *bp; 2318 2319 KASSERT(mutex_owned(&bpf_mtx)); 2320 KASSERT(mutex_owned(d->bd_mtx)); 2321 2322 if (d->bd_bif->bif_dlt == dlt) 2323 return 0; 2324 ifp = d->bd_bif->bif_ifp; 2325 BPF_IFLIST_WRITER_FOREACH(bp) { 2326 if (bp->bif_ifp == ifp && bp->bif_dlt == dlt) 2327 break; 2328 } 2329 if (bp == NULL) 2330 return EINVAL; 2331 opromisc = d->bd_promisc; 2332 bpf_detachd(d); 2333 BPFIF_DLIST_ENTRY_INIT(d); 2334 bpf_attachd(d, bp); 2335 reset_d(d); 2336 if (opromisc) { 2337 KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2338 error = ifpromisc(bp->bif_ifp, 1); 2339 KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2340 if (error) 2341 printf("%s: bpf_setdlt: ifpromisc failed (%d)\n", 2342 bp->bif_ifp->if_xname, error); 2343 else 2344 d->bd_promisc = 1; 2345 } 2346 return 0; 2347 } 2348 2349 static int 2350 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS) 2351 { 2352 int newsize, error; 2353 struct sysctlnode node; 2354 2355 node = *rnode; 2356 node.sysctl_data = &newsize; 2357 newsize = bpf_maxbufsize; 2358 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2359 if (error || newp == NULL) 2360 return (error); 2361 2362 if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE) 2363 return (EINVAL); 2364 2365 bpf_maxbufsize = newsize; 2366 2367 return (0); 2368 } 2369 2370 #if defined(MODULAR) || defined(BPFJIT) 2371 static int 2372 sysctl_net_bpf_jit(SYSCTLFN_ARGS) 2373 { 2374 bool newval; 2375 int error; 2376 struct sysctlnode node; 2377 2378 node = *rnode; 2379 node.sysctl_data = &newval; 2380 newval = bpf_jit; 2381 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2382 if (error != 0 || newp == NULL) 2383 return error; 2384 2385 bpf_jit = newval; 2386 if (newval && bpfjit_module_ops.bj_generate_code == NULL) { 2387 printf("JIT compilation is postponed " 2388 "until after bpfjit module is loaded\n"); 2389 } 2390 2391 return 0; 2392 } 2393 #endif 2394 2395 static int 2396 sysctl_net_bpf_peers(SYSCTLFN_ARGS) 2397 { 2398 int error, elem_count; 2399 struct bpf_d *dp; 2400 struct bpf_d_ext dpe; 2401 size_t len, needed, elem_size, out_size; 2402 char *sp; 2403 2404 if (namelen == 1 && name[0] == CTL_QUERY) 2405 return (sysctl_query(SYSCTLFN_CALL(rnode))); 2406 2407 if (namelen != 2) 2408 return (EINVAL); 2409 2410 /* BPF peers is privileged information. */ 2411 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE, 2412 KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL); 2413 if (error) 2414 return (EPERM); 2415 2416 len = (oldp != NULL) ? *oldlenp : 0; 2417 sp = oldp; 2418 elem_size = name[0]; 2419 elem_count = name[1]; 2420 out_size = MIN(sizeof(dpe), elem_size); 2421 needed = 0; 2422 2423 if (elem_size < 1 || elem_count < 0) 2424 return (EINVAL); 2425 2426 mutex_enter(&bpf_mtx); 2427 BPF_DLIST_WRITER_FOREACH(dp) { 2428 if (len >= elem_size && elem_count > 0) { 2429 #define BPF_EXT(field) dpe.bde_ ## field = dp->bd_ ## field 2430 BPF_EXT(bufsize); 2431 BPF_EXT(promisc); 2432 BPF_EXT(state); 2433 BPF_EXT(immediate); 2434 BPF_EXT(hdrcmplt); 2435 BPF_EXT(direction); 2436 BPF_EXT(pid); 2437 BPF_EXT(rcount); 2438 BPF_EXT(dcount); 2439 BPF_EXT(ccount); 2440 #undef BPF_EXT 2441 mutex_enter(dp->bd_mtx); 2442 if (dp->bd_bif) 2443 (void)strlcpy(dpe.bde_ifname, 2444 dp->bd_bif->bif_ifp->if_xname, 2445 IFNAMSIZ - 1); 2446 else 2447 dpe.bde_ifname[0] = '\0'; 2448 dpe.bde_locked = dp->bd_locked; 2449 mutex_exit(dp->bd_mtx); 2450 2451 error = copyout(&dpe, sp, out_size); 2452 if (error) 2453 break; 2454 sp += elem_size; 2455 len -= elem_size; 2456 } 2457 needed += elem_size; 2458 if (elem_count > 0 && elem_count != INT_MAX) 2459 elem_count--; 2460 } 2461 mutex_exit(&bpf_mtx); 2462 2463 *oldlenp = needed; 2464 2465 return (error); 2466 } 2467 2468 static void 2469 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused) 2470 { 2471 struct bpf_stat *const stats = p; 2472 struct bpf_stat *sum = arg; 2473 2474 int s = splnet(); 2475 2476 sum->bs_recv += stats->bs_recv; 2477 sum->bs_drop += stats->bs_drop; 2478 sum->bs_capt += stats->bs_capt; 2479 2480 splx(s); 2481 } 2482 2483 static int 2484 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS) 2485 { 2486 struct sysctlnode node; 2487 int error; 2488 struct bpf_stat sum; 2489 2490 memset(&sum, 0, sizeof(sum)); 2491 node = *rnode; 2492 2493 percpu_foreach_xcall(bpf_gstats_percpu, XC_HIGHPRI_IPL(IPL_SOFTNET), 2494 bpf_stats, &sum); 2495 2496 node.sysctl_data = ∑ 2497 node.sysctl_size = sizeof(sum); 2498 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2499 if (error != 0 || newp == NULL) 2500 return error; 2501 2502 return 0; 2503 } 2504 2505 SYSCTL_SETUP(sysctl_net_bpf_setup, "bpf sysctls") 2506 { 2507 const struct sysctlnode *node; 2508 2509 node = NULL; 2510 sysctl_createv(clog, 0, NULL, &node, 2511 CTLFLAG_PERMANENT, 2512 CTLTYPE_NODE, "bpf", 2513 SYSCTL_DESCR("BPF options"), 2514 NULL, 0, NULL, 0, 2515 CTL_NET, CTL_CREATE, CTL_EOL); 2516 if (node != NULL) { 2517 #if defined(MODULAR) || defined(BPFJIT) 2518 sysctl_createv(clog, 0, NULL, NULL, 2519 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2520 CTLTYPE_BOOL, "jit", 2521 SYSCTL_DESCR("Toggle Just-In-Time compilation"), 2522 sysctl_net_bpf_jit, 0, &bpf_jit, 0, 2523 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2524 #endif 2525 sysctl_createv(clog, 0, NULL, NULL, 2526 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2527 CTLTYPE_INT, "maxbufsize", 2528 SYSCTL_DESCR("Maximum size for data capture buffer"), 2529 sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0, 2530 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2531 sysctl_createv(clog, 0, NULL, NULL, 2532 CTLFLAG_PERMANENT, 2533 CTLTYPE_STRUCT, "stats", 2534 SYSCTL_DESCR("BPF stats"), 2535 bpf_sysctl_gstats_handler, 0, NULL, 0, 2536 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2537 sysctl_createv(clog, 0, NULL, NULL, 2538 CTLFLAG_PERMANENT, 2539 CTLTYPE_STRUCT, "peers", 2540 SYSCTL_DESCR("BPF peers"), 2541 sysctl_net_bpf_peers, 0, NULL, 0, 2542 CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL); 2543 } 2544 2545 } 2546 2547 static int 2548 _bpf_register_track_event(struct bpf_if **driverp, 2549 void (*_fun)(struct bpf_if *, struct ifnet *, int, int)) 2550 { 2551 struct bpf_if *bp; 2552 struct bpf_event_tracker *t; 2553 int ret = ENOENT; 2554 2555 t = kmem_zalloc(sizeof(*t), KM_SLEEP); 2556 if (!t) 2557 return ENOMEM; 2558 t->bet_notify = _fun; 2559 2560 mutex_enter(&bpf_mtx); 2561 BPF_IFLIST_WRITER_FOREACH(bp) { 2562 if (bp->bif_driverp != driverp) 2563 continue; 2564 SLIST_INSERT_HEAD(&bp->bif_trackers, t, bet_entries); 2565 ret = 0; 2566 break; 2567 } 2568 mutex_exit(&bpf_mtx); 2569 2570 return ret; 2571 } 2572 2573 static int 2574 _bpf_deregister_track_event(struct bpf_if **driverp, 2575 void (*_fun)(struct bpf_if *, struct ifnet *, int, int)) 2576 { 2577 struct bpf_if *bp; 2578 struct bpf_event_tracker *t = NULL; 2579 int ret = ENOENT; 2580 2581 mutex_enter(&bpf_mtx); 2582 BPF_IFLIST_WRITER_FOREACH(bp) { 2583 if (bp->bif_driverp != driverp) 2584 continue; 2585 SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) { 2586 if (t->bet_notify == _fun) { 2587 ret = 0; 2588 break; 2589 } 2590 } 2591 if (ret == 0) 2592 break; 2593 } 2594 if (ret == 0 && t && t->bet_notify == _fun) { 2595 SLIST_REMOVE(&bp->bif_trackers, t, bpf_event_tracker, 2596 bet_entries); 2597 } 2598 mutex_exit(&bpf_mtx); 2599 if (ret == 0) 2600 kmem_free(t, sizeof(*t)); 2601 return ret; 2602 } 2603 2604 struct bpf_ops bpf_ops_kernel = { 2605 .bpf_attach = _bpfattach, 2606 .bpf_detach = _bpfdetach, 2607 .bpf_change_type = _bpf_change_type, 2608 .bpf_register_track_event = _bpf_register_track_event, 2609 .bpf_deregister_track_event = _bpf_deregister_track_event, 2610 2611 .bpf_mtap = _bpf_mtap, 2612 .bpf_mtap2 = _bpf_mtap2, 2613 .bpf_mtap_af = _bpf_mtap_af, 2614 .bpf_mtap_sl_in = _bpf_mtap_sl_in, 2615 .bpf_mtap_sl_out = _bpf_mtap_sl_out, 2616 2617 .bpf_mtap_softint = _bpf_mtap_softint, 2618 .bpf_mtap_softint_init = _bpf_mtap_softint_init, 2619 }; 2620 2621 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter"); 2622 2623 static int 2624 bpf_modcmd(modcmd_t cmd, void *arg) 2625 { 2626 #ifdef _MODULE 2627 devmajor_t bmajor, cmajor; 2628 #endif 2629 int error = 0; 2630 2631 switch (cmd) { 2632 case MODULE_CMD_INIT: 2633 bpf_init(); 2634 #ifdef _MODULE 2635 bmajor = cmajor = NODEVMAJOR; 2636 error = devsw_attach("bpf", NULL, &bmajor, 2637 &bpf_cdevsw, &cmajor); 2638 if (error) 2639 break; 2640 #endif 2641 2642 bpf_ops_handover_enter(&bpf_ops_kernel); 2643 atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel); 2644 bpf_ops_handover_exit(); 2645 break; 2646 2647 case MODULE_CMD_FINI: 2648 /* 2649 * While there is no reference counting for bpf callers, 2650 * unload could at least in theory be done similarly to 2651 * system call disestablishment. This should even be 2652 * a little simpler: 2653 * 2654 * 1) replace op vector with stubs 2655 * 2) post update to all cpus with xc 2656 * 3) check that nobody is in bpf anymore 2657 * (it's doubtful we'd want something like l_sysent, 2658 * but we could do something like *signed* percpu 2659 * counters. if the sum is 0, we're good). 2660 * 4) if fail, unroll changes 2661 * 2662 * NOTE: change won't be atomic to the outside. some 2663 * packets may be not captured even if unload is 2664 * not successful. I think packet capture not working 2665 * is a perfectly logical consequence of trying to 2666 * disable packet capture. 2667 */ 2668 error = EOPNOTSUPP; 2669 break; 2670 2671 default: 2672 error = ENOTTY; 2673 break; 2674 } 2675 2676 return error; 2677 } 2678