xref: /netbsd-src/sys/miscfs/nullfs/null_vnops.c (revision dc306354b0b29af51801a7632f1e95265a68cd81)
1 /*	$NetBSD: null_vnops.c,v 1.13 1998/03/01 02:21:43 fvdl Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * John Heidemann of the UCLA Ficus project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
39  *
40  * Ancestors:
41  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
42  *	$Id: null_vnops.c,v 1.13 1998/03/01 02:21:43 fvdl Exp $
43  *	...and...
44  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
45  */
46 
47 /*
48  * Null Layer
49  *
50  * (See mount_null(8) for more information.)
51  *
52  * The null layer duplicates a portion of the file system
53  * name space under a new name.  In this respect, it is
54  * similar to the loopback file system.  It differs from
55  * the loopback fs in two respects:  it is implemented using
56  * a stackable layers techniques, and it's "null-node"s stack above
57  * all lower-layer vnodes, not just over directory vnodes.
58  *
59  * The null layer has two purposes.  First, it serves as a demonstration
60  * of layering by proving a layer which does nothing.  (It actually
61  * does everything the loopback file system does, which is slightly
62  * more than nothing.)  Second, the null layer can serve as a prototype
63  * layer.  Since it provides all necessary layer framework,
64  * new file system layers can be created very easily be starting
65  * with a null layer.
66  *
67  * The remainder of this man page examines the null layer as a basis
68  * for constructing new layers.
69  *
70  *
71  * INSTANTIATING NEW NULL LAYERS
72  *
73  * New null layers are created with mount_null(8).
74  * Mount_null(8) takes two arguments, the pathname
75  * of the lower vfs (target-pn) and the pathname where the null
76  * layer will appear in the namespace (alias-pn).  After
77  * the null layer is put into place, the contents
78  * of target-pn subtree will be aliased under alias-pn.
79  *
80  *
81  * OPERATION OF A NULL LAYER
82  *
83  * The null layer is the minimum file system layer,
84  * simply bypassing all possible operations to the lower layer
85  * for processing there.  The majority of its activity centers
86  * on the bypass routine, though which nearly all vnode operations
87  * pass.
88  *
89  * The bypass routine accepts arbitrary vnode operations for
90  * handling by the lower layer.  It begins by examing vnode
91  * operation arguments and replacing any null-nodes by their
92  * lower-layer equivlants.  It then invokes the operation
93  * on the lower layer.  Finally, it replaces the null-nodes
94  * in the arguments and, if a vnode is return by the operation,
95  * stacks a null-node on top of the returned vnode.
96  *
97  * Although bypass handles most operations, vop_getattr, vop_lock,
98  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
99  * bypassed. Vop_getattr must change the fsid being returned.
100  * Vop_lock and vop_unlock must handle any locking for the
101  * current vnode as well as pass the lock request down.
102  * Vop_inactive and vop_reclaim are not bypassed so that
103  * they can handle freeing null-layer specific data. Vop_print
104  * is not bypassed to avoid excessive debugging information.
105  * Also, certain vnode operations change the locking state within
106  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
107  * and symlink). Ideally these operations should not change the
108  * lock state, but should be changed to let the caller of the
109  * function unlock them. Otherwise all intermediate vnode layers
110  * (such as union, umapfs, etc) must catch these functions to do
111  * the necessary locking at their layer.
112  *
113  *
114  * INSTANTIATING VNODE STACKS
115  *
116  * Mounting associates the null layer with a lower layer,
117  * effect stacking two VFSes.  Vnode stacks are instead
118  * created on demand as files are accessed.
119  *
120  * The initial mount creates a single vnode stack for the
121  * root of the new null layer.  All other vnode stacks
122  * are created as a result of vnode operations on
123  * this or other null vnode stacks.
124  *
125  * New vnode stacks come into existance as a result of
126  * an operation which returns a vnode.
127  * The bypass routine stacks a null-node above the new
128  * vnode before returning it to the caller.
129  *
130  * For example, imagine mounting a null layer with
131  * "mount_null /usr/include /dev/layer/null".
132  * Changing directory to /dev/layer/null will assign
133  * the root null-node (which was created when the null layer was mounted).
134  * Now consider opening "sys".  A vop_lookup would be
135  * done on the root null-node.  This operation would bypass through
136  * to the lower layer which would return a vnode representing
137  * the UFS "sys".  Null_bypass then builds a null-node
138  * aliasing the UFS "sys" and returns this to the caller.
139  * Later operations on the null-node "sys" will repeat this
140  * process when constructing other vnode stacks.
141  *
142  *
143  * CREATING OTHER FILE SYSTEM LAYERS
144  *
145  * One of the easiest ways to construct new file system layers is to make
146  * a copy of the null layer, rename all files and variables, and
147  * then begin modifing the copy.  Sed can be used to easily rename
148  * all variables.
149  *
150  * The umap layer is an example of a layer descended from the
151  * null layer.
152  *
153  *
154  * INVOKING OPERATIONS ON LOWER LAYERS
155  *
156  * There are two techniques to invoke operations on a lower layer
157  * when the operation cannot be completely bypassed.  Each method
158  * is appropriate in different situations.  In both cases,
159  * it is the responsibility of the aliasing layer to make
160  * the operation arguments "correct" for the lower layer
161  * by mapping an vnode arguments to the lower layer.
162  *
163  * The first approach is to call the aliasing layer's bypass routine.
164  * This method is most suitable when you wish to invoke the operation
165  * currently being hanldled on the lower layer.  It has the advantage
166  * that the bypass routine already must do argument mapping.
167  * An example of this is null_getattrs in the null layer.
168  *
169  * A second approach is to directly invoked vnode operations on
170  * the lower layer with the VOP_OPERATIONNAME interface.
171  * The advantage of this method is that it is easy to invoke
172  * arbitrary operations on the lower layer.  The disadvantage
173  * is that vnodes arguments must be manualy mapped.
174  *
175  */
176 
177 #include <sys/param.h>
178 #include <sys/systm.h>
179 #include <sys/proc.h>
180 #include <sys/time.h>
181 #include <sys/types.h>
182 #include <sys/vnode.h>
183 #include <sys/mount.h>
184 #include <sys/namei.h>
185 #include <sys/malloc.h>
186 #include <sys/buf.h>
187 #include <miscfs/nullfs/null.h>
188 #include <miscfs/genfs/genfs.h>
189 
190 
191 int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
192 
193 int	null_bypass __P((void *));
194 int	null_getattr __P((void *));
195 int	null_inactive __P((void *));
196 int	null_reclaim __P((void *));
197 int	null_print __P((void *));
198 int	null_strategy __P((void *));
199 int	null_bwrite __P((void *));
200 int	null_lock __P((void *));
201 int	null_unlock __P((void *));
202 int	null_islocked __P((void *));
203 int	null_lookup __P((void *));
204 int	null_setattr __P((void *));
205 int	null_access __P((void *));
206 
207 
208 /*
209  * This is the 10-Apr-92 bypass routine.
210  *    This version has been optimized for speed, throwing away some
211  * safety checks.  It should still always work, but it's not as
212  * robust to programmer errors.
213  *    Define SAFETY to include some error checking code.
214  *
215  * In general, we map all vnodes going down and unmap them on the way back.
216  * As an exception to this, vnodes can be marked "unmapped" by setting
217  * the Nth bit in operation's vdesc_flags.
218  *
219  * Also, some BSD vnode operations have the side effect of vrele'ing
220  * their arguments.  With stacking, the reference counts are held
221  * by the upper node, not the lower one, so we must handle these
222  * side-effects here.  This is not of concern in Sun-derived systems
223  * since there are no such side-effects.
224  *
225  * This makes the following assumptions:
226  * - only one returned vpp
227  * - no INOUT vpp's (Sun's vop_open has one of these)
228  * - the vnode operation vector of the first vnode should be used
229  *   to determine what implementation of the op should be invoked
230  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
231  *   problems on rmdir'ing mount points and renaming?)
232  */
233 int
234 null_bypass(v)
235 	void *v;
236 {
237 	struct vop_generic_args /* {
238 		struct vnodeop_desc *a_desc;
239 		<other random data follows, presumably>
240 	} */ *ap = v;
241 	extern int (**null_vnodeop_p) __P((void *));
242 	register struct vnode **this_vp_p;
243 	int error;
244 	struct vnode *old_vps[VDESC_MAX_VPS];
245 	struct vnode **vps_p[VDESC_MAX_VPS];
246 	struct vnode ***vppp;
247 	struct vnodeop_desc *descp = ap->a_desc;
248 	int reles, i;
249 
250 	if (null_bug_bypass)
251 		printf ("null_bypass: %s\n", descp->vdesc_name);
252 
253 #ifdef SAFETY
254 	/*
255 	 * We require at least one vp.
256 	 */
257 	if (descp->vdesc_vp_offsets == NULL ||
258 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
259 		panic ("null_bypass: no vp's in map.\n");
260 #endif
261 
262 	/*
263 	 * Map the vnodes going in.
264 	 * Later, we'll invoke the operation based on
265 	 * the first mapped vnode's operation vector.
266 	 */
267 	reles = descp->vdesc_flags;
268 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
269 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
270 			break;   /* bail out at end of list */
271 		vps_p[i] = this_vp_p =
272 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
273 		/*
274 		 * We're not guaranteed that any but the first vnode
275 		 * are of our type.  Check for and don't map any
276 		 * that aren't.  (We must always map first vp or vclean fails.)
277 		 */
278 		if (i && (*this_vp_p == NULL ||
279 		    (*this_vp_p)->v_op != null_vnodeop_p)) {
280 			old_vps[i] = NULL;
281 		} else {
282 			old_vps[i] = *this_vp_p;
283 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
284 			/*
285 			 * XXX - Several operations have the side effect
286 			 * of vrele'ing their vp's.  We must account for
287 			 * that.  (This should go away in the future.)
288 			 */
289 			if (reles & 1)
290 				VREF(*this_vp_p);
291 		}
292 
293 	}
294 
295 	/*
296 	 * Call the operation on the lower layer
297 	 * with the modified argument structure.
298 	 */
299 	error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
300 
301 	/*
302 	 * Maintain the illusion of call-by-value
303 	 * by restoring vnodes in the argument structure
304 	 * to their original value.
305 	 */
306 	reles = descp->vdesc_flags;
307 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
308 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
309 			break;   /* bail out at end of list */
310 		if (old_vps[i]) {
311 			*(vps_p[i]) = old_vps[i];
312 			if (reles & 1)
313 				vrele(*(vps_p[i]));
314 		}
315 	}
316 
317 	/*
318 	 * Map the possible out-going vpp
319 	 * (Assumes that the lower layer always returns
320 	 * a VREF'ed vpp unless it gets an error.)
321 	 */
322 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
323 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
324 	    !error) {
325 		/*
326 		 * XXX - even though some ops have vpp returned vp's,
327 		 * several ops actually vrele this before returning.
328 		 * We must avoid these ops.
329 		 * (This should go away when these ops are regularized.)
330 		 */
331 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
332 			goto out;
333 		vppp = VOPARG_OFFSETTO(struct vnode***,
334 				 descp->vdesc_vpp_offset,ap);
335 		error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp,
336 					 descp == &vop_lookup_desc ? 0 : 1);
337 	}
338 
339  out:
340 	return (error);
341 }
342 
343 /*
344  * We have to carry on the locking protocol on the null layer vnodes
345  * as we progress through the tree. We also have to enforce read-only
346  * if this layer is mounted read-only.
347  */
348 int
349 null_lookup(v)
350 	void *v;
351 {
352 	struct vop_lookup_args /* {
353 		struct vnode * a_dvp;
354 		struct vnode ** a_vpp;
355 		struct componentname * a_cnp;
356 	} */ *ap = v;
357 	struct componentname *cnp = ap->a_cnp;
358 	int flags = cnp->cn_flags;
359 	struct vop_lock_args lockargs;
360 	struct vop_unlock_args unlockargs;
361 	struct vnode *dvp, *vp;
362 	int error;
363 
364 	if ((flags & ISLASTCN) && (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
365 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
366 		return (EROFS);
367 	error = null_bypass(ap);
368 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
369 	    (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
370 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
371 		error = EROFS;
372 	/*
373 	 * We must do the same locking and unlocking at this layer as
374 	 * is done in the layers below us. We could figure this out
375 	 * based on the error return and the LASTCN, LOCKPARENT, and
376 	 * LOCKLEAF flags. However, it is more expidient to just find
377 	 * out the state of the lower level vnodes and set ours to the
378 	 * same state.
379 	 */
380 	dvp = ap->a_dvp;
381 	vp = *ap->a_vpp;
382 	if (dvp == vp)
383 		return (error);
384 	if (!VOP_ISLOCKED(dvp)) {
385 		unlockargs.a_vp = dvp;
386 		unlockargs.a_flags = 0;
387 		genfs_nounlock(&unlockargs);
388 	}
389 	if (vp != NULL && VOP_ISLOCKED(vp)) {
390 		lockargs.a_vp = vp;
391 		lockargs.a_flags = LK_SHARED;
392 		genfs_nolock(&lockargs);
393 	}
394 	return (error);
395 }
396 
397 /*
398  * Setattr call. Disallow write attempts if the layer is mounted read-only.
399  */
400 int
401 null_setattr(v)
402 	void *v;
403 {
404 	struct vop_setattr_args /* {
405 		struct vnodeop_desc *a_desc;
406 		struct vnode *a_vp;
407 		struct vattr *a_vap;
408 		struct ucred *a_cred;
409 		struct proc *a_p;
410 	} */ *ap = v;
411 	struct vnode *vp = ap->a_vp;
412 	struct vattr *vap = ap->a_vap;
413 
414   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
415 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
416 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
417 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
418 		return (EROFS);
419 	if (vap->va_size != VNOVAL) {
420  		switch (vp->v_type) {
421  		case VDIR:
422  			return (EISDIR);
423  		case VCHR:
424  		case VBLK:
425  		case VSOCK:
426  		case VFIFO:
427 			return (0);
428 		case VREG:
429 		case VLNK:
430  		default:
431 			/*
432 			 * Disallow write attempts if the filesystem is
433 			 * mounted read-only.
434 			 */
435 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
436 				return (EROFS);
437 		}
438 	}
439 	return (null_bypass(ap));
440 }
441 
442 /*
443  *  We handle getattr only to change the fsid.
444  */
445 int
446 null_getattr(v)
447 	void *v;
448 {
449 	struct vop_getattr_args /* {
450 		struct vnode *a_vp;
451 		struct vattr *a_vap;
452 		struct ucred *a_cred;
453 		struct proc *a_p;
454 	} */ *ap = v;
455 	int error;
456 
457 	if ((error = null_bypass(ap)) != 0)
458 		return (error);
459 	/* Requires that arguments be restored. */
460 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
461 	return (0);
462 }
463 
464 int
465 null_access(v)
466 	void *v;
467 {
468 	struct vop_access_args /* {
469 		struct vnode *a_vp;
470 		int  a_mode;
471 		struct ucred *a_cred;
472 		struct proc *a_p;
473 	} */ *ap = v;
474 	struct vnode *vp = ap->a_vp;
475 	mode_t mode = ap->a_mode;
476 
477 	/*
478 	 * Disallow write attempts on read-only layers;
479 	 * unless the file is a socket, fifo, or a block or
480 	 * character device resident on the file system.
481 	 */
482 	if (mode & VWRITE) {
483 		switch (vp->v_type) {
484 		case VDIR:
485 		case VLNK:
486 		case VREG:
487 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
488 				return (EROFS);
489 			break;
490 		default:
491 			break;
492 		}
493 	}
494 	return (null_bypass(ap));
495 }
496 
497 /*
498  * We need to process our own vnode lock and then clear the
499  * interlock flag as it applies only to our vnode, not the
500  * vnodes below us on the stack.
501  */
502 int
503 null_lock(v)
504 	void *v;
505 {
506 	struct vop_lock_args /* {
507 		struct vnode *a_vp;
508 		int a_flags;
509 		struct proc *a_p;
510 	} */ *ap = v;
511 
512 	genfs_nolock(ap);
513 	if ((ap->a_flags & LK_TYPE_MASK) == LK_DRAIN)
514 		return (0);
515 	ap->a_flags &= ~LK_INTERLOCK;
516 	return (null_bypass(ap));
517 }
518 
519 /*
520  * We need to process our own vnode unlock and then clear the
521  * interlock flag as it applies only to our vnode, not the
522  * vnodes below us on the stack.
523  */
524 int
525 null_unlock(v)
526 	void *v;
527 {
528 	struct vop_unlock_args /* {
529 		struct vnode *a_vp;
530 		int a_flags;
531 		struct proc *a_p;
532 	} */ *ap = v;
533 
534 	genfs_nounlock(ap);
535 	ap->a_flags &= ~LK_INTERLOCK;
536 	return (null_bypass(ap));
537 }
538 
539 int
540 null_inactive(v)
541 	void *v;
542 {
543 	struct vop_inactive_args /* {
544 		struct vnode *a_vp;
545 		struct proc *a_p;
546 	} */ *ap = v;
547 
548 	/*
549 	 * Do nothing (and _don't_ bypass).
550 	 * Wait to vrele lowervp until reclaim,
551 	 * so that until then our null_node is in the
552 	 * cache and reusable.
553 	 *
554 	 * NEEDSWORK: Someday, consider inactive'ing
555 	 * the lowervp and then trying to reactivate it
556 	 * with capabilities (v_id)
557 	 * like they do in the name lookup cache code.
558 	 * That's too much work for now.
559 	 */
560 	VOP_UNLOCK(ap->a_vp, 0);
561 	return (0);
562 }
563 
564 int
565 null_reclaim(v)
566 	void *v;
567 {
568 	struct vop_reclaim_args /* {
569 		struct vnode *a_vp;
570 		struct proc *a_p;
571 	} */ *ap = v;
572 	struct vnode *vp = ap->a_vp;
573 	struct null_node *xp = VTONULL(vp);
574 	struct vnode *lowervp = xp->null_lowervp;
575 
576 	/*
577 	 * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p,
578 	 * so we can't call VOPs on ourself.
579 	 */
580 	/* After this assignment, this node will not be re-used. */
581 	xp->null_lowervp = NULL;
582 	LIST_REMOVE(xp, null_hash);
583 	FREE(vp->v_data, M_TEMP);
584 	vp->v_data = NULL;
585 	vrele (lowervp);
586 	return (0);
587 }
588 
589 int
590 null_print(v)
591 	void *v;
592 {
593 	struct vop_print_args /* {
594 		struct vnode *a_vp;
595 	} */ *ap = v;
596 	register struct vnode *vp = ap->a_vp;
597 	printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
598 	return (0);
599 }
600 
601 /*
602  * XXX - vop_strategy must be hand coded because it has no
603  * vnode in its arguments.
604  * This goes away with a merged VM/buffer cache.
605  */
606 int
607 null_strategy(v)
608 	void *v;
609 {
610 	struct vop_strategy_args /* {
611 		struct buf *a_bp;
612 	} */ *ap = v;
613 	struct buf *bp = ap->a_bp;
614 	int error;
615 	struct vnode *savedvp;
616 
617 	savedvp = bp->b_vp;
618 	bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
619 
620 	error = VOP_STRATEGY(bp);
621 
622 	bp->b_vp = savedvp;
623 
624 	return (error);
625 }
626 
627 /*
628  * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
629  * vnode in its arguments.
630  * This goes away with a merged VM/buffer cache.
631  */
632 int
633 null_bwrite(v)
634 	void *v;
635 {
636 	struct vop_bwrite_args /* {
637 		struct buf *a_bp;
638 	} */ *ap = v;
639 	struct buf *bp = ap->a_bp;
640 	int error;
641 	struct vnode *savedvp;
642 
643 	savedvp = bp->b_vp;
644 	bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
645 
646 	error = VOP_BWRITE(bp);
647 
648 	bp->b_vp = savedvp;
649 
650 	return (error);
651 }
652 
653 /*
654  * Global vfs data structures
655  */
656 int (**null_vnodeop_p) __P((void *));
657 struct vnodeopv_entry_desc null_vnodeop_entries[] = {
658 	{ &vop_default_desc, null_bypass },
659 
660 	{ &vop_lookup_desc,   null_lookup },
661 	{ &vop_setattr_desc,  null_setattr },
662 	{ &vop_getattr_desc,  null_getattr },
663 	{ &vop_access_desc,   null_access },
664 	{ &vop_lock_desc,     null_lock },
665 	{ &vop_unlock_desc,   null_unlock },
666 	{ &vop_inactive_desc, null_inactive },
667 	{ &vop_reclaim_desc,  null_reclaim },
668 	{ &vop_print_desc,    null_print },
669 
670 	{ &vop_strategy_desc, null_strategy },
671 	{ &vop_bwrite_desc,   null_bwrite },
672 
673 	{ (struct vnodeop_desc*)NULL, (int(*)__P((void *)))NULL }
674 };
675 struct vnodeopv_desc null_vnodeop_opv_desc =
676 	{ &null_vnodeop_p, null_vnodeop_entries };
677