xref: /netbsd-src/sys/miscfs/nullfs/null_vnops.c (revision 6ea46cb5e46c49111a6ecf3bcbe3c7e2730fe9f6)
1 /*	$NetBSD: null_vnops.c,v 1.4 1994/08/19 11:25:37 mycroft Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * John Heidemann of the UCLA Ficus project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)null_vnops.c	8.1 (Berkeley) 6/10/93
39  *
40  * Ancestors:
41  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
42  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp
43  *	...and...
44  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
45  */
46 
47 /*
48  * Null Layer
49  *
50  * (See mount_null(8) for more information.)
51  *
52  * The null layer duplicates a portion of the file system
53  * name space under a new name.  In this respect, it is
54  * similar to the loopback file system.  It differs from
55  * the loopback fs in two respects:  it is implemented using
56  * a stackable layers techniques, and it's "null-node"s stack above
57  * all lower-layer vnodes, not just over directory vnodes.
58  *
59  * The null layer has two purposes.  First, it serves as a demonstration
60  * of layering by proving a layer which does nothing.  (It actually
61  * does everything the loopback file system does, which is slightly
62  * more than nothing.)  Second, the null layer can serve as a prototype
63  * layer.  Since it provides all necessary layer framework,
64  * new file system layers can be created very easily be starting
65  * with a null layer.
66  *
67  * The remainder of this man page examines the null layer as a basis
68  * for constructing new layers.
69  *
70  *
71  * INSTANTIATING NEW NULL LAYERS
72  *
73  * New null layers are created with mount_null(8).
74  * Mount_null(8) takes two arguments, the pathname
75  * of the lower vfs (target-pn) and the pathname where the null
76  * layer will appear in the namespace (alias-pn).  After
77  * the null layer is put into place, the contents
78  * of target-pn subtree will be aliased under alias-pn.
79  *
80  *
81  * OPERATION OF A NULL LAYER
82  *
83  * The null layer is the minimum file system layer,
84  * simply bypassing all possible operations to the lower layer
85  * for processing there.  The majority of its activity centers
86  * on the bypass routine, though which nearly all vnode operations
87  * pass.
88  *
89  * The bypass routine accepts arbitrary vnode operations for
90  * handling by the lower layer.  It begins by examing vnode
91  * operation arguments and replacing any null-nodes by their
92  * lower-layer equivlants.  It then invokes the operation
93  * on the lower layer.  Finally, it replaces the null-nodes
94  * in the arguments and, if a vnode is return by the operation,
95  * stacks a null-node on top of the returned vnode.
96  *
97  * Although bypass handles most operations,
98  * vop_getattr, _inactive, _reclaim, and _print are not bypassed.
99  * Vop_getattr must change the fsid being returned.
100  * Vop_inactive and vop_reclaim are not bypassed so that
101  * they can handle freeing null-layer specific data.
102  * Vop_print is not bypassed to avoid excessive debugging
103  * information.
104  *
105  *
106  * INSTANTIATING VNODE STACKS
107  *
108  * Mounting associates the null layer with a lower layer,
109  * effect stacking two VFSes.  Vnode stacks are instead
110  * created on demand as files are accessed.
111  *
112  * The initial mount creates a single vnode stack for the
113  * root of the new null layer.  All other vnode stacks
114  * are created as a result of vnode operations on
115  * this or other null vnode stacks.
116  *
117  * New vnode stacks come into existance as a result of
118  * an operation which returns a vnode.
119  * The bypass routine stacks a null-node above the new
120  * vnode before returning it to the caller.
121  *
122  * For example, imagine mounting a null layer with
123  * "mount_null /usr/include /dev/layer/null".
124  * Changing directory to /dev/layer/null will assign
125  * the root null-node (which was created when the null layer was mounted).
126  * Now consider opening "sys".  A vop_lookup would be
127  * done on the root null-node.  This operation would bypass through
128  * to the lower layer which would return a vnode representing
129  * the UFS "sys".  Null_bypass then builds a null-node
130  * aliasing the UFS "sys" and returns this to the caller.
131  * Later operations on the null-node "sys" will repeat this
132  * process when constructing other vnode stacks.
133  *
134  *
135  * CREATING OTHER FILE SYSTEM LAYERS
136  *
137  * One of the easiest ways to construct new file system layers is to make
138  * a copy of the null layer, rename all files and variables, and
139  * then begin modifing the copy.  Sed can be used to easily rename
140  * all variables.
141  *
142  * The umap layer is an example of a layer descended from the
143  * null layer.
144  *
145  *
146  * INVOKING OPERATIONS ON LOWER LAYERS
147  *
148  * There are two techniques to invoke operations on a lower layer
149  * when the operation cannot be completely bypassed.  Each method
150  * is appropriate in different situations.  In both cases,
151  * it is the responsibility of the aliasing layer to make
152  * the operation arguments "correct" for the lower layer
153  * by mapping an vnode arguments to the lower layer.
154  *
155  * The first approach is to call the aliasing layer's bypass routine.
156  * This method is most suitable when you wish to invoke the operation
157  * currently being hanldled on the lower layer.  It has the advantage
158  * that the bypass routine already must do argument mapping.
159  * An example of this is null_getattrs in the null layer.
160  *
161  * A second approach is to directly invoked vnode operations on
162  * the lower layer with the VOP_OPERATIONNAME interface.
163  * The advantage of this method is that it is easy to invoke
164  * arbitrary operations on the lower layer.  The disadvantage
165  * is that vnodes arguments must be manualy mapped.
166  *
167  */
168 
169 #include <sys/param.h>
170 #include <sys/systm.h>
171 #include <sys/proc.h>
172 #include <sys/time.h>
173 #include <sys/types.h>
174 #include <sys/vnode.h>
175 #include <sys/mount.h>
176 #include <sys/namei.h>
177 #include <sys/malloc.h>
178 #include <sys/buf.h>
179 #include <miscfs/nullfs/null.h>
180 
181 
182 int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
183 
184 /*
185  * This is the 10-Apr-92 bypass routine.
186  *    This version has been optimized for speed, throwing away some
187  * safety checks.  It should still always work, but it's not as
188  * robust to programmer errors.
189  *    Define SAFETY to include some error checking code.
190  *
191  * In general, we map all vnodes going down and unmap them on the way back.
192  * As an exception to this, vnodes can be marked "unmapped" by setting
193  * the Nth bit in operation's vdesc_flags.
194  *
195  * Also, some BSD vnode operations have the side effect of vrele'ing
196  * their arguments.  With stacking, the reference counts are held
197  * by the upper node, not the lower one, so we must handle these
198  * side-effects here.  This is not of concern in Sun-derived systems
199  * since there are no such side-effects.
200  *
201  * This makes the following assumptions:
202  * - only one returned vpp
203  * - no INOUT vpp's (Sun's vop_open has one of these)
204  * - the vnode operation vector of the first vnode should be used
205  *   to determine what implementation of the op should be invoked
206  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
207  *   problems on rmdir'ing mount points and renaming?)
208  */
209 int
210 null_bypass(ap)
211 	struct vop_generic_args /* {
212 		struct vnodeop_desc *a_desc;
213 		<other random data follows, presumably>
214 	} */ *ap;
215 {
216 	extern int (**null_vnodeop_p)();  /* not extern, really "forward" */
217 	register struct vnode **this_vp_p;
218 	int error;
219 	struct vnode *old_vps[VDESC_MAX_VPS];
220 	struct vnode **vps_p[VDESC_MAX_VPS];
221 	struct vnode ***vppp;
222 	struct vnodeop_desc *descp = ap->a_desc;
223 	int reles, i;
224 
225 	if (null_bug_bypass)
226 		printf ("null_bypass: %s\n", descp->vdesc_name);
227 
228 #ifdef SAFETY
229 	/*
230 	 * We require at least one vp.
231 	 */
232 	if (descp->vdesc_vp_offsets == NULL ||
233 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
234 		panic ("null_bypass: no vp's in map.\n");
235 #endif
236 
237 	/*
238 	 * Map the vnodes going in.
239 	 * Later, we'll invoke the operation based on
240 	 * the first mapped vnode's operation vector.
241 	 */
242 	reles = descp->vdesc_flags;
243 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
244 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
245 			break;   /* bail out at end of list */
246 		vps_p[i] = this_vp_p =
247 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
248 		/*
249 		 * We're not guaranteed that any but the first vnode
250 		 * are of our type.  Check for and don't map any
251 		 * that aren't.  (We must always map first vp or vclean fails.)
252 		 */
253 		if (i && (*this_vp_p == NULLVP ||
254 		    (*this_vp_p)->v_op != null_vnodeop_p)) {
255 			old_vps[i] = NULLVP;
256 		} else {
257 			old_vps[i] = *this_vp_p;
258 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
259 			/*
260 			 * XXX - Several operations have the side effect
261 			 * of vrele'ing their vp's.  We must account for
262 			 * that.  (This should go away in the future.)
263 			 */
264 			if (reles & 1)
265 				VREF(*this_vp_p);
266 		}
267 
268 	}
269 
270 	/*
271 	 * Call the operation on the lower layer
272 	 * with the modified argument structure.
273 	 */
274 	error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
275 
276 	/*
277 	 * Maintain the illusion of call-by-value
278 	 * by restoring vnodes in the argument structure
279 	 * to their original value.
280 	 */
281 	reles = descp->vdesc_flags;
282 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
283 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
284 			break;   /* bail out at end of list */
285 		if (old_vps[i] != NULLVP) {
286 			*(vps_p[i]) = old_vps[i];
287 			if (reles & 1)
288 				vrele(*(vps_p[i]));
289 		}
290 	}
291 
292 	/*
293 	 * Map the possible out-going vpp
294 	 * (Assumes that the lower layer always returns
295 	 * a VREF'ed vpp unless it gets an error.)
296 	 */
297 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
298 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
299 	    !error) {
300 		/*
301 		 * XXX - even though some ops have vpp returned vp's,
302 		 * several ops actually vrele this before returning.
303 		 * We must avoid these ops.
304 		 * (This should go away when these ops are regularized.)
305 		 */
306 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
307 			goto out;
308 		vppp = VOPARG_OFFSETTO(struct vnode***,
309 				 descp->vdesc_vpp_offset,ap);
310 		error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
311 	}
312 
313  out:
314 	return (error);
315 }
316 
317 
318 /*
319  *  We handle getattr only to change the fsid.
320  */
321 int
322 null_getattr(ap)
323 	struct vop_getattr_args /* {
324 		struct vnode *a_vp;
325 		struct vattr *a_vap;
326 		struct ucred *a_cred;
327 		struct proc *a_p;
328 	} */ *ap;
329 {
330 	int error;
331 	if (error = null_bypass(ap))
332 		return (error);
333 	/* Requires that arguments be restored. */
334 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
335 	return (0);
336 }
337 
338 
339 int
340 null_inactive(ap)
341 	struct vop_inactive_args /* {
342 		struct vnode *a_vp;
343 	} */ *ap;
344 {
345 	/*
346 	 * Do nothing (and _don't_ bypass).
347 	 * Wait to vrele lowervp until reclaim,
348 	 * so that until then our null_node is in the
349 	 * cache and reusable.
350 	 *
351 	 * NEEDSWORK: Someday, consider inactive'ing
352 	 * the lowervp and then trying to reactivate it
353 	 * with capabilities (v_id)
354 	 * like they do in the name lookup cache code.
355 	 * That's too much work for now.
356 	 */
357 	return (0);
358 }
359 
360 int
361 null_reclaim(ap)
362 	struct vop_reclaim_args /* {
363 		struct vnode *a_vp;
364 	} */ *ap;
365 {
366 	struct vnode *vp = ap->a_vp;
367 	struct null_node *xp = VTONULL(vp);
368 	struct vnode *lowervp = xp->null_lowervp;
369 
370 	/*
371 	 * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p,
372 	 * so we can't call VOPs on ourself.
373 	 */
374 	/* After this assignment, this node will not be re-used. */
375 	xp->null_lowervp = NULL;
376 	LIST_REMOVE(xp, null_hash);
377 	FREE(vp->v_data, M_TEMP);
378 	vp->v_data = NULL;
379 	vrele (lowervp);
380 	return (0);
381 }
382 
383 
384 int
385 null_print(ap)
386 	struct vop_print_args /* {
387 		struct vnode *a_vp;
388 	} */ *ap;
389 {
390 	register struct vnode *vp = ap->a_vp;
391 	printf ("\ttag VT_NULLFS, vp=%x, lowervp=%x\n", vp, NULLVPTOLOWERVP(vp));
392 	return (0);
393 }
394 
395 
396 /*
397  * XXX - vop_strategy must be hand coded because it has no
398  * vnode in its arguments.
399  * This goes away with a merged VM/buffer cache.
400  */
401 int
402 null_strategy(ap)
403 	struct vop_strategy_args /* {
404 		struct buf *a_bp;
405 	} */ *ap;
406 {
407 	struct buf *bp = ap->a_bp;
408 	int error;
409 	struct vnode *savedvp;
410 
411 	savedvp = bp->b_vp;
412 	bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
413 
414 	error = VOP_STRATEGY(bp);
415 
416 	bp->b_vp = savedvp;
417 
418 	return (error);
419 }
420 
421 
422 /*
423  * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
424  * vnode in its arguments.
425  * This goes away with a merged VM/buffer cache.
426  */
427 int
428 null_bwrite(ap)
429 	struct vop_bwrite_args /* {
430 		struct buf *a_bp;
431 	} */ *ap;
432 {
433 	struct buf *bp = ap->a_bp;
434 	int error;
435 	struct vnode *savedvp;
436 
437 	savedvp = bp->b_vp;
438 	bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
439 
440 	error = VOP_BWRITE(bp);
441 
442 	bp->b_vp = savedvp;
443 
444 	return (error);
445 }
446 
447 /*
448  * Global vfs data structures
449  */
450 int (**null_vnodeop_p)();
451 struct vnodeopv_entry_desc null_vnodeop_entries[] = {
452 	{ &vop_default_desc, null_bypass },
453 
454 	{ &vop_getattr_desc, null_getattr },
455 	{ &vop_inactive_desc, null_inactive },
456 	{ &vop_reclaim_desc, null_reclaim },
457 	{ &vop_print_desc, null_print },
458 
459 	{ &vop_strategy_desc, null_strategy },
460 	{ &vop_bwrite_desc, null_bwrite },
461 
462 	{ (struct vnodeop_desc*)NULL, (int(*)())NULL }
463 };
464 struct vnodeopv_desc null_vnodeop_opv_desc =
465 	{ &null_vnodeop_p, null_vnodeop_entries };
466