xref: /netbsd-src/sys/miscfs/kernfs/kernfs_vnops.c (revision ce099b40997c43048fb78bd578195f81d2456523)
1 /*	$NetBSD: kernfs_vnops.c,v 1.134 2008/01/02 11:49:00 ad Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software donated to Berkeley by
8  * Jan-Simon Pendry.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kernfs_vnops.c	8.15 (Berkeley) 5/21/95
35  */
36 
37 /*
38  * Kernel parameter filesystem (/kern)
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.134 2008/01/02 11:49:00 ad Exp $");
43 
44 #ifdef _KERNEL_OPT
45 #include "opt_ipsec.h"
46 #endif
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/vmmeter.h>
52 #include <sys/time.h>
53 #include <sys/proc.h>
54 #include <sys/vnode.h>
55 #include <sys/malloc.h>
56 #include <sys/file.h>
57 #include <sys/stat.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/buf.h>
61 #include <sys/dirent.h>
62 #include <sys/msgbuf.h>
63 
64 #include <miscfs/genfs/genfs.h>
65 #include <miscfs/kernfs/kernfs.h>
66 
67 #ifdef IPSEC
68 #include <sys/mbuf.h>
69 #include <net/route.h>
70 #include <netinet/in.h>
71 #include <netinet6/ipsec.h>
72 #include <netkey/key.h>
73 #endif
74 
75 #include <uvm/uvm_extern.h>
76 
77 #define KSTRING	256		/* Largest I/O available via this filesystem */
78 #define	UIO_MX 32
79 
80 #define	READ_MODE	(S_IRUSR|S_IRGRP|S_IROTH)
81 #define	WRITE_MODE	(S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
82 #define	UREAD_MODE	(S_IRUSR)
83 #define	DIR_MODE	(S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
84 #define	UDIR_MODE	(S_IRUSR|S_IXUSR)
85 
86 #define N(s) sizeof(s)-1, s
87 const struct kern_target kern_targets[] = {
88 /* NOTE: The name must be less than UIO_MX-16 chars in length */
89      /*        name            data          tag           type  ro/rw */
90      { DT_DIR, N("."),         0,            KFSkern,        VDIR, DIR_MODE   },
91      { DT_DIR, N(".."),        0,            KFSroot,        VDIR, DIR_MODE   },
92      { DT_REG, N("boottime"),  &boottime.tv_sec, KFSint,     VREG, READ_MODE  },
93 			/* XXXUNCONST */
94      { DT_REG, N("copyright"), __UNCONST(copyright),
95      					     KFSstring,      VREG, READ_MODE  },
96      { DT_REG, N("hostname"),  0,            KFShostname,    VREG, WRITE_MODE },
97      { DT_REG, N("hz"),        &hz,          KFSint,         VREG, READ_MODE  },
98 #ifdef IPSEC
99      { DT_DIR, N("ipsecsa"),   0,	     KFSipsecsadir,  VDIR, UDIR_MODE  },
100      { DT_DIR, N("ipsecsp"),   0,	     KFSipsecspdir,  VDIR, UDIR_MODE  },
101 #endif
102      { DT_REG, N("loadavg"),   0,            KFSavenrun,     VREG, READ_MODE  },
103      { DT_REG, N("msgbuf"),    0,	     KFSmsgbuf,      VREG, READ_MODE  },
104      { DT_REG, N("pagesize"),  &uvmexp.pagesize, KFSint,     VREG, READ_MODE  },
105      { DT_REG, N("physmem"),   &physmem,     KFSint,         VREG, READ_MODE  },
106 #if 0
107      { DT_DIR, N("root"),      0,            KFSnull,        VDIR, DIR_MODE   },
108 #endif
109      { DT_BLK, N("rootdev"),   &rootdev,     KFSdevice,      VBLK, READ_MODE  },
110      { DT_CHR, N("rrootdev"),  &rrootdev,    KFSdevice,      VCHR, READ_MODE  },
111      { DT_REG, N("time"),      0,            KFStime,        VREG, READ_MODE  },
112 			/* XXXUNCONST */
113      { DT_REG, N("version"),   __UNCONST(version),
114      					     KFSstring,      VREG, READ_MODE  },
115 };
116 const struct kern_target subdir_targets[] = {
117 /* NOTE: The name must be less than UIO_MX-16 chars in length */
118      /*        name            data          tag           type  ro/rw */
119      { DT_DIR, N("."),         0,            KFSsubdir,      VDIR, DIR_MODE   },
120      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
121 };
122 #ifdef IPSEC
123 const struct kern_target ipsecsa_targets[] = {
124 /* NOTE: The name must be less than UIO_MX-16 chars in length */
125      /*        name            data          tag           type  ro/rw */
126      { DT_DIR, N("."),         0,            KFSipsecsadir,  VDIR, DIR_MODE   },
127      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
128 };
129 const struct kern_target ipsecsp_targets[] = {
130 /* NOTE: The name must be less than UIO_MX-16 chars in length */
131      /*        name            data          tag           type  ro/rw */
132      { DT_DIR, N("."),         0,            KFSipsecspdir,  VDIR, DIR_MODE   },
133      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
134 };
135 const struct kern_target ipsecsa_kt =
136      { DT_DIR, N(""),          0,            KFSipsecsa,     VREG, UREAD_MODE };
137 const struct kern_target ipsecsp_kt =
138      { DT_DIR, N(""),          0,            KFSipsecsp,     VREG, UREAD_MODE };
139 #endif
140 #undef N
141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
142 	SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
145 #ifdef IPSEC
146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]);
147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]);
148 int nkern_dirs = 4; /* 2 extra subdirs */
149 #else
150 int nkern_dirs = 2;
151 #endif
152 
153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
154 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **,
155     size_t, int);
156 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
157     size_t, int);
158 
159 static int kernfs_default_xread(void *v);
160 static int kernfs_default_xwrite(void *v);
161 static int kernfs_default_fileop_getattr(void *);
162 
163 /* must include all fileop's */
164 const struct kernfs_fileop kernfs_default_fileops[] = {
165   { .kf_fileop = KERNFS_XREAD },
166   { .kf_fileop = KERNFS_XWRITE },
167   { .kf_fileop = KERNFS_FILEOP_OPEN },
168   { .kf_fileop = KERNFS_FILEOP_GETATTR,
169     .kf_vop = kernfs_default_fileop_getattr },
170   { .kf_fileop = KERNFS_FILEOP_IOCTL },
171   { .kf_fileop = KERNFS_FILEOP_CLOSE },
172   { .kf_fileop = KERNFS_FILEOP_READ,
173     .kf_vop = kernfs_default_xread },
174   { .kf_fileop = KERNFS_FILEOP_WRITE,
175     .kf_vop = kernfs_default_xwrite },
176 };
177 
178 int	kernfs_lookup(void *);
179 #define	kernfs_create	genfs_eopnotsupp
180 #define	kernfs_mknod	genfs_eopnotsupp
181 int	kernfs_open(void *);
182 int	kernfs_close(void *);
183 int	kernfs_access(void *);
184 int	kernfs_getattr(void *);
185 int	kernfs_setattr(void *);
186 int	kernfs_read(void *);
187 int	kernfs_write(void *);
188 #define	kernfs_fcntl	genfs_fcntl
189 int	kernfs_ioctl(void *);
190 #define	kernfs_poll	genfs_poll
191 #define kernfs_revoke	genfs_revoke
192 #define	kernfs_fsync	genfs_nullop
193 #define	kernfs_seek	genfs_nullop
194 #define	kernfs_remove	genfs_eopnotsupp
195 int	kernfs_link(void *);
196 #define	kernfs_rename	genfs_eopnotsupp
197 #define	kernfs_mkdir	genfs_eopnotsupp
198 #define	kernfs_rmdir	genfs_eopnotsupp
199 int	kernfs_symlink(void *);
200 int	kernfs_readdir(void *);
201 #define	kernfs_readlink	genfs_eopnotsupp
202 #define	kernfs_abortop	genfs_abortop
203 int	kernfs_inactive(void *);
204 int	kernfs_reclaim(void *);
205 #define	kernfs_lock	genfs_lock
206 #define	kernfs_unlock	genfs_unlock
207 #define	kernfs_bmap	genfs_badop
208 #define	kernfs_strategy	genfs_badop
209 int	kernfs_print(void *);
210 #define	kernfs_islocked	genfs_islocked
211 int	kernfs_pathconf(void *);
212 #define	kernfs_advlock	genfs_einval
213 #define	kernfs_bwrite	genfs_eopnotsupp
214 #define	kernfs_putpages	genfs_putpages
215 
216 static int	kernfs_xread(struct kernfs_node *, int, char **,
217 				size_t, size_t *);
218 static int	kernfs_xwrite(const struct kernfs_node *, char *, size_t);
219 
220 int (**kernfs_vnodeop_p)(void *);
221 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
222 	{ &vop_default_desc, vn_default_error },
223 	{ &vop_lookup_desc, kernfs_lookup },		/* lookup */
224 	{ &vop_create_desc, kernfs_create },		/* create */
225 	{ &vop_mknod_desc, kernfs_mknod },		/* mknod */
226 	{ &vop_open_desc, kernfs_open },		/* open */
227 	{ &vop_close_desc, kernfs_close },		/* close */
228 	{ &vop_access_desc, kernfs_access },		/* access */
229 	{ &vop_getattr_desc, kernfs_getattr },		/* getattr */
230 	{ &vop_setattr_desc, kernfs_setattr },		/* setattr */
231 	{ &vop_read_desc, kernfs_read },		/* read */
232 	{ &vop_write_desc, kernfs_write },		/* write */
233 	{ &vop_fcntl_desc, kernfs_fcntl },		/* fcntl */
234 	{ &vop_ioctl_desc, kernfs_ioctl },		/* ioctl */
235 	{ &vop_poll_desc, kernfs_poll },		/* poll */
236 	{ &vop_revoke_desc, kernfs_revoke },		/* revoke */
237 	{ &vop_fsync_desc, kernfs_fsync },		/* fsync */
238 	{ &vop_seek_desc, kernfs_seek },		/* seek */
239 	{ &vop_remove_desc, kernfs_remove },		/* remove */
240 	{ &vop_link_desc, kernfs_link },		/* link */
241 	{ &vop_rename_desc, kernfs_rename },		/* rename */
242 	{ &vop_mkdir_desc, kernfs_mkdir },		/* mkdir */
243 	{ &vop_rmdir_desc, kernfs_rmdir },		/* rmdir */
244 	{ &vop_symlink_desc, kernfs_symlink },		/* symlink */
245 	{ &vop_readdir_desc, kernfs_readdir },		/* readdir */
246 	{ &vop_readlink_desc, kernfs_readlink },	/* readlink */
247 	{ &vop_abortop_desc, kernfs_abortop },		/* abortop */
248 	{ &vop_inactive_desc, kernfs_inactive },	/* inactive */
249 	{ &vop_reclaim_desc, kernfs_reclaim },		/* reclaim */
250 	{ &vop_lock_desc, kernfs_lock },		/* lock */
251 	{ &vop_unlock_desc, kernfs_unlock },		/* unlock */
252 	{ &vop_bmap_desc, kernfs_bmap },		/* bmap */
253 	{ &vop_strategy_desc, kernfs_strategy },	/* strategy */
254 	{ &vop_print_desc, kernfs_print },		/* print */
255 	{ &vop_islocked_desc, kernfs_islocked },	/* islocked */
256 	{ &vop_pathconf_desc, kernfs_pathconf },	/* pathconf */
257 	{ &vop_advlock_desc, kernfs_advlock },		/* advlock */
258 	{ &vop_bwrite_desc, kernfs_bwrite },		/* bwrite */
259 	{ &vop_putpages_desc, kernfs_putpages },	/* putpages */
260 	{ NULL, NULL }
261 };
262 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
263 	{ &kernfs_vnodeop_p, kernfs_vnodeop_entries };
264 
265 static inline int
266 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
267 {
268 	if (a->kf_type < b->kf_type)
269 		return -1;
270 	if (a->kf_type > b->kf_type)
271 		return 1;
272 	if (a->kf_fileop < b->kf_fileop)
273 		return -1;
274 	if (a->kf_fileop > b->kf_fileop)
275 		return 1;
276 	return (0);
277 }
278 
279 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
280 	SPLAY_INITIALIZER(kfsfileoptree);
281 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
282 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
283 
284 kfstype
285 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
286 {
287 	static u_char nextfreetype = KFSlasttype;
288 	struct kernfs_fileop *dkf, *fkf, skf;
289 	int i;
290 
291 	/* XXX need to keep track of dkf's memory if we support
292            deallocating types */
293 	dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
294 	memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
295 
296 	for (i = 0; i < sizeof(kernfs_default_fileops) /
297 		     sizeof(kernfs_default_fileops[0]); i++) {
298 		dkf[i].kf_type = nextfreetype;
299 		SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
300 	}
301 
302 	for (i = 0; i < nkf; i++) {
303 		skf.kf_type = nextfreetype;
304 		skf.kf_fileop = kf[i].kf_fileop;
305 		if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
306 			fkf->kf_vop = kf[i].kf_vop;
307 	}
308 
309 	return nextfreetype++;
310 }
311 
312 int
313 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
314 {
315 	struct kernfs_fileop *kf, skf;
316 
317 	skf.kf_type = type;
318 	skf.kf_fileop = fileop;
319 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
320 		if (kf->kf_vop)
321 			return kf->kf_vop(v);
322 	return error;
323 }
324 
325 int
326 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp,
327     size_t len, int error)
328 {
329 	struct kernfs_fileop *kf, skf;
330 
331 	skf.kf_type = type;
332 	skf.kf_fileop = KERNFS_XREAD;
333 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
334 		if (kf->kf_xread)
335 			return kf->kf_xread(kfs, bfp, len);
336 	return error;
337 }
338 
339 int
340 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
341     size_t len, int error)
342 {
343 	struct kernfs_fileop *kf, skf;
344 
345 	skf.kf_type = type;
346 	skf.kf_fileop = KERNFS_XWRITE;
347 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
348 		if (kf->kf_xwrite)
349 			return kf->kf_xwrite(kfs, bf, len);
350 	return error;
351 }
352 
353 int
354 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
355 {
356 	struct kernfs_subdir *ks, *parent;
357 
358 	if (pkt == NULL) {
359 		SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
360 		nkern_targets++;
361 		if (dkt->dkt_kt.kt_vtype == VDIR)
362 			nkern_dirs++;
363 	} else {
364 		parent = (struct kernfs_subdir *)pkt->kt_data;
365 		SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
366 		parent->ks_nentries++;
367 		if (dkt->dkt_kt.kt_vtype == VDIR)
368 			parent->ks_dirs++;
369 	}
370 	if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
371 		ks = malloc(sizeof(struct kernfs_subdir),
372 		    M_TEMP, M_WAITOK);
373 		SIMPLEQ_INIT(&ks->ks_entries);
374 		ks->ks_nentries = 2; /* . and .. */
375 		ks->ks_dirs = 2;
376 		ks->ks_parent = pkt ? pkt : &kern_targets[0];
377 		dkt->dkt_kt.kt_data = ks;
378 	}
379 	return 0;
380 }
381 
382 static int
383 kernfs_xread(kfs, off, bufp, len, wrlen)
384 	struct kernfs_node *kfs;
385 	int off;
386 	char **bufp;
387 	size_t len;
388 	size_t *wrlen;
389 {
390 	const struct kern_target *kt;
391 #ifdef IPSEC
392 	struct mbuf *m;
393 #endif
394 	int err;
395 
396 	kt = kfs->kfs_kt;
397 
398 	switch (kfs->kfs_type) {
399 	case KFStime: {
400 		struct timeval tv;
401 
402 		microtime(&tv);
403 		snprintf(*bufp, len, "%ld %ld\n", tv.tv_sec, tv.tv_usec);
404 		break;
405 	}
406 
407 	case KFSint: {
408 		int *ip = kt->kt_data;
409 
410 		snprintf(*bufp, len, "%d\n", *ip);
411 		break;
412 	}
413 
414 	case KFSstring: {
415 		char *cp = kt->kt_data;
416 
417 		*bufp = cp;
418 		break;
419 	}
420 
421 	case KFSmsgbuf: {
422 		long n;
423 
424 		/*
425 		 * deal with cases where the message buffer has
426 		 * become corrupted.
427 		 */
428 		if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
429 			msgbufenabled = 0;
430 			return (ENXIO);
431 		}
432 
433 		/*
434 		 * Note that reads of /kern/msgbuf won't necessarily yield
435 		 * consistent results, if the message buffer is modified
436 		 * while the read is in progress.  The worst that can happen
437 		 * is that incorrect data will be read.  There's no way
438 		 * that this can crash the system unless the values in the
439 		 * message buffer header are corrupted, but that'll cause
440 		 * the system to die anyway.
441 		 */
442 		if (off >= msgbufp->msg_bufs) {
443 			*wrlen = 0;
444 			return (0);
445 		}
446 		n = msgbufp->msg_bufx + off;
447 		if (n >= msgbufp->msg_bufs)
448 			n -= msgbufp->msg_bufs;
449 		len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
450 		*bufp = msgbufp->msg_bufc + n;
451 		*wrlen = len;
452 		return (0);
453 	}
454 
455 	case KFShostname: {
456 		char *cp = hostname;
457 		size_t xlen = hostnamelen;
458 
459 		if (xlen >= (len - 2))
460 			return (EINVAL);
461 
462 		memcpy(*bufp, cp, xlen);
463 		(*bufp)[xlen] = '\n';
464 		(*bufp)[xlen+1] = '\0';
465 		len = strlen(*bufp);
466 		break;
467 	}
468 
469 	case KFSavenrun:
470 		averunnable.fscale = FSCALE;
471 		snprintf(*bufp, len, "%d %d %d %ld\n",
472 		    averunnable.ldavg[0], averunnable.ldavg[1],
473 		    averunnable.ldavg[2], averunnable.fscale);
474 		break;
475 
476 #ifdef IPSEC
477 	case KFSipsecsa:
478 		/*
479 		 * Note that SA configuration could be changed during the
480 		 * read operation, resulting in garbled output.
481 		 */
482 		m = key_setdumpsa_spi(htonl(kfs->kfs_value));
483 		if (!m)
484 			return (ENOBUFS);
485 		if (off >= m->m_pkthdr.len) {
486 			*wrlen = 0;
487 			m_freem(m);
488 			return (0);
489 		}
490 		if (len > m->m_pkthdr.len - off)
491 			len = m->m_pkthdr.len - off;
492 		m_copydata(m, off, len, *bufp);
493 		*wrlen = len;
494 		m_freem(m);
495 		return (0);
496 
497 	case KFSipsecsp:
498 		/*
499 		 * Note that SP configuration could be changed during the
500 		 * read operation, resulting in garbled output.
501 		 */
502 		if (!kfs->kfs_v) {
503 			struct secpolicy *sp;
504 
505 			sp = key_getspbyid(kfs->kfs_value);
506 			if (sp)
507 				kfs->kfs_v = sp;
508 			else
509 				return (ENOENT);
510 		}
511 		m = key_setdumpsp((struct secpolicy *)kfs->kfs_v,
512 		    SADB_X_SPDGET, 0, 0);
513 		if (!m)
514 			return (ENOBUFS);
515 		if (off >= m->m_pkthdr.len) {
516 			*wrlen = 0;
517 			m_freem(m);
518 			return (0);
519 		}
520 		if (len > m->m_pkthdr.len - off)
521 			len = m->m_pkthdr.len - off;
522 		m_copydata(m, off, len, *bufp);
523 		*wrlen = len;
524 		m_freem(m);
525 		return (0);
526 #endif
527 
528 	default:
529 		err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len,
530 		    EOPNOTSUPP);
531 		if (err)
532 			return err;
533 	}
534 
535 	len = strlen(*bufp);
536 	if (len <= off)
537 		*wrlen = 0;
538 	else {
539 		*bufp += off;
540 		*wrlen = len - off;
541 	}
542 	return (0);
543 }
544 
545 static int
546 kernfs_xwrite(kfs, bf, len)
547 	const struct kernfs_node *kfs;
548 	char *bf;
549 	size_t len;
550 {
551 
552 	switch (kfs->kfs_type) {
553 	case KFShostname:
554 		if (bf[len-1] == '\n')
555 			--len;
556 		memcpy(hostname, bf, len);
557 		hostname[len] = '\0';
558 		hostnamelen = (size_t) len;
559 		return (0);
560 
561 	default:
562 		return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
563 	}
564 }
565 
566 
567 /*
568  * vp is the current namei directory
569  * ndp is the name to locate in that directory...
570  */
571 int
572 kernfs_lookup(v)
573 	void *v;
574 {
575 	struct vop_lookup_args /* {
576 		struct vnode * a_dvp;
577 		struct vnode ** a_vpp;
578 		struct componentname * a_cnp;
579 	} */ *ap = v;
580 	struct componentname *cnp = ap->a_cnp;
581 	struct vnode **vpp = ap->a_vpp;
582 	struct vnode *dvp = ap->a_dvp;
583 	const char *pname = cnp->cn_nameptr;
584 	const struct kernfs_node *kfs;
585 	const struct kern_target *kt;
586 	const struct dyn_kern_target *dkt;
587 	const struct kernfs_subdir *ks;
588 	int error, i;
589 #ifdef IPSEC
590 	char *ep;
591 	u_int32_t id;
592 #endif
593 
594 	*vpp = NULLVP;
595 
596 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
597 		return (EROFS);
598 
599 	if (cnp->cn_namelen == 1 && *pname == '.') {
600 		*vpp = dvp;
601 		VREF(dvp);
602 		return (0);
603 	}
604 
605 	kfs = VTOKERN(dvp);
606 	switch (kfs->kfs_type) {
607 	case KFSkern:
608 		/*
609 		 * Shouldn't get here with .. in the root node.
610 		 */
611 		if (cnp->cn_flags & ISDOTDOT)
612 			return (EIO);
613 
614 		for (i = 0; i < static_nkern_targets; i++) {
615 			kt = &kern_targets[i];
616 			if (cnp->cn_namelen == kt->kt_namlen &&
617 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
618 				goto found;
619 		}
620 		SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
621 			if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
622 			    memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
623 				kt = &dkt->dkt_kt;
624 				goto found;
625 			}
626 		}
627 		break;
628 
629 	found:
630 		error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
631 		return (error);
632 
633 	case KFSsubdir:
634 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
635 		if (cnp->cn_flags & ISDOTDOT) {
636 			kt = ks->ks_parent;
637 			goto found;
638 		}
639 
640 		SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
641 			if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
642 			    memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
643 				kt = &dkt->dkt_kt;
644 				goto found;
645 			}
646 		}
647 		break;
648 
649 #ifdef IPSEC
650 	case KFSipsecsadir:
651 		if (cnp->cn_flags & ISDOTDOT) {
652 			kt = &kern_targets[0];
653 			goto found;
654 		}
655 
656 		for (i = 2; i < nipsecsa_targets; i++) {
657 			kt = &ipsecsa_targets[i];
658 			if (cnp->cn_namelen == kt->kt_namlen &&
659 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
660 				goto found;
661 		}
662 
663 		ep = NULL;
664 		id = strtoul(pname, &ep, 10);
665 		if (!ep || *ep || ep == pname)
666 			break;
667 
668 		error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id);
669 		return (error);
670 
671 	case KFSipsecspdir:
672 		if (cnp->cn_flags & ISDOTDOT) {
673 			kt = &kern_targets[0];
674 			goto found;
675 		}
676 
677 		for (i = 2; i < nipsecsp_targets; i++) {
678 			kt = &ipsecsp_targets[i];
679 			if (cnp->cn_namelen == kt->kt_namlen &&
680 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
681 				goto found;
682 		}
683 
684 		ep = NULL;
685 		id = strtoul(pname, &ep, 10);
686 		if (!ep || *ep || ep == pname)
687 			break;
688 
689 		error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id);
690 		return (error);
691 #endif
692 
693 	default:
694 		return (ENOTDIR);
695 	}
696 
697 	return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
698 }
699 
700 int
701 kernfs_open(v)
702 	void *v;
703 {
704 	struct vop_open_args /* {
705 		struct vnode *a_vp;
706 		int a_mode;
707 		kauth_cred_t a_cred;
708 	} */ *ap = v;
709 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
710 #ifdef IPSEC
711 	struct mbuf *m;
712 	struct secpolicy *sp;
713 #endif
714 
715 	switch (kfs->kfs_type) {
716 #ifdef IPSEC
717 	case KFSipsecsa:
718 		m = key_setdumpsa_spi(htonl(kfs->kfs_value));
719 		if (m) {
720 			m_freem(m);
721 			return (0);
722 		} else
723 			return (ENOENT);
724 
725 	case KFSipsecsp:
726 		sp = key_getspbyid(kfs->kfs_value);
727 		if (sp) {
728 			kfs->kfs_v = sp;
729 			return (0);
730 		} else
731 			return (ENOENT);
732 #endif
733 
734 	default:
735 		return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN,
736 		    v, 0);
737 	}
738 }
739 
740 int
741 kernfs_close(v)
742 	void *v;
743 {
744 	struct vop_close_args /* {
745 		struct vnode *a_vp;
746 		int a_fflag;
747 		kauth_cred_t a_cred;
748 	} */ *ap = v;
749 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
750 
751 	switch (kfs->kfs_type) {
752 #ifdef IPSEC
753 	case KFSipsecsp:
754 		key_freesp((struct secpolicy *)kfs->kfs_v);
755 		break;
756 #endif
757 
758 	default:
759 		return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE,
760 		    v, 0);
761 	}
762 
763 	return (0);
764 }
765 
766 int
767 kernfs_access(v)
768 	void *v;
769 {
770 	struct vop_access_args /* {
771 		struct vnode *a_vp;
772 		int a_mode;
773 		kauth_cred_t a_cred;
774 	} */ *ap = v;
775 	struct vattr va;
776 	int error;
777 
778 	if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred)) != 0)
779 		return (error);
780 
781 	return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid,
782 	    ap->a_mode, ap->a_cred));
783 }
784 
785 static int
786 kernfs_default_fileop_getattr(v)
787 	void *v;
788 {
789 	struct vop_getattr_args /* {
790 		struct vnode *a_vp;
791 		struct vattr *a_vap;
792 		kauth_cred_t a_cred;
793 	} */ *ap = v;
794 	struct vattr *vap = ap->a_vap;
795 
796 	vap->va_nlink = 1;
797 	vap->va_bytes = vap->va_size = 0;
798 
799 	return 0;
800 }
801 
802 int
803 kernfs_getattr(v)
804 	void *v;
805 {
806 	struct vop_getattr_args /* {
807 		struct vnode *a_vp;
808 		struct vattr *a_vap;
809 		kauth_cred_t a_cred;
810 	} */ *ap = v;
811 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
812 	struct kernfs_subdir *ks;
813 	struct vattr *vap = ap->a_vap;
814 	int error = 0;
815 	char strbuf[KSTRING], *bf;
816 	size_t nread, total;
817 
818 	VATTR_NULL(vap);
819 	vap->va_type = ap->a_vp->v_type;
820 	vap->va_uid = 0;
821 	vap->va_gid = 0;
822 	vap->va_mode = kfs->kfs_mode;
823 	vap->va_fileid = kfs->kfs_fileno;
824 	vap->va_flags = 0;
825 	vap->va_size = 0;
826 	vap->va_blocksize = DEV_BSIZE;
827 	/* Make all times be current TOD, except for the "boottime" node. */
828 	if (kfs->kfs_kt->kt_namlen == 8 &&
829 	    !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
830 		TIMEVAL_TO_TIMESPEC(&boottime, &vap->va_ctime);
831 	} else {
832 		getnanotime(&vap->va_ctime);
833 	}
834 	vap->va_atime = vap->va_mtime = vap->va_ctime;
835 	vap->va_gen = 0;
836 	vap->va_flags = 0;
837 	vap->va_rdev = 0;
838 	vap->va_bytes = 0;
839 
840 	switch (kfs->kfs_type) {
841 	case KFSkern:
842 		vap->va_nlink = nkern_dirs;
843 		vap->va_bytes = vap->va_size = DEV_BSIZE;
844 		break;
845 
846 	case KFSroot:
847 		vap->va_nlink = 1;
848 		vap->va_bytes = vap->va_size = DEV_BSIZE;
849 		break;
850 
851 	case KFSsubdir:
852 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
853 		vap->va_nlink = ks->ks_dirs;
854 		vap->va_bytes = vap->va_size = DEV_BSIZE;
855 		break;
856 
857 	case KFSnull:
858 	case KFStime:
859 	case KFSint:
860 	case KFSstring:
861 	case KFShostname:
862 	case KFSavenrun:
863 	case KFSdevice:
864 	case KFSmsgbuf:
865 #ifdef IPSEC
866 	case KFSipsecsa:
867 	case KFSipsecsp:
868 #endif
869 		vap->va_nlink = 1;
870 		total = 0;
871 		do {
872 			bf = strbuf;
873 			error = kernfs_xread(kfs, total, &bf,
874 			    sizeof(strbuf), &nread);
875 			total += nread;
876 		} while (error == 0 && nread != 0);
877 		vap->va_bytes = vap->va_size = total;
878 		break;
879 
880 #ifdef IPSEC
881 	case KFSipsecsadir:
882 	case KFSipsecspdir:
883 		vap->va_nlink = 2;
884 		vap->va_bytes = vap->va_size = DEV_BSIZE;
885 		break;
886 #endif
887 
888 	default:
889 		error = kernfs_try_fileop(kfs->kfs_type,
890 		    KERNFS_FILEOP_GETATTR, v, EINVAL);
891 		break;
892 	}
893 
894 	return (error);
895 }
896 
897 /*ARGSUSED*/
898 int
899 kernfs_setattr(void *v)
900 {
901 
902 	/*
903 	 * Silently ignore attribute changes.
904 	 * This allows for open with truncate to have no
905 	 * effect until some data is written.  I want to
906 	 * do it this way because all writes are atomic.
907 	 */
908 	return (0);
909 }
910 
911 int
912 kernfs_default_xread(v)
913 	void *v;
914 {
915 	struct vop_read_args /* {
916 		struct vnode *a_vp;
917 		struct uio *a_uio;
918 		int  a_ioflag;
919 		kauth_cred_t a_cred;
920 	} */ *ap = v;
921 	struct uio *uio = ap->a_uio;
922 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
923 	char strbuf[KSTRING], *bf;
924 	int off;
925 	size_t len;
926 	int error;
927 
928 	if (ap->a_vp->v_type == VDIR)
929 		return (EOPNOTSUPP);
930 
931 	off = (int)uio->uio_offset;
932 	/* Don't allow negative offsets */
933 	if (off < 0)
934 		return EINVAL;
935 
936 	bf = strbuf;
937 	if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
938 		error = uiomove(bf, len, uio);
939 	return (error);
940 }
941 
942 int
943 kernfs_read(v)
944 	void *v;
945 {
946 	struct vop_read_args /* {
947 		struct vnode *a_vp;
948 		struct uio *a_uio;
949 		int  a_ioflag;
950 		struct ucred *a_cred;
951 	} */ *ap = v;
952 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
953 
954 	if (kfs->kfs_type < KFSlasttype) {
955 		/* use default function */
956 		return kernfs_default_xread(v);
957 	}
958 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v,
959 	   EOPNOTSUPP);
960 }
961 
962 static int
963 kernfs_default_xwrite(v)
964 	void *v;
965 {
966 	struct vop_write_args /* {
967 		struct vnode *a_vp;
968 		struct uio *a_uio;
969 		int  a_ioflag;
970 		kauth_cred_t a_cred;
971 	} */ *ap = v;
972 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
973 	struct uio *uio = ap->a_uio;
974 	int error;
975 	size_t xlen;
976 	char strbuf[KSTRING];
977 
978 	if (uio->uio_offset != 0)
979 		return (EINVAL);
980 
981 	xlen = min(uio->uio_resid, KSTRING-1);
982 	if ((error = uiomove(strbuf, xlen, uio)) != 0)
983 		return (error);
984 
985 	if (uio->uio_resid != 0)
986 		return (EIO);
987 
988 	strbuf[xlen] = '\0';
989 	xlen = strlen(strbuf);
990 	return (kernfs_xwrite(kfs, strbuf, xlen));
991 }
992 
993 int
994 kernfs_write(v)
995 	void *v;
996 {
997 	struct vop_write_args /* {
998 		struct vnode *a_vp;
999 		struct uio *a_uio;
1000 		int  a_ioflag;
1001 		kauth_cred_t a_cred;
1002 	} */ *ap = v;
1003 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1004 
1005 	if (kfs->kfs_type < KFSlasttype) {
1006 		/* use default function */
1007 		return kernfs_default_xwrite(v);
1008 	}
1009 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v,
1010 	    EOPNOTSUPP);
1011 }
1012 
1013 int
1014 kernfs_ioctl(v)
1015 	void *v;
1016 {
1017 	struct vop_ioctl_args /* {
1018 		const struct vnodeop_desc *a_desc;
1019 		struct vnode *a_vp;
1020 		u_long a_command;
1021 		void *a_data;
1022 		int a_fflag;
1023 		kauth_cred_t a_cred;
1024 	} */ *ap = v;
1025 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1026 
1027 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
1028 	    EPASSTHROUGH);
1029 }
1030 
1031 static int
1032 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
1033     u_int32_t value, struct vop_readdir_args *ap)
1034 {
1035 	struct kernfs_node *kfs;
1036 	struct vnode *vp;
1037 	int error;
1038 
1039 	if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
1040 	    value)) != 0)
1041 		return error;
1042 	if (kt->kt_tag == KFSdevice) {
1043 		struct vattr va;
1044 
1045 		error = VOP_GETATTR(vp, &va, ap->a_cred);
1046 		if (error != 0) {
1047 			return error;
1048 		}
1049 		d->d_fileno = va.va_fileid;
1050 	} else {
1051 		kfs = VTOKERN(vp);
1052 		d->d_fileno = kfs->kfs_fileno;
1053 	}
1054 	vput(vp);
1055 	return 0;
1056 }
1057 
1058 static int
1059 kernfs_setdirentfileno(struct dirent *d, off_t entry,
1060     struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
1061     const struct kern_target *kt, struct vop_readdir_args *ap)
1062 {
1063 	const struct kern_target *ikt;
1064 	int error;
1065 
1066 	switch (entry) {
1067 	case 0:
1068 		d->d_fileno = thisdir_kfs->kfs_fileno;
1069 		return 0;
1070 	case 1:
1071 		ikt = parent_kt;
1072 		break;
1073 	default:
1074 		ikt = kt;
1075 		break;
1076 	}
1077 	if (ikt != thisdir_kfs->kfs_kt) {
1078 		if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
1079 			return error;
1080 	} else
1081 		d->d_fileno = thisdir_kfs->kfs_fileno;
1082 	return 0;
1083 }
1084 
1085 int
1086 kernfs_readdir(v)
1087 	void *v;
1088 {
1089 	struct vop_readdir_args /* {
1090 		struct vnode *a_vp;
1091 		struct uio *a_uio;
1092 		kauth_cred_t a_cred;
1093 		int *a_eofflag;
1094 		off_t **a_cookies;
1095 		int a_*ncookies;
1096 	} */ *ap = v;
1097 	struct uio *uio = ap->a_uio;
1098 	struct dirent d;
1099 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1100 	const struct kern_target *kt;
1101 	const struct dyn_kern_target *dkt = NULL;
1102 	const struct kernfs_subdir *ks;
1103 	off_t i, j;
1104 	int error;
1105 	off_t *cookies = NULL;
1106 	int ncookies = 0, n;
1107 #ifdef IPSEC
1108 	struct secasvar *sav, *sav2;
1109 	struct secpolicy *sp;
1110 #endif
1111 
1112 	if (uio->uio_resid < UIO_MX)
1113 		return (EINVAL);
1114 	if (uio->uio_offset < 0)
1115 		return (EINVAL);
1116 
1117 	error = 0;
1118 	i = uio->uio_offset;
1119 	memset(&d, 0, sizeof(d));
1120 	d.d_reclen = UIO_MX;
1121 	ncookies = uio->uio_resid / UIO_MX;
1122 
1123 	switch (kfs->kfs_type) {
1124 	case KFSkern:
1125 		if (i >= nkern_targets)
1126 			return (0);
1127 
1128 		if (ap->a_ncookies) {
1129 			ncookies = min(ncookies, (nkern_targets - i));
1130 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1131 			    M_WAITOK);
1132 			*ap->a_cookies = cookies;
1133 		}
1134 
1135 		n = 0;
1136 		for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
1137 			if (i < static_nkern_targets)
1138 				kt = &kern_targets[i];
1139 			else {
1140 				if (dkt == NULL) {
1141 					dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
1142 					for (j = static_nkern_targets; j < i &&
1143 						     dkt != NULL; j++)
1144 						dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1145 					if (j != i)
1146 						break;
1147 				} else {
1148 					dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1149 				}
1150 				if (dkt == NULL)
1151 					break;
1152 				kt = &dkt->dkt_kt;
1153 			}
1154 			if (kt->kt_tag == KFSdevice) {
1155 				dev_t *dp = kt->kt_data;
1156 				struct vnode *fvp;
1157 
1158 				if (*dp == NODEV ||
1159 				    !vfinddev(*dp, kt->kt_vtype, &fvp))
1160 					continue;
1161 			}
1162 			d.d_namlen = kt->kt_namlen;
1163 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
1164 			    &kern_targets[0], kt, ap)) != 0)
1165 				break;
1166 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1167 			d.d_type = kt->kt_type;
1168 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1169 				break;
1170 			if (cookies)
1171 				*cookies++ = i + 1;
1172 			n++;
1173 		}
1174 		ncookies = n;
1175 		break;
1176 
1177 	case KFSroot:
1178 		if (i >= 2)
1179 			return 0;
1180 
1181 		if (ap->a_ncookies) {
1182 			ncookies = min(ncookies, (2 - i));
1183 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1184 			    M_WAITOK);
1185 			*ap->a_cookies = cookies;
1186 		}
1187 
1188 		n = 0;
1189 		for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
1190 			kt = &kern_targets[i];
1191 			d.d_namlen = kt->kt_namlen;
1192 			d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
1193 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1194 			d.d_type = kt->kt_type;
1195 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1196 				break;
1197 			if (cookies)
1198 				*cookies++ = i + 1;
1199 			n++;
1200 		}
1201 		ncookies = n;
1202 		break;
1203 
1204 	case KFSsubdir:
1205 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1206 		if (i >= ks->ks_nentries)
1207 			return (0);
1208 
1209 		if (ap->a_ncookies) {
1210 			ncookies = min(ncookies, (ks->ks_nentries - i));
1211 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1212 			    M_WAITOK);
1213 			*ap->a_cookies = cookies;
1214 		}
1215 
1216 		dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1217 		for (j = 0; j < i && dkt != NULL; j++)
1218 			dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1219 		n = 0;
1220 		for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1221 			if (i < 2)
1222 				kt = &subdir_targets[i];
1223 			else {
1224 				/* check if ks_nentries lied to us */
1225 				if (dkt == NULL)
1226 					break;
1227 				kt = &dkt->dkt_kt;
1228 				dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1229 			}
1230 			if (kt->kt_tag == KFSdevice) {
1231 				dev_t *dp = kt->kt_data;
1232 				struct vnode *fvp;
1233 
1234 				if (*dp == NODEV ||
1235 				    !vfinddev(*dp, kt->kt_vtype, &fvp))
1236 					continue;
1237 			}
1238 			d.d_namlen = kt->kt_namlen;
1239 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
1240 			    ks->ks_parent, kt, ap)) != 0)
1241 				break;
1242 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1243 			d.d_type = kt->kt_type;
1244 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1245 				break;
1246 			if (cookies)
1247 				*cookies++ = i + 1;
1248 			n++;
1249 		}
1250 		ncookies = n;
1251 		break;
1252 
1253 #ifdef IPSEC
1254 	case KFSipsecsadir:
1255 		/* count SA in the system */
1256 		n = 0;
1257 		TAILQ_FOREACH(sav, &satailq, tailq) {
1258 			for (sav2 = TAILQ_FIRST(&satailq);
1259 			    sav2 != sav;
1260 			    sav2 = TAILQ_NEXT(sav2, tailq)) {
1261 				if (sav->spi == sav2->spi) {
1262 					/* multiple SA with same SPI */
1263 					break;
1264 				}
1265 			}
1266 			if (sav == sav2 || sav->spi != sav2->spi)
1267 				n++;
1268 		}
1269 
1270 		if (i >= nipsecsa_targets + n)
1271 			return (0);
1272 
1273 		if (ap->a_ncookies) {
1274 			ncookies = min(ncookies, (n - i));
1275 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1276 			    M_WAITOK);
1277 			*ap->a_cookies = cookies;
1278 		}
1279 
1280 		n = 0;
1281 		for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) {
1282 			kt = &ipsecsa_targets[i];
1283 			d.d_namlen = kt->kt_namlen;
1284 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
1285 			    &kern_targets[0], kt, ap)) != 0)
1286 				break;
1287 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1288 			d.d_type = kt->kt_type;
1289 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1290 				break;
1291 			if (cookies)
1292 				*cookies++ = i + 1;
1293 			n++;
1294 		}
1295 		if (error) {
1296 			ncookies = n;
1297 			break;
1298 		}
1299 
1300 		TAILQ_FOREACH(sav, &satailq, tailq) {
1301 			for (sav2 = TAILQ_FIRST(&satailq);
1302 			    sav2 != sav;
1303 			    sav2 = TAILQ_NEXT(sav2, tailq)) {
1304 				if (sav->spi == sav2->spi) {
1305 					/* multiple SA with same SPI */
1306 					break;
1307 				}
1308 			}
1309 			if (sav != sav2 && sav->spi == sav2->spi)
1310 				continue;
1311 			if (uio->uio_resid < UIO_MX)
1312 				break;
1313 			if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt,
1314 			    sav->spi, ap)) != 0)
1315 				break;
1316 			d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1317 			    "%u", ntohl(sav->spi));
1318 			d.d_type = DT_REG;
1319 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1320 				break;
1321 			if (cookies)
1322 				*cookies++ = i + 1;
1323 			n++;
1324 			i++;
1325 		}
1326 		ncookies = n;
1327 		break;
1328 
1329 	case KFSipsecspdir:
1330 		/* count SP in the system */
1331 		n = 0;
1332 		TAILQ_FOREACH(sp, &sptailq, tailq)
1333 			n++;
1334 
1335 		if (i >= nipsecsp_targets + n)
1336 			return (0);
1337 
1338 		if (ap->a_ncookies) {
1339 			ncookies = min(ncookies, (n - i));
1340 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1341 			    M_WAITOK);
1342 			*ap->a_cookies = cookies;
1343 		}
1344 
1345 		n = 0;
1346 		for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) {
1347 			kt = &ipsecsp_targets[i];
1348 			d.d_namlen = kt->kt_namlen;
1349 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
1350 			    &kern_targets[0], kt, ap)) != 0)
1351 				break;
1352 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1353 			d.d_type = kt->kt_type;
1354 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1355 				break;
1356 			if (cookies)
1357 				*cookies++ = i + 1;
1358 			n++;
1359 		}
1360 		if (error) {
1361 			ncookies = n;
1362 			break;
1363 		}
1364 
1365 		TAILQ_FOREACH(sp, &sptailq, tailq) {
1366 			if (uio->uio_resid < UIO_MX)
1367 				break;
1368 			if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt,
1369 			    sp->id, ap)) != 0)
1370 				break;
1371 			d.d_namlen = snprintf(d.d_name, sizeof(d.d_name),
1372 			    "%u", sp->id);
1373 			d.d_type = DT_REG;
1374 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1375 				break;
1376 			if (cookies)
1377 				*cookies++ = i + 1;
1378 			n++;
1379 			i++;
1380 		}
1381 		ncookies = n;
1382 		break;
1383 #endif
1384 
1385 	default:
1386 		error = ENOTDIR;
1387 		break;
1388 	}
1389 
1390 	if (ap->a_ncookies) {
1391 		if (error) {
1392 			if (cookies)
1393 				free(*ap->a_cookies, M_TEMP);
1394 			*ap->a_ncookies = 0;
1395 			*ap->a_cookies = NULL;
1396 		} else
1397 			*ap->a_ncookies = ncookies;
1398 	}
1399 
1400 	uio->uio_offset = i;
1401 	return (error);
1402 }
1403 
1404 int
1405 kernfs_inactive(v)
1406 	void *v;
1407 {
1408 	struct vop_inactive_args /* {
1409 		struct vnode *a_vp;
1410 		bool *a_recycle;
1411 	} */ *ap = v;
1412 	struct vnode *vp = ap->a_vp;
1413 	const struct kernfs_node *kfs = VTOKERN(ap->a_vp);
1414 #ifdef IPSEC
1415 	struct mbuf *m;
1416 	struct secpolicy *sp;
1417 #endif
1418 
1419 	*ap->a_recycle = false;
1420 	switch (kfs->kfs_type) {
1421 #ifdef IPSEC
1422 	case KFSipsecsa:
1423 		m = key_setdumpsa_spi(htonl(kfs->kfs_value));
1424 		if (m)
1425 			m_freem(m);
1426 		else
1427 			*ap->a_recycle = true;
1428 		break;
1429 	case KFSipsecsp:
1430 		sp = key_getspbyid(kfs->kfs_value);
1431 		if (sp)
1432 			key_freesp(sp);
1433 		else {
1434 			*ap->a_recycle = true;
1435 		}
1436 		break;
1437 #endif
1438 	default:
1439 		break;
1440 	}
1441 	VOP_UNLOCK(vp, 0);
1442 	return (0);
1443 }
1444 
1445 int
1446 kernfs_reclaim(v)
1447 	void *v;
1448 {
1449 	struct vop_reclaim_args /* {
1450 		struct vnode *a_vp;
1451 	} */ *ap = v;
1452 
1453 	return (kernfs_freevp(ap->a_vp));
1454 }
1455 
1456 /*
1457  * Return POSIX pathconf information applicable to special devices.
1458  */
1459 int
1460 kernfs_pathconf(v)
1461 	void *v;
1462 {
1463 	struct vop_pathconf_args /* {
1464 		struct vnode *a_vp;
1465 		int a_name;
1466 		register_t *a_retval;
1467 	} */ *ap = v;
1468 
1469 	switch (ap->a_name) {
1470 	case _PC_LINK_MAX:
1471 		*ap->a_retval = LINK_MAX;
1472 		return (0);
1473 	case _PC_MAX_CANON:
1474 		*ap->a_retval = MAX_CANON;
1475 		return (0);
1476 	case _PC_MAX_INPUT:
1477 		*ap->a_retval = MAX_INPUT;
1478 		return (0);
1479 	case _PC_PIPE_BUF:
1480 		*ap->a_retval = PIPE_BUF;
1481 		return (0);
1482 	case _PC_CHOWN_RESTRICTED:
1483 		*ap->a_retval = 1;
1484 		return (0);
1485 	case _PC_VDISABLE:
1486 		*ap->a_retval = _POSIX_VDISABLE;
1487 		return (0);
1488 	case _PC_SYNC_IO:
1489 		*ap->a_retval = 1;
1490 		return (0);
1491 	default:
1492 		return (EINVAL);
1493 	}
1494 	/* NOTREACHED */
1495 }
1496 
1497 /*
1498  * Print out the contents of a /dev/fd vnode.
1499  */
1500 /* ARGSUSED */
1501 int
1502 kernfs_print(void *v)
1503 {
1504 
1505 	printf("tag VT_KERNFS, kernfs vnode\n");
1506 	return (0);
1507 }
1508 
1509 int
1510 kernfs_link(v)
1511 	void *v;
1512 {
1513 	struct vop_link_args /* {
1514 		struct vnode *a_dvp;
1515 		struct vnode *a_vp;
1516 		struct componentname *a_cnp;
1517 	} */ *ap = v;
1518 
1519 	VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1520 	vput(ap->a_dvp);
1521 	return (EROFS);
1522 }
1523 
1524 int
1525 kernfs_symlink(v)
1526 	void *v;
1527 {
1528 	struct vop_symlink_args /* {
1529 		struct vnode *a_dvp;
1530 		struct vnode **a_vpp;
1531 		struct componentname *a_cnp;
1532 		struct vattr *a_vap;
1533 		char *a_target;
1534 	} */ *ap = v;
1535 
1536 	VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1537 	vput(ap->a_dvp);
1538 	return (EROFS);
1539 }
1540