1 /* $NetBSD: kernfs_vnops.c,v 1.132 2006/12/28 09:12:38 elad Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software donated to Berkeley by 8 * Jan-Simon Pendry. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95 35 */ 36 37 /* 38 * Kernel parameter filesystem (/kern) 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.132 2006/12/28 09:12:38 elad Exp $"); 43 44 #ifdef _KERNEL_OPT 45 #include "opt_ipsec.h" 46 #endif 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/kernel.h> 51 #include <sys/vmmeter.h> 52 #include <sys/time.h> 53 #include <sys/proc.h> 54 #include <sys/vnode.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> 57 #include <sys/stat.h> 58 #include <sys/mount.h> 59 #include <sys/namei.h> 60 #include <sys/buf.h> 61 #include <sys/dirent.h> 62 #include <sys/msgbuf.h> 63 64 #include <miscfs/genfs/genfs.h> 65 #include <miscfs/kernfs/kernfs.h> 66 67 #ifdef IPSEC 68 #include <sys/mbuf.h> 69 #include <net/route.h> 70 #include <netinet/in.h> 71 #include <netinet6/ipsec.h> 72 #include <netkey/key.h> 73 #endif 74 75 #include <uvm/uvm_extern.h> 76 77 #define KSTRING 256 /* Largest I/O available via this filesystem */ 78 #define UIO_MX 32 79 80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH) 81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH) 82 #define UREAD_MODE (S_IRUSR) 83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) 84 #define UDIR_MODE (S_IRUSR|S_IXUSR) 85 86 #define N(s) sizeof(s)-1, s 87 const struct kern_target kern_targets[] = { 88 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 89 /* name data tag type ro/rw */ 90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE }, 91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE }, 92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE }, 93 /* XXXUNCONST */ 94 { DT_REG, N("copyright"), __UNCONST(copyright), 95 KFSstring, VREG, READ_MODE }, 96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE }, 97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE }, 98 #ifdef IPSEC 99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE }, 100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE }, 101 #endif 102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE }, 103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE }, 104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE }, 105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE }, 106 #if 0 107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE }, 108 #endif 109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE }, 110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE }, 111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE }, 112 /* XXXUNCONST */ 113 { DT_REG, N("version"), __UNCONST(version), 114 KFSstring, VREG, READ_MODE }, 115 }; 116 const struct kern_target subdir_targets[] = { 117 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 118 /* name data tag type ro/rw */ 119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE }, 120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE }, 121 }; 122 #ifdef IPSEC 123 const struct kern_target ipsecsa_targets[] = { 124 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 125 /* name data tag type ro/rw */ 126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE }, 127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE }, 128 }; 129 const struct kern_target ipsecsp_targets[] = { 130 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 131 /* name data tag type ro/rw */ 132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE }, 133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE }, 134 }; 135 const struct kern_target ipsecsa_kt = 136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE }; 137 const struct kern_target ipsecsp_kt = 138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE }; 139 #endif 140 #undef N 141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets = 142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets); 143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]); 144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]); 145 #ifdef IPSEC 146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]); 147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]); 148 int nkern_dirs = 4; /* 2 extra subdirs */ 149 #else 150 int nkern_dirs = 2; 151 #endif 152 153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int); 154 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **, 155 size_t, int); 156 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *, 157 size_t, int); 158 159 static int kernfs_default_xread(void *v); 160 static int kernfs_default_xwrite(void *v); 161 static int kernfs_default_fileop_getattr(void *); 162 163 /* must include all fileop's */ 164 const struct kernfs_fileop kernfs_default_fileops[] = { 165 { .kf_fileop = KERNFS_XREAD }, 166 { .kf_fileop = KERNFS_XWRITE }, 167 { .kf_fileop = KERNFS_FILEOP_OPEN }, 168 { .kf_fileop = KERNFS_FILEOP_GETATTR, 169 .kf_vop = kernfs_default_fileop_getattr }, 170 { .kf_fileop = KERNFS_FILEOP_IOCTL }, 171 { .kf_fileop = KERNFS_FILEOP_CLOSE }, 172 { .kf_fileop = KERNFS_FILEOP_READ, 173 .kf_vop = kernfs_default_xread }, 174 { .kf_fileop = KERNFS_FILEOP_WRITE, 175 .kf_vop = kernfs_default_xwrite }, 176 }; 177 178 int kernfs_lookup(void *); 179 #define kernfs_create genfs_eopnotsupp 180 #define kernfs_mknod genfs_eopnotsupp 181 int kernfs_open(void *); 182 int kernfs_close(void *); 183 int kernfs_access(void *); 184 int kernfs_getattr(void *); 185 int kernfs_setattr(void *); 186 int kernfs_read(void *); 187 int kernfs_write(void *); 188 #define kernfs_fcntl genfs_fcntl 189 int kernfs_ioctl(void *); 190 #define kernfs_poll genfs_poll 191 #define kernfs_revoke genfs_revoke 192 #define kernfs_fsync genfs_nullop 193 #define kernfs_seek genfs_nullop 194 #define kernfs_remove genfs_eopnotsupp 195 int kernfs_link(void *); 196 #define kernfs_rename genfs_eopnotsupp 197 #define kernfs_mkdir genfs_eopnotsupp 198 #define kernfs_rmdir genfs_eopnotsupp 199 int kernfs_symlink(void *); 200 int kernfs_readdir(void *); 201 #define kernfs_readlink genfs_eopnotsupp 202 #define kernfs_abortop genfs_abortop 203 int kernfs_inactive(void *); 204 int kernfs_reclaim(void *); 205 #define kernfs_lock genfs_lock 206 #define kernfs_unlock genfs_unlock 207 #define kernfs_bmap genfs_badop 208 #define kernfs_strategy genfs_badop 209 int kernfs_print(void *); 210 #define kernfs_islocked genfs_islocked 211 int kernfs_pathconf(void *); 212 #define kernfs_advlock genfs_einval 213 #define kernfs_bwrite genfs_eopnotsupp 214 #define kernfs_putpages genfs_putpages 215 216 static int kernfs_xread(struct kernfs_node *, int, char **, 217 size_t, size_t *); 218 static int kernfs_xwrite(const struct kernfs_node *, char *, size_t); 219 220 int (**kernfs_vnodeop_p)(void *); 221 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = { 222 { &vop_default_desc, vn_default_error }, 223 { &vop_lookup_desc, kernfs_lookup }, /* lookup */ 224 { &vop_create_desc, kernfs_create }, /* create */ 225 { &vop_mknod_desc, kernfs_mknod }, /* mknod */ 226 { &vop_open_desc, kernfs_open }, /* open */ 227 { &vop_close_desc, kernfs_close }, /* close */ 228 { &vop_access_desc, kernfs_access }, /* access */ 229 { &vop_getattr_desc, kernfs_getattr }, /* getattr */ 230 { &vop_setattr_desc, kernfs_setattr }, /* setattr */ 231 { &vop_read_desc, kernfs_read }, /* read */ 232 { &vop_write_desc, kernfs_write }, /* write */ 233 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */ 234 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */ 235 { &vop_poll_desc, kernfs_poll }, /* poll */ 236 { &vop_revoke_desc, kernfs_revoke }, /* revoke */ 237 { &vop_fsync_desc, kernfs_fsync }, /* fsync */ 238 { &vop_seek_desc, kernfs_seek }, /* seek */ 239 { &vop_remove_desc, kernfs_remove }, /* remove */ 240 { &vop_link_desc, kernfs_link }, /* link */ 241 { &vop_rename_desc, kernfs_rename }, /* rename */ 242 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */ 243 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */ 244 { &vop_symlink_desc, kernfs_symlink }, /* symlink */ 245 { &vop_readdir_desc, kernfs_readdir }, /* readdir */ 246 { &vop_readlink_desc, kernfs_readlink }, /* readlink */ 247 { &vop_abortop_desc, kernfs_abortop }, /* abortop */ 248 { &vop_inactive_desc, kernfs_inactive }, /* inactive */ 249 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */ 250 { &vop_lock_desc, kernfs_lock }, /* lock */ 251 { &vop_unlock_desc, kernfs_unlock }, /* unlock */ 252 { &vop_bmap_desc, kernfs_bmap }, /* bmap */ 253 { &vop_strategy_desc, kernfs_strategy }, /* strategy */ 254 { &vop_print_desc, kernfs_print }, /* print */ 255 { &vop_islocked_desc, kernfs_islocked }, /* islocked */ 256 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */ 257 { &vop_advlock_desc, kernfs_advlock }, /* advlock */ 258 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */ 259 { &vop_putpages_desc, kernfs_putpages }, /* putpages */ 260 { NULL, NULL } 261 }; 262 const struct vnodeopv_desc kernfs_vnodeop_opv_desc = 263 { &kernfs_vnodeop_p, kernfs_vnodeop_entries }; 264 265 static inline int 266 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b) 267 { 268 if (a->kf_type < b->kf_type) 269 return -1; 270 if (a->kf_type > b->kf_type) 271 return 1; 272 if (a->kf_fileop < b->kf_fileop) 273 return -1; 274 if (a->kf_fileop > b->kf_fileop) 275 return 1; 276 return (0); 277 } 278 279 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree = 280 SPLAY_INITIALIZER(kfsfileoptree); 281 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare); 282 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare); 283 284 kfstype 285 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf) 286 { 287 static u_char nextfreetype = KFSlasttype; 288 struct kernfs_fileop *dkf, *fkf, skf; 289 int i; 290 291 /* XXX need to keep track of dkf's memory if we support 292 deallocating types */ 293 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK); 294 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops)); 295 296 for (i = 0; i < sizeof(kernfs_default_fileops) / 297 sizeof(kernfs_default_fileops[0]); i++) { 298 dkf[i].kf_type = nextfreetype; 299 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]); 300 } 301 302 for (i = 0; i < nkf; i++) { 303 skf.kf_type = nextfreetype; 304 skf.kf_fileop = kf[i].kf_fileop; 305 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 306 fkf->kf_vop = kf[i].kf_vop; 307 } 308 309 return nextfreetype++; 310 } 311 312 int 313 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error) 314 { 315 struct kernfs_fileop *kf, skf; 316 317 skf.kf_type = type; 318 skf.kf_fileop = fileop; 319 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 320 if (kf->kf_vop) 321 return kf->kf_vop(v); 322 return error; 323 } 324 325 int 326 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp, 327 size_t len, int error) 328 { 329 struct kernfs_fileop *kf, skf; 330 331 skf.kf_type = type; 332 skf.kf_fileop = KERNFS_XREAD; 333 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 334 if (kf->kf_xread) 335 return kf->kf_xread(kfs, bfp, len); 336 return error; 337 } 338 339 int 340 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf, 341 size_t len, int error) 342 { 343 struct kernfs_fileop *kf, skf; 344 345 skf.kf_type = type; 346 skf.kf_fileop = KERNFS_XWRITE; 347 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 348 if (kf->kf_xwrite) 349 return kf->kf_xwrite(kfs, bf, len); 350 return error; 351 } 352 353 int 354 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt) 355 { 356 struct kernfs_subdir *ks, *parent; 357 358 if (pkt == NULL) { 359 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue); 360 nkern_targets++; 361 if (dkt->dkt_kt.kt_vtype == VDIR) 362 nkern_dirs++; 363 } else { 364 parent = (struct kernfs_subdir *)pkt->kt_data; 365 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue); 366 parent->ks_nentries++; 367 if (dkt->dkt_kt.kt_vtype == VDIR) 368 parent->ks_dirs++; 369 } 370 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) { 371 ks = malloc(sizeof(struct kernfs_subdir), 372 M_TEMP, M_WAITOK); 373 SIMPLEQ_INIT(&ks->ks_entries); 374 ks->ks_nentries = 2; /* . and .. */ 375 ks->ks_dirs = 2; 376 ks->ks_parent = pkt ? pkt : &kern_targets[0]; 377 dkt->dkt_kt.kt_data = ks; 378 } 379 return 0; 380 } 381 382 static int 383 kernfs_xread(kfs, off, bufp, len, wrlen) 384 struct kernfs_node *kfs; 385 int off; 386 char **bufp; 387 size_t len; 388 size_t *wrlen; 389 { 390 const struct kern_target *kt; 391 #ifdef IPSEC 392 struct mbuf *m; 393 #endif 394 int err; 395 396 kt = kfs->kfs_kt; 397 398 switch (kfs->kfs_type) { 399 case KFStime: { 400 struct timeval tv; 401 402 microtime(&tv); 403 snprintf(*bufp, len, "%ld %ld\n", tv.tv_sec, tv.tv_usec); 404 break; 405 } 406 407 case KFSint: { 408 int *ip = kt->kt_data; 409 410 snprintf(*bufp, len, "%d\n", *ip); 411 break; 412 } 413 414 case KFSstring: { 415 char *cp = kt->kt_data; 416 417 *bufp = cp; 418 break; 419 } 420 421 case KFSmsgbuf: { 422 long n; 423 424 /* 425 * deal with cases where the message buffer has 426 * become corrupted. 427 */ 428 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) { 429 msgbufenabled = 0; 430 return (ENXIO); 431 } 432 433 /* 434 * Note that reads of /kern/msgbuf won't necessarily yield 435 * consistent results, if the message buffer is modified 436 * while the read is in progress. The worst that can happen 437 * is that incorrect data will be read. There's no way 438 * that this can crash the system unless the values in the 439 * message buffer header are corrupted, but that'll cause 440 * the system to die anyway. 441 */ 442 if (off >= msgbufp->msg_bufs) { 443 *wrlen = 0; 444 return (0); 445 } 446 n = msgbufp->msg_bufx + off; 447 if (n >= msgbufp->msg_bufs) 448 n -= msgbufp->msg_bufs; 449 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off); 450 *bufp = msgbufp->msg_bufc + n; 451 *wrlen = len; 452 return (0); 453 } 454 455 case KFShostname: { 456 char *cp = hostname; 457 size_t xlen = hostnamelen; 458 459 if (xlen >= (len - 2)) 460 return (EINVAL); 461 462 memcpy(*bufp, cp, xlen); 463 (*bufp)[xlen] = '\n'; 464 (*bufp)[xlen+1] = '\0'; 465 len = strlen(*bufp); 466 break; 467 } 468 469 case KFSavenrun: 470 averunnable.fscale = FSCALE; 471 snprintf(*bufp, len, "%d %d %d %ld\n", 472 averunnable.ldavg[0], averunnable.ldavg[1], 473 averunnable.ldavg[2], averunnable.fscale); 474 break; 475 476 #ifdef IPSEC 477 case KFSipsecsa: 478 /* 479 * Note that SA configuration could be changed during the 480 * read operation, resulting in garbled output. 481 */ 482 m = key_setdumpsa_spi(htonl(kfs->kfs_value)); 483 if (!m) 484 return (ENOBUFS); 485 if (off >= m->m_pkthdr.len) { 486 *wrlen = 0; 487 m_freem(m); 488 return (0); 489 } 490 if (len > m->m_pkthdr.len - off) 491 len = m->m_pkthdr.len - off; 492 m_copydata(m, off, len, *bufp); 493 *wrlen = len; 494 m_freem(m); 495 return (0); 496 497 case KFSipsecsp: 498 /* 499 * Note that SP configuration could be changed during the 500 * read operation, resulting in garbled output. 501 */ 502 if (!kfs->kfs_v) { 503 struct secpolicy *sp; 504 505 sp = key_getspbyid(kfs->kfs_value); 506 if (sp) 507 kfs->kfs_v = sp; 508 else 509 return (ENOENT); 510 } 511 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v, 512 SADB_X_SPDGET, 0, 0); 513 if (!m) 514 return (ENOBUFS); 515 if (off >= m->m_pkthdr.len) { 516 *wrlen = 0; 517 m_freem(m); 518 return (0); 519 } 520 if (len > m->m_pkthdr.len - off) 521 len = m->m_pkthdr.len - off; 522 m_copydata(m, off, len, *bufp); 523 *wrlen = len; 524 m_freem(m); 525 return (0); 526 #endif 527 528 default: 529 err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len, 530 EOPNOTSUPP); 531 if (err) 532 return err; 533 } 534 535 len = strlen(*bufp); 536 if (len <= off) 537 *wrlen = 0; 538 else { 539 *bufp += off; 540 *wrlen = len - off; 541 } 542 return (0); 543 } 544 545 static int 546 kernfs_xwrite(kfs, bf, len) 547 const struct kernfs_node *kfs; 548 char *bf; 549 size_t len; 550 { 551 552 switch (kfs->kfs_type) { 553 case KFShostname: 554 if (bf[len-1] == '\n') 555 --len; 556 memcpy(hostname, bf, len); 557 hostname[len] = '\0'; 558 hostnamelen = (size_t) len; 559 return (0); 560 561 default: 562 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO); 563 } 564 } 565 566 567 /* 568 * vp is the current namei directory 569 * ndp is the name to locate in that directory... 570 */ 571 int 572 kernfs_lookup(v) 573 void *v; 574 { 575 struct vop_lookup_args /* { 576 struct vnode * a_dvp; 577 struct vnode ** a_vpp; 578 struct componentname * a_cnp; 579 } */ *ap = v; 580 struct componentname *cnp = ap->a_cnp; 581 struct vnode **vpp = ap->a_vpp; 582 struct vnode *dvp = ap->a_dvp; 583 const char *pname = cnp->cn_nameptr; 584 const struct kernfs_node *kfs; 585 const struct kern_target *kt; 586 const struct dyn_kern_target *dkt; 587 const struct kernfs_subdir *ks; 588 int error, i; 589 #ifdef IPSEC 590 char *ep; 591 u_int32_t id; 592 #endif 593 594 *vpp = NULLVP; 595 596 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME) 597 return (EROFS); 598 599 if (cnp->cn_namelen == 1 && *pname == '.') { 600 *vpp = dvp; 601 VREF(dvp); 602 return (0); 603 } 604 605 kfs = VTOKERN(dvp); 606 switch (kfs->kfs_type) { 607 case KFSkern: 608 /* 609 * Shouldn't get here with .. in the root node. 610 */ 611 if (cnp->cn_flags & ISDOTDOT) 612 return (EIO); 613 614 for (i = 0; i < static_nkern_targets; i++) { 615 kt = &kern_targets[i]; 616 if (cnp->cn_namelen == kt->kt_namlen && 617 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0) 618 goto found; 619 } 620 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) { 621 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen && 622 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) { 623 kt = &dkt->dkt_kt; 624 goto found; 625 } 626 } 627 break; 628 629 found: 630 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0); 631 return (error); 632 633 case KFSsubdir: 634 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data; 635 if (cnp->cn_flags & ISDOTDOT) { 636 kt = ks->ks_parent; 637 goto found; 638 } 639 640 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) { 641 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen && 642 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) { 643 kt = &dkt->dkt_kt; 644 goto found; 645 } 646 } 647 break; 648 649 #ifdef IPSEC 650 case KFSipsecsadir: 651 if (cnp->cn_flags & ISDOTDOT) { 652 kt = &kern_targets[0]; 653 goto found; 654 } 655 656 for (i = 2; i < nipsecsa_targets; i++) { 657 kt = &ipsecsa_targets[i]; 658 if (cnp->cn_namelen == kt->kt_namlen && 659 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0) 660 goto found; 661 } 662 663 ep = NULL; 664 id = strtoul(pname, &ep, 10); 665 if (!ep || *ep || ep == pname) 666 break; 667 668 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id); 669 return (error); 670 671 case KFSipsecspdir: 672 if (cnp->cn_flags & ISDOTDOT) { 673 kt = &kern_targets[0]; 674 goto found; 675 } 676 677 for (i = 2; i < nipsecsp_targets; i++) { 678 kt = &ipsecsp_targets[i]; 679 if (cnp->cn_namelen == kt->kt_namlen && 680 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0) 681 goto found; 682 } 683 684 ep = NULL; 685 id = strtoul(pname, &ep, 10); 686 if (!ep || *ep || ep == pname) 687 break; 688 689 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id); 690 return (error); 691 #endif 692 693 default: 694 return (ENOTDIR); 695 } 696 697 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS); 698 } 699 700 int 701 kernfs_open(v) 702 void *v; 703 { 704 struct vop_open_args /* { 705 struct vnode *a_vp; 706 int a_mode; 707 kauth_cred_t a_cred; 708 struct lwp *a_l; 709 } */ *ap = v; 710 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 711 #ifdef IPSEC 712 struct mbuf *m; 713 struct secpolicy *sp; 714 #endif 715 716 switch (kfs->kfs_type) { 717 #ifdef IPSEC 718 case KFSipsecsa: 719 m = key_setdumpsa_spi(htonl(kfs->kfs_value)); 720 if (m) { 721 m_freem(m); 722 return (0); 723 } else 724 return (ENOENT); 725 726 case KFSipsecsp: 727 sp = key_getspbyid(kfs->kfs_value); 728 if (sp) { 729 kfs->kfs_v = sp; 730 return (0); 731 } else 732 return (ENOENT); 733 #endif 734 735 default: 736 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN, 737 v, 0); 738 } 739 } 740 741 int 742 kernfs_close(v) 743 void *v; 744 { 745 struct vop_close_args /* { 746 struct vnode *a_vp; 747 int a_fflag; 748 kauth_cred_t a_cred; 749 struct lwp *a_l; 750 } */ *ap = v; 751 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 752 753 switch (kfs->kfs_type) { 754 #ifdef IPSEC 755 case KFSipsecsp: 756 key_freesp((struct secpolicy *)kfs->kfs_v); 757 break; 758 #endif 759 760 default: 761 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE, 762 v, 0); 763 } 764 765 return (0); 766 } 767 768 int 769 kernfs_access(v) 770 void *v; 771 { 772 struct vop_access_args /* { 773 struct vnode *a_vp; 774 int a_mode; 775 kauth_cred_t a_cred; 776 struct lwp *a_l; 777 } */ *ap = v; 778 struct vattr va; 779 int error; 780 781 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred, ap->a_l)) != 0) 782 return (error); 783 784 return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid, 785 ap->a_mode, ap->a_cred)); 786 } 787 788 static int 789 kernfs_default_fileop_getattr(v) 790 void *v; 791 { 792 struct vop_getattr_args /* { 793 struct vnode *a_vp; 794 struct vattr *a_vap; 795 kauth_cred_t a_cred; 796 struct lwp *a_l; 797 } */ *ap = v; 798 struct vattr *vap = ap->a_vap; 799 800 vap->va_nlink = 1; 801 vap->va_bytes = vap->va_size = 0; 802 803 return 0; 804 } 805 806 int 807 kernfs_getattr(v) 808 void *v; 809 { 810 struct vop_getattr_args /* { 811 struct vnode *a_vp; 812 struct vattr *a_vap; 813 kauth_cred_t a_cred; 814 struct lwp *a_l; 815 } */ *ap = v; 816 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 817 struct kernfs_subdir *ks; 818 struct vattr *vap = ap->a_vap; 819 int error = 0; 820 char strbuf[KSTRING], *bf; 821 size_t nread, total; 822 823 VATTR_NULL(vap); 824 vap->va_type = ap->a_vp->v_type; 825 vap->va_uid = 0; 826 vap->va_gid = 0; 827 vap->va_mode = kfs->kfs_mode; 828 vap->va_fileid = kfs->kfs_fileno; 829 vap->va_flags = 0; 830 vap->va_size = 0; 831 vap->va_blocksize = DEV_BSIZE; 832 /* Make all times be current TOD, except for the "boottime" node. */ 833 if (kfs->kfs_kt->kt_namlen == 8 && 834 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) { 835 TIMEVAL_TO_TIMESPEC(&boottime, &vap->va_ctime); 836 } else { 837 getnanotime(&vap->va_ctime); 838 } 839 vap->va_atime = vap->va_mtime = vap->va_ctime; 840 vap->va_gen = 0; 841 vap->va_flags = 0; 842 vap->va_rdev = 0; 843 vap->va_bytes = 0; 844 845 switch (kfs->kfs_type) { 846 case KFSkern: 847 vap->va_nlink = nkern_dirs; 848 vap->va_bytes = vap->va_size = DEV_BSIZE; 849 break; 850 851 case KFSroot: 852 vap->va_nlink = 1; 853 vap->va_bytes = vap->va_size = DEV_BSIZE; 854 break; 855 856 case KFSsubdir: 857 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data; 858 vap->va_nlink = ks->ks_dirs; 859 vap->va_bytes = vap->va_size = DEV_BSIZE; 860 break; 861 862 case KFSnull: 863 case KFStime: 864 case KFSint: 865 case KFSstring: 866 case KFShostname: 867 case KFSavenrun: 868 case KFSdevice: 869 case KFSmsgbuf: 870 #ifdef IPSEC 871 case KFSipsecsa: 872 case KFSipsecsp: 873 #endif 874 vap->va_nlink = 1; 875 total = 0; 876 do { 877 bf = strbuf; 878 error = kernfs_xread(kfs, total, &bf, 879 sizeof(strbuf), &nread); 880 total += nread; 881 } while (error == 0 && nread != 0); 882 vap->va_bytes = vap->va_size = total; 883 break; 884 885 #ifdef IPSEC 886 case KFSipsecsadir: 887 case KFSipsecspdir: 888 vap->va_nlink = 2; 889 vap->va_bytes = vap->va_size = DEV_BSIZE; 890 break; 891 #endif 892 893 default: 894 error = kernfs_try_fileop(kfs->kfs_type, 895 KERNFS_FILEOP_GETATTR, v, EINVAL); 896 break; 897 } 898 899 return (error); 900 } 901 902 /*ARGSUSED*/ 903 int 904 kernfs_setattr(void *v) 905 { 906 907 /* 908 * Silently ignore attribute changes. 909 * This allows for open with truncate to have no 910 * effect until some data is written. I want to 911 * do it this way because all writes are atomic. 912 */ 913 return (0); 914 } 915 916 int 917 kernfs_default_xread(v) 918 void *v; 919 { 920 struct vop_read_args /* { 921 struct vnode *a_vp; 922 struct uio *a_uio; 923 int a_ioflag; 924 kauth_cred_t a_cred; 925 } */ *ap = v; 926 struct uio *uio = ap->a_uio; 927 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 928 char strbuf[KSTRING], *bf; 929 int off; 930 size_t len; 931 int error; 932 933 if (ap->a_vp->v_type == VDIR) 934 return (EOPNOTSUPP); 935 936 off = (int)uio->uio_offset; 937 /* Don't allow negative offsets */ 938 if (off < 0) 939 return EINVAL; 940 941 bf = strbuf; 942 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0) 943 error = uiomove(bf, len, uio); 944 return (error); 945 } 946 947 int 948 kernfs_read(v) 949 void *v; 950 { 951 struct vop_read_args /* { 952 struct vnode *a_vp; 953 struct uio *a_uio; 954 int a_ioflag; 955 struct ucred *a_cred; 956 } */ *ap = v; 957 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 958 959 if (kfs->kfs_type < KFSlasttype) { 960 /* use default function */ 961 return kernfs_default_xread(v); 962 } 963 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v, 964 EOPNOTSUPP); 965 } 966 967 static int 968 kernfs_default_xwrite(v) 969 void *v; 970 { 971 struct vop_write_args /* { 972 struct vnode *a_vp; 973 struct uio *a_uio; 974 int a_ioflag; 975 kauth_cred_t a_cred; 976 } */ *ap = v; 977 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 978 struct uio *uio = ap->a_uio; 979 int error; 980 size_t xlen; 981 char strbuf[KSTRING]; 982 983 if (uio->uio_offset != 0) 984 return (EINVAL); 985 986 xlen = min(uio->uio_resid, KSTRING-1); 987 if ((error = uiomove(strbuf, xlen, uio)) != 0) 988 return (error); 989 990 if (uio->uio_resid != 0) 991 return (EIO); 992 993 strbuf[xlen] = '\0'; 994 xlen = strlen(strbuf); 995 return (kernfs_xwrite(kfs, strbuf, xlen)); 996 } 997 998 int 999 kernfs_write(v) 1000 void *v; 1001 { 1002 struct vop_write_args /* { 1003 struct vnode *a_vp; 1004 struct uio *a_uio; 1005 int a_ioflag; 1006 kauth_cred_t a_cred; 1007 } */ *ap = v; 1008 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1009 1010 if (kfs->kfs_type < KFSlasttype) { 1011 /* use default function */ 1012 return kernfs_default_xwrite(v); 1013 } 1014 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v, 1015 EOPNOTSUPP); 1016 } 1017 1018 int 1019 kernfs_ioctl(v) 1020 void *v; 1021 { 1022 struct vop_ioctl_args /* { 1023 const struct vnodeop_desc *a_desc; 1024 struct vnode *a_vp; 1025 u_long a_command; 1026 void *a_data; 1027 int a_fflag; 1028 kauth_cred_t a_cred; 1029 struct lwp *a_l; 1030 } */ *ap = v; 1031 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1032 1033 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v, 1034 EPASSTHROUGH); 1035 } 1036 1037 static int 1038 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt, 1039 u_int32_t value, struct vop_readdir_args *ap) 1040 { 1041 struct kernfs_node *kfs; 1042 struct vnode *vp; 1043 int error; 1044 1045 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt, 1046 value)) != 0) 1047 return error; 1048 if (kt->kt_tag == KFSdevice) { 1049 struct vattr va; 1050 1051 error = VOP_GETATTR(vp, &va, ap->a_cred, curlwp); 1052 if (error != 0) { 1053 return error; 1054 } 1055 d->d_fileno = va.va_fileid; 1056 } else { 1057 kfs = VTOKERN(vp); 1058 d->d_fileno = kfs->kfs_fileno; 1059 } 1060 vput(vp); 1061 return 0; 1062 } 1063 1064 static int 1065 kernfs_setdirentfileno(struct dirent *d, off_t entry, 1066 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt, 1067 const struct kern_target *kt, struct vop_readdir_args *ap) 1068 { 1069 const struct kern_target *ikt; 1070 int error; 1071 1072 switch (entry) { 1073 case 0: 1074 d->d_fileno = thisdir_kfs->kfs_fileno; 1075 return 0; 1076 case 1: 1077 ikt = parent_kt; 1078 break; 1079 default: 1080 ikt = kt; 1081 break; 1082 } 1083 if (ikt != thisdir_kfs->kfs_kt) { 1084 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0) 1085 return error; 1086 } else 1087 d->d_fileno = thisdir_kfs->kfs_fileno; 1088 return 0; 1089 } 1090 1091 int 1092 kernfs_readdir(v) 1093 void *v; 1094 { 1095 struct vop_readdir_args /* { 1096 struct vnode *a_vp; 1097 struct uio *a_uio; 1098 kauth_cred_t a_cred; 1099 int *a_eofflag; 1100 off_t **a_cookies; 1101 int a_*ncookies; 1102 } */ *ap = v; 1103 struct uio *uio = ap->a_uio; 1104 struct dirent d; 1105 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1106 const struct kern_target *kt; 1107 const struct dyn_kern_target *dkt = NULL; 1108 const struct kernfs_subdir *ks; 1109 off_t i, j; 1110 int error; 1111 off_t *cookies = NULL; 1112 int ncookies = 0, n; 1113 #ifdef IPSEC 1114 struct secasvar *sav, *sav2; 1115 struct secpolicy *sp; 1116 #endif 1117 1118 if (uio->uio_resid < UIO_MX) 1119 return (EINVAL); 1120 if (uio->uio_offset < 0) 1121 return (EINVAL); 1122 1123 error = 0; 1124 i = uio->uio_offset; 1125 memset(&d, 0, sizeof(d)); 1126 d.d_reclen = UIO_MX; 1127 ncookies = uio->uio_resid / UIO_MX; 1128 1129 switch (kfs->kfs_type) { 1130 case KFSkern: 1131 if (i >= nkern_targets) 1132 return (0); 1133 1134 if (ap->a_ncookies) { 1135 ncookies = min(ncookies, (nkern_targets - i)); 1136 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1137 M_WAITOK); 1138 *ap->a_cookies = cookies; 1139 } 1140 1141 n = 0; 1142 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) { 1143 if (i < static_nkern_targets) 1144 kt = &kern_targets[i]; 1145 else { 1146 if (dkt == NULL) { 1147 dkt = SIMPLEQ_FIRST(&dyn_kern_targets); 1148 for (j = static_nkern_targets; j < i && 1149 dkt != NULL; j++) 1150 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1151 if (j != i) 1152 break; 1153 } else { 1154 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1155 } 1156 if (dkt == NULL) 1157 break; 1158 kt = &dkt->dkt_kt; 1159 } 1160 if (kt->kt_tag == KFSdevice) { 1161 dev_t *dp = kt->kt_data; 1162 struct vnode *fvp; 1163 1164 if (*dp == NODEV || 1165 !vfinddev(*dp, kt->kt_vtype, &fvp)) 1166 continue; 1167 } 1168 d.d_namlen = kt->kt_namlen; 1169 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1170 &kern_targets[0], kt, ap)) != 0) 1171 break; 1172 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1173 d.d_type = kt->kt_type; 1174 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1175 break; 1176 if (cookies) 1177 *cookies++ = i + 1; 1178 n++; 1179 } 1180 ncookies = n; 1181 break; 1182 1183 case KFSroot: 1184 if (i >= 2) 1185 return 0; 1186 1187 if (ap->a_ncookies) { 1188 ncookies = min(ncookies, (2 - i)); 1189 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1190 M_WAITOK); 1191 *ap->a_cookies = cookies; 1192 } 1193 1194 n = 0; 1195 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) { 1196 kt = &kern_targets[i]; 1197 d.d_namlen = kt->kt_namlen; 1198 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0); 1199 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1200 d.d_type = kt->kt_type; 1201 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1202 break; 1203 if (cookies) 1204 *cookies++ = i + 1; 1205 n++; 1206 } 1207 ncookies = n; 1208 break; 1209 1210 case KFSsubdir: 1211 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data; 1212 if (i >= ks->ks_nentries) 1213 return (0); 1214 1215 if (ap->a_ncookies) { 1216 ncookies = min(ncookies, (ks->ks_nentries - i)); 1217 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1218 M_WAITOK); 1219 *ap->a_cookies = cookies; 1220 } 1221 1222 dkt = SIMPLEQ_FIRST(&ks->ks_entries); 1223 for (j = 0; j < i && dkt != NULL; j++) 1224 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1225 n = 0; 1226 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) { 1227 if (i < 2) 1228 kt = &subdir_targets[i]; 1229 else { 1230 /* check if ks_nentries lied to us */ 1231 if (dkt == NULL) 1232 break; 1233 kt = &dkt->dkt_kt; 1234 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1235 } 1236 if (kt->kt_tag == KFSdevice) { 1237 dev_t *dp = kt->kt_data; 1238 struct vnode *fvp; 1239 1240 if (*dp == NODEV || 1241 !vfinddev(*dp, kt->kt_vtype, &fvp)) 1242 continue; 1243 } 1244 d.d_namlen = kt->kt_namlen; 1245 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1246 ks->ks_parent, kt, ap)) != 0) 1247 break; 1248 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1249 d.d_type = kt->kt_type; 1250 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1251 break; 1252 if (cookies) 1253 *cookies++ = i + 1; 1254 n++; 1255 } 1256 ncookies = n; 1257 break; 1258 1259 #ifdef IPSEC 1260 case KFSipsecsadir: 1261 /* count SA in the system */ 1262 n = 0; 1263 TAILQ_FOREACH(sav, &satailq, tailq) { 1264 for (sav2 = TAILQ_FIRST(&satailq); 1265 sav2 != sav; 1266 sav2 = TAILQ_NEXT(sav2, tailq)) { 1267 if (sav->spi == sav2->spi) { 1268 /* multiple SA with same SPI */ 1269 break; 1270 } 1271 } 1272 if (sav == sav2 || sav->spi != sav2->spi) 1273 n++; 1274 } 1275 1276 if (i >= nipsecsa_targets + n) 1277 return (0); 1278 1279 if (ap->a_ncookies) { 1280 ncookies = min(ncookies, (n - i)); 1281 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1282 M_WAITOK); 1283 *ap->a_cookies = cookies; 1284 } 1285 1286 n = 0; 1287 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) { 1288 kt = &ipsecsa_targets[i]; 1289 d.d_namlen = kt->kt_namlen; 1290 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1291 &kern_targets[0], kt, ap)) != 0) 1292 break; 1293 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1294 d.d_type = kt->kt_type; 1295 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1296 break; 1297 if (cookies) 1298 *cookies++ = i + 1; 1299 n++; 1300 } 1301 if (error) { 1302 ncookies = n; 1303 break; 1304 } 1305 1306 TAILQ_FOREACH(sav, &satailq, tailq) { 1307 for (sav2 = TAILQ_FIRST(&satailq); 1308 sav2 != sav; 1309 sav2 = TAILQ_NEXT(sav2, tailq)) { 1310 if (sav->spi == sav2->spi) { 1311 /* multiple SA with same SPI */ 1312 break; 1313 } 1314 } 1315 if (sav != sav2 && sav->spi == sav2->spi) 1316 continue; 1317 if (uio->uio_resid < UIO_MX) 1318 break; 1319 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt, 1320 sav->spi, ap)) != 0) 1321 break; 1322 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name), 1323 "%u", ntohl(sav->spi)); 1324 d.d_type = DT_REG; 1325 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1326 break; 1327 if (cookies) 1328 *cookies++ = i + 1; 1329 n++; 1330 i++; 1331 } 1332 ncookies = n; 1333 break; 1334 1335 case KFSipsecspdir: 1336 /* count SP in the system */ 1337 n = 0; 1338 TAILQ_FOREACH(sp, &sptailq, tailq) 1339 n++; 1340 1341 if (i >= nipsecsp_targets + n) 1342 return (0); 1343 1344 if (ap->a_ncookies) { 1345 ncookies = min(ncookies, (n - i)); 1346 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1347 M_WAITOK); 1348 *ap->a_cookies = cookies; 1349 } 1350 1351 n = 0; 1352 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) { 1353 kt = &ipsecsp_targets[i]; 1354 d.d_namlen = kt->kt_namlen; 1355 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1356 &kern_targets[0], kt, ap)) != 0) 1357 break; 1358 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1359 d.d_type = kt->kt_type; 1360 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1361 break; 1362 if (cookies) 1363 *cookies++ = i + 1; 1364 n++; 1365 } 1366 if (error) { 1367 ncookies = n; 1368 break; 1369 } 1370 1371 TAILQ_FOREACH(sp, &sptailq, tailq) { 1372 if (uio->uio_resid < UIO_MX) 1373 break; 1374 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt, 1375 sp->id, ap)) != 0) 1376 break; 1377 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name), 1378 "%u", sp->id); 1379 d.d_type = DT_REG; 1380 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1381 break; 1382 if (cookies) 1383 *cookies++ = i + 1; 1384 n++; 1385 i++; 1386 } 1387 ncookies = n; 1388 break; 1389 #endif 1390 1391 default: 1392 error = ENOTDIR; 1393 break; 1394 } 1395 1396 if (ap->a_ncookies) { 1397 if (error) { 1398 if (cookies) 1399 free(*ap->a_cookies, M_TEMP); 1400 *ap->a_ncookies = 0; 1401 *ap->a_cookies = NULL; 1402 } else 1403 *ap->a_ncookies = ncookies; 1404 } 1405 1406 uio->uio_offset = i; 1407 return (error); 1408 } 1409 1410 int 1411 kernfs_inactive(v) 1412 void *v; 1413 { 1414 struct vop_inactive_args /* { 1415 struct vnode *a_vp; 1416 struct lwp *a_l; 1417 } */ *ap = v; 1418 struct vnode *vp = ap->a_vp; 1419 const struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1420 #ifdef IPSEC 1421 struct mbuf *m; 1422 struct secpolicy *sp; 1423 #endif 1424 1425 VOP_UNLOCK(vp, 0); 1426 switch (kfs->kfs_type) { 1427 #ifdef IPSEC 1428 case KFSipsecsa: 1429 m = key_setdumpsa_spi(htonl(kfs->kfs_value)); 1430 if (m) 1431 m_freem(m); 1432 else 1433 vgone(vp); 1434 break; 1435 case KFSipsecsp: 1436 sp = key_getspbyid(kfs->kfs_value); 1437 if (sp) 1438 key_freesp(sp); 1439 else { 1440 /* should never happen as we hold a refcnt */ 1441 vgone(vp); 1442 } 1443 break; 1444 #endif 1445 default: 1446 break; 1447 } 1448 return (0); 1449 } 1450 1451 int 1452 kernfs_reclaim(v) 1453 void *v; 1454 { 1455 struct vop_reclaim_args /* { 1456 struct vnode *a_vp; 1457 } */ *ap = v; 1458 1459 return (kernfs_freevp(ap->a_vp)); 1460 } 1461 1462 /* 1463 * Return POSIX pathconf information applicable to special devices. 1464 */ 1465 int 1466 kernfs_pathconf(v) 1467 void *v; 1468 { 1469 struct vop_pathconf_args /* { 1470 struct vnode *a_vp; 1471 int a_name; 1472 register_t *a_retval; 1473 } */ *ap = v; 1474 1475 switch (ap->a_name) { 1476 case _PC_LINK_MAX: 1477 *ap->a_retval = LINK_MAX; 1478 return (0); 1479 case _PC_MAX_CANON: 1480 *ap->a_retval = MAX_CANON; 1481 return (0); 1482 case _PC_MAX_INPUT: 1483 *ap->a_retval = MAX_INPUT; 1484 return (0); 1485 case _PC_PIPE_BUF: 1486 *ap->a_retval = PIPE_BUF; 1487 return (0); 1488 case _PC_CHOWN_RESTRICTED: 1489 *ap->a_retval = 1; 1490 return (0); 1491 case _PC_VDISABLE: 1492 *ap->a_retval = _POSIX_VDISABLE; 1493 return (0); 1494 case _PC_SYNC_IO: 1495 *ap->a_retval = 1; 1496 return (0); 1497 default: 1498 return (EINVAL); 1499 } 1500 /* NOTREACHED */ 1501 } 1502 1503 /* 1504 * Print out the contents of a /dev/fd vnode. 1505 */ 1506 /* ARGSUSED */ 1507 int 1508 kernfs_print(void *v) 1509 { 1510 1511 printf("tag VT_KERNFS, kernfs vnode\n"); 1512 return (0); 1513 } 1514 1515 int 1516 kernfs_link(v) 1517 void *v; 1518 { 1519 struct vop_link_args /* { 1520 struct vnode *a_dvp; 1521 struct vnode *a_vp; 1522 struct componentname *a_cnp; 1523 } */ *ap = v; 1524 1525 VOP_ABORTOP(ap->a_dvp, ap->a_cnp); 1526 vput(ap->a_dvp); 1527 return (EROFS); 1528 } 1529 1530 int 1531 kernfs_symlink(v) 1532 void *v; 1533 { 1534 struct vop_symlink_args /* { 1535 struct vnode *a_dvp; 1536 struct vnode **a_vpp; 1537 struct componentname *a_cnp; 1538 struct vattr *a_vap; 1539 char *a_target; 1540 } */ *ap = v; 1541 1542 VOP_ABORTOP(ap->a_dvp, ap->a_cnp); 1543 vput(ap->a_dvp); 1544 return (EROFS); 1545 } 1546