1 /* $NetBSD: kernfs_vnops.c,v 1.138 2009/07/03 21:17:41 elad Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software donated to Berkeley by 8 * Jan-Simon Pendry. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95 35 */ 36 37 /* 38 * Kernel parameter filesystem (/kern) 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.138 2009/07/03 21:17:41 elad Exp $"); 43 44 #ifdef _KERNEL_OPT 45 #include "opt_ipsec.h" 46 #endif 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/kernel.h> 51 #include <sys/vmmeter.h> 52 #include <sys/time.h> 53 #include <sys/proc.h> 54 #include <sys/vnode.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> 57 #include <sys/stat.h> 58 #include <sys/mount.h> 59 #include <sys/namei.h> 60 #include <sys/buf.h> 61 #include <sys/dirent.h> 62 #include <sys/msgbuf.h> 63 64 #include <miscfs/genfs/genfs.h> 65 #include <miscfs/kernfs/kernfs.h> 66 67 #ifdef IPSEC 68 #include <sys/mbuf.h> 69 #include <net/route.h> 70 #include <netinet/in.h> 71 #include <netinet6/ipsec.h> 72 #include <netkey/key.h> 73 #endif 74 75 #include <uvm/uvm_extern.h> 76 77 #define KSTRING 256 /* Largest I/O available via this filesystem */ 78 #define UIO_MX 32 79 80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH) 81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH) 82 #define UREAD_MODE (S_IRUSR) 83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) 84 #define UDIR_MODE (S_IRUSR|S_IXUSR) 85 86 #define N(s) sizeof(s)-1, s 87 const struct kern_target kern_targets[] = { 88 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 89 /* name data tag type ro/rw */ 90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE }, 91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE }, 92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE }, 93 /* XXXUNCONST */ 94 { DT_REG, N("copyright"), __UNCONST(copyright), 95 KFSstring, VREG, READ_MODE }, 96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE }, 97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE }, 98 #ifdef IPSEC 99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE }, 100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE }, 101 #endif 102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE }, 103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE }, 104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE }, 105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE }, 106 #if 0 107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE }, 108 #endif 109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE }, 110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE }, 111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE }, 112 /* XXXUNCONST */ 113 { DT_REG, N("version"), __UNCONST(version), 114 KFSstring, VREG, READ_MODE }, 115 }; 116 const struct kern_target subdir_targets[] = { 117 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 118 /* name data tag type ro/rw */ 119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE }, 120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE }, 121 }; 122 #ifdef IPSEC 123 const struct kern_target ipsecsa_targets[] = { 124 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 125 /* name data tag type ro/rw */ 126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE }, 127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE }, 128 }; 129 const struct kern_target ipsecsp_targets[] = { 130 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 131 /* name data tag type ro/rw */ 132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE }, 133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE }, 134 }; 135 const struct kern_target ipsecsa_kt = 136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE }; 137 const struct kern_target ipsecsp_kt = 138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE }; 139 #endif 140 #undef N 141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets = 142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets); 143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]); 144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]); 145 #ifdef IPSEC 146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]); 147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]); 148 int nkern_dirs = 4; /* 2 extra subdirs */ 149 #else 150 int nkern_dirs = 2; 151 #endif 152 153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int); 154 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **, 155 size_t, int); 156 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *, 157 size_t, int); 158 159 static int kernfs_default_xread(void *v); 160 static int kernfs_default_xwrite(void *v); 161 static int kernfs_default_fileop_getattr(void *); 162 163 /* must include all fileop's */ 164 const struct kernfs_fileop kernfs_default_fileops[] = { 165 { .kf_fileop = KERNFS_XREAD }, 166 { .kf_fileop = KERNFS_XWRITE }, 167 { .kf_fileop = KERNFS_FILEOP_OPEN }, 168 { .kf_fileop = KERNFS_FILEOP_GETATTR, 169 .kf_vop = kernfs_default_fileop_getattr }, 170 { .kf_fileop = KERNFS_FILEOP_IOCTL }, 171 { .kf_fileop = KERNFS_FILEOP_CLOSE }, 172 { .kf_fileop = KERNFS_FILEOP_READ, 173 .kf_vop = kernfs_default_xread }, 174 { .kf_fileop = KERNFS_FILEOP_WRITE, 175 .kf_vop = kernfs_default_xwrite }, 176 }; 177 178 int kernfs_lookup(void *); 179 #define kernfs_create genfs_eopnotsupp 180 #define kernfs_mknod genfs_eopnotsupp 181 int kernfs_open(void *); 182 int kernfs_close(void *); 183 int kernfs_access(void *); 184 int kernfs_getattr(void *); 185 int kernfs_setattr(void *); 186 int kernfs_read(void *); 187 int kernfs_write(void *); 188 #define kernfs_fcntl genfs_fcntl 189 int kernfs_ioctl(void *); 190 #define kernfs_poll genfs_poll 191 #define kernfs_revoke genfs_revoke 192 #define kernfs_fsync genfs_nullop 193 #define kernfs_seek genfs_nullop 194 #define kernfs_remove genfs_eopnotsupp 195 int kernfs_link(void *); 196 #define kernfs_rename genfs_eopnotsupp 197 #define kernfs_mkdir genfs_eopnotsupp 198 #define kernfs_rmdir genfs_eopnotsupp 199 int kernfs_symlink(void *); 200 int kernfs_readdir(void *); 201 #define kernfs_readlink genfs_eopnotsupp 202 #define kernfs_abortop genfs_abortop 203 int kernfs_inactive(void *); 204 int kernfs_reclaim(void *); 205 #define kernfs_lock genfs_lock 206 #define kernfs_unlock genfs_unlock 207 #define kernfs_bmap genfs_badop 208 #define kernfs_strategy genfs_badop 209 int kernfs_print(void *); 210 #define kernfs_islocked genfs_islocked 211 int kernfs_pathconf(void *); 212 #define kernfs_advlock genfs_einval 213 #define kernfs_bwrite genfs_eopnotsupp 214 #define kernfs_putpages genfs_putpages 215 216 static int kernfs_xread(struct kernfs_node *, int, char **, 217 size_t, size_t *); 218 static int kernfs_xwrite(const struct kernfs_node *, char *, size_t); 219 220 int (**kernfs_vnodeop_p)(void *); 221 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = { 222 { &vop_default_desc, vn_default_error }, 223 { &vop_lookup_desc, kernfs_lookup }, /* lookup */ 224 { &vop_create_desc, kernfs_create }, /* create */ 225 { &vop_mknod_desc, kernfs_mknod }, /* mknod */ 226 { &vop_open_desc, kernfs_open }, /* open */ 227 { &vop_close_desc, kernfs_close }, /* close */ 228 { &vop_access_desc, kernfs_access }, /* access */ 229 { &vop_getattr_desc, kernfs_getattr }, /* getattr */ 230 { &vop_setattr_desc, kernfs_setattr }, /* setattr */ 231 { &vop_read_desc, kernfs_read }, /* read */ 232 { &vop_write_desc, kernfs_write }, /* write */ 233 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */ 234 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */ 235 { &vop_poll_desc, kernfs_poll }, /* poll */ 236 { &vop_revoke_desc, kernfs_revoke }, /* revoke */ 237 { &vop_fsync_desc, kernfs_fsync }, /* fsync */ 238 { &vop_seek_desc, kernfs_seek }, /* seek */ 239 { &vop_remove_desc, kernfs_remove }, /* remove */ 240 { &vop_link_desc, kernfs_link }, /* link */ 241 { &vop_rename_desc, kernfs_rename }, /* rename */ 242 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */ 243 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */ 244 { &vop_symlink_desc, kernfs_symlink }, /* symlink */ 245 { &vop_readdir_desc, kernfs_readdir }, /* readdir */ 246 { &vop_readlink_desc, kernfs_readlink }, /* readlink */ 247 { &vop_abortop_desc, kernfs_abortop }, /* abortop */ 248 { &vop_inactive_desc, kernfs_inactive }, /* inactive */ 249 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */ 250 { &vop_lock_desc, kernfs_lock }, /* lock */ 251 { &vop_unlock_desc, kernfs_unlock }, /* unlock */ 252 { &vop_bmap_desc, kernfs_bmap }, /* bmap */ 253 { &vop_strategy_desc, kernfs_strategy }, /* strategy */ 254 { &vop_print_desc, kernfs_print }, /* print */ 255 { &vop_islocked_desc, kernfs_islocked }, /* islocked */ 256 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */ 257 { &vop_advlock_desc, kernfs_advlock }, /* advlock */ 258 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */ 259 { &vop_putpages_desc, kernfs_putpages }, /* putpages */ 260 { NULL, NULL } 261 }; 262 const struct vnodeopv_desc kernfs_vnodeop_opv_desc = 263 { &kernfs_vnodeop_p, kernfs_vnodeop_entries }; 264 265 static inline int 266 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b) 267 { 268 if (a->kf_type < b->kf_type) 269 return -1; 270 if (a->kf_type > b->kf_type) 271 return 1; 272 if (a->kf_fileop < b->kf_fileop) 273 return -1; 274 if (a->kf_fileop > b->kf_fileop) 275 return 1; 276 return (0); 277 } 278 279 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree = 280 SPLAY_INITIALIZER(kfsfileoptree); 281 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare); 282 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare); 283 284 kfstype 285 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf) 286 { 287 static u_char nextfreetype = KFSlasttype; 288 struct kernfs_fileop *dkf, *fkf, skf; 289 int i; 290 291 /* XXX need to keep track of dkf's memory if we support 292 deallocating types */ 293 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK); 294 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops)); 295 296 for (i = 0; i < sizeof(kernfs_default_fileops) / 297 sizeof(kernfs_default_fileops[0]); i++) { 298 dkf[i].kf_type = nextfreetype; 299 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]); 300 } 301 302 for (i = 0; i < nkf; i++) { 303 skf.kf_type = nextfreetype; 304 skf.kf_fileop = kf[i].kf_fileop; 305 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 306 fkf->kf_vop = kf[i].kf_vop; 307 } 308 309 return nextfreetype++; 310 } 311 312 int 313 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error) 314 { 315 struct kernfs_fileop *kf, skf; 316 317 skf.kf_type = type; 318 skf.kf_fileop = fileop; 319 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 320 if (kf->kf_vop) 321 return kf->kf_vop(v); 322 return error; 323 } 324 325 int 326 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp, 327 size_t len, int error) 328 { 329 struct kernfs_fileop *kf, skf; 330 331 skf.kf_type = type; 332 skf.kf_fileop = KERNFS_XREAD; 333 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 334 if (kf->kf_xread) 335 return kf->kf_xread(kfs, bfp, len); 336 return error; 337 } 338 339 int 340 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf, 341 size_t len, int error) 342 { 343 struct kernfs_fileop *kf, skf; 344 345 skf.kf_type = type; 346 skf.kf_fileop = KERNFS_XWRITE; 347 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 348 if (kf->kf_xwrite) 349 return kf->kf_xwrite(kfs, bf, len); 350 return error; 351 } 352 353 int 354 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt) 355 { 356 struct kernfs_subdir *ks, *parent; 357 358 if (pkt == NULL) { 359 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue); 360 nkern_targets++; 361 if (dkt->dkt_kt.kt_vtype == VDIR) 362 nkern_dirs++; 363 } else { 364 parent = (struct kernfs_subdir *)pkt->kt_data; 365 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue); 366 parent->ks_nentries++; 367 if (dkt->dkt_kt.kt_vtype == VDIR) 368 parent->ks_dirs++; 369 } 370 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) { 371 ks = malloc(sizeof(struct kernfs_subdir), 372 M_TEMP, M_WAITOK); 373 SIMPLEQ_INIT(&ks->ks_entries); 374 ks->ks_nentries = 2; /* . and .. */ 375 ks->ks_dirs = 2; 376 ks->ks_parent = pkt ? pkt : &kern_targets[0]; 377 dkt->dkt_kt.kt_data = ks; 378 } 379 return 0; 380 } 381 382 static int 383 kernfs_xread(struct kernfs_node *kfs, int off, char **bufp, size_t len, size_t *wrlen) 384 { 385 const struct kern_target *kt; 386 #ifdef IPSEC 387 struct mbuf *m; 388 #endif 389 int err; 390 391 kt = kfs->kfs_kt; 392 393 switch (kfs->kfs_type) { 394 case KFStime: { 395 struct timeval tv; 396 397 microtime(&tv); 398 snprintf(*bufp, len, "%lld %ld\n", (long long)tv.tv_sec, 399 (long)tv.tv_usec); 400 break; 401 } 402 403 case KFSint: { 404 int *ip = kt->kt_data; 405 406 snprintf(*bufp, len, "%d\n", *ip); 407 break; 408 } 409 410 case KFSstring: { 411 char *cp = kt->kt_data; 412 413 *bufp = cp; 414 break; 415 } 416 417 case KFSmsgbuf: { 418 long n; 419 420 /* 421 * deal with cases where the message buffer has 422 * become corrupted. 423 */ 424 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) { 425 msgbufenabled = 0; 426 return (ENXIO); 427 } 428 429 /* 430 * Note that reads of /kern/msgbuf won't necessarily yield 431 * consistent results, if the message buffer is modified 432 * while the read is in progress. The worst that can happen 433 * is that incorrect data will be read. There's no way 434 * that this can crash the system unless the values in the 435 * message buffer header are corrupted, but that'll cause 436 * the system to die anyway. 437 */ 438 if (off >= msgbufp->msg_bufs) { 439 *wrlen = 0; 440 return (0); 441 } 442 n = msgbufp->msg_bufx + off; 443 if (n >= msgbufp->msg_bufs) 444 n -= msgbufp->msg_bufs; 445 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off); 446 *bufp = msgbufp->msg_bufc + n; 447 *wrlen = len; 448 return (0); 449 } 450 451 case KFShostname: { 452 char *cp = hostname; 453 size_t xlen = hostnamelen; 454 455 if (xlen >= (len - 2)) 456 return (EINVAL); 457 458 memcpy(*bufp, cp, xlen); 459 (*bufp)[xlen] = '\n'; 460 (*bufp)[xlen+1] = '\0'; 461 len = strlen(*bufp); 462 break; 463 } 464 465 case KFSavenrun: 466 averunnable.fscale = FSCALE; 467 snprintf(*bufp, len, "%d %d %d %ld\n", 468 averunnable.ldavg[0], averunnable.ldavg[1], 469 averunnable.ldavg[2], averunnable.fscale); 470 break; 471 472 #ifdef IPSEC 473 case KFSipsecsa: 474 if (key_setdumpsa_spi == NULL) 475 return 0; 476 /* 477 * Note that SA configuration could be changed during the 478 * read operation, resulting in garbled output. 479 */ 480 m = key_setdumpsa_spi(htonl(kfs->kfs_value)); 481 if (!m) 482 return (ENOBUFS); 483 if (off >= m->m_pkthdr.len) { 484 *wrlen = 0; 485 m_freem(m); 486 return (0); 487 } 488 if (len > m->m_pkthdr.len - off) 489 len = m->m_pkthdr.len - off; 490 m_copydata(m, off, len, *bufp); 491 *wrlen = len; 492 m_freem(m); 493 return (0); 494 495 case KFSipsecsp: 496 /* 497 * Note that SP configuration could be changed during the 498 * read operation, resulting in garbled output. 499 */ 500 if (key_getspbyid == NULL) 501 return 0; 502 if (!kfs->kfs_v) { 503 struct secpolicy *sp; 504 505 sp = key_getspbyid(kfs->kfs_value); 506 if (sp) 507 kfs->kfs_v = sp; 508 else 509 return (ENOENT); 510 } 511 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v, 512 SADB_X_SPDGET, 0, 0); 513 if (!m) 514 return (ENOBUFS); 515 if (off >= m->m_pkthdr.len) { 516 *wrlen = 0; 517 m_freem(m); 518 return (0); 519 } 520 if (len > m->m_pkthdr.len - off) 521 len = m->m_pkthdr.len - off; 522 m_copydata(m, off, len, *bufp); 523 *wrlen = len; 524 m_freem(m); 525 return (0); 526 #endif 527 528 default: 529 err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len, 530 EOPNOTSUPP); 531 if (err) 532 return err; 533 } 534 535 len = strlen(*bufp); 536 if (len <= off) 537 *wrlen = 0; 538 else { 539 *bufp += off; 540 *wrlen = len - off; 541 } 542 return (0); 543 } 544 545 static int 546 kernfs_xwrite(const struct kernfs_node *kfs, char *bf, size_t len) 547 { 548 549 switch (kfs->kfs_type) { 550 case KFShostname: 551 if (bf[len-1] == '\n') 552 --len; 553 memcpy(hostname, bf, len); 554 hostname[len] = '\0'; 555 hostnamelen = (size_t) len; 556 return (0); 557 558 default: 559 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO); 560 } 561 } 562 563 564 /* 565 * vp is the current namei directory 566 * ndp is the name to locate in that directory... 567 */ 568 int 569 kernfs_lookup(void *v) 570 { 571 struct vop_lookup_args /* { 572 struct vnode * a_dvp; 573 struct vnode ** a_vpp; 574 struct componentname * a_cnp; 575 } */ *ap = v; 576 struct componentname *cnp = ap->a_cnp; 577 struct vnode **vpp = ap->a_vpp; 578 struct vnode *dvp = ap->a_dvp; 579 const char *pname = cnp->cn_nameptr; 580 const struct kernfs_node *kfs; 581 const struct kern_target *kt; 582 const struct dyn_kern_target *dkt; 583 const struct kernfs_subdir *ks; 584 int error, i; 585 #ifdef IPSEC 586 char *ep; 587 u_int32_t id; 588 #endif 589 590 *vpp = NULLVP; 591 592 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME) 593 return (EROFS); 594 595 if (cnp->cn_namelen == 1 && *pname == '.') { 596 *vpp = dvp; 597 VREF(dvp); 598 return (0); 599 } 600 601 kfs = VTOKERN(dvp); 602 switch (kfs->kfs_type) { 603 case KFSkern: 604 /* 605 * Shouldn't get here with .. in the root node. 606 */ 607 if (cnp->cn_flags & ISDOTDOT) 608 return (EIO); 609 610 for (i = 0; i < static_nkern_targets; i++) { 611 kt = &kern_targets[i]; 612 if (cnp->cn_namelen == kt->kt_namlen && 613 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0) 614 goto found; 615 } 616 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) { 617 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen && 618 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) { 619 kt = &dkt->dkt_kt; 620 goto found; 621 } 622 } 623 break; 624 625 found: 626 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0); 627 return (error); 628 629 case KFSsubdir: 630 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data; 631 if (cnp->cn_flags & ISDOTDOT) { 632 kt = ks->ks_parent; 633 goto found; 634 } 635 636 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) { 637 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen && 638 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) { 639 kt = &dkt->dkt_kt; 640 goto found; 641 } 642 } 643 break; 644 645 #ifdef IPSEC 646 case KFSipsecsadir: 647 if (cnp->cn_flags & ISDOTDOT) { 648 kt = &kern_targets[0]; 649 goto found; 650 } 651 652 for (i = 2; i < nipsecsa_targets; i++) { 653 kt = &ipsecsa_targets[i]; 654 if (cnp->cn_namelen == kt->kt_namlen && 655 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0) 656 goto found; 657 } 658 659 ep = NULL; 660 id = strtoul(pname, &ep, 10); 661 if (!ep || *ep || ep == pname) 662 break; 663 664 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id); 665 return (error); 666 667 case KFSipsecspdir: 668 if (cnp->cn_flags & ISDOTDOT) { 669 kt = &kern_targets[0]; 670 goto found; 671 } 672 673 for (i = 2; i < nipsecsp_targets; i++) { 674 kt = &ipsecsp_targets[i]; 675 if (cnp->cn_namelen == kt->kt_namlen && 676 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0) 677 goto found; 678 } 679 680 ep = NULL; 681 id = strtoul(pname, &ep, 10); 682 if (!ep || *ep || ep == pname) 683 break; 684 685 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id); 686 return (error); 687 #endif 688 689 default: 690 return (ENOTDIR); 691 } 692 693 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS); 694 } 695 696 int 697 kernfs_open(void *v) 698 { 699 struct vop_open_args /* { 700 struct vnode *a_vp; 701 int a_mode; 702 kauth_cred_t a_cred; 703 } */ *ap = v; 704 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 705 #ifdef IPSEC 706 struct mbuf *m; 707 struct secpolicy *sp; 708 #endif 709 710 switch (kfs->kfs_type) { 711 #ifdef IPSEC 712 case KFSipsecsa: 713 if (key_setdumpsa_spi == NULL) 714 return 0; 715 m = key_setdumpsa_spi(htonl(kfs->kfs_value)); 716 if (m) { 717 m_freem(m); 718 return (0); 719 } else 720 return (ENOENT); 721 722 case KFSipsecsp: 723 if (key_getspbyid == NULL) 724 return 0; 725 sp = key_getspbyid(kfs->kfs_value); 726 if (sp) { 727 kfs->kfs_v = sp; 728 return (0); 729 } else 730 return (ENOENT); 731 #endif 732 733 default: 734 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN, 735 v, 0); 736 } 737 } 738 739 int 740 kernfs_close(void *v) 741 { 742 struct vop_close_args /* { 743 struct vnode *a_vp; 744 int a_fflag; 745 kauth_cred_t a_cred; 746 } */ *ap = v; 747 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 748 749 switch (kfs->kfs_type) { 750 #ifdef IPSEC 751 case KFSipsecsp: 752 if (key_freesp == NULL) 753 return 0; 754 key_freesp((struct secpolicy *)kfs->kfs_v); 755 break; 756 #endif 757 758 default: 759 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE, 760 v, 0); 761 } 762 763 return (0); 764 } 765 766 static int 767 kernfs_check_possible(struct vnode *vp, mode_t mode) 768 { 769 770 return 0; 771 } 772 773 static int 774 kernfs_check_permitted(struct vattr *va, mode_t mode, kauth_cred_t cred) 775 { 776 777 return genfs_can_access(va->va_type, va->va_mode, va->va_uid, va->va_gid, 778 mode, cred); 779 } 780 781 int 782 kernfs_access(void *v) 783 { 784 struct vop_access_args /* { 785 struct vnode *a_vp; 786 int a_mode; 787 kauth_cred_t a_cred; 788 } */ *ap = v; 789 struct vattr va; 790 int error; 791 792 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred)) != 0) 793 return (error); 794 795 error = kernfs_check_possible(ap->a_vp, ap->a_mode); 796 if (error) 797 return error; 798 799 error = kernfs_check_permitted(&va, ap->a_mode, ap->a_cred); 800 801 return error; 802 } 803 804 static int 805 kernfs_default_fileop_getattr(void *v) 806 { 807 struct vop_getattr_args /* { 808 struct vnode *a_vp; 809 struct vattr *a_vap; 810 kauth_cred_t a_cred; 811 } */ *ap = v; 812 struct vattr *vap = ap->a_vap; 813 814 vap->va_nlink = 1; 815 vap->va_bytes = vap->va_size = 0; 816 817 return 0; 818 } 819 820 int 821 kernfs_getattr(void *v) 822 { 823 struct vop_getattr_args /* { 824 struct vnode *a_vp; 825 struct vattr *a_vap; 826 kauth_cred_t a_cred; 827 } */ *ap = v; 828 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 829 struct kernfs_subdir *ks; 830 struct vattr *vap = ap->a_vap; 831 int error = 0; 832 char strbuf[KSTRING], *bf; 833 size_t nread, total; 834 835 VATTR_NULL(vap); 836 vap->va_type = ap->a_vp->v_type; 837 vap->va_uid = 0; 838 vap->va_gid = 0; 839 vap->va_mode = kfs->kfs_mode; 840 vap->va_fileid = kfs->kfs_fileno; 841 vap->va_flags = 0; 842 vap->va_size = 0; 843 vap->va_blocksize = DEV_BSIZE; 844 /* Make all times be current TOD, except for the "boottime" node. */ 845 if (kfs->kfs_kt->kt_namlen == 8 && 846 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) { 847 vap->va_ctime = boottime; 848 } else { 849 getnanotime(&vap->va_ctime); 850 } 851 vap->va_atime = vap->va_mtime = vap->va_ctime; 852 vap->va_gen = 0; 853 vap->va_flags = 0; 854 vap->va_rdev = 0; 855 vap->va_bytes = 0; 856 857 switch (kfs->kfs_type) { 858 case KFSkern: 859 vap->va_nlink = nkern_dirs; 860 vap->va_bytes = vap->va_size = DEV_BSIZE; 861 break; 862 863 case KFSroot: 864 vap->va_nlink = 1; 865 vap->va_bytes = vap->va_size = DEV_BSIZE; 866 break; 867 868 case KFSsubdir: 869 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data; 870 vap->va_nlink = ks->ks_dirs; 871 vap->va_bytes = vap->va_size = DEV_BSIZE; 872 break; 873 874 case KFSnull: 875 case KFStime: 876 case KFSint: 877 case KFSstring: 878 case KFShostname: 879 case KFSavenrun: 880 case KFSdevice: 881 case KFSmsgbuf: 882 #ifdef IPSEC 883 case KFSipsecsa: 884 case KFSipsecsp: 885 #endif 886 vap->va_nlink = 1; 887 total = 0; 888 do { 889 bf = strbuf; 890 error = kernfs_xread(kfs, total, &bf, 891 sizeof(strbuf), &nread); 892 total += nread; 893 } while (error == 0 && nread != 0); 894 vap->va_bytes = vap->va_size = total; 895 break; 896 897 #ifdef IPSEC 898 case KFSipsecsadir: 899 case KFSipsecspdir: 900 vap->va_nlink = 2; 901 vap->va_bytes = vap->va_size = DEV_BSIZE; 902 break; 903 #endif 904 905 default: 906 error = kernfs_try_fileop(kfs->kfs_type, 907 KERNFS_FILEOP_GETATTR, v, EINVAL); 908 break; 909 } 910 911 return (error); 912 } 913 914 /*ARGSUSED*/ 915 int 916 kernfs_setattr(void *v) 917 { 918 919 /* 920 * Silently ignore attribute changes. 921 * This allows for open with truncate to have no 922 * effect until some data is written. I want to 923 * do it this way because all writes are atomic. 924 */ 925 return (0); 926 } 927 928 int 929 kernfs_default_xread(void *v) 930 { 931 struct vop_read_args /* { 932 struct vnode *a_vp; 933 struct uio *a_uio; 934 int a_ioflag; 935 kauth_cred_t a_cred; 936 } */ *ap = v; 937 struct uio *uio = ap->a_uio; 938 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 939 char strbuf[KSTRING], *bf; 940 int off; 941 size_t len; 942 int error; 943 944 if (ap->a_vp->v_type == VDIR) 945 return (EOPNOTSUPP); 946 947 off = (int)uio->uio_offset; 948 /* Don't allow negative offsets */ 949 if (off < 0) 950 return EINVAL; 951 952 bf = strbuf; 953 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0) 954 error = uiomove(bf, len, uio); 955 return (error); 956 } 957 958 int 959 kernfs_read(void *v) 960 { 961 struct vop_read_args /* { 962 struct vnode *a_vp; 963 struct uio *a_uio; 964 int a_ioflag; 965 struct ucred *a_cred; 966 } */ *ap = v; 967 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 968 969 if (kfs->kfs_type < KFSlasttype) { 970 /* use default function */ 971 return kernfs_default_xread(v); 972 } 973 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v, 974 EOPNOTSUPP); 975 } 976 977 static int 978 kernfs_default_xwrite(void *v) 979 { 980 struct vop_write_args /* { 981 struct vnode *a_vp; 982 struct uio *a_uio; 983 int a_ioflag; 984 kauth_cred_t a_cred; 985 } */ *ap = v; 986 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 987 struct uio *uio = ap->a_uio; 988 int error; 989 size_t xlen; 990 char strbuf[KSTRING]; 991 992 if (uio->uio_offset != 0) 993 return (EINVAL); 994 995 xlen = min(uio->uio_resid, KSTRING-1); 996 if ((error = uiomove(strbuf, xlen, uio)) != 0) 997 return (error); 998 999 if (uio->uio_resid != 0) 1000 return (EIO); 1001 1002 strbuf[xlen] = '\0'; 1003 xlen = strlen(strbuf); 1004 return (kernfs_xwrite(kfs, strbuf, xlen)); 1005 } 1006 1007 int 1008 kernfs_write(void *v) 1009 { 1010 struct vop_write_args /* { 1011 struct vnode *a_vp; 1012 struct uio *a_uio; 1013 int a_ioflag; 1014 kauth_cred_t a_cred; 1015 } */ *ap = v; 1016 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1017 1018 if (kfs->kfs_type < KFSlasttype) { 1019 /* use default function */ 1020 return kernfs_default_xwrite(v); 1021 } 1022 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v, 1023 EOPNOTSUPP); 1024 } 1025 1026 int 1027 kernfs_ioctl(void *v) 1028 { 1029 struct vop_ioctl_args /* { 1030 const struct vnodeop_desc *a_desc; 1031 struct vnode *a_vp; 1032 u_long a_command; 1033 void *a_data; 1034 int a_fflag; 1035 kauth_cred_t a_cred; 1036 } */ *ap = v; 1037 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1038 1039 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v, 1040 EPASSTHROUGH); 1041 } 1042 1043 static int 1044 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt, 1045 u_int32_t value, struct vop_readdir_args *ap) 1046 { 1047 struct kernfs_node *kfs; 1048 struct vnode *vp; 1049 int error; 1050 1051 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt, 1052 value)) != 0) 1053 return error; 1054 if (kt->kt_tag == KFSdevice) { 1055 struct vattr va; 1056 1057 error = VOP_GETATTR(vp, &va, ap->a_cred); 1058 if (error != 0) { 1059 return error; 1060 } 1061 d->d_fileno = va.va_fileid; 1062 } else { 1063 kfs = VTOKERN(vp); 1064 d->d_fileno = kfs->kfs_fileno; 1065 } 1066 vput(vp); 1067 return 0; 1068 } 1069 1070 static int 1071 kernfs_setdirentfileno(struct dirent *d, off_t entry, 1072 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt, 1073 const struct kern_target *kt, struct vop_readdir_args *ap) 1074 { 1075 const struct kern_target *ikt; 1076 int error; 1077 1078 switch (entry) { 1079 case 0: 1080 d->d_fileno = thisdir_kfs->kfs_fileno; 1081 return 0; 1082 case 1: 1083 ikt = parent_kt; 1084 break; 1085 default: 1086 ikt = kt; 1087 break; 1088 } 1089 if (ikt != thisdir_kfs->kfs_kt) { 1090 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0) 1091 return error; 1092 } else 1093 d->d_fileno = thisdir_kfs->kfs_fileno; 1094 return 0; 1095 } 1096 1097 int 1098 kernfs_readdir(void *v) 1099 { 1100 struct vop_readdir_args /* { 1101 struct vnode *a_vp; 1102 struct uio *a_uio; 1103 kauth_cred_t a_cred; 1104 int *a_eofflag; 1105 off_t **a_cookies; 1106 int a_*ncookies; 1107 } */ *ap = v; 1108 struct uio *uio = ap->a_uio; 1109 struct dirent d; 1110 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1111 const struct kern_target *kt; 1112 const struct dyn_kern_target *dkt = NULL; 1113 const struct kernfs_subdir *ks; 1114 off_t i, j; 1115 int error; 1116 off_t *cookies = NULL; 1117 int ncookies = 0, n; 1118 #ifdef IPSEC 1119 struct secasvar *sav, *sav2; 1120 struct secpolicy *sp; 1121 #endif 1122 1123 if (uio->uio_resid < UIO_MX) 1124 return (EINVAL); 1125 if (uio->uio_offset < 0) 1126 return (EINVAL); 1127 1128 error = 0; 1129 i = uio->uio_offset; 1130 memset(&d, 0, sizeof(d)); 1131 d.d_reclen = UIO_MX; 1132 ncookies = uio->uio_resid / UIO_MX; 1133 1134 switch (kfs->kfs_type) { 1135 case KFSkern: 1136 if (i >= nkern_targets) 1137 return (0); 1138 1139 if (ap->a_ncookies) { 1140 ncookies = min(ncookies, (nkern_targets - i)); 1141 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1142 M_WAITOK); 1143 *ap->a_cookies = cookies; 1144 } 1145 1146 n = 0; 1147 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) { 1148 if (i < static_nkern_targets) 1149 kt = &kern_targets[i]; 1150 else { 1151 if (dkt == NULL) { 1152 dkt = SIMPLEQ_FIRST(&dyn_kern_targets); 1153 for (j = static_nkern_targets; j < i && 1154 dkt != NULL; j++) 1155 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1156 if (j != i) 1157 break; 1158 } else { 1159 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1160 } 1161 if (dkt == NULL) 1162 break; 1163 kt = &dkt->dkt_kt; 1164 } 1165 if (kt->kt_tag == KFSdevice) { 1166 dev_t *dp = kt->kt_data; 1167 struct vnode *fvp; 1168 1169 if (*dp == NODEV || 1170 !vfinddev(*dp, kt->kt_vtype, &fvp)) 1171 continue; 1172 } 1173 d.d_namlen = kt->kt_namlen; 1174 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1175 &kern_targets[0], kt, ap)) != 0) 1176 break; 1177 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1178 d.d_type = kt->kt_type; 1179 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1180 break; 1181 if (cookies) 1182 *cookies++ = i + 1; 1183 n++; 1184 } 1185 ncookies = n; 1186 break; 1187 1188 case KFSroot: 1189 if (i >= 2) 1190 return 0; 1191 1192 if (ap->a_ncookies) { 1193 ncookies = min(ncookies, (2 - i)); 1194 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1195 M_WAITOK); 1196 *ap->a_cookies = cookies; 1197 } 1198 1199 n = 0; 1200 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) { 1201 kt = &kern_targets[i]; 1202 d.d_namlen = kt->kt_namlen; 1203 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0); 1204 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1205 d.d_type = kt->kt_type; 1206 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1207 break; 1208 if (cookies) 1209 *cookies++ = i + 1; 1210 n++; 1211 } 1212 ncookies = n; 1213 break; 1214 1215 case KFSsubdir: 1216 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data; 1217 if (i >= ks->ks_nentries) 1218 return (0); 1219 1220 if (ap->a_ncookies) { 1221 ncookies = min(ncookies, (ks->ks_nentries - i)); 1222 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1223 M_WAITOK); 1224 *ap->a_cookies = cookies; 1225 } 1226 1227 dkt = SIMPLEQ_FIRST(&ks->ks_entries); 1228 for (j = 0; j < i && dkt != NULL; j++) 1229 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1230 n = 0; 1231 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) { 1232 if (i < 2) 1233 kt = &subdir_targets[i]; 1234 else { 1235 /* check if ks_nentries lied to us */ 1236 if (dkt == NULL) 1237 break; 1238 kt = &dkt->dkt_kt; 1239 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1240 } 1241 if (kt->kt_tag == KFSdevice) { 1242 dev_t *dp = kt->kt_data; 1243 struct vnode *fvp; 1244 1245 if (*dp == NODEV || 1246 !vfinddev(*dp, kt->kt_vtype, &fvp)) 1247 continue; 1248 } 1249 d.d_namlen = kt->kt_namlen; 1250 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1251 ks->ks_parent, kt, ap)) != 0) 1252 break; 1253 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1254 d.d_type = kt->kt_type; 1255 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1256 break; 1257 if (cookies) 1258 *cookies++ = i + 1; 1259 n++; 1260 } 1261 ncookies = n; 1262 break; 1263 1264 #ifdef IPSEC 1265 case KFSipsecsadir: 1266 /* count SA in the system */ 1267 n = 0; 1268 if (&satailq == NULL) 1269 return 0; 1270 TAILQ_FOREACH(sav, &satailq, tailq) { 1271 for (sav2 = TAILQ_FIRST(&satailq); 1272 sav2 != sav; 1273 sav2 = TAILQ_NEXT(sav2, tailq)) { 1274 if (sav->spi == sav2->spi) { 1275 /* multiple SA with same SPI */ 1276 break; 1277 } 1278 } 1279 if (sav == sav2 || sav->spi != sav2->spi) 1280 n++; 1281 } 1282 1283 if (i >= nipsecsa_targets + n) 1284 return (0); 1285 1286 if (ap->a_ncookies) { 1287 ncookies = min(ncookies, (n - i)); 1288 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1289 M_WAITOK); 1290 *ap->a_cookies = cookies; 1291 } 1292 1293 n = 0; 1294 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) { 1295 kt = &ipsecsa_targets[i]; 1296 d.d_namlen = kt->kt_namlen; 1297 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1298 &kern_targets[0], kt, ap)) != 0) 1299 break; 1300 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1301 d.d_type = kt->kt_type; 1302 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1303 break; 1304 if (cookies) 1305 *cookies++ = i + 1; 1306 n++; 1307 } 1308 if (error) { 1309 ncookies = n; 1310 break; 1311 } 1312 1313 TAILQ_FOREACH(sav, &satailq, tailq) { 1314 for (sav2 = TAILQ_FIRST(&satailq); 1315 sav2 != sav; 1316 sav2 = TAILQ_NEXT(sav2, tailq)) { 1317 if (sav->spi == sav2->spi) { 1318 /* multiple SA with same SPI */ 1319 break; 1320 } 1321 } 1322 if (sav != sav2 && sav->spi == sav2->spi) 1323 continue; 1324 if (uio->uio_resid < UIO_MX) 1325 break; 1326 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt, 1327 sav->spi, ap)) != 0) 1328 break; 1329 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name), 1330 "%u", ntohl(sav->spi)); 1331 d.d_type = DT_REG; 1332 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1333 break; 1334 if (cookies) 1335 *cookies++ = i + 1; 1336 n++; 1337 i++; 1338 } 1339 ncookies = n; 1340 break; 1341 1342 case KFSipsecspdir: 1343 /* count SP in the system */ 1344 if (&sptailq == NULL) 1345 return 0; 1346 1347 n = 0; 1348 TAILQ_FOREACH(sp, &sptailq, tailq) 1349 n++; 1350 1351 if (i >= nipsecsp_targets + n) 1352 return (0); 1353 1354 if (ap->a_ncookies) { 1355 ncookies = min(ncookies, (n - i)); 1356 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1357 M_WAITOK); 1358 *ap->a_cookies = cookies; 1359 } 1360 1361 n = 0; 1362 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) { 1363 kt = &ipsecsp_targets[i]; 1364 d.d_namlen = kt->kt_namlen; 1365 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1366 &kern_targets[0], kt, ap)) != 0) 1367 break; 1368 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1369 d.d_type = kt->kt_type; 1370 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1371 break; 1372 if (cookies) 1373 *cookies++ = i + 1; 1374 n++; 1375 } 1376 if (error) { 1377 ncookies = n; 1378 break; 1379 } 1380 1381 TAILQ_FOREACH(sp, &sptailq, tailq) { 1382 if (uio->uio_resid < UIO_MX) 1383 break; 1384 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt, 1385 sp->id, ap)) != 0) 1386 break; 1387 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name), 1388 "%u", sp->id); 1389 d.d_type = DT_REG; 1390 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1391 break; 1392 if (cookies) 1393 *cookies++ = i + 1; 1394 n++; 1395 i++; 1396 } 1397 ncookies = n; 1398 break; 1399 #endif 1400 1401 default: 1402 error = ENOTDIR; 1403 break; 1404 } 1405 1406 if (ap->a_ncookies) { 1407 if (error) { 1408 if (cookies) 1409 free(*ap->a_cookies, M_TEMP); 1410 *ap->a_ncookies = 0; 1411 *ap->a_cookies = NULL; 1412 } else 1413 *ap->a_ncookies = ncookies; 1414 } 1415 1416 uio->uio_offset = i; 1417 return (error); 1418 } 1419 1420 int 1421 kernfs_inactive(void *v) 1422 { 1423 struct vop_inactive_args /* { 1424 struct vnode *a_vp; 1425 bool *a_recycle; 1426 } */ *ap = v; 1427 struct vnode *vp = ap->a_vp; 1428 const struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1429 #ifdef IPSEC 1430 struct mbuf *m; 1431 struct secpolicy *sp; 1432 #endif 1433 1434 *ap->a_recycle = false; 1435 switch (kfs->kfs_type) { 1436 #ifdef IPSEC 1437 case KFSipsecsa: 1438 if (key_setdumpsa_spi == NULL) 1439 return 0; 1440 m = key_setdumpsa_spi(htonl(kfs->kfs_value)); 1441 if (m) 1442 m_freem(m); 1443 else 1444 *ap->a_recycle = true; 1445 break; 1446 case KFSipsecsp: 1447 if (key_getspbyid == NULL) 1448 return 0; 1449 sp = key_getspbyid(kfs->kfs_value); 1450 if (sp) 1451 key_freesp(sp); 1452 else { 1453 *ap->a_recycle = true; 1454 } 1455 break; 1456 #endif 1457 default: 1458 break; 1459 } 1460 VOP_UNLOCK(vp, 0); 1461 return (0); 1462 } 1463 1464 int 1465 kernfs_reclaim(void *v) 1466 { 1467 struct vop_reclaim_args /* { 1468 struct vnode *a_vp; 1469 } */ *ap = v; 1470 1471 return (kernfs_freevp(ap->a_vp)); 1472 } 1473 1474 /* 1475 * Return POSIX pathconf information applicable to special devices. 1476 */ 1477 int 1478 kernfs_pathconf(void *v) 1479 { 1480 struct vop_pathconf_args /* { 1481 struct vnode *a_vp; 1482 int a_name; 1483 register_t *a_retval; 1484 } */ *ap = v; 1485 1486 switch (ap->a_name) { 1487 case _PC_LINK_MAX: 1488 *ap->a_retval = LINK_MAX; 1489 return (0); 1490 case _PC_MAX_CANON: 1491 *ap->a_retval = MAX_CANON; 1492 return (0); 1493 case _PC_MAX_INPUT: 1494 *ap->a_retval = MAX_INPUT; 1495 return (0); 1496 case _PC_PIPE_BUF: 1497 *ap->a_retval = PIPE_BUF; 1498 return (0); 1499 case _PC_CHOWN_RESTRICTED: 1500 *ap->a_retval = 1; 1501 return (0); 1502 case _PC_VDISABLE: 1503 *ap->a_retval = _POSIX_VDISABLE; 1504 return (0); 1505 case _PC_SYNC_IO: 1506 *ap->a_retval = 1; 1507 return (0); 1508 default: 1509 return (EINVAL); 1510 } 1511 /* NOTREACHED */ 1512 } 1513 1514 /* 1515 * Print out the contents of a /dev/fd vnode. 1516 */ 1517 /* ARGSUSED */ 1518 int 1519 kernfs_print(void *v) 1520 { 1521 1522 printf("tag VT_KERNFS, kernfs vnode\n"); 1523 return (0); 1524 } 1525 1526 int 1527 kernfs_link(void *v) 1528 { 1529 struct vop_link_args /* { 1530 struct vnode *a_dvp; 1531 struct vnode *a_vp; 1532 struct componentname *a_cnp; 1533 } */ *ap = v; 1534 1535 VOP_ABORTOP(ap->a_dvp, ap->a_cnp); 1536 vput(ap->a_dvp); 1537 return (EROFS); 1538 } 1539 1540 int 1541 kernfs_symlink(void *v) 1542 { 1543 struct vop_symlink_args /* { 1544 struct vnode *a_dvp; 1545 struct vnode **a_vpp; 1546 struct componentname *a_cnp; 1547 struct vattr *a_vap; 1548 char *a_target; 1549 } */ *ap = v; 1550 1551 VOP_ABORTOP(ap->a_dvp, ap->a_cnp); 1552 vput(ap->a_dvp); 1553 return (EROFS); 1554 } 1555