1 /* $NetBSD: kernfs_vnops.c,v 1.134 2008/01/02 11:49:00 ad Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software donated to Berkeley by 8 * Jan-Simon Pendry. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95 35 */ 36 37 /* 38 * Kernel parameter filesystem (/kern) 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.134 2008/01/02 11:49:00 ad Exp $"); 43 44 #ifdef _KERNEL_OPT 45 #include "opt_ipsec.h" 46 #endif 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/kernel.h> 51 #include <sys/vmmeter.h> 52 #include <sys/time.h> 53 #include <sys/proc.h> 54 #include <sys/vnode.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> 57 #include <sys/stat.h> 58 #include <sys/mount.h> 59 #include <sys/namei.h> 60 #include <sys/buf.h> 61 #include <sys/dirent.h> 62 #include <sys/msgbuf.h> 63 64 #include <miscfs/genfs/genfs.h> 65 #include <miscfs/kernfs/kernfs.h> 66 67 #ifdef IPSEC 68 #include <sys/mbuf.h> 69 #include <net/route.h> 70 #include <netinet/in.h> 71 #include <netinet6/ipsec.h> 72 #include <netkey/key.h> 73 #endif 74 75 #include <uvm/uvm_extern.h> 76 77 #define KSTRING 256 /* Largest I/O available via this filesystem */ 78 #define UIO_MX 32 79 80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH) 81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH) 82 #define UREAD_MODE (S_IRUSR) 83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) 84 #define UDIR_MODE (S_IRUSR|S_IXUSR) 85 86 #define N(s) sizeof(s)-1, s 87 const struct kern_target kern_targets[] = { 88 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 89 /* name data tag type ro/rw */ 90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE }, 91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE }, 92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE }, 93 /* XXXUNCONST */ 94 { DT_REG, N("copyright"), __UNCONST(copyright), 95 KFSstring, VREG, READ_MODE }, 96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE }, 97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE }, 98 #ifdef IPSEC 99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE }, 100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE }, 101 #endif 102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE }, 103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE }, 104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE }, 105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE }, 106 #if 0 107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE }, 108 #endif 109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE }, 110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE }, 111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE }, 112 /* XXXUNCONST */ 113 { DT_REG, N("version"), __UNCONST(version), 114 KFSstring, VREG, READ_MODE }, 115 }; 116 const struct kern_target subdir_targets[] = { 117 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 118 /* name data tag type ro/rw */ 119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE }, 120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE }, 121 }; 122 #ifdef IPSEC 123 const struct kern_target ipsecsa_targets[] = { 124 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 125 /* name data tag type ro/rw */ 126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE }, 127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE }, 128 }; 129 const struct kern_target ipsecsp_targets[] = { 130 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 131 /* name data tag type ro/rw */ 132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE }, 133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE }, 134 }; 135 const struct kern_target ipsecsa_kt = 136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE }; 137 const struct kern_target ipsecsp_kt = 138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE }; 139 #endif 140 #undef N 141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets = 142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets); 143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]); 144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]); 145 #ifdef IPSEC 146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]); 147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]); 148 int nkern_dirs = 4; /* 2 extra subdirs */ 149 #else 150 int nkern_dirs = 2; 151 #endif 152 153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int); 154 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **, 155 size_t, int); 156 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *, 157 size_t, int); 158 159 static int kernfs_default_xread(void *v); 160 static int kernfs_default_xwrite(void *v); 161 static int kernfs_default_fileop_getattr(void *); 162 163 /* must include all fileop's */ 164 const struct kernfs_fileop kernfs_default_fileops[] = { 165 { .kf_fileop = KERNFS_XREAD }, 166 { .kf_fileop = KERNFS_XWRITE }, 167 { .kf_fileop = KERNFS_FILEOP_OPEN }, 168 { .kf_fileop = KERNFS_FILEOP_GETATTR, 169 .kf_vop = kernfs_default_fileop_getattr }, 170 { .kf_fileop = KERNFS_FILEOP_IOCTL }, 171 { .kf_fileop = KERNFS_FILEOP_CLOSE }, 172 { .kf_fileop = KERNFS_FILEOP_READ, 173 .kf_vop = kernfs_default_xread }, 174 { .kf_fileop = KERNFS_FILEOP_WRITE, 175 .kf_vop = kernfs_default_xwrite }, 176 }; 177 178 int kernfs_lookup(void *); 179 #define kernfs_create genfs_eopnotsupp 180 #define kernfs_mknod genfs_eopnotsupp 181 int kernfs_open(void *); 182 int kernfs_close(void *); 183 int kernfs_access(void *); 184 int kernfs_getattr(void *); 185 int kernfs_setattr(void *); 186 int kernfs_read(void *); 187 int kernfs_write(void *); 188 #define kernfs_fcntl genfs_fcntl 189 int kernfs_ioctl(void *); 190 #define kernfs_poll genfs_poll 191 #define kernfs_revoke genfs_revoke 192 #define kernfs_fsync genfs_nullop 193 #define kernfs_seek genfs_nullop 194 #define kernfs_remove genfs_eopnotsupp 195 int kernfs_link(void *); 196 #define kernfs_rename genfs_eopnotsupp 197 #define kernfs_mkdir genfs_eopnotsupp 198 #define kernfs_rmdir genfs_eopnotsupp 199 int kernfs_symlink(void *); 200 int kernfs_readdir(void *); 201 #define kernfs_readlink genfs_eopnotsupp 202 #define kernfs_abortop genfs_abortop 203 int kernfs_inactive(void *); 204 int kernfs_reclaim(void *); 205 #define kernfs_lock genfs_lock 206 #define kernfs_unlock genfs_unlock 207 #define kernfs_bmap genfs_badop 208 #define kernfs_strategy genfs_badop 209 int kernfs_print(void *); 210 #define kernfs_islocked genfs_islocked 211 int kernfs_pathconf(void *); 212 #define kernfs_advlock genfs_einval 213 #define kernfs_bwrite genfs_eopnotsupp 214 #define kernfs_putpages genfs_putpages 215 216 static int kernfs_xread(struct kernfs_node *, int, char **, 217 size_t, size_t *); 218 static int kernfs_xwrite(const struct kernfs_node *, char *, size_t); 219 220 int (**kernfs_vnodeop_p)(void *); 221 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = { 222 { &vop_default_desc, vn_default_error }, 223 { &vop_lookup_desc, kernfs_lookup }, /* lookup */ 224 { &vop_create_desc, kernfs_create }, /* create */ 225 { &vop_mknod_desc, kernfs_mknod }, /* mknod */ 226 { &vop_open_desc, kernfs_open }, /* open */ 227 { &vop_close_desc, kernfs_close }, /* close */ 228 { &vop_access_desc, kernfs_access }, /* access */ 229 { &vop_getattr_desc, kernfs_getattr }, /* getattr */ 230 { &vop_setattr_desc, kernfs_setattr }, /* setattr */ 231 { &vop_read_desc, kernfs_read }, /* read */ 232 { &vop_write_desc, kernfs_write }, /* write */ 233 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */ 234 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */ 235 { &vop_poll_desc, kernfs_poll }, /* poll */ 236 { &vop_revoke_desc, kernfs_revoke }, /* revoke */ 237 { &vop_fsync_desc, kernfs_fsync }, /* fsync */ 238 { &vop_seek_desc, kernfs_seek }, /* seek */ 239 { &vop_remove_desc, kernfs_remove }, /* remove */ 240 { &vop_link_desc, kernfs_link }, /* link */ 241 { &vop_rename_desc, kernfs_rename }, /* rename */ 242 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */ 243 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */ 244 { &vop_symlink_desc, kernfs_symlink }, /* symlink */ 245 { &vop_readdir_desc, kernfs_readdir }, /* readdir */ 246 { &vop_readlink_desc, kernfs_readlink }, /* readlink */ 247 { &vop_abortop_desc, kernfs_abortop }, /* abortop */ 248 { &vop_inactive_desc, kernfs_inactive }, /* inactive */ 249 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */ 250 { &vop_lock_desc, kernfs_lock }, /* lock */ 251 { &vop_unlock_desc, kernfs_unlock }, /* unlock */ 252 { &vop_bmap_desc, kernfs_bmap }, /* bmap */ 253 { &vop_strategy_desc, kernfs_strategy }, /* strategy */ 254 { &vop_print_desc, kernfs_print }, /* print */ 255 { &vop_islocked_desc, kernfs_islocked }, /* islocked */ 256 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */ 257 { &vop_advlock_desc, kernfs_advlock }, /* advlock */ 258 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */ 259 { &vop_putpages_desc, kernfs_putpages }, /* putpages */ 260 { NULL, NULL } 261 }; 262 const struct vnodeopv_desc kernfs_vnodeop_opv_desc = 263 { &kernfs_vnodeop_p, kernfs_vnodeop_entries }; 264 265 static inline int 266 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b) 267 { 268 if (a->kf_type < b->kf_type) 269 return -1; 270 if (a->kf_type > b->kf_type) 271 return 1; 272 if (a->kf_fileop < b->kf_fileop) 273 return -1; 274 if (a->kf_fileop > b->kf_fileop) 275 return 1; 276 return (0); 277 } 278 279 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree = 280 SPLAY_INITIALIZER(kfsfileoptree); 281 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare); 282 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare); 283 284 kfstype 285 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf) 286 { 287 static u_char nextfreetype = KFSlasttype; 288 struct kernfs_fileop *dkf, *fkf, skf; 289 int i; 290 291 /* XXX need to keep track of dkf's memory if we support 292 deallocating types */ 293 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK); 294 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops)); 295 296 for (i = 0; i < sizeof(kernfs_default_fileops) / 297 sizeof(kernfs_default_fileops[0]); i++) { 298 dkf[i].kf_type = nextfreetype; 299 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]); 300 } 301 302 for (i = 0; i < nkf; i++) { 303 skf.kf_type = nextfreetype; 304 skf.kf_fileop = kf[i].kf_fileop; 305 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 306 fkf->kf_vop = kf[i].kf_vop; 307 } 308 309 return nextfreetype++; 310 } 311 312 int 313 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error) 314 { 315 struct kernfs_fileop *kf, skf; 316 317 skf.kf_type = type; 318 skf.kf_fileop = fileop; 319 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 320 if (kf->kf_vop) 321 return kf->kf_vop(v); 322 return error; 323 } 324 325 int 326 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp, 327 size_t len, int error) 328 { 329 struct kernfs_fileop *kf, skf; 330 331 skf.kf_type = type; 332 skf.kf_fileop = KERNFS_XREAD; 333 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 334 if (kf->kf_xread) 335 return kf->kf_xread(kfs, bfp, len); 336 return error; 337 } 338 339 int 340 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf, 341 size_t len, int error) 342 { 343 struct kernfs_fileop *kf, skf; 344 345 skf.kf_type = type; 346 skf.kf_fileop = KERNFS_XWRITE; 347 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 348 if (kf->kf_xwrite) 349 return kf->kf_xwrite(kfs, bf, len); 350 return error; 351 } 352 353 int 354 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt) 355 { 356 struct kernfs_subdir *ks, *parent; 357 358 if (pkt == NULL) { 359 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue); 360 nkern_targets++; 361 if (dkt->dkt_kt.kt_vtype == VDIR) 362 nkern_dirs++; 363 } else { 364 parent = (struct kernfs_subdir *)pkt->kt_data; 365 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue); 366 parent->ks_nentries++; 367 if (dkt->dkt_kt.kt_vtype == VDIR) 368 parent->ks_dirs++; 369 } 370 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) { 371 ks = malloc(sizeof(struct kernfs_subdir), 372 M_TEMP, M_WAITOK); 373 SIMPLEQ_INIT(&ks->ks_entries); 374 ks->ks_nentries = 2; /* . and .. */ 375 ks->ks_dirs = 2; 376 ks->ks_parent = pkt ? pkt : &kern_targets[0]; 377 dkt->dkt_kt.kt_data = ks; 378 } 379 return 0; 380 } 381 382 static int 383 kernfs_xread(kfs, off, bufp, len, wrlen) 384 struct kernfs_node *kfs; 385 int off; 386 char **bufp; 387 size_t len; 388 size_t *wrlen; 389 { 390 const struct kern_target *kt; 391 #ifdef IPSEC 392 struct mbuf *m; 393 #endif 394 int err; 395 396 kt = kfs->kfs_kt; 397 398 switch (kfs->kfs_type) { 399 case KFStime: { 400 struct timeval tv; 401 402 microtime(&tv); 403 snprintf(*bufp, len, "%ld %ld\n", tv.tv_sec, tv.tv_usec); 404 break; 405 } 406 407 case KFSint: { 408 int *ip = kt->kt_data; 409 410 snprintf(*bufp, len, "%d\n", *ip); 411 break; 412 } 413 414 case KFSstring: { 415 char *cp = kt->kt_data; 416 417 *bufp = cp; 418 break; 419 } 420 421 case KFSmsgbuf: { 422 long n; 423 424 /* 425 * deal with cases where the message buffer has 426 * become corrupted. 427 */ 428 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) { 429 msgbufenabled = 0; 430 return (ENXIO); 431 } 432 433 /* 434 * Note that reads of /kern/msgbuf won't necessarily yield 435 * consistent results, if the message buffer is modified 436 * while the read is in progress. The worst that can happen 437 * is that incorrect data will be read. There's no way 438 * that this can crash the system unless the values in the 439 * message buffer header are corrupted, but that'll cause 440 * the system to die anyway. 441 */ 442 if (off >= msgbufp->msg_bufs) { 443 *wrlen = 0; 444 return (0); 445 } 446 n = msgbufp->msg_bufx + off; 447 if (n >= msgbufp->msg_bufs) 448 n -= msgbufp->msg_bufs; 449 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off); 450 *bufp = msgbufp->msg_bufc + n; 451 *wrlen = len; 452 return (0); 453 } 454 455 case KFShostname: { 456 char *cp = hostname; 457 size_t xlen = hostnamelen; 458 459 if (xlen >= (len - 2)) 460 return (EINVAL); 461 462 memcpy(*bufp, cp, xlen); 463 (*bufp)[xlen] = '\n'; 464 (*bufp)[xlen+1] = '\0'; 465 len = strlen(*bufp); 466 break; 467 } 468 469 case KFSavenrun: 470 averunnable.fscale = FSCALE; 471 snprintf(*bufp, len, "%d %d %d %ld\n", 472 averunnable.ldavg[0], averunnable.ldavg[1], 473 averunnable.ldavg[2], averunnable.fscale); 474 break; 475 476 #ifdef IPSEC 477 case KFSipsecsa: 478 /* 479 * Note that SA configuration could be changed during the 480 * read operation, resulting in garbled output. 481 */ 482 m = key_setdumpsa_spi(htonl(kfs->kfs_value)); 483 if (!m) 484 return (ENOBUFS); 485 if (off >= m->m_pkthdr.len) { 486 *wrlen = 0; 487 m_freem(m); 488 return (0); 489 } 490 if (len > m->m_pkthdr.len - off) 491 len = m->m_pkthdr.len - off; 492 m_copydata(m, off, len, *bufp); 493 *wrlen = len; 494 m_freem(m); 495 return (0); 496 497 case KFSipsecsp: 498 /* 499 * Note that SP configuration could be changed during the 500 * read operation, resulting in garbled output. 501 */ 502 if (!kfs->kfs_v) { 503 struct secpolicy *sp; 504 505 sp = key_getspbyid(kfs->kfs_value); 506 if (sp) 507 kfs->kfs_v = sp; 508 else 509 return (ENOENT); 510 } 511 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v, 512 SADB_X_SPDGET, 0, 0); 513 if (!m) 514 return (ENOBUFS); 515 if (off >= m->m_pkthdr.len) { 516 *wrlen = 0; 517 m_freem(m); 518 return (0); 519 } 520 if (len > m->m_pkthdr.len - off) 521 len = m->m_pkthdr.len - off; 522 m_copydata(m, off, len, *bufp); 523 *wrlen = len; 524 m_freem(m); 525 return (0); 526 #endif 527 528 default: 529 err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len, 530 EOPNOTSUPP); 531 if (err) 532 return err; 533 } 534 535 len = strlen(*bufp); 536 if (len <= off) 537 *wrlen = 0; 538 else { 539 *bufp += off; 540 *wrlen = len - off; 541 } 542 return (0); 543 } 544 545 static int 546 kernfs_xwrite(kfs, bf, len) 547 const struct kernfs_node *kfs; 548 char *bf; 549 size_t len; 550 { 551 552 switch (kfs->kfs_type) { 553 case KFShostname: 554 if (bf[len-1] == '\n') 555 --len; 556 memcpy(hostname, bf, len); 557 hostname[len] = '\0'; 558 hostnamelen = (size_t) len; 559 return (0); 560 561 default: 562 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO); 563 } 564 } 565 566 567 /* 568 * vp is the current namei directory 569 * ndp is the name to locate in that directory... 570 */ 571 int 572 kernfs_lookup(v) 573 void *v; 574 { 575 struct vop_lookup_args /* { 576 struct vnode * a_dvp; 577 struct vnode ** a_vpp; 578 struct componentname * a_cnp; 579 } */ *ap = v; 580 struct componentname *cnp = ap->a_cnp; 581 struct vnode **vpp = ap->a_vpp; 582 struct vnode *dvp = ap->a_dvp; 583 const char *pname = cnp->cn_nameptr; 584 const struct kernfs_node *kfs; 585 const struct kern_target *kt; 586 const struct dyn_kern_target *dkt; 587 const struct kernfs_subdir *ks; 588 int error, i; 589 #ifdef IPSEC 590 char *ep; 591 u_int32_t id; 592 #endif 593 594 *vpp = NULLVP; 595 596 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME) 597 return (EROFS); 598 599 if (cnp->cn_namelen == 1 && *pname == '.') { 600 *vpp = dvp; 601 VREF(dvp); 602 return (0); 603 } 604 605 kfs = VTOKERN(dvp); 606 switch (kfs->kfs_type) { 607 case KFSkern: 608 /* 609 * Shouldn't get here with .. in the root node. 610 */ 611 if (cnp->cn_flags & ISDOTDOT) 612 return (EIO); 613 614 for (i = 0; i < static_nkern_targets; i++) { 615 kt = &kern_targets[i]; 616 if (cnp->cn_namelen == kt->kt_namlen && 617 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0) 618 goto found; 619 } 620 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) { 621 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen && 622 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) { 623 kt = &dkt->dkt_kt; 624 goto found; 625 } 626 } 627 break; 628 629 found: 630 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0); 631 return (error); 632 633 case KFSsubdir: 634 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data; 635 if (cnp->cn_flags & ISDOTDOT) { 636 kt = ks->ks_parent; 637 goto found; 638 } 639 640 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) { 641 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen && 642 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) { 643 kt = &dkt->dkt_kt; 644 goto found; 645 } 646 } 647 break; 648 649 #ifdef IPSEC 650 case KFSipsecsadir: 651 if (cnp->cn_flags & ISDOTDOT) { 652 kt = &kern_targets[0]; 653 goto found; 654 } 655 656 for (i = 2; i < nipsecsa_targets; i++) { 657 kt = &ipsecsa_targets[i]; 658 if (cnp->cn_namelen == kt->kt_namlen && 659 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0) 660 goto found; 661 } 662 663 ep = NULL; 664 id = strtoul(pname, &ep, 10); 665 if (!ep || *ep || ep == pname) 666 break; 667 668 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id); 669 return (error); 670 671 case KFSipsecspdir: 672 if (cnp->cn_flags & ISDOTDOT) { 673 kt = &kern_targets[0]; 674 goto found; 675 } 676 677 for (i = 2; i < nipsecsp_targets; i++) { 678 kt = &ipsecsp_targets[i]; 679 if (cnp->cn_namelen == kt->kt_namlen && 680 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0) 681 goto found; 682 } 683 684 ep = NULL; 685 id = strtoul(pname, &ep, 10); 686 if (!ep || *ep || ep == pname) 687 break; 688 689 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id); 690 return (error); 691 #endif 692 693 default: 694 return (ENOTDIR); 695 } 696 697 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS); 698 } 699 700 int 701 kernfs_open(v) 702 void *v; 703 { 704 struct vop_open_args /* { 705 struct vnode *a_vp; 706 int a_mode; 707 kauth_cred_t a_cred; 708 } */ *ap = v; 709 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 710 #ifdef IPSEC 711 struct mbuf *m; 712 struct secpolicy *sp; 713 #endif 714 715 switch (kfs->kfs_type) { 716 #ifdef IPSEC 717 case KFSipsecsa: 718 m = key_setdumpsa_spi(htonl(kfs->kfs_value)); 719 if (m) { 720 m_freem(m); 721 return (0); 722 } else 723 return (ENOENT); 724 725 case KFSipsecsp: 726 sp = key_getspbyid(kfs->kfs_value); 727 if (sp) { 728 kfs->kfs_v = sp; 729 return (0); 730 } else 731 return (ENOENT); 732 #endif 733 734 default: 735 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN, 736 v, 0); 737 } 738 } 739 740 int 741 kernfs_close(v) 742 void *v; 743 { 744 struct vop_close_args /* { 745 struct vnode *a_vp; 746 int a_fflag; 747 kauth_cred_t a_cred; 748 } */ *ap = v; 749 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 750 751 switch (kfs->kfs_type) { 752 #ifdef IPSEC 753 case KFSipsecsp: 754 key_freesp((struct secpolicy *)kfs->kfs_v); 755 break; 756 #endif 757 758 default: 759 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE, 760 v, 0); 761 } 762 763 return (0); 764 } 765 766 int 767 kernfs_access(v) 768 void *v; 769 { 770 struct vop_access_args /* { 771 struct vnode *a_vp; 772 int a_mode; 773 kauth_cred_t a_cred; 774 } */ *ap = v; 775 struct vattr va; 776 int error; 777 778 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred)) != 0) 779 return (error); 780 781 return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid, 782 ap->a_mode, ap->a_cred)); 783 } 784 785 static int 786 kernfs_default_fileop_getattr(v) 787 void *v; 788 { 789 struct vop_getattr_args /* { 790 struct vnode *a_vp; 791 struct vattr *a_vap; 792 kauth_cred_t a_cred; 793 } */ *ap = v; 794 struct vattr *vap = ap->a_vap; 795 796 vap->va_nlink = 1; 797 vap->va_bytes = vap->va_size = 0; 798 799 return 0; 800 } 801 802 int 803 kernfs_getattr(v) 804 void *v; 805 { 806 struct vop_getattr_args /* { 807 struct vnode *a_vp; 808 struct vattr *a_vap; 809 kauth_cred_t a_cred; 810 } */ *ap = v; 811 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 812 struct kernfs_subdir *ks; 813 struct vattr *vap = ap->a_vap; 814 int error = 0; 815 char strbuf[KSTRING], *bf; 816 size_t nread, total; 817 818 VATTR_NULL(vap); 819 vap->va_type = ap->a_vp->v_type; 820 vap->va_uid = 0; 821 vap->va_gid = 0; 822 vap->va_mode = kfs->kfs_mode; 823 vap->va_fileid = kfs->kfs_fileno; 824 vap->va_flags = 0; 825 vap->va_size = 0; 826 vap->va_blocksize = DEV_BSIZE; 827 /* Make all times be current TOD, except for the "boottime" node. */ 828 if (kfs->kfs_kt->kt_namlen == 8 && 829 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) { 830 TIMEVAL_TO_TIMESPEC(&boottime, &vap->va_ctime); 831 } else { 832 getnanotime(&vap->va_ctime); 833 } 834 vap->va_atime = vap->va_mtime = vap->va_ctime; 835 vap->va_gen = 0; 836 vap->va_flags = 0; 837 vap->va_rdev = 0; 838 vap->va_bytes = 0; 839 840 switch (kfs->kfs_type) { 841 case KFSkern: 842 vap->va_nlink = nkern_dirs; 843 vap->va_bytes = vap->va_size = DEV_BSIZE; 844 break; 845 846 case KFSroot: 847 vap->va_nlink = 1; 848 vap->va_bytes = vap->va_size = DEV_BSIZE; 849 break; 850 851 case KFSsubdir: 852 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data; 853 vap->va_nlink = ks->ks_dirs; 854 vap->va_bytes = vap->va_size = DEV_BSIZE; 855 break; 856 857 case KFSnull: 858 case KFStime: 859 case KFSint: 860 case KFSstring: 861 case KFShostname: 862 case KFSavenrun: 863 case KFSdevice: 864 case KFSmsgbuf: 865 #ifdef IPSEC 866 case KFSipsecsa: 867 case KFSipsecsp: 868 #endif 869 vap->va_nlink = 1; 870 total = 0; 871 do { 872 bf = strbuf; 873 error = kernfs_xread(kfs, total, &bf, 874 sizeof(strbuf), &nread); 875 total += nread; 876 } while (error == 0 && nread != 0); 877 vap->va_bytes = vap->va_size = total; 878 break; 879 880 #ifdef IPSEC 881 case KFSipsecsadir: 882 case KFSipsecspdir: 883 vap->va_nlink = 2; 884 vap->va_bytes = vap->va_size = DEV_BSIZE; 885 break; 886 #endif 887 888 default: 889 error = kernfs_try_fileop(kfs->kfs_type, 890 KERNFS_FILEOP_GETATTR, v, EINVAL); 891 break; 892 } 893 894 return (error); 895 } 896 897 /*ARGSUSED*/ 898 int 899 kernfs_setattr(void *v) 900 { 901 902 /* 903 * Silently ignore attribute changes. 904 * This allows for open with truncate to have no 905 * effect until some data is written. I want to 906 * do it this way because all writes are atomic. 907 */ 908 return (0); 909 } 910 911 int 912 kernfs_default_xread(v) 913 void *v; 914 { 915 struct vop_read_args /* { 916 struct vnode *a_vp; 917 struct uio *a_uio; 918 int a_ioflag; 919 kauth_cred_t a_cred; 920 } */ *ap = v; 921 struct uio *uio = ap->a_uio; 922 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 923 char strbuf[KSTRING], *bf; 924 int off; 925 size_t len; 926 int error; 927 928 if (ap->a_vp->v_type == VDIR) 929 return (EOPNOTSUPP); 930 931 off = (int)uio->uio_offset; 932 /* Don't allow negative offsets */ 933 if (off < 0) 934 return EINVAL; 935 936 bf = strbuf; 937 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0) 938 error = uiomove(bf, len, uio); 939 return (error); 940 } 941 942 int 943 kernfs_read(v) 944 void *v; 945 { 946 struct vop_read_args /* { 947 struct vnode *a_vp; 948 struct uio *a_uio; 949 int a_ioflag; 950 struct ucred *a_cred; 951 } */ *ap = v; 952 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 953 954 if (kfs->kfs_type < KFSlasttype) { 955 /* use default function */ 956 return kernfs_default_xread(v); 957 } 958 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v, 959 EOPNOTSUPP); 960 } 961 962 static int 963 kernfs_default_xwrite(v) 964 void *v; 965 { 966 struct vop_write_args /* { 967 struct vnode *a_vp; 968 struct uio *a_uio; 969 int a_ioflag; 970 kauth_cred_t a_cred; 971 } */ *ap = v; 972 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 973 struct uio *uio = ap->a_uio; 974 int error; 975 size_t xlen; 976 char strbuf[KSTRING]; 977 978 if (uio->uio_offset != 0) 979 return (EINVAL); 980 981 xlen = min(uio->uio_resid, KSTRING-1); 982 if ((error = uiomove(strbuf, xlen, uio)) != 0) 983 return (error); 984 985 if (uio->uio_resid != 0) 986 return (EIO); 987 988 strbuf[xlen] = '\0'; 989 xlen = strlen(strbuf); 990 return (kernfs_xwrite(kfs, strbuf, xlen)); 991 } 992 993 int 994 kernfs_write(v) 995 void *v; 996 { 997 struct vop_write_args /* { 998 struct vnode *a_vp; 999 struct uio *a_uio; 1000 int a_ioflag; 1001 kauth_cred_t a_cred; 1002 } */ *ap = v; 1003 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1004 1005 if (kfs->kfs_type < KFSlasttype) { 1006 /* use default function */ 1007 return kernfs_default_xwrite(v); 1008 } 1009 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v, 1010 EOPNOTSUPP); 1011 } 1012 1013 int 1014 kernfs_ioctl(v) 1015 void *v; 1016 { 1017 struct vop_ioctl_args /* { 1018 const struct vnodeop_desc *a_desc; 1019 struct vnode *a_vp; 1020 u_long a_command; 1021 void *a_data; 1022 int a_fflag; 1023 kauth_cred_t a_cred; 1024 } */ *ap = v; 1025 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1026 1027 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v, 1028 EPASSTHROUGH); 1029 } 1030 1031 static int 1032 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt, 1033 u_int32_t value, struct vop_readdir_args *ap) 1034 { 1035 struct kernfs_node *kfs; 1036 struct vnode *vp; 1037 int error; 1038 1039 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt, 1040 value)) != 0) 1041 return error; 1042 if (kt->kt_tag == KFSdevice) { 1043 struct vattr va; 1044 1045 error = VOP_GETATTR(vp, &va, ap->a_cred); 1046 if (error != 0) { 1047 return error; 1048 } 1049 d->d_fileno = va.va_fileid; 1050 } else { 1051 kfs = VTOKERN(vp); 1052 d->d_fileno = kfs->kfs_fileno; 1053 } 1054 vput(vp); 1055 return 0; 1056 } 1057 1058 static int 1059 kernfs_setdirentfileno(struct dirent *d, off_t entry, 1060 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt, 1061 const struct kern_target *kt, struct vop_readdir_args *ap) 1062 { 1063 const struct kern_target *ikt; 1064 int error; 1065 1066 switch (entry) { 1067 case 0: 1068 d->d_fileno = thisdir_kfs->kfs_fileno; 1069 return 0; 1070 case 1: 1071 ikt = parent_kt; 1072 break; 1073 default: 1074 ikt = kt; 1075 break; 1076 } 1077 if (ikt != thisdir_kfs->kfs_kt) { 1078 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0) 1079 return error; 1080 } else 1081 d->d_fileno = thisdir_kfs->kfs_fileno; 1082 return 0; 1083 } 1084 1085 int 1086 kernfs_readdir(v) 1087 void *v; 1088 { 1089 struct vop_readdir_args /* { 1090 struct vnode *a_vp; 1091 struct uio *a_uio; 1092 kauth_cred_t a_cred; 1093 int *a_eofflag; 1094 off_t **a_cookies; 1095 int a_*ncookies; 1096 } */ *ap = v; 1097 struct uio *uio = ap->a_uio; 1098 struct dirent d; 1099 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1100 const struct kern_target *kt; 1101 const struct dyn_kern_target *dkt = NULL; 1102 const struct kernfs_subdir *ks; 1103 off_t i, j; 1104 int error; 1105 off_t *cookies = NULL; 1106 int ncookies = 0, n; 1107 #ifdef IPSEC 1108 struct secasvar *sav, *sav2; 1109 struct secpolicy *sp; 1110 #endif 1111 1112 if (uio->uio_resid < UIO_MX) 1113 return (EINVAL); 1114 if (uio->uio_offset < 0) 1115 return (EINVAL); 1116 1117 error = 0; 1118 i = uio->uio_offset; 1119 memset(&d, 0, sizeof(d)); 1120 d.d_reclen = UIO_MX; 1121 ncookies = uio->uio_resid / UIO_MX; 1122 1123 switch (kfs->kfs_type) { 1124 case KFSkern: 1125 if (i >= nkern_targets) 1126 return (0); 1127 1128 if (ap->a_ncookies) { 1129 ncookies = min(ncookies, (nkern_targets - i)); 1130 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1131 M_WAITOK); 1132 *ap->a_cookies = cookies; 1133 } 1134 1135 n = 0; 1136 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) { 1137 if (i < static_nkern_targets) 1138 kt = &kern_targets[i]; 1139 else { 1140 if (dkt == NULL) { 1141 dkt = SIMPLEQ_FIRST(&dyn_kern_targets); 1142 for (j = static_nkern_targets; j < i && 1143 dkt != NULL; j++) 1144 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1145 if (j != i) 1146 break; 1147 } else { 1148 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1149 } 1150 if (dkt == NULL) 1151 break; 1152 kt = &dkt->dkt_kt; 1153 } 1154 if (kt->kt_tag == KFSdevice) { 1155 dev_t *dp = kt->kt_data; 1156 struct vnode *fvp; 1157 1158 if (*dp == NODEV || 1159 !vfinddev(*dp, kt->kt_vtype, &fvp)) 1160 continue; 1161 } 1162 d.d_namlen = kt->kt_namlen; 1163 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1164 &kern_targets[0], kt, ap)) != 0) 1165 break; 1166 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1167 d.d_type = kt->kt_type; 1168 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1169 break; 1170 if (cookies) 1171 *cookies++ = i + 1; 1172 n++; 1173 } 1174 ncookies = n; 1175 break; 1176 1177 case KFSroot: 1178 if (i >= 2) 1179 return 0; 1180 1181 if (ap->a_ncookies) { 1182 ncookies = min(ncookies, (2 - i)); 1183 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1184 M_WAITOK); 1185 *ap->a_cookies = cookies; 1186 } 1187 1188 n = 0; 1189 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) { 1190 kt = &kern_targets[i]; 1191 d.d_namlen = kt->kt_namlen; 1192 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0); 1193 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1194 d.d_type = kt->kt_type; 1195 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1196 break; 1197 if (cookies) 1198 *cookies++ = i + 1; 1199 n++; 1200 } 1201 ncookies = n; 1202 break; 1203 1204 case KFSsubdir: 1205 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data; 1206 if (i >= ks->ks_nentries) 1207 return (0); 1208 1209 if (ap->a_ncookies) { 1210 ncookies = min(ncookies, (ks->ks_nentries - i)); 1211 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1212 M_WAITOK); 1213 *ap->a_cookies = cookies; 1214 } 1215 1216 dkt = SIMPLEQ_FIRST(&ks->ks_entries); 1217 for (j = 0; j < i && dkt != NULL; j++) 1218 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1219 n = 0; 1220 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) { 1221 if (i < 2) 1222 kt = &subdir_targets[i]; 1223 else { 1224 /* check if ks_nentries lied to us */ 1225 if (dkt == NULL) 1226 break; 1227 kt = &dkt->dkt_kt; 1228 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1229 } 1230 if (kt->kt_tag == KFSdevice) { 1231 dev_t *dp = kt->kt_data; 1232 struct vnode *fvp; 1233 1234 if (*dp == NODEV || 1235 !vfinddev(*dp, kt->kt_vtype, &fvp)) 1236 continue; 1237 } 1238 d.d_namlen = kt->kt_namlen; 1239 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1240 ks->ks_parent, kt, ap)) != 0) 1241 break; 1242 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1243 d.d_type = kt->kt_type; 1244 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1245 break; 1246 if (cookies) 1247 *cookies++ = i + 1; 1248 n++; 1249 } 1250 ncookies = n; 1251 break; 1252 1253 #ifdef IPSEC 1254 case KFSipsecsadir: 1255 /* count SA in the system */ 1256 n = 0; 1257 TAILQ_FOREACH(sav, &satailq, tailq) { 1258 for (sav2 = TAILQ_FIRST(&satailq); 1259 sav2 != sav; 1260 sav2 = TAILQ_NEXT(sav2, tailq)) { 1261 if (sav->spi == sav2->spi) { 1262 /* multiple SA with same SPI */ 1263 break; 1264 } 1265 } 1266 if (sav == sav2 || sav->spi != sav2->spi) 1267 n++; 1268 } 1269 1270 if (i >= nipsecsa_targets + n) 1271 return (0); 1272 1273 if (ap->a_ncookies) { 1274 ncookies = min(ncookies, (n - i)); 1275 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1276 M_WAITOK); 1277 *ap->a_cookies = cookies; 1278 } 1279 1280 n = 0; 1281 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) { 1282 kt = &ipsecsa_targets[i]; 1283 d.d_namlen = kt->kt_namlen; 1284 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1285 &kern_targets[0], kt, ap)) != 0) 1286 break; 1287 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1288 d.d_type = kt->kt_type; 1289 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1290 break; 1291 if (cookies) 1292 *cookies++ = i + 1; 1293 n++; 1294 } 1295 if (error) { 1296 ncookies = n; 1297 break; 1298 } 1299 1300 TAILQ_FOREACH(sav, &satailq, tailq) { 1301 for (sav2 = TAILQ_FIRST(&satailq); 1302 sav2 != sav; 1303 sav2 = TAILQ_NEXT(sav2, tailq)) { 1304 if (sav->spi == sav2->spi) { 1305 /* multiple SA with same SPI */ 1306 break; 1307 } 1308 } 1309 if (sav != sav2 && sav->spi == sav2->spi) 1310 continue; 1311 if (uio->uio_resid < UIO_MX) 1312 break; 1313 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt, 1314 sav->spi, ap)) != 0) 1315 break; 1316 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name), 1317 "%u", ntohl(sav->spi)); 1318 d.d_type = DT_REG; 1319 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1320 break; 1321 if (cookies) 1322 *cookies++ = i + 1; 1323 n++; 1324 i++; 1325 } 1326 ncookies = n; 1327 break; 1328 1329 case KFSipsecspdir: 1330 /* count SP in the system */ 1331 n = 0; 1332 TAILQ_FOREACH(sp, &sptailq, tailq) 1333 n++; 1334 1335 if (i >= nipsecsp_targets + n) 1336 return (0); 1337 1338 if (ap->a_ncookies) { 1339 ncookies = min(ncookies, (n - i)); 1340 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1341 M_WAITOK); 1342 *ap->a_cookies = cookies; 1343 } 1344 1345 n = 0; 1346 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) { 1347 kt = &ipsecsp_targets[i]; 1348 d.d_namlen = kt->kt_namlen; 1349 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1350 &kern_targets[0], kt, ap)) != 0) 1351 break; 1352 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1353 d.d_type = kt->kt_type; 1354 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1355 break; 1356 if (cookies) 1357 *cookies++ = i + 1; 1358 n++; 1359 } 1360 if (error) { 1361 ncookies = n; 1362 break; 1363 } 1364 1365 TAILQ_FOREACH(sp, &sptailq, tailq) { 1366 if (uio->uio_resid < UIO_MX) 1367 break; 1368 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt, 1369 sp->id, ap)) != 0) 1370 break; 1371 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name), 1372 "%u", sp->id); 1373 d.d_type = DT_REG; 1374 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1375 break; 1376 if (cookies) 1377 *cookies++ = i + 1; 1378 n++; 1379 i++; 1380 } 1381 ncookies = n; 1382 break; 1383 #endif 1384 1385 default: 1386 error = ENOTDIR; 1387 break; 1388 } 1389 1390 if (ap->a_ncookies) { 1391 if (error) { 1392 if (cookies) 1393 free(*ap->a_cookies, M_TEMP); 1394 *ap->a_ncookies = 0; 1395 *ap->a_cookies = NULL; 1396 } else 1397 *ap->a_ncookies = ncookies; 1398 } 1399 1400 uio->uio_offset = i; 1401 return (error); 1402 } 1403 1404 int 1405 kernfs_inactive(v) 1406 void *v; 1407 { 1408 struct vop_inactive_args /* { 1409 struct vnode *a_vp; 1410 bool *a_recycle; 1411 } */ *ap = v; 1412 struct vnode *vp = ap->a_vp; 1413 const struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1414 #ifdef IPSEC 1415 struct mbuf *m; 1416 struct secpolicy *sp; 1417 #endif 1418 1419 *ap->a_recycle = false; 1420 switch (kfs->kfs_type) { 1421 #ifdef IPSEC 1422 case KFSipsecsa: 1423 m = key_setdumpsa_spi(htonl(kfs->kfs_value)); 1424 if (m) 1425 m_freem(m); 1426 else 1427 *ap->a_recycle = true; 1428 break; 1429 case KFSipsecsp: 1430 sp = key_getspbyid(kfs->kfs_value); 1431 if (sp) 1432 key_freesp(sp); 1433 else { 1434 *ap->a_recycle = true; 1435 } 1436 break; 1437 #endif 1438 default: 1439 break; 1440 } 1441 VOP_UNLOCK(vp, 0); 1442 return (0); 1443 } 1444 1445 int 1446 kernfs_reclaim(v) 1447 void *v; 1448 { 1449 struct vop_reclaim_args /* { 1450 struct vnode *a_vp; 1451 } */ *ap = v; 1452 1453 return (kernfs_freevp(ap->a_vp)); 1454 } 1455 1456 /* 1457 * Return POSIX pathconf information applicable to special devices. 1458 */ 1459 int 1460 kernfs_pathconf(v) 1461 void *v; 1462 { 1463 struct vop_pathconf_args /* { 1464 struct vnode *a_vp; 1465 int a_name; 1466 register_t *a_retval; 1467 } */ *ap = v; 1468 1469 switch (ap->a_name) { 1470 case _PC_LINK_MAX: 1471 *ap->a_retval = LINK_MAX; 1472 return (0); 1473 case _PC_MAX_CANON: 1474 *ap->a_retval = MAX_CANON; 1475 return (0); 1476 case _PC_MAX_INPUT: 1477 *ap->a_retval = MAX_INPUT; 1478 return (0); 1479 case _PC_PIPE_BUF: 1480 *ap->a_retval = PIPE_BUF; 1481 return (0); 1482 case _PC_CHOWN_RESTRICTED: 1483 *ap->a_retval = 1; 1484 return (0); 1485 case _PC_VDISABLE: 1486 *ap->a_retval = _POSIX_VDISABLE; 1487 return (0); 1488 case _PC_SYNC_IO: 1489 *ap->a_retval = 1; 1490 return (0); 1491 default: 1492 return (EINVAL); 1493 } 1494 /* NOTREACHED */ 1495 } 1496 1497 /* 1498 * Print out the contents of a /dev/fd vnode. 1499 */ 1500 /* ARGSUSED */ 1501 int 1502 kernfs_print(void *v) 1503 { 1504 1505 printf("tag VT_KERNFS, kernfs vnode\n"); 1506 return (0); 1507 } 1508 1509 int 1510 kernfs_link(v) 1511 void *v; 1512 { 1513 struct vop_link_args /* { 1514 struct vnode *a_dvp; 1515 struct vnode *a_vp; 1516 struct componentname *a_cnp; 1517 } */ *ap = v; 1518 1519 VOP_ABORTOP(ap->a_dvp, ap->a_cnp); 1520 vput(ap->a_dvp); 1521 return (EROFS); 1522 } 1523 1524 int 1525 kernfs_symlink(v) 1526 void *v; 1527 { 1528 struct vop_symlink_args /* { 1529 struct vnode *a_dvp; 1530 struct vnode **a_vpp; 1531 struct componentname *a_cnp; 1532 struct vattr *a_vap; 1533 char *a_target; 1534 } */ *ap = v; 1535 1536 VOP_ABORTOP(ap->a_dvp, ap->a_cnp); 1537 vput(ap->a_dvp); 1538 return (EROFS); 1539 } 1540