xref: /netbsd-src/sys/miscfs/kernfs/kernfs_vnops.c (revision 48fb7bfab72acd4281a53bbee5ccf3f809019e75)
1 /*	$NetBSD: kernfs_vnops.c,v 1.150 2014/02/07 15:29:22 hannken Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software donated to Berkeley by
8  * Jan-Simon Pendry.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kernfs_vnops.c	8.15 (Berkeley) 5/21/95
35  */
36 
37 /*
38  * Kernel parameter filesystem (/kern)
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.150 2014/02/07 15:29:22 hannken Exp $");
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/vmmeter.h>
48 #include <sys/time.h>
49 #include <sys/proc.h>
50 #include <sys/vnode.h>
51 #include <sys/malloc.h>
52 #include <sys/file.h>
53 #include <sys/stat.h>
54 #include <sys/mount.h>
55 #include <sys/namei.h>
56 #include <sys/buf.h>
57 #include <sys/dirent.h>
58 #include <sys/msgbuf.h>
59 
60 #include <miscfs/genfs/genfs.h>
61 #include <miscfs/kernfs/kernfs.h>
62 
63 #include <uvm/uvm_extern.h>
64 
65 #define KSTRING	256		/* Largest I/O available via this filesystem */
66 #define	UIO_MX 32
67 
68 #define	READ_MODE	(S_IRUSR|S_IRGRP|S_IROTH)
69 #define	WRITE_MODE	(S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH)
70 #define	UREAD_MODE	(S_IRUSR)
71 #define	DIR_MODE	(S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH)
72 #define	UDIR_MODE	(S_IRUSR|S_IXUSR)
73 
74 #define N(s) sizeof(s)-1, s
75 const struct kern_target kern_targets[] = {
76 /* NOTE: The name must be less than UIO_MX-16 chars in length */
77      /*        name            data          tag           type  ro/rw */
78      { DT_DIR, N("."),         0,            KFSkern,        VDIR, DIR_MODE   },
79      { DT_DIR, N(".."),        0,            KFSroot,        VDIR, DIR_MODE   },
80      { DT_REG, N("boottime"),  &boottime.tv_sec, KFSint,     VREG, READ_MODE  },
81 			/* XXXUNCONST */
82      { DT_REG, N("copyright"), __UNCONST(copyright),
83      					     KFSstring,      VREG, READ_MODE  },
84      { DT_REG, N("hostname"),  0,            KFShostname,    VREG, WRITE_MODE },
85      { DT_REG, N("hz"),        &hz,          KFSint,         VREG, READ_MODE  },
86      { DT_REG, N("loadavg"),   0,            KFSavenrun,     VREG, READ_MODE  },
87      { DT_REG, N("msgbuf"),    0,	     KFSmsgbuf,      VREG, READ_MODE  },
88      { DT_REG, N("pagesize"),  &uvmexp.pagesize, KFSint,     VREG, READ_MODE  },
89      { DT_REG, N("physmem"),   &physmem,     KFSint,         VREG, READ_MODE  },
90 #if 0
91      { DT_DIR, N("root"),      0,            KFSnull,        VDIR, DIR_MODE   },
92 #endif
93      { DT_BLK, N("rootdev"),   &rootdev,     KFSdevice,      VBLK, READ_MODE  },
94      { DT_CHR, N("rrootdev"),  &rrootdev,    KFSdevice,      VCHR, READ_MODE  },
95      { DT_REG, N("time"),      0,            KFStime,        VREG, READ_MODE  },
96 			/* XXXUNCONST */
97      { DT_REG, N("version"),   __UNCONST(version),
98      					     KFSstring,      VREG, READ_MODE  },
99 };
100 const struct kern_target subdir_targets[] = {
101 /* NOTE: The name must be less than UIO_MX-16 chars in length */
102      /*        name            data          tag           type  ro/rw */
103      { DT_DIR, N("."),         0,            KFSsubdir,      VDIR, DIR_MODE   },
104      { DT_DIR, N(".."),        0,            KFSkern,        VDIR, DIR_MODE   },
105 };
106 #undef N
107 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets =
108 	SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets);
109 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
110 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]);
111 int nkern_dirs = 2;
112 
113 int kernfs_try_fileop(kfstype, kfsfileop, void *, int);
114 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **,
115     size_t, int);
116 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *,
117     size_t, int);
118 
119 static int kernfs_default_xread(void *v);
120 static int kernfs_default_xwrite(void *v);
121 static int kernfs_default_fileop_getattr(void *);
122 
123 /* must include all fileop's */
124 const struct kernfs_fileop kernfs_default_fileops[] = {
125   { .kf_fileop = KERNFS_XREAD },
126   { .kf_fileop = KERNFS_XWRITE },
127   { .kf_fileop = KERNFS_FILEOP_OPEN },
128   { .kf_fileop = KERNFS_FILEOP_GETATTR,
129     .kf_vop = kernfs_default_fileop_getattr },
130   { .kf_fileop = KERNFS_FILEOP_IOCTL },
131   { .kf_fileop = KERNFS_FILEOP_CLOSE },
132   { .kf_fileop = KERNFS_FILEOP_READ,
133     .kf_vop = kernfs_default_xread },
134   { .kf_fileop = KERNFS_FILEOP_WRITE,
135     .kf_vop = kernfs_default_xwrite },
136 };
137 
138 int	kernfs_lookup(void *);
139 #define	kernfs_create	genfs_eopnotsupp
140 #define	kernfs_mknod	genfs_eopnotsupp
141 int	kernfs_open(void *);
142 int	kernfs_close(void *);
143 int	kernfs_access(void *);
144 int	kernfs_getattr(void *);
145 int	kernfs_setattr(void *);
146 int	kernfs_read(void *);
147 int	kernfs_write(void *);
148 #define	kernfs_fcntl	genfs_fcntl
149 int	kernfs_ioctl(void *);
150 #define	kernfs_poll	genfs_poll
151 #define kernfs_revoke	genfs_revoke
152 #define	kernfs_fsync	genfs_nullop
153 #define	kernfs_seek	genfs_nullop
154 #define	kernfs_remove	genfs_eopnotsupp
155 int	kernfs_link(void *);
156 #define	kernfs_rename	genfs_eopnotsupp
157 #define	kernfs_mkdir	genfs_eopnotsupp
158 #define	kernfs_rmdir	genfs_eopnotsupp
159 int	kernfs_symlink(void *);
160 int	kernfs_readdir(void *);
161 #define	kernfs_readlink	genfs_eopnotsupp
162 #define	kernfs_abortop	genfs_abortop
163 int	kernfs_inactive(void *);
164 int	kernfs_reclaim(void *);
165 #define	kernfs_lock	genfs_lock
166 #define	kernfs_unlock	genfs_unlock
167 #define	kernfs_bmap	genfs_badop
168 #define	kernfs_strategy	genfs_badop
169 int	kernfs_print(void *);
170 #define	kernfs_islocked	genfs_islocked
171 int	kernfs_pathconf(void *);
172 #define	kernfs_advlock	genfs_einval
173 #define	kernfs_bwrite	genfs_eopnotsupp
174 #define	kernfs_putpages	genfs_putpages
175 
176 static int	kernfs_xread(struct kernfs_node *, int, char **,
177 				size_t, size_t *);
178 static int	kernfs_xwrite(const struct kernfs_node *, char *, size_t);
179 
180 int (**kernfs_vnodeop_p)(void *);
181 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = {
182 	{ &vop_default_desc, vn_default_error },
183 	{ &vop_lookup_desc, kernfs_lookup },		/* lookup */
184 	{ &vop_create_desc, kernfs_create },		/* create */
185 	{ &vop_mknod_desc, kernfs_mknod },		/* mknod */
186 	{ &vop_open_desc, kernfs_open },		/* open */
187 	{ &vop_close_desc, kernfs_close },		/* close */
188 	{ &vop_access_desc, kernfs_access },		/* access */
189 	{ &vop_getattr_desc, kernfs_getattr },		/* getattr */
190 	{ &vop_setattr_desc, kernfs_setattr },		/* setattr */
191 	{ &vop_read_desc, kernfs_read },		/* read */
192 	{ &vop_write_desc, kernfs_write },		/* write */
193 	{ &vop_fcntl_desc, kernfs_fcntl },		/* fcntl */
194 	{ &vop_ioctl_desc, kernfs_ioctl },		/* ioctl */
195 	{ &vop_poll_desc, kernfs_poll },		/* poll */
196 	{ &vop_revoke_desc, kernfs_revoke },		/* revoke */
197 	{ &vop_fsync_desc, kernfs_fsync },		/* fsync */
198 	{ &vop_seek_desc, kernfs_seek },		/* seek */
199 	{ &vop_remove_desc, kernfs_remove },		/* remove */
200 	{ &vop_link_desc, kernfs_link },		/* link */
201 	{ &vop_rename_desc, kernfs_rename },		/* rename */
202 	{ &vop_mkdir_desc, kernfs_mkdir },		/* mkdir */
203 	{ &vop_rmdir_desc, kernfs_rmdir },		/* rmdir */
204 	{ &vop_symlink_desc, kernfs_symlink },		/* symlink */
205 	{ &vop_readdir_desc, kernfs_readdir },		/* readdir */
206 	{ &vop_readlink_desc, kernfs_readlink },	/* readlink */
207 	{ &vop_abortop_desc, kernfs_abortop },		/* abortop */
208 	{ &vop_inactive_desc, kernfs_inactive },	/* inactive */
209 	{ &vop_reclaim_desc, kernfs_reclaim },		/* reclaim */
210 	{ &vop_lock_desc, kernfs_lock },		/* lock */
211 	{ &vop_unlock_desc, kernfs_unlock },		/* unlock */
212 	{ &vop_bmap_desc, kernfs_bmap },		/* bmap */
213 	{ &vop_strategy_desc, kernfs_strategy },	/* strategy */
214 	{ &vop_print_desc, kernfs_print },		/* print */
215 	{ &vop_islocked_desc, kernfs_islocked },	/* islocked */
216 	{ &vop_pathconf_desc, kernfs_pathconf },	/* pathconf */
217 	{ &vop_advlock_desc, kernfs_advlock },		/* advlock */
218 	{ &vop_bwrite_desc, kernfs_bwrite },		/* bwrite */
219 	{ &vop_putpages_desc, kernfs_putpages },	/* putpages */
220 	{ NULL, NULL }
221 };
222 const struct vnodeopv_desc kernfs_vnodeop_opv_desc =
223 	{ &kernfs_vnodeop_p, kernfs_vnodeop_entries };
224 
225 static inline int
226 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b)
227 {
228 	if (a->kf_type < b->kf_type)
229 		return -1;
230 	if (a->kf_type > b->kf_type)
231 		return 1;
232 	if (a->kf_fileop < b->kf_fileop)
233 		return -1;
234 	if (a->kf_fileop > b->kf_fileop)
235 		return 1;
236 	return (0);
237 }
238 
239 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree =
240 	SPLAY_INITIALIZER(kfsfileoptree);
241 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
242 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare);
243 
244 kfstype
245 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf)
246 {
247 	static u_char nextfreetype = KFSlasttype;
248 	struct kernfs_fileop *dkf, *fkf, skf;
249 	int i;
250 
251 	/* XXX need to keep track of dkf's memory if we support
252            deallocating types */
253 	dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK);
254 	memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops));
255 
256 	for (i = 0; i < sizeof(kernfs_default_fileops) /
257 		     sizeof(kernfs_default_fileops[0]); i++) {
258 		dkf[i].kf_type = nextfreetype;
259 		SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]);
260 	}
261 
262 	for (i = 0; i < nkf; i++) {
263 		skf.kf_type = nextfreetype;
264 		skf.kf_fileop = kf[i].kf_fileop;
265 		if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
266 			fkf->kf_vop = kf[i].kf_vop;
267 	}
268 
269 	return nextfreetype++;
270 }
271 
272 int
273 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error)
274 {
275 	struct kernfs_fileop *kf, skf;
276 
277 	skf.kf_type = type;
278 	skf.kf_fileop = fileop;
279 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
280 		if (kf->kf_vop)
281 			return kf->kf_vop(v);
282 	return error;
283 }
284 
285 int
286 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp,
287     size_t len, int error)
288 {
289 	struct kernfs_fileop *kf, skf;
290 
291 	skf.kf_type = type;
292 	skf.kf_fileop = KERNFS_XREAD;
293 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
294 		if (kf->kf_xread)
295 			return kf->kf_xread(kfs, bfp, len);
296 	return error;
297 }
298 
299 int
300 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf,
301     size_t len, int error)
302 {
303 	struct kernfs_fileop *kf, skf;
304 
305 	skf.kf_type = type;
306 	skf.kf_fileop = KERNFS_XWRITE;
307 	if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf)))
308 		if (kf->kf_xwrite)
309 			return kf->kf_xwrite(kfs, bf, len);
310 	return error;
311 }
312 
313 int
314 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt)
315 {
316 	struct kernfs_subdir *ks, *parent;
317 
318 	if (pkt == NULL) {
319 		SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue);
320 		nkern_targets++;
321 		if (dkt->dkt_kt.kt_vtype == VDIR)
322 			nkern_dirs++;
323 	} else {
324 		parent = (struct kernfs_subdir *)pkt->kt_data;
325 		SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue);
326 		parent->ks_nentries++;
327 		if (dkt->dkt_kt.kt_vtype == VDIR)
328 			parent->ks_dirs++;
329 	}
330 	if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) {
331 		ks = malloc(sizeof(struct kernfs_subdir),
332 		    M_TEMP, M_WAITOK);
333 		SIMPLEQ_INIT(&ks->ks_entries);
334 		ks->ks_nentries = 2; /* . and .. */
335 		ks->ks_dirs = 2;
336 		ks->ks_parent = pkt ? pkt : &kern_targets[0];
337 		dkt->dkt_kt.kt_data = ks;
338 	}
339 	return 0;
340 }
341 
342 static int
343 kernfs_xread(struct kernfs_node *kfs, int off, char **bufp, size_t len, size_t *wrlen)
344 {
345 	const struct kern_target *kt;
346 	int err;
347 
348 	kt = kfs->kfs_kt;
349 
350 	switch (kfs->kfs_type) {
351 	case KFStime: {
352 		struct timeval tv;
353 
354 		microtime(&tv);
355 		snprintf(*bufp, len, "%lld %ld\n", (long long)tv.tv_sec,
356 		    (long)tv.tv_usec);
357 		break;
358 	}
359 
360 	case KFSint: {
361 		int *ip = kt->kt_data;
362 
363 		snprintf(*bufp, len, "%d\n", *ip);
364 		break;
365 	}
366 
367 	case KFSstring: {
368 		char *cp = kt->kt_data;
369 
370 		*bufp = cp;
371 		break;
372 	}
373 
374 	case KFSmsgbuf: {
375 		long n;
376 
377 		/*
378 		 * deal with cases where the message buffer has
379 		 * become corrupted.
380 		 */
381 		if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
382 			msgbufenabled = 0;
383 			return (ENXIO);
384 		}
385 
386 		/*
387 		 * Note that reads of /kern/msgbuf won't necessarily yield
388 		 * consistent results, if the message buffer is modified
389 		 * while the read is in progress.  The worst that can happen
390 		 * is that incorrect data will be read.  There's no way
391 		 * that this can crash the system unless the values in the
392 		 * message buffer header are corrupted, but that'll cause
393 		 * the system to die anyway.
394 		 */
395 		if (off >= msgbufp->msg_bufs) {
396 			*wrlen = 0;
397 			return (0);
398 		}
399 		n = msgbufp->msg_bufx + off;
400 		if (n >= msgbufp->msg_bufs)
401 			n -= msgbufp->msg_bufs;
402 		len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off);
403 		*bufp = msgbufp->msg_bufc + n;
404 		*wrlen = len;
405 		return (0);
406 	}
407 
408 	case KFShostname: {
409 		char *cp = hostname;
410 		size_t xlen = hostnamelen;
411 
412 		if (xlen >= (len - 2))
413 			return (EINVAL);
414 
415 		memcpy(*bufp, cp, xlen);
416 		(*bufp)[xlen] = '\n';
417 		(*bufp)[xlen+1] = '\0';
418 		break;
419 	}
420 
421 	case KFSavenrun:
422 		averunnable.fscale = FSCALE;
423 		snprintf(*bufp, len, "%d %d %d %ld\n",
424 		    averunnable.ldavg[0], averunnable.ldavg[1],
425 		    averunnable.ldavg[2], averunnable.fscale);
426 		break;
427 
428 	default:
429 		err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len,
430 		    EOPNOTSUPP);
431 		if (err)
432 			return err;
433 	}
434 
435 	len = strlen(*bufp);
436 	if (len <= off)
437 		*wrlen = 0;
438 	else {
439 		*bufp += off;
440 		*wrlen = len - off;
441 	}
442 	return (0);
443 }
444 
445 static int
446 kernfs_xwrite(const struct kernfs_node *kfs, char *bf, size_t len)
447 {
448 
449 	switch (kfs->kfs_type) {
450 	case KFShostname:
451 		if (bf[len-1] == '\n')
452 			--len;
453 		memcpy(hostname, bf, len);
454 		hostname[len] = '\0';
455 		hostnamelen = (size_t) len;
456 		return (0);
457 
458 	default:
459 		return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO);
460 	}
461 }
462 
463 
464 /*
465  * vp is the current namei directory
466  * ndp is the name to locate in that directory...
467  */
468 int
469 kernfs_lookup(void *v)
470 {
471 	struct vop_lookup_v2_args /* {
472 		struct vnode * a_dvp;
473 		struct vnode ** a_vpp;
474 		struct componentname * a_cnp;
475 	} */ *ap = v;
476 	struct componentname *cnp = ap->a_cnp;
477 	struct vnode **vpp = ap->a_vpp;
478 	struct vnode *dvp = ap->a_dvp;
479 	const char *pname = cnp->cn_nameptr;
480 	const struct kernfs_node *kfs;
481 	const struct kern_target *kt;
482 	const struct dyn_kern_target *dkt;
483 	const struct kernfs_subdir *ks;
484 	int error, i;
485 
486 	*vpp = NULLVP;
487 
488 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
489 		return (EROFS);
490 
491 	if (cnp->cn_namelen == 1 && *pname == '.') {
492 		*vpp = dvp;
493 		vref(dvp);
494 		return (0);
495 	}
496 
497 	kfs = VTOKERN(dvp);
498 	switch (kfs->kfs_type) {
499 	case KFSkern:
500 		/*
501 		 * Shouldn't get here with .. in the root node.
502 		 */
503 		if (cnp->cn_flags & ISDOTDOT)
504 			return (EIO);
505 
506 		for (i = 0; i < static_nkern_targets; i++) {
507 			kt = &kern_targets[i];
508 			if (cnp->cn_namelen == kt->kt_namlen &&
509 			    memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0)
510 				goto found;
511 		}
512 		SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) {
513 			if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
514 			    memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
515 				kt = &dkt->dkt_kt;
516 				goto found;
517 			}
518 		}
519 		break;
520 
521 	found:
522 		error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0);
523 		if (error)
524 			return error;
525 		VOP_UNLOCK(*vpp);
526 		return 0;
527 
528 	case KFSsubdir:
529 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
530 		if (cnp->cn_flags & ISDOTDOT) {
531 			kt = ks->ks_parent;
532 			goto found;
533 		}
534 
535 		SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) {
536 			if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen &&
537 			    memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) {
538 				kt = &dkt->dkt_kt;
539 				goto found;
540 			}
541 		}
542 		break;
543 
544 	default:
545 		return (ENOTDIR);
546 	}
547 
548 	return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS);
549 }
550 
551 int
552 kernfs_open(void *v)
553 {
554 	struct vop_open_args /* {
555 		struct vnode *a_vp;
556 		int a_mode;
557 		kauth_cred_t a_cred;
558 	} */ *ap = v;
559 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
560 
561 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN, v, 0);
562 }
563 
564 int
565 kernfs_close(void *v)
566 {
567 	struct vop_close_args /* {
568 		struct vnode *a_vp;
569 		int a_fflag;
570 		kauth_cred_t a_cred;
571 	} */ *ap = v;
572 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
573 
574 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE, v, 0);
575 }
576 
577 int
578 kernfs_access(void *v)
579 {
580 	struct vop_access_args /* {
581 		struct vnode *a_vp;
582 		int a_mode;
583 		kauth_cred_t a_cred;
584 	} */ *ap = v;
585 	struct vattr va;
586 	int error;
587 
588 	if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred)) != 0)
589 		return (error);
590 
591 	return kauth_authorize_vnode(ap->a_cred,
592 	    KAUTH_ACCESS_ACTION(ap->a_mode, ap->a_vp->v_type, va.va_mode),
593 	    ap->a_vp, NULL, genfs_can_access(va.va_type, va.va_mode,
594 	    va.va_uid, va.va_gid, ap->a_mode, ap->a_cred));
595 }
596 
597 static int
598 kernfs_default_fileop_getattr(void *v)
599 {
600 	struct vop_getattr_args /* {
601 		struct vnode *a_vp;
602 		struct vattr *a_vap;
603 		kauth_cred_t a_cred;
604 	} */ *ap = v;
605 	struct vattr *vap = ap->a_vap;
606 
607 	vap->va_nlink = 1;
608 	vap->va_bytes = vap->va_size = 0;
609 
610 	return 0;
611 }
612 
613 int
614 kernfs_getattr(void *v)
615 {
616 	struct vop_getattr_args /* {
617 		struct vnode *a_vp;
618 		struct vattr *a_vap;
619 		kauth_cred_t a_cred;
620 	} */ *ap = v;
621 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
622 	struct kernfs_subdir *ks;
623 	struct vattr *vap = ap->a_vap;
624 	int error = 0;
625 	char strbuf[KSTRING], *bf;
626 	size_t nread, total;
627 
628 	vattr_null(vap);
629 	vap->va_type = ap->a_vp->v_type;
630 	vap->va_uid = 0;
631 	vap->va_gid = 0;
632 	vap->va_mode = kfs->kfs_mode;
633 	vap->va_fileid = kfs->kfs_fileno;
634 	vap->va_flags = 0;
635 	vap->va_size = 0;
636 	vap->va_blocksize = DEV_BSIZE;
637 	/* Make all times be current TOD, except for the "boottime" node. */
638 	if (kfs->kfs_kt->kt_namlen == 8 &&
639 	    !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) {
640 		vap->va_ctime = boottime;
641 	} else {
642 		getnanotime(&vap->va_ctime);
643 	}
644 	vap->va_atime = vap->va_mtime = vap->va_ctime;
645 	vap->va_gen = 0;
646 	vap->va_flags = 0;
647 	vap->va_rdev = 0;
648 	vap->va_bytes = 0;
649 
650 	switch (kfs->kfs_type) {
651 	case KFSkern:
652 		vap->va_nlink = nkern_dirs;
653 		vap->va_bytes = vap->va_size = DEV_BSIZE;
654 		break;
655 
656 	case KFSroot:
657 		vap->va_nlink = 1;
658 		vap->va_bytes = vap->va_size = DEV_BSIZE;
659 		break;
660 
661 	case KFSsubdir:
662 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
663 		vap->va_nlink = ks->ks_dirs;
664 		vap->va_bytes = vap->va_size = DEV_BSIZE;
665 		break;
666 
667 	case KFSnull:
668 	case KFStime:
669 	case KFSint:
670 	case KFSstring:
671 	case KFShostname:
672 	case KFSavenrun:
673 	case KFSdevice:
674 	case KFSmsgbuf:
675 		vap->va_nlink = 1;
676 		total = 0;
677 		do {
678 			bf = strbuf;
679 			error = kernfs_xread(kfs, total, &bf,
680 			    sizeof(strbuf), &nread);
681 			total += nread;
682 		} while (error == 0 && nread != 0);
683 		vap->va_bytes = vap->va_size = total;
684 		break;
685 
686 	default:
687 		error = kernfs_try_fileop(kfs->kfs_type,
688 		    KERNFS_FILEOP_GETATTR, v, EINVAL);
689 		break;
690 	}
691 
692 	return (error);
693 }
694 
695 /*ARGSUSED*/
696 int
697 kernfs_setattr(void *v)
698 {
699 
700 	/*
701 	 * Silently ignore attribute changes.
702 	 * This allows for open with truncate to have no
703 	 * effect until some data is written.  I want to
704 	 * do it this way because all writes are atomic.
705 	 */
706 	return (0);
707 }
708 
709 int
710 kernfs_default_xread(void *v)
711 {
712 	struct vop_read_args /* {
713 		struct vnode *a_vp;
714 		struct uio *a_uio;
715 		int  a_ioflag;
716 		kauth_cred_t a_cred;
717 	} */ *ap = v;
718 	struct uio *uio = ap->a_uio;
719 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
720 	char strbuf[KSTRING], *bf;
721 	int off;
722 	size_t len;
723 	int error;
724 
725 	if (ap->a_vp->v_type == VDIR)
726 		return EISDIR;
727 
728 	off = (int)uio->uio_offset;
729 	/* Don't allow negative offsets */
730 	if (off < 0)
731 		return EINVAL;
732 
733 	bf = strbuf;
734 	if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0)
735 		error = uiomove(bf, len, uio);
736 	return (error);
737 }
738 
739 int
740 kernfs_read(void *v)
741 {
742 	struct vop_read_args /* {
743 		struct vnode *a_vp;
744 		struct uio *a_uio;
745 		int  a_ioflag;
746 		struct ucred *a_cred;
747 	} */ *ap = v;
748 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
749 
750 	if (kfs->kfs_type < KFSlasttype) {
751 		/* use default function */
752 		return kernfs_default_xread(v);
753 	}
754 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v,
755 	   EOPNOTSUPP);
756 }
757 
758 static int
759 kernfs_default_xwrite(void *v)
760 {
761 	struct vop_write_args /* {
762 		struct vnode *a_vp;
763 		struct uio *a_uio;
764 		int  a_ioflag;
765 		kauth_cred_t a_cred;
766 	} */ *ap = v;
767 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
768 	struct uio *uio = ap->a_uio;
769 	int error;
770 	size_t xlen;
771 	char strbuf[KSTRING];
772 
773 	if (uio->uio_offset != 0)
774 		return (EINVAL);
775 
776 	xlen = min(uio->uio_resid, KSTRING-1);
777 	if ((error = uiomove(strbuf, xlen, uio)) != 0)
778 		return (error);
779 
780 	if (uio->uio_resid != 0)
781 		return (EIO);
782 
783 	strbuf[xlen] = '\0';
784 	xlen = strlen(strbuf);
785 	return (kernfs_xwrite(kfs, strbuf, xlen));
786 }
787 
788 int
789 kernfs_write(void *v)
790 {
791 	struct vop_write_args /* {
792 		struct vnode *a_vp;
793 		struct uio *a_uio;
794 		int  a_ioflag;
795 		kauth_cred_t a_cred;
796 	} */ *ap = v;
797 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
798 
799 	if (kfs->kfs_type < KFSlasttype) {
800 		/* use default function */
801 		return kernfs_default_xwrite(v);
802 	}
803 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v,
804 	    EOPNOTSUPP);
805 }
806 
807 int
808 kernfs_ioctl(void *v)
809 {
810 	struct vop_ioctl_args /* {
811 		const struct vnodeop_desc *a_desc;
812 		struct vnode *a_vp;
813 		u_long a_command;
814 		void *a_data;
815 		int a_fflag;
816 		kauth_cred_t a_cred;
817 	} */ *ap = v;
818 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
819 
820 	return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v,
821 	    EPASSTHROUGH);
822 }
823 
824 static int
825 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt,
826     u_int32_t value, struct vop_readdir_args *ap)
827 {
828 	struct kernfs_node *kfs;
829 	struct vnode *vp;
830 	int error;
831 
832 	if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt,
833 	    value)) != 0)
834 		return error;
835 	if (kt->kt_tag == KFSdevice) {
836 		struct vattr va;
837 
838 		error = VOP_GETATTR(vp, &va, ap->a_cred);
839 		if (error != 0) {
840 			return error;
841 		}
842 		d->d_fileno = va.va_fileid;
843 	} else {
844 		kfs = VTOKERN(vp);
845 		d->d_fileno = kfs->kfs_fileno;
846 	}
847 	vput(vp);
848 	return 0;
849 }
850 
851 static int
852 kernfs_setdirentfileno(struct dirent *d, off_t entry,
853     struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt,
854     const struct kern_target *kt, struct vop_readdir_args *ap)
855 {
856 	const struct kern_target *ikt;
857 	int error;
858 
859 	switch (entry) {
860 	case 0:
861 		d->d_fileno = thisdir_kfs->kfs_fileno;
862 		return 0;
863 	case 1:
864 		ikt = parent_kt;
865 		break;
866 	default:
867 		ikt = kt;
868 		break;
869 	}
870 	if (ikt != thisdir_kfs->kfs_kt) {
871 		if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0)
872 			return error;
873 	} else
874 		d->d_fileno = thisdir_kfs->kfs_fileno;
875 	return 0;
876 }
877 
878 int
879 kernfs_readdir(void *v)
880 {
881 	struct vop_readdir_args /* {
882 		struct vnode *a_vp;
883 		struct uio *a_uio;
884 		kauth_cred_t a_cred;
885 		int *a_eofflag;
886 		off_t **a_cookies;
887 		int a_*ncookies;
888 	} */ *ap = v;
889 	struct uio *uio = ap->a_uio;
890 	struct dirent d;
891 	struct kernfs_node *kfs = VTOKERN(ap->a_vp);
892 	const struct kern_target *kt;
893 	const struct dyn_kern_target *dkt = NULL;
894 	const struct kernfs_subdir *ks;
895 	off_t i, j;
896 	int error;
897 	off_t *cookies = NULL;
898 	int ncookies = 0, n;
899 
900 	if (uio->uio_resid < UIO_MX)
901 		return (EINVAL);
902 	if (uio->uio_offset < 0)
903 		return (EINVAL);
904 
905 	error = 0;
906 	i = uio->uio_offset;
907 	memset(&d, 0, sizeof(d));
908 	d.d_reclen = UIO_MX;
909 	ncookies = uio->uio_resid / UIO_MX;
910 
911 	switch (kfs->kfs_type) {
912 	case KFSkern:
913 		if (i >= nkern_targets)
914 			return (0);
915 
916 		if (ap->a_ncookies) {
917 			ncookies = min(ncookies, (nkern_targets - i));
918 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
919 			    M_WAITOK);
920 			*ap->a_cookies = cookies;
921 		}
922 
923 		n = 0;
924 		for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) {
925 			if (i < static_nkern_targets)
926 				kt = &kern_targets[i];
927 			else {
928 				if (dkt == NULL) {
929 					dkt = SIMPLEQ_FIRST(&dyn_kern_targets);
930 					for (j = static_nkern_targets; j < i &&
931 						     dkt != NULL; j++)
932 						dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
933 					if (j != i)
934 						break;
935 				} else {
936 					dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
937 				}
938 				if (dkt == NULL)
939 					break;
940 				kt = &dkt->dkt_kt;
941 			}
942 			if (kt->kt_tag == KFSdevice) {
943 				dev_t *dp = kt->kt_data;
944 				struct vnode *fvp;
945 
946 				if (*dp == NODEV ||
947 				    !vfinddev(*dp, kt->kt_vtype, &fvp))
948 					continue;
949 				vrele(fvp);
950 			}
951 			if (kt->kt_tag == KFSmsgbuf) {
952 				if (!msgbufenabled
953 				    || msgbufp->msg_magic != MSG_MAGIC) {
954 					continue;
955 				}
956 			}
957 			d.d_namlen = kt->kt_namlen;
958 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
959 			    &kern_targets[0], kt, ap)) != 0)
960 				break;
961 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
962 			d.d_type = kt->kt_type;
963 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
964 				break;
965 			if (cookies)
966 				*cookies++ = i + 1;
967 			n++;
968 		}
969 		ncookies = n;
970 		break;
971 
972 	case KFSroot:
973 		if (i >= 2)
974 			return 0;
975 
976 		if (ap->a_ncookies) {
977 			ncookies = min(ncookies, (2 - i));
978 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
979 			    M_WAITOK);
980 			*ap->a_cookies = cookies;
981 		}
982 
983 		n = 0;
984 		for (; i < 2 && uio->uio_resid >= UIO_MX; i++) {
985 			kt = &kern_targets[i];
986 			d.d_namlen = kt->kt_namlen;
987 			d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0);
988 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
989 			d.d_type = kt->kt_type;
990 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
991 				break;
992 			if (cookies)
993 				*cookies++ = i + 1;
994 			n++;
995 		}
996 		ncookies = n;
997 		break;
998 
999 	case KFSsubdir:
1000 		ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data;
1001 		if (i >= ks->ks_nentries)
1002 			return (0);
1003 
1004 		if (ap->a_ncookies) {
1005 			ncookies = min(ncookies, (ks->ks_nentries - i));
1006 			cookies = malloc(ncookies * sizeof(off_t), M_TEMP,
1007 			    M_WAITOK);
1008 			*ap->a_cookies = cookies;
1009 		}
1010 
1011 		dkt = SIMPLEQ_FIRST(&ks->ks_entries);
1012 		for (j = 0; j < i && dkt != NULL; j++)
1013 			dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1014 		n = 0;
1015 		for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) {
1016 			if (i < 2)
1017 				kt = &subdir_targets[i];
1018 			else {
1019 				/* check if ks_nentries lied to us */
1020 				if (dkt == NULL)
1021 					break;
1022 				kt = &dkt->dkt_kt;
1023 				dkt = SIMPLEQ_NEXT(dkt, dkt_queue);
1024 			}
1025 			if (kt->kt_tag == KFSdevice) {
1026 				dev_t *dp = kt->kt_data;
1027 				struct vnode *fvp;
1028 
1029 				if (*dp == NODEV ||
1030 				    !vfinddev(*dp, kt->kt_vtype, &fvp))
1031 					continue;
1032 				vrele(fvp);
1033 			}
1034 			d.d_namlen = kt->kt_namlen;
1035 			if ((error = kernfs_setdirentfileno(&d, i, kfs,
1036 			    ks->ks_parent, kt, ap)) != 0)
1037 				break;
1038 			memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1);
1039 			d.d_type = kt->kt_type;
1040 			if ((error = uiomove(&d, UIO_MX, uio)) != 0)
1041 				break;
1042 			if (cookies)
1043 				*cookies++ = i + 1;
1044 			n++;
1045 		}
1046 		ncookies = n;
1047 		break;
1048 
1049 	default:
1050 		error = ENOTDIR;
1051 		break;
1052 	}
1053 
1054 	if (ap->a_ncookies) {
1055 		if (error) {
1056 			if (cookies)
1057 				free(*ap->a_cookies, M_TEMP);
1058 			*ap->a_ncookies = 0;
1059 			*ap->a_cookies = NULL;
1060 		} else
1061 			*ap->a_ncookies = ncookies;
1062 	}
1063 
1064 	uio->uio_offset = i;
1065 	return (error);
1066 }
1067 
1068 int
1069 kernfs_inactive(void *v)
1070 {
1071 	struct vop_inactive_args /* {
1072 		struct vnode *a_vp;
1073 		bool *a_recycle;
1074 	} */ *ap = v;
1075 	struct vnode *vp = ap->a_vp;
1076 
1077 	*ap->a_recycle = false;
1078 	VOP_UNLOCK(vp);
1079 	return (0);
1080 }
1081 
1082 int
1083 kernfs_reclaim(void *v)
1084 {
1085 	struct vop_reclaim_args /* {
1086 		struct vnode *a_vp;
1087 	} */ *ap = v;
1088 
1089 	return (kernfs_freevp(ap->a_vp));
1090 }
1091 
1092 /*
1093  * Return POSIX pathconf information applicable to special devices.
1094  */
1095 int
1096 kernfs_pathconf(void *v)
1097 {
1098 	struct vop_pathconf_args /* {
1099 		struct vnode *a_vp;
1100 		int a_name;
1101 		register_t *a_retval;
1102 	} */ *ap = v;
1103 
1104 	switch (ap->a_name) {
1105 	case _PC_LINK_MAX:
1106 		*ap->a_retval = LINK_MAX;
1107 		return (0);
1108 	case _PC_MAX_CANON:
1109 		*ap->a_retval = MAX_CANON;
1110 		return (0);
1111 	case _PC_MAX_INPUT:
1112 		*ap->a_retval = MAX_INPUT;
1113 		return (0);
1114 	case _PC_PIPE_BUF:
1115 		*ap->a_retval = PIPE_BUF;
1116 		return (0);
1117 	case _PC_CHOWN_RESTRICTED:
1118 		*ap->a_retval = 1;
1119 		return (0);
1120 	case _PC_VDISABLE:
1121 		*ap->a_retval = _POSIX_VDISABLE;
1122 		return (0);
1123 	case _PC_SYNC_IO:
1124 		*ap->a_retval = 1;
1125 		return (0);
1126 	default:
1127 		return (EINVAL);
1128 	}
1129 	/* NOTREACHED */
1130 }
1131 
1132 /*
1133  * Print out the contents of a /dev/fd vnode.
1134  */
1135 /* ARGSUSED */
1136 int
1137 kernfs_print(void *v)
1138 {
1139 
1140 	printf("tag VT_KERNFS, kernfs vnode\n");
1141 	return (0);
1142 }
1143 
1144 int
1145 kernfs_link(void *v)
1146 {
1147 	struct vop_link_args /* {
1148 		struct vnode *a_dvp;
1149 		struct vnode *a_vp;
1150 		struct componentname *a_cnp;
1151 	} */ *ap = v;
1152 
1153 	VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1154 	vput(ap->a_dvp);
1155 	return (EROFS);
1156 }
1157 
1158 int
1159 kernfs_symlink(void *v)
1160 {
1161 	struct vop_symlink_v3_args /* {
1162 		struct vnode *a_dvp;
1163 		struct vnode **a_vpp;
1164 		struct componentname *a_cnp;
1165 		struct vattr *a_vap;
1166 		char *a_target;
1167 	} */ *ap = v;
1168 
1169 	VOP_ABORTOP(ap->a_dvp, ap->a_cnp);
1170 	return (EROFS);
1171 }
1172