1 /* $NetBSD: kernfs_vnops.c,v 1.135 2009/01/11 02:45:53 christos Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software donated to Berkeley by 8 * Jan-Simon Pendry. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kernfs_vnops.c 8.15 (Berkeley) 5/21/95 35 */ 36 37 /* 38 * Kernel parameter filesystem (/kern) 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: kernfs_vnops.c,v 1.135 2009/01/11 02:45:53 christos Exp $"); 43 44 #ifdef _KERNEL_OPT 45 #include "opt_ipsec.h" 46 #endif 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/kernel.h> 51 #include <sys/vmmeter.h> 52 #include <sys/time.h> 53 #include <sys/proc.h> 54 #include <sys/vnode.h> 55 #include <sys/malloc.h> 56 #include <sys/file.h> 57 #include <sys/stat.h> 58 #include <sys/mount.h> 59 #include <sys/namei.h> 60 #include <sys/buf.h> 61 #include <sys/dirent.h> 62 #include <sys/msgbuf.h> 63 64 #include <miscfs/genfs/genfs.h> 65 #include <miscfs/kernfs/kernfs.h> 66 67 #ifdef IPSEC 68 #include <sys/mbuf.h> 69 #include <net/route.h> 70 #include <netinet/in.h> 71 #include <netinet6/ipsec.h> 72 #include <netkey/key.h> 73 #endif 74 75 #include <uvm/uvm_extern.h> 76 77 #define KSTRING 256 /* Largest I/O available via this filesystem */ 78 #define UIO_MX 32 79 80 #define READ_MODE (S_IRUSR|S_IRGRP|S_IROTH) 81 #define WRITE_MODE (S_IWUSR|S_IRUSR|S_IRGRP|S_IROTH) 82 #define UREAD_MODE (S_IRUSR) 83 #define DIR_MODE (S_IRUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) 84 #define UDIR_MODE (S_IRUSR|S_IXUSR) 85 86 #define N(s) sizeof(s)-1, s 87 const struct kern_target kern_targets[] = { 88 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 89 /* name data tag type ro/rw */ 90 { DT_DIR, N("."), 0, KFSkern, VDIR, DIR_MODE }, 91 { DT_DIR, N(".."), 0, KFSroot, VDIR, DIR_MODE }, 92 { DT_REG, N("boottime"), &boottime.tv_sec, KFSint, VREG, READ_MODE }, 93 /* XXXUNCONST */ 94 { DT_REG, N("copyright"), __UNCONST(copyright), 95 KFSstring, VREG, READ_MODE }, 96 { DT_REG, N("hostname"), 0, KFShostname, VREG, WRITE_MODE }, 97 { DT_REG, N("hz"), &hz, KFSint, VREG, READ_MODE }, 98 #ifdef IPSEC 99 { DT_DIR, N("ipsecsa"), 0, KFSipsecsadir, VDIR, UDIR_MODE }, 100 { DT_DIR, N("ipsecsp"), 0, KFSipsecspdir, VDIR, UDIR_MODE }, 101 #endif 102 { DT_REG, N("loadavg"), 0, KFSavenrun, VREG, READ_MODE }, 103 { DT_REG, N("msgbuf"), 0, KFSmsgbuf, VREG, READ_MODE }, 104 { DT_REG, N("pagesize"), &uvmexp.pagesize, KFSint, VREG, READ_MODE }, 105 { DT_REG, N("physmem"), &physmem, KFSint, VREG, READ_MODE }, 106 #if 0 107 { DT_DIR, N("root"), 0, KFSnull, VDIR, DIR_MODE }, 108 #endif 109 { DT_BLK, N("rootdev"), &rootdev, KFSdevice, VBLK, READ_MODE }, 110 { DT_CHR, N("rrootdev"), &rrootdev, KFSdevice, VCHR, READ_MODE }, 111 { DT_REG, N("time"), 0, KFStime, VREG, READ_MODE }, 112 /* XXXUNCONST */ 113 { DT_REG, N("version"), __UNCONST(version), 114 KFSstring, VREG, READ_MODE }, 115 }; 116 const struct kern_target subdir_targets[] = { 117 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 118 /* name data tag type ro/rw */ 119 { DT_DIR, N("."), 0, KFSsubdir, VDIR, DIR_MODE }, 120 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE }, 121 }; 122 #ifdef IPSEC 123 const struct kern_target ipsecsa_targets[] = { 124 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 125 /* name data tag type ro/rw */ 126 { DT_DIR, N("."), 0, KFSipsecsadir, VDIR, DIR_MODE }, 127 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE }, 128 }; 129 const struct kern_target ipsecsp_targets[] = { 130 /* NOTE: The name must be less than UIO_MX-16 chars in length */ 131 /* name data tag type ro/rw */ 132 { DT_DIR, N("."), 0, KFSipsecspdir, VDIR, DIR_MODE }, 133 { DT_DIR, N(".."), 0, KFSkern, VDIR, DIR_MODE }, 134 }; 135 const struct kern_target ipsecsa_kt = 136 { DT_DIR, N(""), 0, KFSipsecsa, VREG, UREAD_MODE }; 137 const struct kern_target ipsecsp_kt = 138 { DT_DIR, N(""), 0, KFSipsecsp, VREG, UREAD_MODE }; 139 #endif 140 #undef N 141 SIMPLEQ_HEAD(,dyn_kern_target) dyn_kern_targets = 142 SIMPLEQ_HEAD_INITIALIZER(dyn_kern_targets); 143 int nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]); 144 const int static_nkern_targets = sizeof(kern_targets) / sizeof(kern_targets[0]); 145 #ifdef IPSEC 146 int nipsecsa_targets = sizeof(ipsecsa_targets) / sizeof(ipsecsa_targets[0]); 147 int nipsecsp_targets = sizeof(ipsecsp_targets) / sizeof(ipsecsp_targets[0]); 148 int nkern_dirs = 4; /* 2 extra subdirs */ 149 #else 150 int nkern_dirs = 2; 151 #endif 152 153 int kernfs_try_fileop(kfstype, kfsfileop, void *, int); 154 int kernfs_try_xread(kfstype, const struct kernfs_node *, char **, 155 size_t, int); 156 int kernfs_try_xwrite(kfstype, const struct kernfs_node *, char *, 157 size_t, int); 158 159 static int kernfs_default_xread(void *v); 160 static int kernfs_default_xwrite(void *v); 161 static int kernfs_default_fileop_getattr(void *); 162 163 /* must include all fileop's */ 164 const struct kernfs_fileop kernfs_default_fileops[] = { 165 { .kf_fileop = KERNFS_XREAD }, 166 { .kf_fileop = KERNFS_XWRITE }, 167 { .kf_fileop = KERNFS_FILEOP_OPEN }, 168 { .kf_fileop = KERNFS_FILEOP_GETATTR, 169 .kf_vop = kernfs_default_fileop_getattr }, 170 { .kf_fileop = KERNFS_FILEOP_IOCTL }, 171 { .kf_fileop = KERNFS_FILEOP_CLOSE }, 172 { .kf_fileop = KERNFS_FILEOP_READ, 173 .kf_vop = kernfs_default_xread }, 174 { .kf_fileop = KERNFS_FILEOP_WRITE, 175 .kf_vop = kernfs_default_xwrite }, 176 }; 177 178 int kernfs_lookup(void *); 179 #define kernfs_create genfs_eopnotsupp 180 #define kernfs_mknod genfs_eopnotsupp 181 int kernfs_open(void *); 182 int kernfs_close(void *); 183 int kernfs_access(void *); 184 int kernfs_getattr(void *); 185 int kernfs_setattr(void *); 186 int kernfs_read(void *); 187 int kernfs_write(void *); 188 #define kernfs_fcntl genfs_fcntl 189 int kernfs_ioctl(void *); 190 #define kernfs_poll genfs_poll 191 #define kernfs_revoke genfs_revoke 192 #define kernfs_fsync genfs_nullop 193 #define kernfs_seek genfs_nullop 194 #define kernfs_remove genfs_eopnotsupp 195 int kernfs_link(void *); 196 #define kernfs_rename genfs_eopnotsupp 197 #define kernfs_mkdir genfs_eopnotsupp 198 #define kernfs_rmdir genfs_eopnotsupp 199 int kernfs_symlink(void *); 200 int kernfs_readdir(void *); 201 #define kernfs_readlink genfs_eopnotsupp 202 #define kernfs_abortop genfs_abortop 203 int kernfs_inactive(void *); 204 int kernfs_reclaim(void *); 205 #define kernfs_lock genfs_lock 206 #define kernfs_unlock genfs_unlock 207 #define kernfs_bmap genfs_badop 208 #define kernfs_strategy genfs_badop 209 int kernfs_print(void *); 210 #define kernfs_islocked genfs_islocked 211 int kernfs_pathconf(void *); 212 #define kernfs_advlock genfs_einval 213 #define kernfs_bwrite genfs_eopnotsupp 214 #define kernfs_putpages genfs_putpages 215 216 static int kernfs_xread(struct kernfs_node *, int, char **, 217 size_t, size_t *); 218 static int kernfs_xwrite(const struct kernfs_node *, char *, size_t); 219 220 int (**kernfs_vnodeop_p)(void *); 221 const struct vnodeopv_entry_desc kernfs_vnodeop_entries[] = { 222 { &vop_default_desc, vn_default_error }, 223 { &vop_lookup_desc, kernfs_lookup }, /* lookup */ 224 { &vop_create_desc, kernfs_create }, /* create */ 225 { &vop_mknod_desc, kernfs_mknod }, /* mknod */ 226 { &vop_open_desc, kernfs_open }, /* open */ 227 { &vop_close_desc, kernfs_close }, /* close */ 228 { &vop_access_desc, kernfs_access }, /* access */ 229 { &vop_getattr_desc, kernfs_getattr }, /* getattr */ 230 { &vop_setattr_desc, kernfs_setattr }, /* setattr */ 231 { &vop_read_desc, kernfs_read }, /* read */ 232 { &vop_write_desc, kernfs_write }, /* write */ 233 { &vop_fcntl_desc, kernfs_fcntl }, /* fcntl */ 234 { &vop_ioctl_desc, kernfs_ioctl }, /* ioctl */ 235 { &vop_poll_desc, kernfs_poll }, /* poll */ 236 { &vop_revoke_desc, kernfs_revoke }, /* revoke */ 237 { &vop_fsync_desc, kernfs_fsync }, /* fsync */ 238 { &vop_seek_desc, kernfs_seek }, /* seek */ 239 { &vop_remove_desc, kernfs_remove }, /* remove */ 240 { &vop_link_desc, kernfs_link }, /* link */ 241 { &vop_rename_desc, kernfs_rename }, /* rename */ 242 { &vop_mkdir_desc, kernfs_mkdir }, /* mkdir */ 243 { &vop_rmdir_desc, kernfs_rmdir }, /* rmdir */ 244 { &vop_symlink_desc, kernfs_symlink }, /* symlink */ 245 { &vop_readdir_desc, kernfs_readdir }, /* readdir */ 246 { &vop_readlink_desc, kernfs_readlink }, /* readlink */ 247 { &vop_abortop_desc, kernfs_abortop }, /* abortop */ 248 { &vop_inactive_desc, kernfs_inactive }, /* inactive */ 249 { &vop_reclaim_desc, kernfs_reclaim }, /* reclaim */ 250 { &vop_lock_desc, kernfs_lock }, /* lock */ 251 { &vop_unlock_desc, kernfs_unlock }, /* unlock */ 252 { &vop_bmap_desc, kernfs_bmap }, /* bmap */ 253 { &vop_strategy_desc, kernfs_strategy }, /* strategy */ 254 { &vop_print_desc, kernfs_print }, /* print */ 255 { &vop_islocked_desc, kernfs_islocked }, /* islocked */ 256 { &vop_pathconf_desc, kernfs_pathconf }, /* pathconf */ 257 { &vop_advlock_desc, kernfs_advlock }, /* advlock */ 258 { &vop_bwrite_desc, kernfs_bwrite }, /* bwrite */ 259 { &vop_putpages_desc, kernfs_putpages }, /* putpages */ 260 { NULL, NULL } 261 }; 262 const struct vnodeopv_desc kernfs_vnodeop_opv_desc = 263 { &kernfs_vnodeop_p, kernfs_vnodeop_entries }; 264 265 static inline int 266 kernfs_fileop_compare(struct kernfs_fileop *a, struct kernfs_fileop *b) 267 { 268 if (a->kf_type < b->kf_type) 269 return -1; 270 if (a->kf_type > b->kf_type) 271 return 1; 272 if (a->kf_fileop < b->kf_fileop) 273 return -1; 274 if (a->kf_fileop > b->kf_fileop) 275 return 1; 276 return (0); 277 } 278 279 SPLAY_HEAD(kfsfileoptree, kernfs_fileop) kfsfileoptree = 280 SPLAY_INITIALIZER(kfsfileoptree); 281 SPLAY_PROTOTYPE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare); 282 SPLAY_GENERATE(kfsfileoptree, kernfs_fileop, kf_node, kernfs_fileop_compare); 283 284 kfstype 285 kernfs_alloctype(int nkf, const struct kernfs_fileop *kf) 286 { 287 static u_char nextfreetype = KFSlasttype; 288 struct kernfs_fileop *dkf, *fkf, skf; 289 int i; 290 291 /* XXX need to keep track of dkf's memory if we support 292 deallocating types */ 293 dkf = malloc(sizeof(kernfs_default_fileops), M_TEMP, M_WAITOK); 294 memcpy(dkf, kernfs_default_fileops, sizeof(kernfs_default_fileops)); 295 296 for (i = 0; i < sizeof(kernfs_default_fileops) / 297 sizeof(kernfs_default_fileops[0]); i++) { 298 dkf[i].kf_type = nextfreetype; 299 SPLAY_INSERT(kfsfileoptree, &kfsfileoptree, &dkf[i]); 300 } 301 302 for (i = 0; i < nkf; i++) { 303 skf.kf_type = nextfreetype; 304 skf.kf_fileop = kf[i].kf_fileop; 305 if ((fkf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 306 fkf->kf_vop = kf[i].kf_vop; 307 } 308 309 return nextfreetype++; 310 } 311 312 int 313 kernfs_try_fileop(kfstype type, kfsfileop fileop, void *v, int error) 314 { 315 struct kernfs_fileop *kf, skf; 316 317 skf.kf_type = type; 318 skf.kf_fileop = fileop; 319 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 320 if (kf->kf_vop) 321 return kf->kf_vop(v); 322 return error; 323 } 324 325 int 326 kernfs_try_xread(kfstype type, const struct kernfs_node *kfs, char **bfp, 327 size_t len, int error) 328 { 329 struct kernfs_fileop *kf, skf; 330 331 skf.kf_type = type; 332 skf.kf_fileop = KERNFS_XREAD; 333 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 334 if (kf->kf_xread) 335 return kf->kf_xread(kfs, bfp, len); 336 return error; 337 } 338 339 int 340 kernfs_try_xwrite(kfstype type, const struct kernfs_node *kfs, char *bf, 341 size_t len, int error) 342 { 343 struct kernfs_fileop *kf, skf; 344 345 skf.kf_type = type; 346 skf.kf_fileop = KERNFS_XWRITE; 347 if ((kf = SPLAY_FIND(kfsfileoptree, &kfsfileoptree, &skf))) 348 if (kf->kf_xwrite) 349 return kf->kf_xwrite(kfs, bf, len); 350 return error; 351 } 352 353 int 354 kernfs_addentry(kernfs_parentdir_t *pkt, kernfs_entry_t *dkt) 355 { 356 struct kernfs_subdir *ks, *parent; 357 358 if (pkt == NULL) { 359 SIMPLEQ_INSERT_TAIL(&dyn_kern_targets, dkt, dkt_queue); 360 nkern_targets++; 361 if (dkt->dkt_kt.kt_vtype == VDIR) 362 nkern_dirs++; 363 } else { 364 parent = (struct kernfs_subdir *)pkt->kt_data; 365 SIMPLEQ_INSERT_TAIL(&parent->ks_entries, dkt, dkt_queue); 366 parent->ks_nentries++; 367 if (dkt->dkt_kt.kt_vtype == VDIR) 368 parent->ks_dirs++; 369 } 370 if (dkt->dkt_kt.kt_vtype == VDIR && dkt->dkt_kt.kt_data == NULL) { 371 ks = malloc(sizeof(struct kernfs_subdir), 372 M_TEMP, M_WAITOK); 373 SIMPLEQ_INIT(&ks->ks_entries); 374 ks->ks_nentries = 2; /* . and .. */ 375 ks->ks_dirs = 2; 376 ks->ks_parent = pkt ? pkt : &kern_targets[0]; 377 dkt->dkt_kt.kt_data = ks; 378 } 379 return 0; 380 } 381 382 static int 383 kernfs_xread(kfs, off, bufp, len, wrlen) 384 struct kernfs_node *kfs; 385 int off; 386 char **bufp; 387 size_t len; 388 size_t *wrlen; 389 { 390 const struct kern_target *kt; 391 #ifdef IPSEC 392 struct mbuf *m; 393 #endif 394 int err; 395 396 kt = kfs->kfs_kt; 397 398 switch (kfs->kfs_type) { 399 case KFStime: { 400 struct timeval tv; 401 402 microtime(&tv); 403 snprintf(*bufp, len, "%lld %ld\n", (long long)tv.tv_sec, 404 (long)tv.tv_usec); 405 break; 406 } 407 408 case KFSint: { 409 int *ip = kt->kt_data; 410 411 snprintf(*bufp, len, "%d\n", *ip); 412 break; 413 } 414 415 case KFSstring: { 416 char *cp = kt->kt_data; 417 418 *bufp = cp; 419 break; 420 } 421 422 case KFSmsgbuf: { 423 long n; 424 425 /* 426 * deal with cases where the message buffer has 427 * become corrupted. 428 */ 429 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) { 430 msgbufenabled = 0; 431 return (ENXIO); 432 } 433 434 /* 435 * Note that reads of /kern/msgbuf won't necessarily yield 436 * consistent results, if the message buffer is modified 437 * while the read is in progress. The worst that can happen 438 * is that incorrect data will be read. There's no way 439 * that this can crash the system unless the values in the 440 * message buffer header are corrupted, but that'll cause 441 * the system to die anyway. 442 */ 443 if (off >= msgbufp->msg_bufs) { 444 *wrlen = 0; 445 return (0); 446 } 447 n = msgbufp->msg_bufx + off; 448 if (n >= msgbufp->msg_bufs) 449 n -= msgbufp->msg_bufs; 450 len = min(msgbufp->msg_bufs - n, msgbufp->msg_bufs - off); 451 *bufp = msgbufp->msg_bufc + n; 452 *wrlen = len; 453 return (0); 454 } 455 456 case KFShostname: { 457 char *cp = hostname; 458 size_t xlen = hostnamelen; 459 460 if (xlen >= (len - 2)) 461 return (EINVAL); 462 463 memcpy(*bufp, cp, xlen); 464 (*bufp)[xlen] = '\n'; 465 (*bufp)[xlen+1] = '\0'; 466 len = strlen(*bufp); 467 break; 468 } 469 470 case KFSavenrun: 471 averunnable.fscale = FSCALE; 472 snprintf(*bufp, len, "%d %d %d %ld\n", 473 averunnable.ldavg[0], averunnable.ldavg[1], 474 averunnable.ldavg[2], averunnable.fscale); 475 break; 476 477 #ifdef IPSEC 478 case KFSipsecsa: 479 if (key_setdumpsa_spi == NULL) 480 return 0; 481 /* 482 * Note that SA configuration could be changed during the 483 * read operation, resulting in garbled output. 484 */ 485 m = key_setdumpsa_spi(htonl(kfs->kfs_value)); 486 if (!m) 487 return (ENOBUFS); 488 if (off >= m->m_pkthdr.len) { 489 *wrlen = 0; 490 m_freem(m); 491 return (0); 492 } 493 if (len > m->m_pkthdr.len - off) 494 len = m->m_pkthdr.len - off; 495 m_copydata(m, off, len, *bufp); 496 *wrlen = len; 497 m_freem(m); 498 return (0); 499 500 case KFSipsecsp: 501 /* 502 * Note that SP configuration could be changed during the 503 * read operation, resulting in garbled output. 504 */ 505 if (key_getspbyid == NULL) 506 return 0; 507 if (!kfs->kfs_v) { 508 struct secpolicy *sp; 509 510 sp = key_getspbyid(kfs->kfs_value); 511 if (sp) 512 kfs->kfs_v = sp; 513 else 514 return (ENOENT); 515 } 516 m = key_setdumpsp((struct secpolicy *)kfs->kfs_v, 517 SADB_X_SPDGET, 0, 0); 518 if (!m) 519 return (ENOBUFS); 520 if (off >= m->m_pkthdr.len) { 521 *wrlen = 0; 522 m_freem(m); 523 return (0); 524 } 525 if (len > m->m_pkthdr.len - off) 526 len = m->m_pkthdr.len - off; 527 m_copydata(m, off, len, *bufp); 528 *wrlen = len; 529 m_freem(m); 530 return (0); 531 #endif 532 533 default: 534 err = kernfs_try_xread(kfs->kfs_type, kfs, bufp, len, 535 EOPNOTSUPP); 536 if (err) 537 return err; 538 } 539 540 len = strlen(*bufp); 541 if (len <= off) 542 *wrlen = 0; 543 else { 544 *bufp += off; 545 *wrlen = len - off; 546 } 547 return (0); 548 } 549 550 static int 551 kernfs_xwrite(kfs, bf, len) 552 const struct kernfs_node *kfs; 553 char *bf; 554 size_t len; 555 { 556 557 switch (kfs->kfs_type) { 558 case KFShostname: 559 if (bf[len-1] == '\n') 560 --len; 561 memcpy(hostname, bf, len); 562 hostname[len] = '\0'; 563 hostnamelen = (size_t) len; 564 return (0); 565 566 default: 567 return kernfs_try_xwrite(kfs->kfs_type, kfs, bf, len, EIO); 568 } 569 } 570 571 572 /* 573 * vp is the current namei directory 574 * ndp is the name to locate in that directory... 575 */ 576 int 577 kernfs_lookup(v) 578 void *v; 579 { 580 struct vop_lookup_args /* { 581 struct vnode * a_dvp; 582 struct vnode ** a_vpp; 583 struct componentname * a_cnp; 584 } */ *ap = v; 585 struct componentname *cnp = ap->a_cnp; 586 struct vnode **vpp = ap->a_vpp; 587 struct vnode *dvp = ap->a_dvp; 588 const char *pname = cnp->cn_nameptr; 589 const struct kernfs_node *kfs; 590 const struct kern_target *kt; 591 const struct dyn_kern_target *dkt; 592 const struct kernfs_subdir *ks; 593 int error, i; 594 #ifdef IPSEC 595 char *ep; 596 u_int32_t id; 597 #endif 598 599 *vpp = NULLVP; 600 601 if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME) 602 return (EROFS); 603 604 if (cnp->cn_namelen == 1 && *pname == '.') { 605 *vpp = dvp; 606 VREF(dvp); 607 return (0); 608 } 609 610 kfs = VTOKERN(dvp); 611 switch (kfs->kfs_type) { 612 case KFSkern: 613 /* 614 * Shouldn't get here with .. in the root node. 615 */ 616 if (cnp->cn_flags & ISDOTDOT) 617 return (EIO); 618 619 for (i = 0; i < static_nkern_targets; i++) { 620 kt = &kern_targets[i]; 621 if (cnp->cn_namelen == kt->kt_namlen && 622 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0) 623 goto found; 624 } 625 SIMPLEQ_FOREACH(dkt, &dyn_kern_targets, dkt_queue) { 626 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen && 627 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) { 628 kt = &dkt->dkt_kt; 629 goto found; 630 } 631 } 632 break; 633 634 found: 635 error = kernfs_allocvp(dvp->v_mount, vpp, kt->kt_tag, kt, 0); 636 return (error); 637 638 case KFSsubdir: 639 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data; 640 if (cnp->cn_flags & ISDOTDOT) { 641 kt = ks->ks_parent; 642 goto found; 643 } 644 645 SIMPLEQ_FOREACH(dkt, &ks->ks_entries, dkt_queue) { 646 if (cnp->cn_namelen == dkt->dkt_kt.kt_namlen && 647 memcmp(dkt->dkt_kt.kt_name, pname, cnp->cn_namelen) == 0) { 648 kt = &dkt->dkt_kt; 649 goto found; 650 } 651 } 652 break; 653 654 #ifdef IPSEC 655 case KFSipsecsadir: 656 if (cnp->cn_flags & ISDOTDOT) { 657 kt = &kern_targets[0]; 658 goto found; 659 } 660 661 for (i = 2; i < nipsecsa_targets; i++) { 662 kt = &ipsecsa_targets[i]; 663 if (cnp->cn_namelen == kt->kt_namlen && 664 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0) 665 goto found; 666 } 667 668 ep = NULL; 669 id = strtoul(pname, &ep, 10); 670 if (!ep || *ep || ep == pname) 671 break; 672 673 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsa, &ipsecsa_kt, id); 674 return (error); 675 676 case KFSipsecspdir: 677 if (cnp->cn_flags & ISDOTDOT) { 678 kt = &kern_targets[0]; 679 goto found; 680 } 681 682 for (i = 2; i < nipsecsp_targets; i++) { 683 kt = &ipsecsp_targets[i]; 684 if (cnp->cn_namelen == kt->kt_namlen && 685 memcmp(kt->kt_name, pname, cnp->cn_namelen) == 0) 686 goto found; 687 } 688 689 ep = NULL; 690 id = strtoul(pname, &ep, 10); 691 if (!ep || *ep || ep == pname) 692 break; 693 694 error = kernfs_allocvp(dvp->v_mount, vpp, KFSipsecsp, &ipsecsp_kt, id); 695 return (error); 696 #endif 697 698 default: 699 return (ENOTDIR); 700 } 701 702 return (cnp->cn_nameiop == LOOKUP ? ENOENT : EROFS); 703 } 704 705 int 706 kernfs_open(v) 707 void *v; 708 { 709 struct vop_open_args /* { 710 struct vnode *a_vp; 711 int a_mode; 712 kauth_cred_t a_cred; 713 } */ *ap = v; 714 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 715 #ifdef IPSEC 716 struct mbuf *m; 717 struct secpolicy *sp; 718 #endif 719 720 switch (kfs->kfs_type) { 721 #ifdef IPSEC 722 case KFSipsecsa: 723 if (key_setdumpsa_spi == NULL) 724 return 0; 725 m = key_setdumpsa_spi(htonl(kfs->kfs_value)); 726 if (m) { 727 m_freem(m); 728 return (0); 729 } else 730 return (ENOENT); 731 732 case KFSipsecsp: 733 if (key_getspbyid == NULL) 734 return 0; 735 sp = key_getspbyid(kfs->kfs_value); 736 if (sp) { 737 kfs->kfs_v = sp; 738 return (0); 739 } else 740 return (ENOENT); 741 #endif 742 743 default: 744 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_OPEN, 745 v, 0); 746 } 747 } 748 749 int 750 kernfs_close(v) 751 void *v; 752 { 753 struct vop_close_args /* { 754 struct vnode *a_vp; 755 int a_fflag; 756 kauth_cred_t a_cred; 757 } */ *ap = v; 758 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 759 760 switch (kfs->kfs_type) { 761 #ifdef IPSEC 762 case KFSipsecsp: 763 if (key_freesp == NULL) 764 return 0; 765 key_freesp((struct secpolicy *)kfs->kfs_v); 766 break; 767 #endif 768 769 default: 770 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_CLOSE, 771 v, 0); 772 } 773 774 return (0); 775 } 776 777 int 778 kernfs_access(v) 779 void *v; 780 { 781 struct vop_access_args /* { 782 struct vnode *a_vp; 783 int a_mode; 784 kauth_cred_t a_cred; 785 } */ *ap = v; 786 struct vattr va; 787 int error; 788 789 if ((error = VOP_GETATTR(ap->a_vp, &va, ap->a_cred)) != 0) 790 return (error); 791 792 return (vaccess(va.va_type, va.va_mode, va.va_uid, va.va_gid, 793 ap->a_mode, ap->a_cred)); 794 } 795 796 static int 797 kernfs_default_fileop_getattr(v) 798 void *v; 799 { 800 struct vop_getattr_args /* { 801 struct vnode *a_vp; 802 struct vattr *a_vap; 803 kauth_cred_t a_cred; 804 } */ *ap = v; 805 struct vattr *vap = ap->a_vap; 806 807 vap->va_nlink = 1; 808 vap->va_bytes = vap->va_size = 0; 809 810 return 0; 811 } 812 813 int 814 kernfs_getattr(v) 815 void *v; 816 { 817 struct vop_getattr_args /* { 818 struct vnode *a_vp; 819 struct vattr *a_vap; 820 kauth_cred_t a_cred; 821 } */ *ap = v; 822 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 823 struct kernfs_subdir *ks; 824 struct vattr *vap = ap->a_vap; 825 int error = 0; 826 char strbuf[KSTRING], *bf; 827 size_t nread, total; 828 829 VATTR_NULL(vap); 830 vap->va_type = ap->a_vp->v_type; 831 vap->va_uid = 0; 832 vap->va_gid = 0; 833 vap->va_mode = kfs->kfs_mode; 834 vap->va_fileid = kfs->kfs_fileno; 835 vap->va_flags = 0; 836 vap->va_size = 0; 837 vap->va_blocksize = DEV_BSIZE; 838 /* Make all times be current TOD, except for the "boottime" node. */ 839 if (kfs->kfs_kt->kt_namlen == 8 && 840 !memcmp(kfs->kfs_kt->kt_name, "boottime", 8)) { 841 vap->va_ctime = boottime; 842 } else { 843 getnanotime(&vap->va_ctime); 844 } 845 vap->va_atime = vap->va_mtime = vap->va_ctime; 846 vap->va_gen = 0; 847 vap->va_flags = 0; 848 vap->va_rdev = 0; 849 vap->va_bytes = 0; 850 851 switch (kfs->kfs_type) { 852 case KFSkern: 853 vap->va_nlink = nkern_dirs; 854 vap->va_bytes = vap->va_size = DEV_BSIZE; 855 break; 856 857 case KFSroot: 858 vap->va_nlink = 1; 859 vap->va_bytes = vap->va_size = DEV_BSIZE; 860 break; 861 862 case KFSsubdir: 863 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data; 864 vap->va_nlink = ks->ks_dirs; 865 vap->va_bytes = vap->va_size = DEV_BSIZE; 866 break; 867 868 case KFSnull: 869 case KFStime: 870 case KFSint: 871 case KFSstring: 872 case KFShostname: 873 case KFSavenrun: 874 case KFSdevice: 875 case KFSmsgbuf: 876 #ifdef IPSEC 877 case KFSipsecsa: 878 case KFSipsecsp: 879 #endif 880 vap->va_nlink = 1; 881 total = 0; 882 do { 883 bf = strbuf; 884 error = kernfs_xread(kfs, total, &bf, 885 sizeof(strbuf), &nread); 886 total += nread; 887 } while (error == 0 && nread != 0); 888 vap->va_bytes = vap->va_size = total; 889 break; 890 891 #ifdef IPSEC 892 case KFSipsecsadir: 893 case KFSipsecspdir: 894 vap->va_nlink = 2; 895 vap->va_bytes = vap->va_size = DEV_BSIZE; 896 break; 897 #endif 898 899 default: 900 error = kernfs_try_fileop(kfs->kfs_type, 901 KERNFS_FILEOP_GETATTR, v, EINVAL); 902 break; 903 } 904 905 return (error); 906 } 907 908 /*ARGSUSED*/ 909 int 910 kernfs_setattr(void *v) 911 { 912 913 /* 914 * Silently ignore attribute changes. 915 * This allows for open with truncate to have no 916 * effect until some data is written. I want to 917 * do it this way because all writes are atomic. 918 */ 919 return (0); 920 } 921 922 int 923 kernfs_default_xread(v) 924 void *v; 925 { 926 struct vop_read_args /* { 927 struct vnode *a_vp; 928 struct uio *a_uio; 929 int a_ioflag; 930 kauth_cred_t a_cred; 931 } */ *ap = v; 932 struct uio *uio = ap->a_uio; 933 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 934 char strbuf[KSTRING], *bf; 935 int off; 936 size_t len; 937 int error; 938 939 if (ap->a_vp->v_type == VDIR) 940 return (EOPNOTSUPP); 941 942 off = (int)uio->uio_offset; 943 /* Don't allow negative offsets */ 944 if (off < 0) 945 return EINVAL; 946 947 bf = strbuf; 948 if ((error = kernfs_xread(kfs, off, &bf, sizeof(strbuf), &len)) == 0) 949 error = uiomove(bf, len, uio); 950 return (error); 951 } 952 953 int 954 kernfs_read(v) 955 void *v; 956 { 957 struct vop_read_args /* { 958 struct vnode *a_vp; 959 struct uio *a_uio; 960 int a_ioflag; 961 struct ucred *a_cred; 962 } */ *ap = v; 963 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 964 965 if (kfs->kfs_type < KFSlasttype) { 966 /* use default function */ 967 return kernfs_default_xread(v); 968 } 969 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_READ, v, 970 EOPNOTSUPP); 971 } 972 973 static int 974 kernfs_default_xwrite(v) 975 void *v; 976 { 977 struct vop_write_args /* { 978 struct vnode *a_vp; 979 struct uio *a_uio; 980 int a_ioflag; 981 kauth_cred_t a_cred; 982 } */ *ap = v; 983 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 984 struct uio *uio = ap->a_uio; 985 int error; 986 size_t xlen; 987 char strbuf[KSTRING]; 988 989 if (uio->uio_offset != 0) 990 return (EINVAL); 991 992 xlen = min(uio->uio_resid, KSTRING-1); 993 if ((error = uiomove(strbuf, xlen, uio)) != 0) 994 return (error); 995 996 if (uio->uio_resid != 0) 997 return (EIO); 998 999 strbuf[xlen] = '\0'; 1000 xlen = strlen(strbuf); 1001 return (kernfs_xwrite(kfs, strbuf, xlen)); 1002 } 1003 1004 int 1005 kernfs_write(v) 1006 void *v; 1007 { 1008 struct vop_write_args /* { 1009 struct vnode *a_vp; 1010 struct uio *a_uio; 1011 int a_ioflag; 1012 kauth_cred_t a_cred; 1013 } */ *ap = v; 1014 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1015 1016 if (kfs->kfs_type < KFSlasttype) { 1017 /* use default function */ 1018 return kernfs_default_xwrite(v); 1019 } 1020 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_WRITE, v, 1021 EOPNOTSUPP); 1022 } 1023 1024 int 1025 kernfs_ioctl(v) 1026 void *v; 1027 { 1028 struct vop_ioctl_args /* { 1029 const struct vnodeop_desc *a_desc; 1030 struct vnode *a_vp; 1031 u_long a_command; 1032 void *a_data; 1033 int a_fflag; 1034 kauth_cred_t a_cred; 1035 } */ *ap = v; 1036 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1037 1038 return kernfs_try_fileop(kfs->kfs_type, KERNFS_FILEOP_IOCTL, v, 1039 EPASSTHROUGH); 1040 } 1041 1042 static int 1043 kernfs_setdirentfileno_kt(struct dirent *d, const struct kern_target *kt, 1044 u_int32_t value, struct vop_readdir_args *ap) 1045 { 1046 struct kernfs_node *kfs; 1047 struct vnode *vp; 1048 int error; 1049 1050 if ((error = kernfs_allocvp(ap->a_vp->v_mount, &vp, kt->kt_tag, kt, 1051 value)) != 0) 1052 return error; 1053 if (kt->kt_tag == KFSdevice) { 1054 struct vattr va; 1055 1056 error = VOP_GETATTR(vp, &va, ap->a_cred); 1057 if (error != 0) { 1058 return error; 1059 } 1060 d->d_fileno = va.va_fileid; 1061 } else { 1062 kfs = VTOKERN(vp); 1063 d->d_fileno = kfs->kfs_fileno; 1064 } 1065 vput(vp); 1066 return 0; 1067 } 1068 1069 static int 1070 kernfs_setdirentfileno(struct dirent *d, off_t entry, 1071 struct kernfs_node *thisdir_kfs, const struct kern_target *parent_kt, 1072 const struct kern_target *kt, struct vop_readdir_args *ap) 1073 { 1074 const struct kern_target *ikt; 1075 int error; 1076 1077 switch (entry) { 1078 case 0: 1079 d->d_fileno = thisdir_kfs->kfs_fileno; 1080 return 0; 1081 case 1: 1082 ikt = parent_kt; 1083 break; 1084 default: 1085 ikt = kt; 1086 break; 1087 } 1088 if (ikt != thisdir_kfs->kfs_kt) { 1089 if ((error = kernfs_setdirentfileno_kt(d, ikt, 0, ap)) != 0) 1090 return error; 1091 } else 1092 d->d_fileno = thisdir_kfs->kfs_fileno; 1093 return 0; 1094 } 1095 1096 int 1097 kernfs_readdir(v) 1098 void *v; 1099 { 1100 struct vop_readdir_args /* { 1101 struct vnode *a_vp; 1102 struct uio *a_uio; 1103 kauth_cred_t a_cred; 1104 int *a_eofflag; 1105 off_t **a_cookies; 1106 int a_*ncookies; 1107 } */ *ap = v; 1108 struct uio *uio = ap->a_uio; 1109 struct dirent d; 1110 struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1111 const struct kern_target *kt; 1112 const struct dyn_kern_target *dkt = NULL; 1113 const struct kernfs_subdir *ks; 1114 off_t i, j; 1115 int error; 1116 off_t *cookies = NULL; 1117 int ncookies = 0, n; 1118 #ifdef IPSEC 1119 struct secasvar *sav, *sav2; 1120 struct secpolicy *sp; 1121 #endif 1122 1123 if (uio->uio_resid < UIO_MX) 1124 return (EINVAL); 1125 if (uio->uio_offset < 0) 1126 return (EINVAL); 1127 1128 error = 0; 1129 i = uio->uio_offset; 1130 memset(&d, 0, sizeof(d)); 1131 d.d_reclen = UIO_MX; 1132 ncookies = uio->uio_resid / UIO_MX; 1133 1134 switch (kfs->kfs_type) { 1135 case KFSkern: 1136 if (i >= nkern_targets) 1137 return (0); 1138 1139 if (ap->a_ncookies) { 1140 ncookies = min(ncookies, (nkern_targets - i)); 1141 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1142 M_WAITOK); 1143 *ap->a_cookies = cookies; 1144 } 1145 1146 n = 0; 1147 for (; i < nkern_targets && uio->uio_resid >= UIO_MX; i++) { 1148 if (i < static_nkern_targets) 1149 kt = &kern_targets[i]; 1150 else { 1151 if (dkt == NULL) { 1152 dkt = SIMPLEQ_FIRST(&dyn_kern_targets); 1153 for (j = static_nkern_targets; j < i && 1154 dkt != NULL; j++) 1155 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1156 if (j != i) 1157 break; 1158 } else { 1159 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1160 } 1161 if (dkt == NULL) 1162 break; 1163 kt = &dkt->dkt_kt; 1164 } 1165 if (kt->kt_tag == KFSdevice) { 1166 dev_t *dp = kt->kt_data; 1167 struct vnode *fvp; 1168 1169 if (*dp == NODEV || 1170 !vfinddev(*dp, kt->kt_vtype, &fvp)) 1171 continue; 1172 } 1173 d.d_namlen = kt->kt_namlen; 1174 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1175 &kern_targets[0], kt, ap)) != 0) 1176 break; 1177 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1178 d.d_type = kt->kt_type; 1179 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1180 break; 1181 if (cookies) 1182 *cookies++ = i + 1; 1183 n++; 1184 } 1185 ncookies = n; 1186 break; 1187 1188 case KFSroot: 1189 if (i >= 2) 1190 return 0; 1191 1192 if (ap->a_ncookies) { 1193 ncookies = min(ncookies, (2 - i)); 1194 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1195 M_WAITOK); 1196 *ap->a_cookies = cookies; 1197 } 1198 1199 n = 0; 1200 for (; i < 2 && uio->uio_resid >= UIO_MX; i++) { 1201 kt = &kern_targets[i]; 1202 d.d_namlen = kt->kt_namlen; 1203 d.d_fileno = KERNFS_FILENO(kt, kt->kt_tag, 0); 1204 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1205 d.d_type = kt->kt_type; 1206 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1207 break; 1208 if (cookies) 1209 *cookies++ = i + 1; 1210 n++; 1211 } 1212 ncookies = n; 1213 break; 1214 1215 case KFSsubdir: 1216 ks = (struct kernfs_subdir *)kfs->kfs_kt->kt_data; 1217 if (i >= ks->ks_nentries) 1218 return (0); 1219 1220 if (ap->a_ncookies) { 1221 ncookies = min(ncookies, (ks->ks_nentries - i)); 1222 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1223 M_WAITOK); 1224 *ap->a_cookies = cookies; 1225 } 1226 1227 dkt = SIMPLEQ_FIRST(&ks->ks_entries); 1228 for (j = 0; j < i && dkt != NULL; j++) 1229 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1230 n = 0; 1231 for (; i < ks->ks_nentries && uio->uio_resid >= UIO_MX; i++) { 1232 if (i < 2) 1233 kt = &subdir_targets[i]; 1234 else { 1235 /* check if ks_nentries lied to us */ 1236 if (dkt == NULL) 1237 break; 1238 kt = &dkt->dkt_kt; 1239 dkt = SIMPLEQ_NEXT(dkt, dkt_queue); 1240 } 1241 if (kt->kt_tag == KFSdevice) { 1242 dev_t *dp = kt->kt_data; 1243 struct vnode *fvp; 1244 1245 if (*dp == NODEV || 1246 !vfinddev(*dp, kt->kt_vtype, &fvp)) 1247 continue; 1248 } 1249 d.d_namlen = kt->kt_namlen; 1250 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1251 ks->ks_parent, kt, ap)) != 0) 1252 break; 1253 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1254 d.d_type = kt->kt_type; 1255 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1256 break; 1257 if (cookies) 1258 *cookies++ = i + 1; 1259 n++; 1260 } 1261 ncookies = n; 1262 break; 1263 1264 #ifdef IPSEC 1265 case KFSipsecsadir: 1266 /* count SA in the system */ 1267 n = 0; 1268 if (&satailq == NULL) 1269 return 0; 1270 TAILQ_FOREACH(sav, &satailq, tailq) { 1271 for (sav2 = TAILQ_FIRST(&satailq); 1272 sav2 != sav; 1273 sav2 = TAILQ_NEXT(sav2, tailq)) { 1274 if (sav->spi == sav2->spi) { 1275 /* multiple SA with same SPI */ 1276 break; 1277 } 1278 } 1279 if (sav == sav2 || sav->spi != sav2->spi) 1280 n++; 1281 } 1282 1283 if (i >= nipsecsa_targets + n) 1284 return (0); 1285 1286 if (ap->a_ncookies) { 1287 ncookies = min(ncookies, (n - i)); 1288 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1289 M_WAITOK); 1290 *ap->a_cookies = cookies; 1291 } 1292 1293 n = 0; 1294 for (; i < nipsecsa_targets && uio->uio_resid >= UIO_MX; i++) { 1295 kt = &ipsecsa_targets[i]; 1296 d.d_namlen = kt->kt_namlen; 1297 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1298 &kern_targets[0], kt, ap)) != 0) 1299 break; 1300 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1301 d.d_type = kt->kt_type; 1302 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1303 break; 1304 if (cookies) 1305 *cookies++ = i + 1; 1306 n++; 1307 } 1308 if (error) { 1309 ncookies = n; 1310 break; 1311 } 1312 1313 TAILQ_FOREACH(sav, &satailq, tailq) { 1314 for (sav2 = TAILQ_FIRST(&satailq); 1315 sav2 != sav; 1316 sav2 = TAILQ_NEXT(sav2, tailq)) { 1317 if (sav->spi == sav2->spi) { 1318 /* multiple SA with same SPI */ 1319 break; 1320 } 1321 } 1322 if (sav != sav2 && sav->spi == sav2->spi) 1323 continue; 1324 if (uio->uio_resid < UIO_MX) 1325 break; 1326 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsa_kt, 1327 sav->spi, ap)) != 0) 1328 break; 1329 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name), 1330 "%u", ntohl(sav->spi)); 1331 d.d_type = DT_REG; 1332 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1333 break; 1334 if (cookies) 1335 *cookies++ = i + 1; 1336 n++; 1337 i++; 1338 } 1339 ncookies = n; 1340 break; 1341 1342 case KFSipsecspdir: 1343 /* count SP in the system */ 1344 if (&sptailq == NULL) 1345 return 0; 1346 1347 n = 0; 1348 TAILQ_FOREACH(sp, &sptailq, tailq) 1349 n++; 1350 1351 if (i >= nipsecsp_targets + n) 1352 return (0); 1353 1354 if (ap->a_ncookies) { 1355 ncookies = min(ncookies, (n - i)); 1356 cookies = malloc(ncookies * sizeof(off_t), M_TEMP, 1357 M_WAITOK); 1358 *ap->a_cookies = cookies; 1359 } 1360 1361 n = 0; 1362 for (; i < nipsecsp_targets && uio->uio_resid >= UIO_MX; i++) { 1363 kt = &ipsecsp_targets[i]; 1364 d.d_namlen = kt->kt_namlen; 1365 if ((error = kernfs_setdirentfileno(&d, i, kfs, 1366 &kern_targets[0], kt, ap)) != 0) 1367 break; 1368 memcpy(d.d_name, kt->kt_name, kt->kt_namlen + 1); 1369 d.d_type = kt->kt_type; 1370 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1371 break; 1372 if (cookies) 1373 *cookies++ = i + 1; 1374 n++; 1375 } 1376 if (error) { 1377 ncookies = n; 1378 break; 1379 } 1380 1381 TAILQ_FOREACH(sp, &sptailq, tailq) { 1382 if (uio->uio_resid < UIO_MX) 1383 break; 1384 if ((error = kernfs_setdirentfileno_kt(&d, &ipsecsp_kt, 1385 sp->id, ap)) != 0) 1386 break; 1387 d.d_namlen = snprintf(d.d_name, sizeof(d.d_name), 1388 "%u", sp->id); 1389 d.d_type = DT_REG; 1390 if ((error = uiomove(&d, UIO_MX, uio)) != 0) 1391 break; 1392 if (cookies) 1393 *cookies++ = i + 1; 1394 n++; 1395 i++; 1396 } 1397 ncookies = n; 1398 break; 1399 #endif 1400 1401 default: 1402 error = ENOTDIR; 1403 break; 1404 } 1405 1406 if (ap->a_ncookies) { 1407 if (error) { 1408 if (cookies) 1409 free(*ap->a_cookies, M_TEMP); 1410 *ap->a_ncookies = 0; 1411 *ap->a_cookies = NULL; 1412 } else 1413 *ap->a_ncookies = ncookies; 1414 } 1415 1416 uio->uio_offset = i; 1417 return (error); 1418 } 1419 1420 int 1421 kernfs_inactive(v) 1422 void *v; 1423 { 1424 struct vop_inactive_args /* { 1425 struct vnode *a_vp; 1426 bool *a_recycle; 1427 } */ *ap = v; 1428 struct vnode *vp = ap->a_vp; 1429 const struct kernfs_node *kfs = VTOKERN(ap->a_vp); 1430 #ifdef IPSEC 1431 struct mbuf *m; 1432 struct secpolicy *sp; 1433 #endif 1434 1435 *ap->a_recycle = false; 1436 switch (kfs->kfs_type) { 1437 #ifdef IPSEC 1438 case KFSipsecsa: 1439 if (key_setdumpsa_spi == NULL) 1440 return 0; 1441 m = key_setdumpsa_spi(htonl(kfs->kfs_value)); 1442 if (m) 1443 m_freem(m); 1444 else 1445 *ap->a_recycle = true; 1446 break; 1447 case KFSipsecsp: 1448 if (key_getspbyid == NULL) 1449 return 0; 1450 sp = key_getspbyid(kfs->kfs_value); 1451 if (sp) 1452 key_freesp(sp); 1453 else { 1454 *ap->a_recycle = true; 1455 } 1456 break; 1457 #endif 1458 default: 1459 break; 1460 } 1461 VOP_UNLOCK(vp, 0); 1462 return (0); 1463 } 1464 1465 int 1466 kernfs_reclaim(v) 1467 void *v; 1468 { 1469 struct vop_reclaim_args /* { 1470 struct vnode *a_vp; 1471 } */ *ap = v; 1472 1473 return (kernfs_freevp(ap->a_vp)); 1474 } 1475 1476 /* 1477 * Return POSIX pathconf information applicable to special devices. 1478 */ 1479 int 1480 kernfs_pathconf(v) 1481 void *v; 1482 { 1483 struct vop_pathconf_args /* { 1484 struct vnode *a_vp; 1485 int a_name; 1486 register_t *a_retval; 1487 } */ *ap = v; 1488 1489 switch (ap->a_name) { 1490 case _PC_LINK_MAX: 1491 *ap->a_retval = LINK_MAX; 1492 return (0); 1493 case _PC_MAX_CANON: 1494 *ap->a_retval = MAX_CANON; 1495 return (0); 1496 case _PC_MAX_INPUT: 1497 *ap->a_retval = MAX_INPUT; 1498 return (0); 1499 case _PC_PIPE_BUF: 1500 *ap->a_retval = PIPE_BUF; 1501 return (0); 1502 case _PC_CHOWN_RESTRICTED: 1503 *ap->a_retval = 1; 1504 return (0); 1505 case _PC_VDISABLE: 1506 *ap->a_retval = _POSIX_VDISABLE; 1507 return (0); 1508 case _PC_SYNC_IO: 1509 *ap->a_retval = 1; 1510 return (0); 1511 default: 1512 return (EINVAL); 1513 } 1514 /* NOTREACHED */ 1515 } 1516 1517 /* 1518 * Print out the contents of a /dev/fd vnode. 1519 */ 1520 /* ARGSUSED */ 1521 int 1522 kernfs_print(void *v) 1523 { 1524 1525 printf("tag VT_KERNFS, kernfs vnode\n"); 1526 return (0); 1527 } 1528 1529 int 1530 kernfs_link(v) 1531 void *v; 1532 { 1533 struct vop_link_args /* { 1534 struct vnode *a_dvp; 1535 struct vnode *a_vp; 1536 struct componentname *a_cnp; 1537 } */ *ap = v; 1538 1539 VOP_ABORTOP(ap->a_dvp, ap->a_cnp); 1540 vput(ap->a_dvp); 1541 return (EROFS); 1542 } 1543 1544 int 1545 kernfs_symlink(v) 1546 void *v; 1547 { 1548 struct vop_symlink_args /* { 1549 struct vnode *a_dvp; 1550 struct vnode **a_vpp; 1551 struct componentname *a_cnp; 1552 struct vattr *a_vap; 1553 char *a_target; 1554 } */ *ap = v; 1555 1556 VOP_ABORTOP(ap->a_dvp, ap->a_cnp); 1557 vput(ap->a_dvp); 1558 return (EROFS); 1559 } 1560