1 /* $NetBSD: layer_vnops.c,v 1.27 2006/05/14 21:31:52 elad Exp $ */ 2 3 /* 4 * Copyright (c) 1999 National Aeronautics & Space Administration 5 * All rights reserved. 6 * 7 * This software was written by William Studenmund of the 8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the National Aeronautics & Space Administration 19 * nor the names of its contributors may be used to endorse or promote 20 * products derived from this software without specific prior written 21 * permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB- 27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 33 * POSSIBILITY OF SUCH DAMAGE. 34 */ 35 /* 36 * Copyright (c) 1992, 1993 37 * The Regents of the University of California. All rights reserved. 38 * 39 * This code is derived from software contributed to Berkeley by 40 * John Heidemann of the UCLA Ficus project. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95 67 * 68 * Ancestors: 69 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92 70 * $Id: layer_vnops.c,v 1.27 2006/05/14 21:31:52 elad Exp $ 71 * $Id: layer_vnops.c,v 1.27 2006/05/14 21:31:52 elad Exp $ 72 * ...and... 73 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project 74 */ 75 76 /* 77 * Null Layer vnode routines. 78 * 79 * (See mount_null(8) for more information.) 80 * 81 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide 82 * the core implementation of the null file system and most other stacked 83 * fs's. The description below refers to the null file system, but the 84 * services provided by the layer* files are useful for all layered fs's. 85 * 86 * The null layer duplicates a portion of the file system 87 * name space under a new name. In this respect, it is 88 * similar to the loopback file system. It differs from 89 * the loopback fs in two respects: it is implemented using 90 * a stackable layers techniques, and it's "null-node"s stack above 91 * all lower-layer vnodes, not just over directory vnodes. 92 * 93 * The null layer has two purposes. First, it serves as a demonstration 94 * of layering by proving a layer which does nothing. (It actually 95 * does everything the loopback file system does, which is slightly 96 * more than nothing.) Second, the null layer can serve as a prototype 97 * layer. Since it provides all necessary layer framework, 98 * new file system layers can be created very easily be starting 99 * with a null layer. 100 * 101 * The remainder of the man page examines the null layer as a basis 102 * for constructing new layers. 103 * 104 * 105 * INSTANTIATING NEW NULL LAYERS 106 * 107 * New null layers are created with mount_null(8). 108 * Mount_null(8) takes two arguments, the pathname 109 * of the lower vfs (target-pn) and the pathname where the null 110 * layer will appear in the namespace (alias-pn). After 111 * the null layer is put into place, the contents 112 * of target-pn subtree will be aliased under alias-pn. 113 * 114 * It is conceivable that other overlay filesystems will take different 115 * parameters. For instance, data migration or access controll layers might 116 * only take one pathname which will serve both as the target-pn and 117 * alias-pn described above. 118 * 119 * 120 * OPERATION OF A NULL LAYER 121 * 122 * The null layer is the minimum file system layer, 123 * simply bypassing all possible operations to the lower layer 124 * for processing there. The majority of its activity centers 125 * on the bypass routine, through which nearly all vnode operations 126 * pass. 127 * 128 * The bypass routine accepts arbitrary vnode operations for 129 * handling by the lower layer. It begins by examing vnode 130 * operation arguments and replacing any layered nodes by their 131 * lower-layer equivalents. It then invokes the operation 132 * on the lower layer. Finally, it replaces the layered nodes 133 * in the arguments and, if a vnode is return by the operation, 134 * stacks a layered node on top of the returned vnode. 135 * 136 * The bypass routine in this file, layer_bypass(), is suitable for use 137 * by many different layered filesystems. It can be used by multiple 138 * filesystems simultaneously. Alternatively, a layered fs may provide 139 * its own bypass routine, in which case layer_bypass() should be used as 140 * a model. For instance, the main functionality provided by umapfs, the user 141 * identity mapping file system, is handled by a custom bypass routine. 142 * 143 * Typically a layered fs registers its selected bypass routine as the 144 * default vnode operation in its vnodeopv_entry_desc table. Additionally 145 * the filesystem must store the bypass entry point in the layerm_bypass 146 * field of struct layer_mount. All other layer routines in this file will 147 * use the layerm_bypass routine. 148 * 149 * Although the bypass routine handles most operations outright, a number 150 * of operations are special cased, and handled by the layered fs. One 151 * group, layer_setattr, layer_getattr, layer_access, layer_open, and 152 * layer_fsync, perform layer-specific manipulation in addition to calling 153 * the bypass routine. The other group 154 155 * Although bypass handles most operations, vop_getattr, vop_lock, 156 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not 157 * bypassed. Vop_getattr must change the fsid being returned. 158 * Vop_lock and vop_unlock must handle any locking for the 159 * current vnode as well as pass the lock request down. 160 * Vop_inactive and vop_reclaim are not bypassed so that 161 * they can handle freeing null-layer specific data. Vop_print 162 * is not bypassed to avoid excessive debugging information. 163 * Also, certain vnode operations change the locking state within 164 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 165 * and symlink). Ideally these operations should not change the 166 * lock state, but should be changed to let the caller of the 167 * function unlock them. Otherwise all intermediate vnode layers 168 * (such as union, umapfs, etc) must catch these functions to do 169 * the necessary locking at their layer. 170 * 171 * 172 * INSTANTIATING VNODE STACKS 173 * 174 * Mounting associates the null layer with a lower layer, 175 * effect stacking two VFSes. Vnode stacks are instead 176 * created on demand as files are accessed. 177 * 178 * The initial mount creates a single vnode stack for the 179 * root of the new null layer. All other vnode stacks 180 * are created as a result of vnode operations on 181 * this or other null vnode stacks. 182 * 183 * New vnode stacks come into existence as a result of 184 * an operation which returns a vnode. 185 * The bypass routine stacks a null-node above the new 186 * vnode before returning it to the caller. 187 * 188 * For example, imagine mounting a null layer with 189 * "mount_null /usr/include /dev/layer/null". 190 * Changing directory to /dev/layer/null will assign 191 * the root null-node (which was created when the null layer was mounted). 192 * Now consider opening "sys". A vop_lookup would be 193 * done on the root null-node. This operation would bypass through 194 * to the lower layer which would return a vnode representing 195 * the UFS "sys". layer_bypass then builds a null-node 196 * aliasing the UFS "sys" and returns this to the caller. 197 * Later operations on the null-node "sys" will repeat this 198 * process when constructing other vnode stacks. 199 * 200 * 201 * CREATING OTHER FILE SYSTEM LAYERS 202 * 203 * One of the easiest ways to construct new file system layers is to make 204 * a copy of the null layer, rename all files and variables, and 205 * then begin modifing the copy. Sed can be used to easily rename 206 * all variables. 207 * 208 * The umap layer is an example of a layer descended from the 209 * null layer. 210 * 211 * 212 * INVOKING OPERATIONS ON LOWER LAYERS 213 * 214 * There are two techniques to invoke operations on a lower layer 215 * when the operation cannot be completely bypassed. Each method 216 * is appropriate in different situations. In both cases, 217 * it is the responsibility of the aliasing layer to make 218 * the operation arguments "correct" for the lower layer 219 * by mapping an vnode arguments to the lower layer. 220 * 221 * The first approach is to call the aliasing layer's bypass routine. 222 * This method is most suitable when you wish to invoke the operation 223 * currently being handled on the lower layer. It has the advantage 224 * that the bypass routine already must do argument mapping. 225 * An example of this is null_getattrs in the null layer. 226 * 227 * A second approach is to directly invoke vnode operations on 228 * the lower layer with the VOP_OPERATIONNAME interface. 229 * The advantage of this method is that it is easy to invoke 230 * arbitrary operations on the lower layer. The disadvantage 231 * is that vnodes' arguments must be manually mapped. 232 * 233 */ 234 235 #include <sys/cdefs.h> 236 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.27 2006/05/14 21:31:52 elad Exp $"); 237 238 #include <sys/param.h> 239 #include <sys/systm.h> 240 #include <sys/proc.h> 241 #include <sys/time.h> 242 #include <sys/vnode.h> 243 #include <sys/mount.h> 244 #include <sys/namei.h> 245 #include <sys/malloc.h> 246 #include <sys/buf.h> 247 #include <sys/kauth.h> 248 249 #include <miscfs/genfs/layer.h> 250 #include <miscfs/genfs/layer_extern.h> 251 #include <miscfs/genfs/genfs.h> 252 253 254 /* 255 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass 256 * routine by John Heidemann. 257 * The new element for this version is that the whole nullfs 258 * system gained the concept of locks on the lower node, and locks on 259 * our nodes. When returning from a call to the lower layer, we may 260 * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK() 261 * macros provide this functionality. 262 * The 10-Apr-92 version was optimized for speed, throwing away some 263 * safety checks. It should still always work, but it's not as 264 * robust to programmer errors. 265 * Define SAFETY to include some error checking code. 266 * 267 * In general, we map all vnodes going down and unmap them on the way back. 268 * 269 * Also, some BSD vnode operations have the side effect of vrele'ing 270 * their arguments. With stacking, the reference counts are held 271 * by the upper node, not the lower one, so we must handle these 272 * side-effects here. This is not of concern in Sun-derived systems 273 * since there are no such side-effects. 274 * 275 * New for the 08-June-99 version: we also handle operations which unlock 276 * the passed-in node (typically they vput the node). 277 * 278 * This makes the following assumptions: 279 * - only one returned vpp 280 * - no INOUT vpp's (Sun's vop_open has one of these) 281 * - the vnode operation vector of the first vnode should be used 282 * to determine what implementation of the op should be invoked 283 * - all mapped vnodes are of our vnode-type (NEEDSWORK: 284 * problems on rmdir'ing mount points and renaming?) 285 */ 286 int 287 layer_bypass(v) 288 void *v; 289 { 290 struct vop_generic_args /* { 291 struct vnodeop_desc *a_desc; 292 <other random data follows, presumably> 293 } */ *ap = v; 294 int (**our_vnodeop_p)(void *); 295 struct vnode **this_vp_p; 296 int error, error1; 297 struct vnode *old_vps[VDESC_MAX_VPS], *vp0; 298 struct vnode **vps_p[VDESC_MAX_VPS]; 299 struct vnode ***vppp; 300 struct vnodeop_desc *descp = ap->a_desc; 301 int reles, i, flags; 302 303 #ifdef SAFETY 304 /* 305 * We require at least one vp. 306 */ 307 if (descp->vdesc_vp_offsets == NULL || 308 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 309 panic("%s: no vp's in map.\n", __func__); 310 #endif 311 312 vps_p[0] = 313 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap); 314 vp0 = *vps_p[0]; 315 flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags; 316 our_vnodeop_p = vp0->v_op; 317 318 if (flags & LAYERFS_MBYPASSDEBUG) 319 printf("%s: %s\n", __func__, descp->vdesc_name); 320 321 /* 322 * Map the vnodes going in. 323 * Later, we'll invoke the operation based on 324 * the first mapped vnode's operation vector. 325 */ 326 reles = descp->vdesc_flags; 327 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 328 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 329 break; /* bail out at end of list */ 330 vps_p[i] = this_vp_p = 331 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i], 332 ap); 333 /* 334 * We're not guaranteed that any but the first vnode 335 * are of our type. Check for and don't map any 336 * that aren't. (We must always map first vp or vclean fails.) 337 */ 338 if (i && (*this_vp_p == NULL || 339 (*this_vp_p)->v_op != our_vnodeop_p)) { 340 old_vps[i] = NULL; 341 } else { 342 old_vps[i] = *this_vp_p; 343 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p); 344 /* 345 * XXX - Several operations have the side effect 346 * of vrele'ing their vp's. We must account for 347 * that. (This should go away in the future.) 348 */ 349 if (reles & VDESC_VP0_WILLRELE) 350 VREF(*this_vp_p); 351 } 352 353 } 354 355 /* 356 * Call the operation on the lower layer 357 * with the modified argument structure. 358 */ 359 error = VCALL(*vps_p[0], descp->vdesc_offset, ap); 360 361 /* 362 * Maintain the illusion of call-by-value 363 * by restoring vnodes in the argument structure 364 * to their original value. 365 */ 366 reles = descp->vdesc_flags; 367 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 368 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 369 break; /* bail out at end of list */ 370 if (old_vps[i]) { 371 *(vps_p[i]) = old_vps[i]; 372 if (reles & VDESC_VP0_WILLUNLOCK) 373 LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1); 374 if (reles & VDESC_VP0_WILLRELE) 375 vrele(*(vps_p[i])); 376 } 377 } 378 379 /* 380 * Map the possible out-going vpp 381 * (Assumes that the lower layer always returns 382 * a VREF'ed vpp unless it gets an error.) 383 */ 384 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && 385 !(descp->vdesc_flags & VDESC_NOMAP_VPP) && 386 !error) { 387 /* 388 * XXX - even though some ops have vpp returned vp's, 389 * several ops actually vrele this before returning. 390 * We must avoid these ops. 391 * (This should go away when these ops are regularized.) 392 */ 393 if (descp->vdesc_flags & VDESC_VPP_WILLRELE) 394 goto out; 395 vppp = VOPARG_OFFSETTO(struct vnode***, 396 descp->vdesc_vpp_offset, ap); 397 /* 398 * Only vop_lookup, vop_create, vop_makedir, vop_bmap, 399 * vop_mknod, and vop_symlink return vpp's. vop_bmap 400 * doesn't call bypass as the lower vpp is fine (we're just 401 * going to do i/o on it). vop_lookup doesn't call bypass 402 * as a lookup on "." would generate a locking error. 403 * So all the calls which get us here have a locked vpp. :-) 404 */ 405 error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp); 406 if (error) { 407 vput(**vppp); 408 **vppp = NULL; 409 } 410 } 411 412 out: 413 return (error); 414 } 415 416 /* 417 * We have to carry on the locking protocol on the layer vnodes 418 * as we progress through the tree. We also have to enforce read-only 419 * if this layer is mounted read-only. 420 */ 421 int 422 layer_lookup(v) 423 void *v; 424 { 425 struct vop_lookup_args /* { 426 struct vnodeop_desc *a_desc; 427 struct vnode * a_dvp; 428 struct vnode ** a_vpp; 429 struct componentname * a_cnp; 430 } */ *ap = v; 431 struct componentname *cnp = ap->a_cnp; 432 int flags = cnp->cn_flags; 433 struct vnode *dvp, *vp, *ldvp; 434 int error, r; 435 436 dvp = ap->a_dvp; 437 438 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 439 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 440 return (EROFS); 441 442 ldvp = LAYERVPTOLOWERVP(dvp); 443 ap->a_dvp = ldvp; 444 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap); 445 vp = *ap->a_vpp; 446 *ap->a_vpp = NULL; 447 448 if (error == EJUSTRETURN && (flags & ISLASTCN) && 449 (dvp->v_mount->mnt_flag & MNT_RDONLY) && 450 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 451 error = EROFS; 452 /* 453 * We must do the same locking and unlocking at this layer as 454 * is done in the layers below us. It used to be we would try 455 * to guess based on what was set with the flags and error codes. 456 * 457 * But that doesn't work. So now we have the underlying VOP_LOOKUP 458 * tell us if it released the parent vnode, and we adjust the 459 * upper node accordingly. We can't just look at the lock states 460 * of the lower nodes as someone else might have come along and 461 * locked the parent node after our call to VOP_LOOKUP locked it. 462 */ 463 if ((cnp->cn_flags & PDIRUNLOCK)) { 464 LAYERFS_UPPERUNLOCK(dvp, 0, r); 465 } 466 if (ldvp == vp) { 467 /* 468 * Did lookup on "." or ".." in the root node of a mount point. 469 * So we return dvp after a VREF. 470 */ 471 *ap->a_vpp = dvp; 472 VREF(dvp); 473 vrele(vp); 474 } else if (vp != NULL) { 475 error = layer_node_create(dvp->v_mount, vp, ap->a_vpp); 476 if (error) { 477 vput(vp); 478 if (cnp->cn_flags & PDIRUNLOCK) { 479 if (vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY) == 0) 480 cnp->cn_flags &= ~PDIRUNLOCK; 481 } 482 } 483 } 484 return (error); 485 } 486 487 /* 488 * Setattr call. Disallow write attempts if the layer is mounted read-only. 489 */ 490 int 491 layer_setattr(v) 492 void *v; 493 { 494 struct vop_setattr_args /* { 495 struct vnodeop_desc *a_desc; 496 struct vnode *a_vp; 497 struct vattr *a_vap; 498 kauth_cred_t a_cred; 499 struct lwp *a_l; 500 } */ *ap = v; 501 struct vnode *vp = ap->a_vp; 502 struct vattr *vap = ap->a_vap; 503 504 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 505 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 506 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 507 (vp->v_mount->mnt_flag & MNT_RDONLY)) 508 return (EROFS); 509 if (vap->va_size != VNOVAL) { 510 switch (vp->v_type) { 511 case VDIR: 512 return (EISDIR); 513 case VCHR: 514 case VBLK: 515 case VSOCK: 516 case VFIFO: 517 return (0); 518 case VREG: 519 case VLNK: 520 default: 521 /* 522 * Disallow write attempts if the filesystem is 523 * mounted read-only. 524 */ 525 if (vp->v_mount->mnt_flag & MNT_RDONLY) 526 return (EROFS); 527 } 528 } 529 return (LAYERFS_DO_BYPASS(vp, ap)); 530 } 531 532 /* 533 * We handle getattr only to change the fsid. 534 */ 535 int 536 layer_getattr(v) 537 void *v; 538 { 539 struct vop_getattr_args /* { 540 struct vnode *a_vp; 541 struct vattr *a_vap; 542 kauth_cred_t a_cred; 543 struct lwp *a_l; 544 } */ *ap = v; 545 struct vnode *vp = ap->a_vp; 546 int error; 547 548 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0) 549 return (error); 550 /* Requires that arguments be restored. */ 551 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0]; 552 return (0); 553 } 554 555 int 556 layer_access(v) 557 void *v; 558 { 559 struct vop_access_args /* { 560 struct vnode *a_vp; 561 int a_mode; 562 kauth_cred_t a_cred; 563 struct lwp *a_l; 564 } */ *ap = v; 565 struct vnode *vp = ap->a_vp; 566 mode_t mode = ap->a_mode; 567 568 /* 569 * Disallow write attempts on read-only layers; 570 * unless the file is a socket, fifo, or a block or 571 * character device resident on the file system. 572 */ 573 if (mode & VWRITE) { 574 switch (vp->v_type) { 575 case VDIR: 576 case VLNK: 577 case VREG: 578 if (vp->v_mount->mnt_flag & MNT_RDONLY) 579 return (EROFS); 580 break; 581 default: 582 break; 583 } 584 } 585 return (LAYERFS_DO_BYPASS(vp, ap)); 586 } 587 588 /* 589 * We must handle open to be able to catch MNT_NODEV and friends. 590 */ 591 int 592 layer_open(v) 593 void *v; 594 { 595 struct vop_open_args *ap = v; 596 struct vnode *vp = ap->a_vp; 597 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type; 598 599 if (((lower_type == VBLK) || (lower_type == VCHR)) && 600 (vp->v_mount->mnt_flag & MNT_NODEV)) 601 return ENXIO; 602 603 return LAYERFS_DO_BYPASS(vp, ap); 604 } 605 606 /* 607 * We need to process our own vnode lock and then clear the 608 * interlock flag as it applies only to our vnode, not the 609 * vnodes below us on the stack. 610 */ 611 int 612 layer_lock(v) 613 void *v; 614 { 615 struct vop_lock_args /* { 616 struct vnode *a_vp; 617 int a_flags; 618 struct proc *a_p; 619 } */ *ap = v; 620 struct vnode *vp = ap->a_vp, *lowervp; 621 int flags = ap->a_flags, error; 622 623 if (vp->v_vnlock != NULL) { 624 /* 625 * The lower level has exported a struct lock to us. Use 626 * it so that all vnodes in the stack lock and unlock 627 * simultaneously. Note: we don't DRAIN the lock as DRAIN 628 * decommissions the lock - just because our vnode is 629 * going away doesn't mean the struct lock below us is. 630 * LK_EXCLUSIVE is fine. 631 */ 632 if ((flags & LK_TYPE_MASK) == LK_DRAIN) { 633 return(lockmgr(vp->v_vnlock, 634 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, 635 &vp->v_interlock)); 636 } else 637 return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock)); 638 } else { 639 /* 640 * Ahh well. It would be nice if the fs we're over would 641 * export a struct lock for us to use, but it doesn't. 642 * 643 * To prevent race conditions involving doing a lookup 644 * on "..", we have to lock the lower node, then lock our 645 * node. Most of the time it won't matter that we lock our 646 * node (as any locking would need the lower one locked 647 * first). But we can LK_DRAIN the upper lock as a step 648 * towards decomissioning it. 649 */ 650 lowervp = LAYERVPTOLOWERVP(vp); 651 if (flags & LK_INTERLOCK) { 652 simple_unlock(&vp->v_interlock); 653 flags &= ~LK_INTERLOCK; 654 } 655 if ((flags & LK_TYPE_MASK) == LK_DRAIN) { 656 error = VOP_LOCK(lowervp, 657 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE); 658 } else 659 error = VOP_LOCK(lowervp, flags); 660 if (error) 661 return (error); 662 if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) { 663 VOP_UNLOCK(lowervp, 0); 664 } 665 return (error); 666 } 667 } 668 669 /* 670 */ 671 int 672 layer_unlock(v) 673 void *v; 674 { 675 struct vop_unlock_args /* { 676 struct vnode *a_vp; 677 int a_flags; 678 struct proc *a_p; 679 } */ *ap = v; 680 struct vnode *vp = ap->a_vp; 681 int flags = ap->a_flags; 682 683 if (vp->v_vnlock != NULL) { 684 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE, 685 &vp->v_interlock)); 686 } else { 687 if (flags & LK_INTERLOCK) { 688 simple_unlock(&vp->v_interlock); 689 flags &= ~LK_INTERLOCK; 690 } 691 VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags); 692 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE, 693 &vp->v_interlock)); 694 } 695 } 696 697 int 698 layer_islocked(v) 699 void *v; 700 { 701 struct vop_islocked_args /* { 702 struct vnode *a_vp; 703 } */ *ap = v; 704 struct vnode *vp = ap->a_vp; 705 int lkstatus; 706 707 if (vp->v_vnlock != NULL) 708 return lockstatus(vp->v_vnlock); 709 710 lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp)); 711 if (lkstatus) 712 return lkstatus; 713 714 return lockstatus(&vp->v_lock); 715 } 716 717 /* 718 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother 719 * syncing the underlying vnodes, since they'll be fsync'ed when 720 * reclaimed; otherwise, 721 * pass it through to the underlying layer. 722 * 723 * XXX Do we still need to worry about shallow fsync? 724 */ 725 726 int 727 layer_fsync(v) 728 void *v; 729 { 730 struct vop_fsync_args /* { 731 struct vnode *a_vp; 732 kauth_cred_t a_cred; 733 int a_flags; 734 off_t offlo; 735 off_t offhi; 736 struct lwp *a_l; 737 } */ *ap = v; 738 739 if (ap->a_flags & FSYNC_RECLAIM) { 740 return 0; 741 } 742 743 return (LAYERFS_DO_BYPASS(ap->a_vp, ap)); 744 } 745 746 747 int 748 layer_inactive(v) 749 void *v; 750 { 751 struct vop_inactive_args /* { 752 struct vnode *a_vp; 753 struct lwp *a_l; 754 } */ *ap = v; 755 struct vnode *vp = ap->a_vp; 756 757 /* 758 * Do nothing (and _don't_ bypass). 759 * Wait to vrele lowervp until reclaim, 760 * so that until then our layer_node is in the 761 * cache and reusable. 762 * 763 * NEEDSWORK: Someday, consider inactive'ing 764 * the lowervp and then trying to reactivate it 765 * with capabilities (v_id) 766 * like they do in the name lookup cache code. 767 * That's too much work for now. 768 */ 769 VOP_UNLOCK(vp, 0); 770 771 /* 772 * ..., but don't cache the device node. Also, if we did a 773 * remove, don't cache the node. 774 */ 775 if (vp->v_type == VBLK || vp->v_type == VCHR 776 || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED)) 777 vgone(vp); 778 return (0); 779 } 780 781 int 782 layer_remove(v) 783 void *v; 784 { 785 struct vop_remove_args /* { 786 struct vonde *a_dvp; 787 struct vnode *a_vp; 788 struct componentname *a_cnp; 789 } */ *ap = v; 790 791 int error; 792 struct vnode *vp = ap->a_vp; 793 794 vref(vp); 795 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0) 796 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED; 797 798 vrele(vp); 799 800 return (error); 801 } 802 803 int 804 layer_rename(v) 805 void *v; 806 { 807 struct vop_rename_args /* { 808 struct vnode *a_fdvp; 809 struct vnode *a_fvp; 810 struct componentname *a_fcnp; 811 struct vnode *a_tdvp; 812 struct vnode *a_tvp; 813 struct componentname *a_tcnp; 814 } */ *ap = v; 815 816 int error; 817 struct vnode *fdvp = ap->a_fdvp; 818 struct vnode *tvp; 819 820 tvp = ap->a_tvp; 821 if (tvp) { 822 if (tvp->v_mount != fdvp->v_mount) 823 tvp = NULL; 824 else 825 vref(tvp); 826 } 827 error = LAYERFS_DO_BYPASS(fdvp, ap); 828 if (tvp) { 829 if (error == 0) 830 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED; 831 vrele(tvp); 832 } 833 834 return (error); 835 } 836 837 int 838 layer_rmdir(v) 839 void *v; 840 { 841 struct vop_rmdir_args /* { 842 struct vnode *a_dvp; 843 struct vnode *a_vp; 844 struct componentname *a_cnp; 845 } */ *ap = v; 846 int error; 847 struct vnode *vp = ap->a_vp; 848 849 vref(vp); 850 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0) 851 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED; 852 853 vrele(vp); 854 855 return (error); 856 } 857 858 int 859 layer_reclaim(v) 860 void *v; 861 { 862 struct vop_reclaim_args /* { 863 struct vnode *a_vp; 864 struct lwp *a_l; 865 } */ *ap = v; 866 struct vnode *vp = ap->a_vp; 867 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount); 868 struct layer_node *xp = VTOLAYER(vp); 869 struct vnode *lowervp = xp->layer_lowervp; 870 871 /* 872 * Note: in vop_reclaim, the node's struct lock has been 873 * decomissioned, so we have to be careful about calling 874 * VOP's on ourself. Even if we turned a LK_DRAIN into an 875 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is 876 * set. 877 */ 878 /* After this assignment, this node will not be re-used. */ 879 if ((vp == lmp->layerm_rootvp)) { 880 /* 881 * Oops! We no longer have a root node. Most likely reason is 882 * that someone forcably unmunted the underlying fs. 883 * 884 * Now getting the root vnode will fail. We're dead. :-( 885 */ 886 lmp->layerm_rootvp = NULL; 887 } 888 xp->layer_lowervp = NULL; 889 simple_lock(&lmp->layerm_hashlock); 890 LIST_REMOVE(xp, layer_hash); 891 simple_unlock(&lmp->layerm_hashlock); 892 FREE(vp->v_data, M_TEMP); 893 vp->v_data = NULL; 894 vrele (lowervp); 895 return (0); 896 } 897 898 /* 899 * We just feed the returned vnode up to the caller - there's no need 900 * to build a layer node on top of the node on which we're going to do 901 * i/o. :-) 902 */ 903 int 904 layer_bmap(v) 905 void *v; 906 { 907 struct vop_bmap_args /* { 908 struct vnode *a_vp; 909 daddr_t a_bn; 910 struct vnode **a_vpp; 911 daddr_t *a_bnp; 912 int *a_runp; 913 } */ *ap = v; 914 struct vnode *vp; 915 916 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp); 917 918 return (VCALL(vp, ap->a_desc->vdesc_offset, ap)); 919 } 920 921 int 922 layer_print(v) 923 void *v; 924 { 925 struct vop_print_args /* { 926 struct vnode *a_vp; 927 } */ *ap = v; 928 struct vnode *vp = ap->a_vp; 929 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp)); 930 return (0); 931 } 932 933 /* 934 * XXX - vop_bwrite must be hand coded because it has no 935 * vnode in its arguments. 936 * This goes away with a merged VM/buffer cache. 937 */ 938 int 939 layer_bwrite(v) 940 void *v; 941 { 942 struct vop_bwrite_args /* { 943 struct buf *a_bp; 944 } */ *ap = v; 945 struct buf *bp = ap->a_bp; 946 int error; 947 struct vnode *savedvp; 948 949 savedvp = bp->b_vp; 950 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp); 951 952 error = VOP_BWRITE(bp); 953 954 bp->b_vp = savedvp; 955 956 return (error); 957 } 958 959 int 960 layer_getpages(v) 961 void *v; 962 { 963 struct vop_getpages_args /* { 964 struct vnode *a_vp; 965 voff_t a_offset; 966 struct vm_page **a_m; 967 int *a_count; 968 int a_centeridx; 969 vm_prot_t a_access_type; 970 int a_advice; 971 int a_flags; 972 } */ *ap = v; 973 struct vnode *vp = ap->a_vp; 974 int error; 975 976 /* 977 * just pass the request on to the underlying layer. 978 */ 979 980 if (ap->a_flags & PGO_LOCKED) { 981 return EBUSY; 982 } 983 ap->a_vp = LAYERVPTOLOWERVP(vp); 984 simple_unlock(&vp->v_interlock); 985 simple_lock(&ap->a_vp->v_interlock); 986 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap); 987 return error; 988 } 989 990 int 991 layer_putpages(v) 992 void *v; 993 { 994 struct vop_putpages_args /* { 995 struct vnode *a_vp; 996 voff_t a_offlo; 997 voff_t a_offhi; 998 int a_flags; 999 } */ *ap = v; 1000 struct vnode *vp = ap->a_vp; 1001 int error; 1002 1003 /* 1004 * just pass the request on to the underlying layer. 1005 */ 1006 1007 ap->a_vp = LAYERVPTOLOWERVP(vp); 1008 simple_unlock(&vp->v_interlock); 1009 simple_lock(&ap->a_vp->v_interlock); 1010 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap); 1011 return error; 1012 } 1013