xref: /netbsd-src/sys/miscfs/genfs/layer_vnops.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: layer_vnops.c,v 1.27 2006/05/14 21:31:52 elad Exp $	*/
2 
3 /*
4  * Copyright (c) 1999 National Aeronautics & Space Administration
5  * All rights reserved.
6  *
7  * This software was written by William Studenmund of the
8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the National Aeronautics & Space Administration
19  *    nor the names of its contributors may be used to endorse or promote
20  *    products derived from this software without specific prior written
21  *    permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 /*
36  * Copyright (c) 1992, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * John Heidemann of the UCLA Ficus project.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
67  *
68  * Ancestors:
69  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
70  *	$Id: layer_vnops.c,v 1.27 2006/05/14 21:31:52 elad Exp $
71  *	$Id: layer_vnops.c,v 1.27 2006/05/14 21:31:52 elad Exp $
72  *	...and...
73  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74  */
75 
76 /*
77  * Null Layer vnode routines.
78  *
79  * (See mount_null(8) for more information.)
80  *
81  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
82  * the core implementation of the null file system and most other stacked
83  * fs's. The description below refers to the null file system, but the
84  * services provided by the layer* files are useful for all layered fs's.
85  *
86  * The null layer duplicates a portion of the file system
87  * name space under a new name.  In this respect, it is
88  * similar to the loopback file system.  It differs from
89  * the loopback fs in two respects:  it is implemented using
90  * a stackable layers techniques, and it's "null-node"s stack above
91  * all lower-layer vnodes, not just over directory vnodes.
92  *
93  * The null layer has two purposes.  First, it serves as a demonstration
94  * of layering by proving a layer which does nothing.  (It actually
95  * does everything the loopback file system does, which is slightly
96  * more than nothing.)  Second, the null layer can serve as a prototype
97  * layer.  Since it provides all necessary layer framework,
98  * new file system layers can be created very easily be starting
99  * with a null layer.
100  *
101  * The remainder of the man page examines the null layer as a basis
102  * for constructing new layers.
103  *
104  *
105  * INSTANTIATING NEW NULL LAYERS
106  *
107  * New null layers are created with mount_null(8).
108  * Mount_null(8) takes two arguments, the pathname
109  * of the lower vfs (target-pn) and the pathname where the null
110  * layer will appear in the namespace (alias-pn).  After
111  * the null layer is put into place, the contents
112  * of target-pn subtree will be aliased under alias-pn.
113  *
114  * It is conceivable that other overlay filesystems will take different
115  * parameters. For instance, data migration or access controll layers might
116  * only take one pathname which will serve both as the target-pn and
117  * alias-pn described above.
118  *
119  *
120  * OPERATION OF A NULL LAYER
121  *
122  * The null layer is the minimum file system layer,
123  * simply bypassing all possible operations to the lower layer
124  * for processing there.  The majority of its activity centers
125  * on the bypass routine, through which nearly all vnode operations
126  * pass.
127  *
128  * The bypass routine accepts arbitrary vnode operations for
129  * handling by the lower layer.  It begins by examing vnode
130  * operation arguments and replacing any layered nodes by their
131  * lower-layer equivalents.  It then invokes the operation
132  * on the lower layer.  Finally, it replaces the layered nodes
133  * in the arguments and, if a vnode is return by the operation,
134  * stacks a layered node on top of the returned vnode.
135  *
136  * The bypass routine in this file, layer_bypass(), is suitable for use
137  * by many different layered filesystems. It can be used by multiple
138  * filesystems simultaneously. Alternatively, a layered fs may provide
139  * its own bypass routine, in which case layer_bypass() should be used as
140  * a model. For instance, the main functionality provided by umapfs, the user
141  * identity mapping file system, is handled by a custom bypass routine.
142  *
143  * Typically a layered fs registers its selected bypass routine as the
144  * default vnode operation in its vnodeopv_entry_desc table. Additionally
145  * the filesystem must store the bypass entry point in the layerm_bypass
146  * field of struct layer_mount. All other layer routines in this file will
147  * use the layerm_bypass routine.
148  *
149  * Although the bypass routine handles most operations outright, a number
150  * of operations are special cased, and handled by the layered fs. One
151  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
152  * layer_fsync, perform layer-specific manipulation in addition to calling
153  * the bypass routine. The other group
154 
155  * Although bypass handles most operations, vop_getattr, vop_lock,
156  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
157  * bypassed. Vop_getattr must change the fsid being returned.
158  * Vop_lock and vop_unlock must handle any locking for the
159  * current vnode as well as pass the lock request down.
160  * Vop_inactive and vop_reclaim are not bypassed so that
161  * they can handle freeing null-layer specific data. Vop_print
162  * is not bypassed to avoid excessive debugging information.
163  * Also, certain vnode operations change the locking state within
164  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
165  * and symlink). Ideally these operations should not change the
166  * lock state, but should be changed to let the caller of the
167  * function unlock them. Otherwise all intermediate vnode layers
168  * (such as union, umapfs, etc) must catch these functions to do
169  * the necessary locking at their layer.
170  *
171  *
172  * INSTANTIATING VNODE STACKS
173  *
174  * Mounting associates the null layer with a lower layer,
175  * effect stacking two VFSes.  Vnode stacks are instead
176  * created on demand as files are accessed.
177  *
178  * The initial mount creates a single vnode stack for the
179  * root of the new null layer.  All other vnode stacks
180  * are created as a result of vnode operations on
181  * this or other null vnode stacks.
182  *
183  * New vnode stacks come into existence as a result of
184  * an operation which returns a vnode.
185  * The bypass routine stacks a null-node above the new
186  * vnode before returning it to the caller.
187  *
188  * For example, imagine mounting a null layer with
189  * "mount_null /usr/include /dev/layer/null".
190  * Changing directory to /dev/layer/null will assign
191  * the root null-node (which was created when the null layer was mounted).
192  * Now consider opening "sys".  A vop_lookup would be
193  * done on the root null-node.  This operation would bypass through
194  * to the lower layer which would return a vnode representing
195  * the UFS "sys".  layer_bypass then builds a null-node
196  * aliasing the UFS "sys" and returns this to the caller.
197  * Later operations on the null-node "sys" will repeat this
198  * process when constructing other vnode stacks.
199  *
200  *
201  * CREATING OTHER FILE SYSTEM LAYERS
202  *
203  * One of the easiest ways to construct new file system layers is to make
204  * a copy of the null layer, rename all files and variables, and
205  * then begin modifing the copy.  Sed can be used to easily rename
206  * all variables.
207  *
208  * The umap layer is an example of a layer descended from the
209  * null layer.
210  *
211  *
212  * INVOKING OPERATIONS ON LOWER LAYERS
213  *
214  * There are two techniques to invoke operations on a lower layer
215  * when the operation cannot be completely bypassed.  Each method
216  * is appropriate in different situations.  In both cases,
217  * it is the responsibility of the aliasing layer to make
218  * the operation arguments "correct" for the lower layer
219  * by mapping an vnode arguments to the lower layer.
220  *
221  * The first approach is to call the aliasing layer's bypass routine.
222  * This method is most suitable when you wish to invoke the operation
223  * currently being handled on the lower layer.  It has the advantage
224  * that the bypass routine already must do argument mapping.
225  * An example of this is null_getattrs in the null layer.
226  *
227  * A second approach is to directly invoke vnode operations on
228  * the lower layer with the VOP_OPERATIONNAME interface.
229  * The advantage of this method is that it is easy to invoke
230  * arbitrary operations on the lower layer.  The disadvantage
231  * is that vnodes' arguments must be manually mapped.
232  *
233  */
234 
235 #include <sys/cdefs.h>
236 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.27 2006/05/14 21:31:52 elad Exp $");
237 
238 #include <sys/param.h>
239 #include <sys/systm.h>
240 #include <sys/proc.h>
241 #include <sys/time.h>
242 #include <sys/vnode.h>
243 #include <sys/mount.h>
244 #include <sys/namei.h>
245 #include <sys/malloc.h>
246 #include <sys/buf.h>
247 #include <sys/kauth.h>
248 
249 #include <miscfs/genfs/layer.h>
250 #include <miscfs/genfs/layer_extern.h>
251 #include <miscfs/genfs/genfs.h>
252 
253 
254 /*
255  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
256  *		routine by John Heidemann.
257  *	The new element for this version is that the whole nullfs
258  * system gained the concept of locks on the lower node, and locks on
259  * our nodes. When returning from a call to the lower layer, we may
260  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
261  * macros provide this functionality.
262  *    The 10-Apr-92 version was optimized for speed, throwing away some
263  * safety checks.  It should still always work, but it's not as
264  * robust to programmer errors.
265  *    Define SAFETY to include some error checking code.
266  *
267  * In general, we map all vnodes going down and unmap them on the way back.
268  *
269  * Also, some BSD vnode operations have the side effect of vrele'ing
270  * their arguments.  With stacking, the reference counts are held
271  * by the upper node, not the lower one, so we must handle these
272  * side-effects here.  This is not of concern in Sun-derived systems
273  * since there are no such side-effects.
274  *
275  * New for the 08-June-99 version: we also handle operations which unlock
276  * the passed-in node (typically they vput the node).
277  *
278  * This makes the following assumptions:
279  * - only one returned vpp
280  * - no INOUT vpp's (Sun's vop_open has one of these)
281  * - the vnode operation vector of the first vnode should be used
282  *   to determine what implementation of the op should be invoked
283  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
284  *   problems on rmdir'ing mount points and renaming?)
285  */
286 int
287 layer_bypass(v)
288 	void *v;
289 {
290 	struct vop_generic_args /* {
291 		struct vnodeop_desc *a_desc;
292 		<other random data follows, presumably>
293 	} */ *ap = v;
294 	int (**our_vnodeop_p)(void *);
295 	struct vnode **this_vp_p;
296 	int error, error1;
297 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
298 	struct vnode **vps_p[VDESC_MAX_VPS];
299 	struct vnode ***vppp;
300 	struct vnodeop_desc *descp = ap->a_desc;
301 	int reles, i, flags;
302 
303 #ifdef SAFETY
304 	/*
305 	 * We require at least one vp.
306 	 */
307 	if (descp->vdesc_vp_offsets == NULL ||
308 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
309 		panic("%s: no vp's in map.\n", __func__);
310 #endif
311 
312 	vps_p[0] =
313 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
314 	vp0 = *vps_p[0];
315 	flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
316 	our_vnodeop_p = vp0->v_op;
317 
318 	if (flags & LAYERFS_MBYPASSDEBUG)
319 		printf("%s: %s\n", __func__, descp->vdesc_name);
320 
321 	/*
322 	 * Map the vnodes going in.
323 	 * Later, we'll invoke the operation based on
324 	 * the first mapped vnode's operation vector.
325 	 */
326 	reles = descp->vdesc_flags;
327 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
328 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
329 			break;   /* bail out at end of list */
330 		vps_p[i] = this_vp_p =
331 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
332 		    ap);
333 		/*
334 		 * We're not guaranteed that any but the first vnode
335 		 * are of our type.  Check for and don't map any
336 		 * that aren't.  (We must always map first vp or vclean fails.)
337 		 */
338 		if (i && (*this_vp_p == NULL ||
339 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
340 			old_vps[i] = NULL;
341 		} else {
342 			old_vps[i] = *this_vp_p;
343 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
344 			/*
345 			 * XXX - Several operations have the side effect
346 			 * of vrele'ing their vp's.  We must account for
347 			 * that.  (This should go away in the future.)
348 			 */
349 			if (reles & VDESC_VP0_WILLRELE)
350 				VREF(*this_vp_p);
351 		}
352 
353 	}
354 
355 	/*
356 	 * Call the operation on the lower layer
357 	 * with the modified argument structure.
358 	 */
359 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
360 
361 	/*
362 	 * Maintain the illusion of call-by-value
363 	 * by restoring vnodes in the argument structure
364 	 * to their original value.
365 	 */
366 	reles = descp->vdesc_flags;
367 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
368 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
369 			break;   /* bail out at end of list */
370 		if (old_vps[i]) {
371 			*(vps_p[i]) = old_vps[i];
372 			if (reles & VDESC_VP0_WILLUNLOCK)
373 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
374 			if (reles & VDESC_VP0_WILLRELE)
375 				vrele(*(vps_p[i]));
376 		}
377 	}
378 
379 	/*
380 	 * Map the possible out-going vpp
381 	 * (Assumes that the lower layer always returns
382 	 * a VREF'ed vpp unless it gets an error.)
383 	 */
384 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
385 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
386 	    !error) {
387 		/*
388 		 * XXX - even though some ops have vpp returned vp's,
389 		 * several ops actually vrele this before returning.
390 		 * We must avoid these ops.
391 		 * (This should go away when these ops are regularized.)
392 		 */
393 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
394 			goto out;
395 		vppp = VOPARG_OFFSETTO(struct vnode***,
396 				 descp->vdesc_vpp_offset, ap);
397 		/*
398 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
399 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
400 		 * doesn't call bypass as the lower vpp is fine (we're just
401 		 * going to do i/o on it). vop_lookup doesn't call bypass
402 		 * as a lookup on "." would generate a locking error.
403 		 * So all the calls which get us here have a locked vpp. :-)
404 		 */
405 		error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
406 		if (error) {
407 			vput(**vppp);
408 			**vppp = NULL;
409 		}
410 	}
411 
412  out:
413 	return (error);
414 }
415 
416 /*
417  * We have to carry on the locking protocol on the layer vnodes
418  * as we progress through the tree. We also have to enforce read-only
419  * if this layer is mounted read-only.
420  */
421 int
422 layer_lookup(v)
423 	void *v;
424 {
425 	struct vop_lookup_args /* {
426 		struct vnodeop_desc *a_desc;
427 		struct vnode * a_dvp;
428 		struct vnode ** a_vpp;
429 		struct componentname * a_cnp;
430 	} */ *ap = v;
431 	struct componentname *cnp = ap->a_cnp;
432 	int flags = cnp->cn_flags;
433 	struct vnode *dvp, *vp, *ldvp;
434 	int error, r;
435 
436 	dvp = ap->a_dvp;
437 
438 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
439 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
440 		return (EROFS);
441 
442 	ldvp = LAYERVPTOLOWERVP(dvp);
443 	ap->a_dvp = ldvp;
444 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
445 	vp = *ap->a_vpp;
446 	*ap->a_vpp = NULL;
447 
448 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
449 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
450 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
451 		error = EROFS;
452 	/*
453 	 * We must do the same locking and unlocking at this layer as
454 	 * is done in the layers below us. It used to be we would try
455 	 * to guess based on what was set with the flags and error codes.
456 	 *
457 	 * But that doesn't work. So now we have the underlying VOP_LOOKUP
458 	 * tell us if it released the parent vnode, and we adjust the
459 	 * upper node accordingly. We can't just look at the lock states
460 	 * of the lower nodes as someone else might have come along and
461 	 * locked the parent node after our call to VOP_LOOKUP locked it.
462 	 */
463 	if ((cnp->cn_flags & PDIRUNLOCK)) {
464 		LAYERFS_UPPERUNLOCK(dvp, 0, r);
465 	}
466 	if (ldvp == vp) {
467 		/*
468 		 * Did lookup on "." or ".." in the root node of a mount point.
469 		 * So we return dvp after a VREF.
470 		 */
471 		*ap->a_vpp = dvp;
472 		VREF(dvp);
473 		vrele(vp);
474 	} else if (vp != NULL) {
475 		error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
476 		if (error) {
477 			vput(vp);
478 			if (cnp->cn_flags & PDIRUNLOCK) {
479 				if (vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY) == 0)
480 					cnp->cn_flags &= ~PDIRUNLOCK;
481 			}
482 		}
483 	}
484 	return (error);
485 }
486 
487 /*
488  * Setattr call. Disallow write attempts if the layer is mounted read-only.
489  */
490 int
491 layer_setattr(v)
492 	void *v;
493 {
494 	struct vop_setattr_args /* {
495 		struct vnodeop_desc *a_desc;
496 		struct vnode *a_vp;
497 		struct vattr *a_vap;
498 		kauth_cred_t a_cred;
499 		struct lwp *a_l;
500 	} */ *ap = v;
501 	struct vnode *vp = ap->a_vp;
502 	struct vattr *vap = ap->a_vap;
503 
504   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
505 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
506 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
507 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
508 		return (EROFS);
509 	if (vap->va_size != VNOVAL) {
510  		switch (vp->v_type) {
511  		case VDIR:
512  			return (EISDIR);
513  		case VCHR:
514  		case VBLK:
515  		case VSOCK:
516  		case VFIFO:
517 			return (0);
518 		case VREG:
519 		case VLNK:
520  		default:
521 			/*
522 			 * Disallow write attempts if the filesystem is
523 			 * mounted read-only.
524 			 */
525 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
526 				return (EROFS);
527 		}
528 	}
529 	return (LAYERFS_DO_BYPASS(vp, ap));
530 }
531 
532 /*
533  *  We handle getattr only to change the fsid.
534  */
535 int
536 layer_getattr(v)
537 	void *v;
538 {
539 	struct vop_getattr_args /* {
540 		struct vnode *a_vp;
541 		struct vattr *a_vap;
542 		kauth_cred_t a_cred;
543 		struct lwp *a_l;
544 	} */ *ap = v;
545 	struct vnode *vp = ap->a_vp;
546 	int error;
547 
548 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
549 		return (error);
550 	/* Requires that arguments be restored. */
551 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
552 	return (0);
553 }
554 
555 int
556 layer_access(v)
557 	void *v;
558 {
559 	struct vop_access_args /* {
560 		struct vnode *a_vp;
561 		int  a_mode;
562 		kauth_cred_t a_cred;
563 		struct lwp *a_l;
564 	} */ *ap = v;
565 	struct vnode *vp = ap->a_vp;
566 	mode_t mode = ap->a_mode;
567 
568 	/*
569 	 * Disallow write attempts on read-only layers;
570 	 * unless the file is a socket, fifo, or a block or
571 	 * character device resident on the file system.
572 	 */
573 	if (mode & VWRITE) {
574 		switch (vp->v_type) {
575 		case VDIR:
576 		case VLNK:
577 		case VREG:
578 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
579 				return (EROFS);
580 			break;
581 		default:
582 			break;
583 		}
584 	}
585 	return (LAYERFS_DO_BYPASS(vp, ap));
586 }
587 
588 /*
589  * We must handle open to be able to catch MNT_NODEV and friends.
590  */
591 int
592 layer_open(v)
593 	void *v;
594 {
595 	struct vop_open_args *ap = v;
596 	struct vnode *vp = ap->a_vp;
597 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
598 
599 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
600 	    (vp->v_mount->mnt_flag & MNT_NODEV))
601 		return ENXIO;
602 
603 	return LAYERFS_DO_BYPASS(vp, ap);
604 }
605 
606 /*
607  * We need to process our own vnode lock and then clear the
608  * interlock flag as it applies only to our vnode, not the
609  * vnodes below us on the stack.
610  */
611 int
612 layer_lock(v)
613 	void *v;
614 {
615 	struct vop_lock_args /* {
616 		struct vnode *a_vp;
617 		int a_flags;
618 		struct proc *a_p;
619 	} */ *ap = v;
620 	struct vnode *vp = ap->a_vp, *lowervp;
621 	int	flags = ap->a_flags, error;
622 
623 	if (vp->v_vnlock != NULL) {
624 		/*
625 		 * The lower level has exported a struct lock to us. Use
626 		 * it so that all vnodes in the stack lock and unlock
627 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
628 		 * decommissions the lock - just because our vnode is
629 		 * going away doesn't mean the struct lock below us is.
630 		 * LK_EXCLUSIVE is fine.
631 		 */
632 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
633 			return(lockmgr(vp->v_vnlock,
634 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
635 				&vp->v_interlock));
636 		} else
637 			return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
638 	} else {
639 		/*
640 		 * Ahh well. It would be nice if the fs we're over would
641 		 * export a struct lock for us to use, but it doesn't.
642 		 *
643 		 * To prevent race conditions involving doing a lookup
644 		 * on "..", we have to lock the lower node, then lock our
645 		 * node. Most of the time it won't matter that we lock our
646 		 * node (as any locking would need the lower one locked
647 		 * first). But we can LK_DRAIN the upper lock as a step
648 		 * towards decomissioning it.
649 		 */
650 		lowervp = LAYERVPTOLOWERVP(vp);
651 		if (flags & LK_INTERLOCK) {
652 			simple_unlock(&vp->v_interlock);
653 			flags &= ~LK_INTERLOCK;
654 		}
655 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
656 			error = VOP_LOCK(lowervp,
657 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
658 		} else
659 			error = VOP_LOCK(lowervp, flags);
660 		if (error)
661 			return (error);
662 		if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
663 			VOP_UNLOCK(lowervp, 0);
664 		}
665 		return (error);
666 	}
667 }
668 
669 /*
670  */
671 int
672 layer_unlock(v)
673 	void *v;
674 {
675 	struct vop_unlock_args /* {
676 		struct vnode *a_vp;
677 		int a_flags;
678 		struct proc *a_p;
679 	} */ *ap = v;
680 	struct vnode *vp = ap->a_vp;
681 	int	flags = ap->a_flags;
682 
683 	if (vp->v_vnlock != NULL) {
684 		return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
685 			&vp->v_interlock));
686 	} else {
687 		if (flags & LK_INTERLOCK) {
688 			simple_unlock(&vp->v_interlock);
689 			flags &= ~LK_INTERLOCK;
690 		}
691 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
692 		return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
693 			&vp->v_interlock));
694 	}
695 }
696 
697 int
698 layer_islocked(v)
699 	void *v;
700 {
701 	struct vop_islocked_args /* {
702 		struct vnode *a_vp;
703 	} */ *ap = v;
704 	struct vnode *vp = ap->a_vp;
705 	int lkstatus;
706 
707 	if (vp->v_vnlock != NULL)
708 		return lockstatus(vp->v_vnlock);
709 
710 	lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
711 	if (lkstatus)
712 		return lkstatus;
713 
714 	return lockstatus(&vp->v_lock);
715 }
716 
717 /*
718  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
719  * syncing the underlying vnodes, since they'll be fsync'ed when
720  * reclaimed; otherwise,
721  * pass it through to the underlying layer.
722  *
723  * XXX Do we still need to worry about shallow fsync?
724  */
725 
726 int
727 layer_fsync(v)
728 	void *v;
729 {
730 	struct vop_fsync_args /* {
731 		struct vnode *a_vp;
732 		kauth_cred_t a_cred;
733 		int  a_flags;
734 		off_t offlo;
735 		off_t offhi;
736 		struct lwp *a_l;
737 	} */ *ap = v;
738 
739 	if (ap->a_flags & FSYNC_RECLAIM) {
740 		return 0;
741 	}
742 
743 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
744 }
745 
746 
747 int
748 layer_inactive(v)
749 	void *v;
750 {
751 	struct vop_inactive_args /* {
752 		struct vnode *a_vp;
753 		struct lwp *a_l;
754 	} */ *ap = v;
755 	struct vnode *vp = ap->a_vp;
756 
757 	/*
758 	 * Do nothing (and _don't_ bypass).
759 	 * Wait to vrele lowervp until reclaim,
760 	 * so that until then our layer_node is in the
761 	 * cache and reusable.
762 	 *
763 	 * NEEDSWORK: Someday, consider inactive'ing
764 	 * the lowervp and then trying to reactivate it
765 	 * with capabilities (v_id)
766 	 * like they do in the name lookup cache code.
767 	 * That's too much work for now.
768 	 */
769 	VOP_UNLOCK(vp, 0);
770 
771 	/*
772 	 * ..., but don't cache the device node. Also, if we did a
773 	 * remove, don't cache the node.
774 	 */
775 	if (vp->v_type == VBLK || vp->v_type == VCHR
776 	    || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
777 		vgone(vp);
778 	return (0);
779 }
780 
781 int
782 layer_remove(v)
783 	void *v;
784 {
785 	struct vop_remove_args /* {
786 		struct vonde		*a_dvp;
787 		struct vnode		*a_vp;
788 		struct componentname	*a_cnp;
789 	} */ *ap = v;
790 
791 	int		error;
792 	struct vnode	*vp = ap->a_vp;
793 
794 	vref(vp);
795 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
796 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
797 
798 	vrele(vp);
799 
800 	return (error);
801 }
802 
803 int
804 layer_rename(v)
805 	void *v;
806 {
807 	struct vop_rename_args  /* {
808 		struct vnode		*a_fdvp;
809 		struct vnode		*a_fvp;
810 		struct componentname	*a_fcnp;
811 		struct vnode		*a_tdvp;
812 		struct vnode		*a_tvp;
813 		struct componentname	*a_tcnp;
814 	} */ *ap = v;
815 
816 	int error;
817 	struct vnode *fdvp = ap->a_fdvp;
818 	struct vnode *tvp;
819 
820 	tvp = ap->a_tvp;
821 	if (tvp) {
822 		if (tvp->v_mount != fdvp->v_mount)
823 			tvp = NULL;
824 		else
825 			vref(tvp);
826 	}
827 	error = LAYERFS_DO_BYPASS(fdvp, ap);
828 	if (tvp) {
829 		if (error == 0)
830 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
831 		vrele(tvp);
832 	}
833 
834 	return (error);
835 }
836 
837 int
838 layer_rmdir(v)
839 	void *v;
840 {
841 	struct vop_rmdir_args /* {
842 		struct vnode		*a_dvp;
843 		struct vnode		*a_vp;
844 		struct componentname	*a_cnp;
845 	} */ *ap = v;
846 	int		error;
847 	struct vnode	*vp = ap->a_vp;
848 
849 	vref(vp);
850 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
851 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
852 
853 	vrele(vp);
854 
855 	return (error);
856 }
857 
858 int
859 layer_reclaim(v)
860 	void *v;
861 {
862 	struct vop_reclaim_args /* {
863 		struct vnode *a_vp;
864 		struct lwp *a_l;
865 	} */ *ap = v;
866 	struct vnode *vp = ap->a_vp;
867 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
868 	struct layer_node *xp = VTOLAYER(vp);
869 	struct vnode *lowervp = xp->layer_lowervp;
870 
871 	/*
872 	 * Note: in vop_reclaim, the node's struct lock has been
873 	 * decomissioned, so we have to be careful about calling
874 	 * VOP's on ourself. Even if we turned a LK_DRAIN into an
875 	 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
876 	 * set.
877 	 */
878 	/* After this assignment, this node will not be re-used. */
879 	if ((vp == lmp->layerm_rootvp)) {
880 		/*
881 		 * Oops! We no longer have a root node. Most likely reason is
882 		 * that someone forcably unmunted the underlying fs.
883 		 *
884 		 * Now getting the root vnode will fail. We're dead. :-(
885 		 */
886 		lmp->layerm_rootvp = NULL;
887 	}
888 	xp->layer_lowervp = NULL;
889 	simple_lock(&lmp->layerm_hashlock);
890 	LIST_REMOVE(xp, layer_hash);
891 	simple_unlock(&lmp->layerm_hashlock);
892 	FREE(vp->v_data, M_TEMP);
893 	vp->v_data = NULL;
894 	vrele (lowervp);
895 	return (0);
896 }
897 
898 /*
899  * We just feed the returned vnode up to the caller - there's no need
900  * to build a layer node on top of the node on which we're going to do
901  * i/o. :-)
902  */
903 int
904 layer_bmap(v)
905 	void *v;
906 {
907 	struct vop_bmap_args /* {
908 		struct vnode *a_vp;
909 		daddr_t  a_bn;
910 		struct vnode **a_vpp;
911 		daddr_t *a_bnp;
912 		int *a_runp;
913 	} */ *ap = v;
914 	struct vnode *vp;
915 
916 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
917 
918 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
919 }
920 
921 int
922 layer_print(v)
923 	void *v;
924 {
925 	struct vop_print_args /* {
926 		struct vnode *a_vp;
927 	} */ *ap = v;
928 	struct vnode *vp = ap->a_vp;
929 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
930 	return (0);
931 }
932 
933 /*
934  * XXX - vop_bwrite must be hand coded because it has no
935  * vnode in its arguments.
936  * This goes away with a merged VM/buffer cache.
937  */
938 int
939 layer_bwrite(v)
940 	void *v;
941 {
942 	struct vop_bwrite_args /* {
943 		struct buf *a_bp;
944 	} */ *ap = v;
945 	struct buf *bp = ap->a_bp;
946 	int error;
947 	struct vnode *savedvp;
948 
949 	savedvp = bp->b_vp;
950 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
951 
952 	error = VOP_BWRITE(bp);
953 
954 	bp->b_vp = savedvp;
955 
956 	return (error);
957 }
958 
959 int
960 layer_getpages(v)
961 	void *v;
962 {
963 	struct vop_getpages_args /* {
964 		struct vnode *a_vp;
965 		voff_t a_offset;
966 		struct vm_page **a_m;
967 		int *a_count;
968 		int a_centeridx;
969 		vm_prot_t a_access_type;
970 		int a_advice;
971 		int a_flags;
972 	} */ *ap = v;
973 	struct vnode *vp = ap->a_vp;
974 	int error;
975 
976 	/*
977 	 * just pass the request on to the underlying layer.
978 	 */
979 
980 	if (ap->a_flags & PGO_LOCKED) {
981 		return EBUSY;
982 	}
983 	ap->a_vp = LAYERVPTOLOWERVP(vp);
984 	simple_unlock(&vp->v_interlock);
985 	simple_lock(&ap->a_vp->v_interlock);
986 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
987 	return error;
988 }
989 
990 int
991 layer_putpages(v)
992 	void *v;
993 {
994 	struct vop_putpages_args /* {
995 		struct vnode *a_vp;
996 		voff_t a_offlo;
997 		voff_t a_offhi;
998 		int a_flags;
999 	} */ *ap = v;
1000 	struct vnode *vp = ap->a_vp;
1001 	int error;
1002 
1003 	/*
1004 	 * just pass the request on to the underlying layer.
1005 	 */
1006 
1007 	ap->a_vp = LAYERVPTOLOWERVP(vp);
1008 	simple_unlock(&vp->v_interlock);
1009 	simple_lock(&ap->a_vp->v_interlock);
1010 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
1011 	return error;
1012 }
1013