1 /* $NetBSD: layer_vnops.c,v 1.26 2005/12/11 12:24:50 christos Exp $ */ 2 3 /* 4 * Copyright (c) 1999 National Aeronautics & Space Administration 5 * All rights reserved. 6 * 7 * This software was written by William Studenmund of the 8 * Numerical Aerospace Simulation Facility, NASA Ames Research Center. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the National Aeronautics & Space Administration 19 * nor the names of its contributors may be used to endorse or promote 20 * products derived from this software without specific prior written 21 * permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB- 27 * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 28 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 33 * POSSIBILITY OF SUCH DAMAGE. 34 */ 35 /* 36 * Copyright (c) 1992, 1993 37 * The Regents of the University of California. All rights reserved. 38 * 39 * This code is derived from software contributed to Berkeley by 40 * John Heidemann of the UCLA Ficus project. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95 67 * 68 * Ancestors: 69 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92 70 * $Id: layer_vnops.c,v 1.26 2005/12/11 12:24:50 christos Exp $ 71 * $Id: layer_vnops.c,v 1.26 2005/12/11 12:24:50 christos Exp $ 72 * ...and... 73 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project 74 */ 75 76 /* 77 * Null Layer vnode routines. 78 * 79 * (See mount_null(8) for more information.) 80 * 81 * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide 82 * the core implementation of the null file system and most other stacked 83 * fs's. The description below refers to the null file system, but the 84 * services provided by the layer* files are useful for all layered fs's. 85 * 86 * The null layer duplicates a portion of the file system 87 * name space under a new name. In this respect, it is 88 * similar to the loopback file system. It differs from 89 * the loopback fs in two respects: it is implemented using 90 * a stackable layers techniques, and it's "null-node"s stack above 91 * all lower-layer vnodes, not just over directory vnodes. 92 * 93 * The null layer has two purposes. First, it serves as a demonstration 94 * of layering by proving a layer which does nothing. (It actually 95 * does everything the loopback file system does, which is slightly 96 * more than nothing.) Second, the null layer can serve as a prototype 97 * layer. Since it provides all necessary layer framework, 98 * new file system layers can be created very easily be starting 99 * with a null layer. 100 * 101 * The remainder of the man page examines the null layer as a basis 102 * for constructing new layers. 103 * 104 * 105 * INSTANTIATING NEW NULL LAYERS 106 * 107 * New null layers are created with mount_null(8). 108 * Mount_null(8) takes two arguments, the pathname 109 * of the lower vfs (target-pn) and the pathname where the null 110 * layer will appear in the namespace (alias-pn). After 111 * the null layer is put into place, the contents 112 * of target-pn subtree will be aliased under alias-pn. 113 * 114 * It is conceivable that other overlay filesystems will take different 115 * parameters. For instance, data migration or access controll layers might 116 * only take one pathname which will serve both as the target-pn and 117 * alias-pn described above. 118 * 119 * 120 * OPERATION OF A NULL LAYER 121 * 122 * The null layer is the minimum file system layer, 123 * simply bypassing all possible operations to the lower layer 124 * for processing there. The majority of its activity centers 125 * on the bypass routine, through which nearly all vnode operations 126 * pass. 127 * 128 * The bypass routine accepts arbitrary vnode operations for 129 * handling by the lower layer. It begins by examing vnode 130 * operation arguments and replacing any layered nodes by their 131 * lower-layer equivalents. It then invokes the operation 132 * on the lower layer. Finally, it replaces the layered nodes 133 * in the arguments and, if a vnode is return by the operation, 134 * stacks a layered node on top of the returned vnode. 135 * 136 * The bypass routine in this file, layer_bypass(), is suitable for use 137 * by many different layered filesystems. It can be used by multiple 138 * filesystems simultaneously. Alternatively, a layered fs may provide 139 * its own bypass routine, in which case layer_bypass() should be used as 140 * a model. For instance, the main functionality provided by umapfs, the user 141 * identity mapping file system, is handled by a custom bypass routine. 142 * 143 * Typically a layered fs registers its selected bypass routine as the 144 * default vnode operation in its vnodeopv_entry_desc table. Additionally 145 * the filesystem must store the bypass entry point in the layerm_bypass 146 * field of struct layer_mount. All other layer routines in this file will 147 * use the layerm_bypass routine. 148 * 149 * Although the bypass routine handles most operations outright, a number 150 * of operations are special cased, and handled by the layered fs. One 151 * group, layer_setattr, layer_getattr, layer_access, layer_open, and 152 * layer_fsync, perform layer-specific manipulation in addition to calling 153 * the bypass routine. The other group 154 155 * Although bypass handles most operations, vop_getattr, vop_lock, 156 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not 157 * bypassed. Vop_getattr must change the fsid being returned. 158 * Vop_lock and vop_unlock must handle any locking for the 159 * current vnode as well as pass the lock request down. 160 * Vop_inactive and vop_reclaim are not bypassed so that 161 * they can handle freeing null-layer specific data. Vop_print 162 * is not bypassed to avoid excessive debugging information. 163 * Also, certain vnode operations change the locking state within 164 * the operation (create, mknod, remove, link, rename, mkdir, rmdir, 165 * and symlink). Ideally these operations should not change the 166 * lock state, but should be changed to let the caller of the 167 * function unlock them. Otherwise all intermediate vnode layers 168 * (such as union, umapfs, etc) must catch these functions to do 169 * the necessary locking at their layer. 170 * 171 * 172 * INSTANTIATING VNODE STACKS 173 * 174 * Mounting associates the null layer with a lower layer, 175 * effect stacking two VFSes. Vnode stacks are instead 176 * created on demand as files are accessed. 177 * 178 * The initial mount creates a single vnode stack for the 179 * root of the new null layer. All other vnode stacks 180 * are created as a result of vnode operations on 181 * this or other null vnode stacks. 182 * 183 * New vnode stacks come into existence as a result of 184 * an operation which returns a vnode. 185 * The bypass routine stacks a null-node above the new 186 * vnode before returning it to the caller. 187 * 188 * For example, imagine mounting a null layer with 189 * "mount_null /usr/include /dev/layer/null". 190 * Changing directory to /dev/layer/null will assign 191 * the root null-node (which was created when the null layer was mounted). 192 * Now consider opening "sys". A vop_lookup would be 193 * done on the root null-node. This operation would bypass through 194 * to the lower layer which would return a vnode representing 195 * the UFS "sys". layer_bypass then builds a null-node 196 * aliasing the UFS "sys" and returns this to the caller. 197 * Later operations on the null-node "sys" will repeat this 198 * process when constructing other vnode stacks. 199 * 200 * 201 * CREATING OTHER FILE SYSTEM LAYERS 202 * 203 * One of the easiest ways to construct new file system layers is to make 204 * a copy of the null layer, rename all files and variables, and 205 * then begin modifing the copy. Sed can be used to easily rename 206 * all variables. 207 * 208 * The umap layer is an example of a layer descended from the 209 * null layer. 210 * 211 * 212 * INVOKING OPERATIONS ON LOWER LAYERS 213 * 214 * There are two techniques to invoke operations on a lower layer 215 * when the operation cannot be completely bypassed. Each method 216 * is appropriate in different situations. In both cases, 217 * it is the responsibility of the aliasing layer to make 218 * the operation arguments "correct" for the lower layer 219 * by mapping an vnode arguments to the lower layer. 220 * 221 * The first approach is to call the aliasing layer's bypass routine. 222 * This method is most suitable when you wish to invoke the operation 223 * currently being handled on the lower layer. It has the advantage 224 * that the bypass routine already must do argument mapping. 225 * An example of this is null_getattrs in the null layer. 226 * 227 * A second approach is to directly invoke vnode operations on 228 * the lower layer with the VOP_OPERATIONNAME interface. 229 * The advantage of this method is that it is easy to invoke 230 * arbitrary operations on the lower layer. The disadvantage 231 * is that vnodes' arguments must be manually mapped. 232 * 233 */ 234 235 #include <sys/cdefs.h> 236 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.26 2005/12/11 12:24:50 christos Exp $"); 237 238 #include <sys/param.h> 239 #include <sys/systm.h> 240 #include <sys/proc.h> 241 #include <sys/time.h> 242 #include <sys/vnode.h> 243 #include <sys/mount.h> 244 #include <sys/namei.h> 245 #include <sys/malloc.h> 246 #include <sys/buf.h> 247 #include <miscfs/genfs/layer.h> 248 #include <miscfs/genfs/layer_extern.h> 249 #include <miscfs/genfs/genfs.h> 250 251 252 /* 253 * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass 254 * routine by John Heidemann. 255 * The new element for this version is that the whole nullfs 256 * system gained the concept of locks on the lower node, and locks on 257 * our nodes. When returning from a call to the lower layer, we may 258 * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK() 259 * macros provide this functionality. 260 * The 10-Apr-92 version was optimized for speed, throwing away some 261 * safety checks. It should still always work, but it's not as 262 * robust to programmer errors. 263 * Define SAFETY to include some error checking code. 264 * 265 * In general, we map all vnodes going down and unmap them on the way back. 266 * 267 * Also, some BSD vnode operations have the side effect of vrele'ing 268 * their arguments. With stacking, the reference counts are held 269 * by the upper node, not the lower one, so we must handle these 270 * side-effects here. This is not of concern in Sun-derived systems 271 * since there are no such side-effects. 272 * 273 * New for the 08-June-99 version: we also handle operations which unlock 274 * the passed-in node (typically they vput the node). 275 * 276 * This makes the following assumptions: 277 * - only one returned vpp 278 * - no INOUT vpp's (Sun's vop_open has one of these) 279 * - the vnode operation vector of the first vnode should be used 280 * to determine what implementation of the op should be invoked 281 * - all mapped vnodes are of our vnode-type (NEEDSWORK: 282 * problems on rmdir'ing mount points and renaming?) 283 */ 284 int 285 layer_bypass(v) 286 void *v; 287 { 288 struct vop_generic_args /* { 289 struct vnodeop_desc *a_desc; 290 <other random data follows, presumably> 291 } */ *ap = v; 292 int (**our_vnodeop_p)(void *); 293 struct vnode **this_vp_p; 294 int error, error1; 295 struct vnode *old_vps[VDESC_MAX_VPS], *vp0; 296 struct vnode **vps_p[VDESC_MAX_VPS]; 297 struct vnode ***vppp; 298 struct vnodeop_desc *descp = ap->a_desc; 299 int reles, i, flags; 300 301 #ifdef SAFETY 302 /* 303 * We require at least one vp. 304 */ 305 if (descp->vdesc_vp_offsets == NULL || 306 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET) 307 panic("%s: no vp's in map.\n", __func__); 308 #endif 309 310 vps_p[0] = 311 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap); 312 vp0 = *vps_p[0]; 313 flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags; 314 our_vnodeop_p = vp0->v_op; 315 316 if (flags & LAYERFS_MBYPASSDEBUG) 317 printf("%s: %s\n", __func__, descp->vdesc_name); 318 319 /* 320 * Map the vnodes going in. 321 * Later, we'll invoke the operation based on 322 * the first mapped vnode's operation vector. 323 */ 324 reles = descp->vdesc_flags; 325 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 326 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 327 break; /* bail out at end of list */ 328 vps_p[i] = this_vp_p = 329 VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i], 330 ap); 331 /* 332 * We're not guaranteed that any but the first vnode 333 * are of our type. Check for and don't map any 334 * that aren't. (We must always map first vp or vclean fails.) 335 */ 336 if (i && (*this_vp_p == NULL || 337 (*this_vp_p)->v_op != our_vnodeop_p)) { 338 old_vps[i] = NULL; 339 } else { 340 old_vps[i] = *this_vp_p; 341 *(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p); 342 /* 343 * XXX - Several operations have the side effect 344 * of vrele'ing their vp's. We must account for 345 * that. (This should go away in the future.) 346 */ 347 if (reles & VDESC_VP0_WILLRELE) 348 VREF(*this_vp_p); 349 } 350 351 } 352 353 /* 354 * Call the operation on the lower layer 355 * with the modified argument structure. 356 */ 357 error = VCALL(*vps_p[0], descp->vdesc_offset, ap); 358 359 /* 360 * Maintain the illusion of call-by-value 361 * by restoring vnodes in the argument structure 362 * to their original value. 363 */ 364 reles = descp->vdesc_flags; 365 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) { 366 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET) 367 break; /* bail out at end of list */ 368 if (old_vps[i]) { 369 *(vps_p[i]) = old_vps[i]; 370 if (reles & VDESC_VP0_WILLUNLOCK) 371 LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1); 372 if (reles & VDESC_VP0_WILLRELE) 373 vrele(*(vps_p[i])); 374 } 375 } 376 377 /* 378 * Map the possible out-going vpp 379 * (Assumes that the lower layer always returns 380 * a VREF'ed vpp unless it gets an error.) 381 */ 382 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET && 383 !(descp->vdesc_flags & VDESC_NOMAP_VPP) && 384 !error) { 385 /* 386 * XXX - even though some ops have vpp returned vp's, 387 * several ops actually vrele this before returning. 388 * We must avoid these ops. 389 * (This should go away when these ops are regularized.) 390 */ 391 if (descp->vdesc_flags & VDESC_VPP_WILLRELE) 392 goto out; 393 vppp = VOPARG_OFFSETTO(struct vnode***, 394 descp->vdesc_vpp_offset, ap); 395 /* 396 * Only vop_lookup, vop_create, vop_makedir, vop_bmap, 397 * vop_mknod, and vop_symlink return vpp's. vop_bmap 398 * doesn't call bypass as the lower vpp is fine (we're just 399 * going to do i/o on it). vop_lookup doesn't call bypass 400 * as a lookup on "." would generate a locking error. 401 * So all the calls which get us here have a locked vpp. :-) 402 */ 403 error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp); 404 if (error) { 405 vput(**vppp); 406 **vppp = NULL; 407 } 408 } 409 410 out: 411 return (error); 412 } 413 414 /* 415 * We have to carry on the locking protocol on the layer vnodes 416 * as we progress through the tree. We also have to enforce read-only 417 * if this layer is mounted read-only. 418 */ 419 int 420 layer_lookup(v) 421 void *v; 422 { 423 struct vop_lookup_args /* { 424 struct vnodeop_desc *a_desc; 425 struct vnode * a_dvp; 426 struct vnode ** a_vpp; 427 struct componentname * a_cnp; 428 } */ *ap = v; 429 struct componentname *cnp = ap->a_cnp; 430 int flags = cnp->cn_flags; 431 struct vnode *dvp, *vp, *ldvp; 432 int error, r; 433 434 dvp = ap->a_dvp; 435 436 if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && 437 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) 438 return (EROFS); 439 440 ldvp = LAYERVPTOLOWERVP(dvp); 441 ap->a_dvp = ldvp; 442 error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap); 443 vp = *ap->a_vpp; 444 *ap->a_vpp = NULL; 445 446 if (error == EJUSTRETURN && (flags & ISLASTCN) && 447 (dvp->v_mount->mnt_flag & MNT_RDONLY) && 448 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME)) 449 error = EROFS; 450 /* 451 * We must do the same locking and unlocking at this layer as 452 * is done in the layers below us. It used to be we would try 453 * to guess based on what was set with the flags and error codes. 454 * 455 * But that doesn't work. So now we have the underlying VOP_LOOKUP 456 * tell us if it released the parent vnode, and we adjust the 457 * upper node accordingly. We can't just look at the lock states 458 * of the lower nodes as someone else might have come along and 459 * locked the parent node after our call to VOP_LOOKUP locked it. 460 */ 461 if ((cnp->cn_flags & PDIRUNLOCK)) { 462 LAYERFS_UPPERUNLOCK(dvp, 0, r); 463 } 464 if (ldvp == vp) { 465 /* 466 * Did lookup on "." or ".." in the root node of a mount point. 467 * So we return dvp after a VREF. 468 */ 469 *ap->a_vpp = dvp; 470 VREF(dvp); 471 vrele(vp); 472 } else if (vp != NULL) { 473 error = layer_node_create(dvp->v_mount, vp, ap->a_vpp); 474 if (error) { 475 vput(vp); 476 if (cnp->cn_flags & PDIRUNLOCK) { 477 if (vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY) == 0) 478 cnp->cn_flags &= ~PDIRUNLOCK; 479 } 480 } 481 } 482 return (error); 483 } 484 485 /* 486 * Setattr call. Disallow write attempts if the layer is mounted read-only. 487 */ 488 int 489 layer_setattr(v) 490 void *v; 491 { 492 struct vop_setattr_args /* { 493 struct vnodeop_desc *a_desc; 494 struct vnode *a_vp; 495 struct vattr *a_vap; 496 struct ucred *a_cred; 497 struct lwp *a_l; 498 } */ *ap = v; 499 struct vnode *vp = ap->a_vp; 500 struct vattr *vap = ap->a_vap; 501 502 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 503 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 504 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 505 (vp->v_mount->mnt_flag & MNT_RDONLY)) 506 return (EROFS); 507 if (vap->va_size != VNOVAL) { 508 switch (vp->v_type) { 509 case VDIR: 510 return (EISDIR); 511 case VCHR: 512 case VBLK: 513 case VSOCK: 514 case VFIFO: 515 return (0); 516 case VREG: 517 case VLNK: 518 default: 519 /* 520 * Disallow write attempts if the filesystem is 521 * mounted read-only. 522 */ 523 if (vp->v_mount->mnt_flag & MNT_RDONLY) 524 return (EROFS); 525 } 526 } 527 return (LAYERFS_DO_BYPASS(vp, ap)); 528 } 529 530 /* 531 * We handle getattr only to change the fsid. 532 */ 533 int 534 layer_getattr(v) 535 void *v; 536 { 537 struct vop_getattr_args /* { 538 struct vnode *a_vp; 539 struct vattr *a_vap; 540 struct ucred *a_cred; 541 struct lwp *a_l; 542 } */ *ap = v; 543 struct vnode *vp = ap->a_vp; 544 int error; 545 546 if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0) 547 return (error); 548 /* Requires that arguments be restored. */ 549 ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0]; 550 return (0); 551 } 552 553 int 554 layer_access(v) 555 void *v; 556 { 557 struct vop_access_args /* { 558 struct vnode *a_vp; 559 int a_mode; 560 struct ucred *a_cred; 561 struct lwp *a_l; 562 } */ *ap = v; 563 struct vnode *vp = ap->a_vp; 564 mode_t mode = ap->a_mode; 565 566 /* 567 * Disallow write attempts on read-only layers; 568 * unless the file is a socket, fifo, or a block or 569 * character device resident on the file system. 570 */ 571 if (mode & VWRITE) { 572 switch (vp->v_type) { 573 case VDIR: 574 case VLNK: 575 case VREG: 576 if (vp->v_mount->mnt_flag & MNT_RDONLY) 577 return (EROFS); 578 break; 579 default: 580 break; 581 } 582 } 583 return (LAYERFS_DO_BYPASS(vp, ap)); 584 } 585 586 /* 587 * We must handle open to be able to catch MNT_NODEV and friends. 588 */ 589 int 590 layer_open(v) 591 void *v; 592 { 593 struct vop_open_args *ap = v; 594 struct vnode *vp = ap->a_vp; 595 enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type; 596 597 if (((lower_type == VBLK) || (lower_type == VCHR)) && 598 (vp->v_mount->mnt_flag & MNT_NODEV)) 599 return ENXIO; 600 601 return LAYERFS_DO_BYPASS(vp, ap); 602 } 603 604 /* 605 * We need to process our own vnode lock and then clear the 606 * interlock flag as it applies only to our vnode, not the 607 * vnodes below us on the stack. 608 */ 609 int 610 layer_lock(v) 611 void *v; 612 { 613 struct vop_lock_args /* { 614 struct vnode *a_vp; 615 int a_flags; 616 struct proc *a_p; 617 } */ *ap = v; 618 struct vnode *vp = ap->a_vp, *lowervp; 619 int flags = ap->a_flags, error; 620 621 if (vp->v_vnlock != NULL) { 622 /* 623 * The lower level has exported a struct lock to us. Use 624 * it so that all vnodes in the stack lock and unlock 625 * simultaneously. Note: we don't DRAIN the lock as DRAIN 626 * decommissions the lock - just because our vnode is 627 * going away doesn't mean the struct lock below us is. 628 * LK_EXCLUSIVE is fine. 629 */ 630 if ((flags & LK_TYPE_MASK) == LK_DRAIN) { 631 return(lockmgr(vp->v_vnlock, 632 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, 633 &vp->v_interlock)); 634 } else 635 return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock)); 636 } else { 637 /* 638 * Ahh well. It would be nice if the fs we're over would 639 * export a struct lock for us to use, but it doesn't. 640 * 641 * To prevent race conditions involving doing a lookup 642 * on "..", we have to lock the lower node, then lock our 643 * node. Most of the time it won't matter that we lock our 644 * node (as any locking would need the lower one locked 645 * first). But we can LK_DRAIN the upper lock as a step 646 * towards decomissioning it. 647 */ 648 lowervp = LAYERVPTOLOWERVP(vp); 649 if (flags & LK_INTERLOCK) { 650 simple_unlock(&vp->v_interlock); 651 flags &= ~LK_INTERLOCK; 652 } 653 if ((flags & LK_TYPE_MASK) == LK_DRAIN) { 654 error = VOP_LOCK(lowervp, 655 (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE); 656 } else 657 error = VOP_LOCK(lowervp, flags); 658 if (error) 659 return (error); 660 if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) { 661 VOP_UNLOCK(lowervp, 0); 662 } 663 return (error); 664 } 665 } 666 667 /* 668 */ 669 int 670 layer_unlock(v) 671 void *v; 672 { 673 struct vop_unlock_args /* { 674 struct vnode *a_vp; 675 int a_flags; 676 struct proc *a_p; 677 } */ *ap = v; 678 struct vnode *vp = ap->a_vp; 679 int flags = ap->a_flags; 680 681 if (vp->v_vnlock != NULL) { 682 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE, 683 &vp->v_interlock)); 684 } else { 685 if (flags & LK_INTERLOCK) { 686 simple_unlock(&vp->v_interlock); 687 flags &= ~LK_INTERLOCK; 688 } 689 VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags); 690 return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE, 691 &vp->v_interlock)); 692 } 693 } 694 695 int 696 layer_islocked(v) 697 void *v; 698 { 699 struct vop_islocked_args /* { 700 struct vnode *a_vp; 701 } */ *ap = v; 702 struct vnode *vp = ap->a_vp; 703 int lkstatus; 704 705 if (vp->v_vnlock != NULL) 706 return lockstatus(vp->v_vnlock); 707 708 lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp)); 709 if (lkstatus) 710 return lkstatus; 711 712 return lockstatus(&vp->v_lock); 713 } 714 715 /* 716 * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother 717 * syncing the underlying vnodes, since they'll be fsync'ed when 718 * reclaimed; otherwise, 719 * pass it through to the underlying layer. 720 * 721 * XXX Do we still need to worry about shallow fsync? 722 */ 723 724 int 725 layer_fsync(v) 726 void *v; 727 { 728 struct vop_fsync_args /* { 729 struct vnode *a_vp; 730 struct ucred *a_cred; 731 int a_flags; 732 off_t offlo; 733 off_t offhi; 734 struct lwp *a_l; 735 } */ *ap = v; 736 737 if (ap->a_flags & FSYNC_RECLAIM) { 738 return 0; 739 } 740 741 return (LAYERFS_DO_BYPASS(ap->a_vp, ap)); 742 } 743 744 745 int 746 layer_inactive(v) 747 void *v; 748 { 749 struct vop_inactive_args /* { 750 struct vnode *a_vp; 751 struct lwp *a_l; 752 } */ *ap = v; 753 struct vnode *vp = ap->a_vp; 754 755 /* 756 * Do nothing (and _don't_ bypass). 757 * Wait to vrele lowervp until reclaim, 758 * so that until then our layer_node is in the 759 * cache and reusable. 760 * 761 * NEEDSWORK: Someday, consider inactive'ing 762 * the lowervp and then trying to reactivate it 763 * with capabilities (v_id) 764 * like they do in the name lookup cache code. 765 * That's too much work for now. 766 */ 767 VOP_UNLOCK(vp, 0); 768 769 /* 770 * ..., but don't cache the device node. Also, if we did a 771 * remove, don't cache the node. 772 */ 773 if (vp->v_type == VBLK || vp->v_type == VCHR 774 || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED)) 775 vgone(vp); 776 return (0); 777 } 778 779 int 780 layer_remove(v) 781 void *v; 782 { 783 struct vop_remove_args /* { 784 struct vonde *a_dvp; 785 struct vnode *a_vp; 786 struct componentname *a_cnp; 787 } */ *ap = v; 788 789 int error; 790 struct vnode *vp = ap->a_vp; 791 792 vref(vp); 793 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0) 794 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED; 795 796 vrele(vp); 797 798 return (error); 799 } 800 801 int 802 layer_rename(v) 803 void *v; 804 { 805 struct vop_rename_args /* { 806 struct vnode *a_fdvp; 807 struct vnode *a_fvp; 808 struct componentname *a_fcnp; 809 struct vnode *a_tdvp; 810 struct vnode *a_tvp; 811 struct componentname *a_tcnp; 812 } */ *ap = v; 813 814 int error; 815 struct vnode *fdvp = ap->a_fdvp; 816 struct vnode *tvp; 817 818 tvp = ap->a_tvp; 819 if (tvp) { 820 if (tvp->v_mount != fdvp->v_mount) 821 tvp = NULL; 822 else 823 vref(tvp); 824 } 825 error = LAYERFS_DO_BYPASS(fdvp, ap); 826 if (tvp) { 827 if (error == 0) 828 VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED; 829 vrele(tvp); 830 } 831 832 return (error); 833 } 834 835 int 836 layer_rmdir(v) 837 void *v; 838 { 839 struct vop_rmdir_args /* { 840 struct vnode *a_dvp; 841 struct vnode *a_vp; 842 struct componentname *a_cnp; 843 } */ *ap = v; 844 int error; 845 struct vnode *vp = ap->a_vp; 846 847 vref(vp); 848 if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0) 849 VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED; 850 851 vrele(vp); 852 853 return (error); 854 } 855 856 int 857 layer_reclaim(v) 858 void *v; 859 { 860 struct vop_reclaim_args /* { 861 struct vnode *a_vp; 862 struct lwp *a_l; 863 } */ *ap = v; 864 struct vnode *vp = ap->a_vp; 865 struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount); 866 struct layer_node *xp = VTOLAYER(vp); 867 struct vnode *lowervp = xp->layer_lowervp; 868 869 /* 870 * Note: in vop_reclaim, the node's struct lock has been 871 * decomissioned, so we have to be careful about calling 872 * VOP's on ourself. Even if we turned a LK_DRAIN into an 873 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is 874 * set. 875 */ 876 /* After this assignment, this node will not be re-used. */ 877 if ((vp == lmp->layerm_rootvp)) { 878 /* 879 * Oops! We no longer have a root node. Most likely reason is 880 * that someone forcably unmunted the underlying fs. 881 * 882 * Now getting the root vnode will fail. We're dead. :-( 883 */ 884 lmp->layerm_rootvp = NULL; 885 } 886 xp->layer_lowervp = NULL; 887 simple_lock(&lmp->layerm_hashlock); 888 LIST_REMOVE(xp, layer_hash); 889 simple_unlock(&lmp->layerm_hashlock); 890 FREE(vp->v_data, M_TEMP); 891 vp->v_data = NULL; 892 vrele (lowervp); 893 return (0); 894 } 895 896 /* 897 * We just feed the returned vnode up to the caller - there's no need 898 * to build a layer node on top of the node on which we're going to do 899 * i/o. :-) 900 */ 901 int 902 layer_bmap(v) 903 void *v; 904 { 905 struct vop_bmap_args /* { 906 struct vnode *a_vp; 907 daddr_t a_bn; 908 struct vnode **a_vpp; 909 daddr_t *a_bnp; 910 int *a_runp; 911 } */ *ap = v; 912 struct vnode *vp; 913 914 ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp); 915 916 return (VCALL(vp, ap->a_desc->vdesc_offset, ap)); 917 } 918 919 int 920 layer_print(v) 921 void *v; 922 { 923 struct vop_print_args /* { 924 struct vnode *a_vp; 925 } */ *ap = v; 926 struct vnode *vp = ap->a_vp; 927 printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp)); 928 return (0); 929 } 930 931 /* 932 * XXX - vop_bwrite must be hand coded because it has no 933 * vnode in its arguments. 934 * This goes away with a merged VM/buffer cache. 935 */ 936 int 937 layer_bwrite(v) 938 void *v; 939 { 940 struct vop_bwrite_args /* { 941 struct buf *a_bp; 942 } */ *ap = v; 943 struct buf *bp = ap->a_bp; 944 int error; 945 struct vnode *savedvp; 946 947 savedvp = bp->b_vp; 948 bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp); 949 950 error = VOP_BWRITE(bp); 951 952 bp->b_vp = savedvp; 953 954 return (error); 955 } 956 957 int 958 layer_getpages(v) 959 void *v; 960 { 961 struct vop_getpages_args /* { 962 struct vnode *a_vp; 963 voff_t a_offset; 964 struct vm_page **a_m; 965 int *a_count; 966 int a_centeridx; 967 vm_prot_t a_access_type; 968 int a_advice; 969 int a_flags; 970 } */ *ap = v; 971 struct vnode *vp = ap->a_vp; 972 int error; 973 974 /* 975 * just pass the request on to the underlying layer. 976 */ 977 978 if (ap->a_flags & PGO_LOCKED) { 979 return EBUSY; 980 } 981 ap->a_vp = LAYERVPTOLOWERVP(vp); 982 simple_unlock(&vp->v_interlock); 983 simple_lock(&ap->a_vp->v_interlock); 984 error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap); 985 return error; 986 } 987 988 int 989 layer_putpages(v) 990 void *v; 991 { 992 struct vop_putpages_args /* { 993 struct vnode *a_vp; 994 voff_t a_offlo; 995 voff_t a_offhi; 996 int a_flags; 997 } */ *ap = v; 998 struct vnode *vp = ap->a_vp; 999 int error; 1000 1001 /* 1002 * just pass the request on to the underlying layer. 1003 */ 1004 1005 ap->a_vp = LAYERVPTOLOWERVP(vp); 1006 simple_unlock(&vp->v_interlock); 1007 simple_lock(&ap->a_vp->v_interlock); 1008 error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap); 1009 return error; 1010 } 1011