xref: /netbsd-src/sys/miscfs/genfs/layer_vnops.c (revision eb961d0e02b7a46a9acfa877b02df48df6637278)
1 /*	$NetBSD: layer_vnops.c,v 1.26 2005/12/11 12:24:50 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1999 National Aeronautics & Space Administration
5  * All rights reserved.
6  *
7  * This software was written by William Studenmund of the
8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the National Aeronautics & Space Administration
19  *    nor the names of its contributors may be used to endorse or promote
20  *    products derived from this software without specific prior written
21  *    permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 /*
36  * Copyright (c) 1992, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * John Heidemann of the UCLA Ficus project.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
67  *
68  * Ancestors:
69  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
70  *	$Id: layer_vnops.c,v 1.26 2005/12/11 12:24:50 christos Exp $
71  *	$Id: layer_vnops.c,v 1.26 2005/12/11 12:24:50 christos Exp $
72  *	...and...
73  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
74  */
75 
76 /*
77  * Null Layer vnode routines.
78  *
79  * (See mount_null(8) for more information.)
80  *
81  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
82  * the core implementation of the null file system and most other stacked
83  * fs's. The description below refers to the null file system, but the
84  * services provided by the layer* files are useful for all layered fs's.
85  *
86  * The null layer duplicates a portion of the file system
87  * name space under a new name.  In this respect, it is
88  * similar to the loopback file system.  It differs from
89  * the loopback fs in two respects:  it is implemented using
90  * a stackable layers techniques, and it's "null-node"s stack above
91  * all lower-layer vnodes, not just over directory vnodes.
92  *
93  * The null layer has two purposes.  First, it serves as a demonstration
94  * of layering by proving a layer which does nothing.  (It actually
95  * does everything the loopback file system does, which is slightly
96  * more than nothing.)  Second, the null layer can serve as a prototype
97  * layer.  Since it provides all necessary layer framework,
98  * new file system layers can be created very easily be starting
99  * with a null layer.
100  *
101  * The remainder of the man page examines the null layer as a basis
102  * for constructing new layers.
103  *
104  *
105  * INSTANTIATING NEW NULL LAYERS
106  *
107  * New null layers are created with mount_null(8).
108  * Mount_null(8) takes two arguments, the pathname
109  * of the lower vfs (target-pn) and the pathname where the null
110  * layer will appear in the namespace (alias-pn).  After
111  * the null layer is put into place, the contents
112  * of target-pn subtree will be aliased under alias-pn.
113  *
114  * It is conceivable that other overlay filesystems will take different
115  * parameters. For instance, data migration or access controll layers might
116  * only take one pathname which will serve both as the target-pn and
117  * alias-pn described above.
118  *
119  *
120  * OPERATION OF A NULL LAYER
121  *
122  * The null layer is the minimum file system layer,
123  * simply bypassing all possible operations to the lower layer
124  * for processing there.  The majority of its activity centers
125  * on the bypass routine, through which nearly all vnode operations
126  * pass.
127  *
128  * The bypass routine accepts arbitrary vnode operations for
129  * handling by the lower layer.  It begins by examing vnode
130  * operation arguments and replacing any layered nodes by their
131  * lower-layer equivalents.  It then invokes the operation
132  * on the lower layer.  Finally, it replaces the layered nodes
133  * in the arguments and, if a vnode is return by the operation,
134  * stacks a layered node on top of the returned vnode.
135  *
136  * The bypass routine in this file, layer_bypass(), is suitable for use
137  * by many different layered filesystems. It can be used by multiple
138  * filesystems simultaneously. Alternatively, a layered fs may provide
139  * its own bypass routine, in which case layer_bypass() should be used as
140  * a model. For instance, the main functionality provided by umapfs, the user
141  * identity mapping file system, is handled by a custom bypass routine.
142  *
143  * Typically a layered fs registers its selected bypass routine as the
144  * default vnode operation in its vnodeopv_entry_desc table. Additionally
145  * the filesystem must store the bypass entry point in the layerm_bypass
146  * field of struct layer_mount. All other layer routines in this file will
147  * use the layerm_bypass routine.
148  *
149  * Although the bypass routine handles most operations outright, a number
150  * of operations are special cased, and handled by the layered fs. One
151  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
152  * layer_fsync, perform layer-specific manipulation in addition to calling
153  * the bypass routine. The other group
154 
155  * Although bypass handles most operations, vop_getattr, vop_lock,
156  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
157  * bypassed. Vop_getattr must change the fsid being returned.
158  * Vop_lock and vop_unlock must handle any locking for the
159  * current vnode as well as pass the lock request down.
160  * Vop_inactive and vop_reclaim are not bypassed so that
161  * they can handle freeing null-layer specific data. Vop_print
162  * is not bypassed to avoid excessive debugging information.
163  * Also, certain vnode operations change the locking state within
164  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
165  * and symlink). Ideally these operations should not change the
166  * lock state, but should be changed to let the caller of the
167  * function unlock them. Otherwise all intermediate vnode layers
168  * (such as union, umapfs, etc) must catch these functions to do
169  * the necessary locking at their layer.
170  *
171  *
172  * INSTANTIATING VNODE STACKS
173  *
174  * Mounting associates the null layer with a lower layer,
175  * effect stacking two VFSes.  Vnode stacks are instead
176  * created on demand as files are accessed.
177  *
178  * The initial mount creates a single vnode stack for the
179  * root of the new null layer.  All other vnode stacks
180  * are created as a result of vnode operations on
181  * this or other null vnode stacks.
182  *
183  * New vnode stacks come into existence as a result of
184  * an operation which returns a vnode.
185  * The bypass routine stacks a null-node above the new
186  * vnode before returning it to the caller.
187  *
188  * For example, imagine mounting a null layer with
189  * "mount_null /usr/include /dev/layer/null".
190  * Changing directory to /dev/layer/null will assign
191  * the root null-node (which was created when the null layer was mounted).
192  * Now consider opening "sys".  A vop_lookup would be
193  * done on the root null-node.  This operation would bypass through
194  * to the lower layer which would return a vnode representing
195  * the UFS "sys".  layer_bypass then builds a null-node
196  * aliasing the UFS "sys" and returns this to the caller.
197  * Later operations on the null-node "sys" will repeat this
198  * process when constructing other vnode stacks.
199  *
200  *
201  * CREATING OTHER FILE SYSTEM LAYERS
202  *
203  * One of the easiest ways to construct new file system layers is to make
204  * a copy of the null layer, rename all files and variables, and
205  * then begin modifing the copy.  Sed can be used to easily rename
206  * all variables.
207  *
208  * The umap layer is an example of a layer descended from the
209  * null layer.
210  *
211  *
212  * INVOKING OPERATIONS ON LOWER LAYERS
213  *
214  * There are two techniques to invoke operations on a lower layer
215  * when the operation cannot be completely bypassed.  Each method
216  * is appropriate in different situations.  In both cases,
217  * it is the responsibility of the aliasing layer to make
218  * the operation arguments "correct" for the lower layer
219  * by mapping an vnode arguments to the lower layer.
220  *
221  * The first approach is to call the aliasing layer's bypass routine.
222  * This method is most suitable when you wish to invoke the operation
223  * currently being handled on the lower layer.  It has the advantage
224  * that the bypass routine already must do argument mapping.
225  * An example of this is null_getattrs in the null layer.
226  *
227  * A second approach is to directly invoke vnode operations on
228  * the lower layer with the VOP_OPERATIONNAME interface.
229  * The advantage of this method is that it is easy to invoke
230  * arbitrary operations on the lower layer.  The disadvantage
231  * is that vnodes' arguments must be manually mapped.
232  *
233  */
234 
235 #include <sys/cdefs.h>
236 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.26 2005/12/11 12:24:50 christos Exp $");
237 
238 #include <sys/param.h>
239 #include <sys/systm.h>
240 #include <sys/proc.h>
241 #include <sys/time.h>
242 #include <sys/vnode.h>
243 #include <sys/mount.h>
244 #include <sys/namei.h>
245 #include <sys/malloc.h>
246 #include <sys/buf.h>
247 #include <miscfs/genfs/layer.h>
248 #include <miscfs/genfs/layer_extern.h>
249 #include <miscfs/genfs/genfs.h>
250 
251 
252 /*
253  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
254  *		routine by John Heidemann.
255  *	The new element for this version is that the whole nullfs
256  * system gained the concept of locks on the lower node, and locks on
257  * our nodes. When returning from a call to the lower layer, we may
258  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
259  * macros provide this functionality.
260  *    The 10-Apr-92 version was optimized for speed, throwing away some
261  * safety checks.  It should still always work, but it's not as
262  * robust to programmer errors.
263  *    Define SAFETY to include some error checking code.
264  *
265  * In general, we map all vnodes going down and unmap them on the way back.
266  *
267  * Also, some BSD vnode operations have the side effect of vrele'ing
268  * their arguments.  With stacking, the reference counts are held
269  * by the upper node, not the lower one, so we must handle these
270  * side-effects here.  This is not of concern in Sun-derived systems
271  * since there are no such side-effects.
272  *
273  * New for the 08-June-99 version: we also handle operations which unlock
274  * the passed-in node (typically they vput the node).
275  *
276  * This makes the following assumptions:
277  * - only one returned vpp
278  * - no INOUT vpp's (Sun's vop_open has one of these)
279  * - the vnode operation vector of the first vnode should be used
280  *   to determine what implementation of the op should be invoked
281  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
282  *   problems on rmdir'ing mount points and renaming?)
283  */
284 int
285 layer_bypass(v)
286 	void *v;
287 {
288 	struct vop_generic_args /* {
289 		struct vnodeop_desc *a_desc;
290 		<other random data follows, presumably>
291 	} */ *ap = v;
292 	int (**our_vnodeop_p)(void *);
293 	struct vnode **this_vp_p;
294 	int error, error1;
295 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
296 	struct vnode **vps_p[VDESC_MAX_VPS];
297 	struct vnode ***vppp;
298 	struct vnodeop_desc *descp = ap->a_desc;
299 	int reles, i, flags;
300 
301 #ifdef SAFETY
302 	/*
303 	 * We require at least one vp.
304 	 */
305 	if (descp->vdesc_vp_offsets == NULL ||
306 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
307 		panic("%s: no vp's in map.\n", __func__);
308 #endif
309 
310 	vps_p[0] =
311 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
312 	vp0 = *vps_p[0];
313 	flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
314 	our_vnodeop_p = vp0->v_op;
315 
316 	if (flags & LAYERFS_MBYPASSDEBUG)
317 		printf("%s: %s\n", __func__, descp->vdesc_name);
318 
319 	/*
320 	 * Map the vnodes going in.
321 	 * Later, we'll invoke the operation based on
322 	 * the first mapped vnode's operation vector.
323 	 */
324 	reles = descp->vdesc_flags;
325 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
326 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
327 			break;   /* bail out at end of list */
328 		vps_p[i] = this_vp_p =
329 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
330 		    ap);
331 		/*
332 		 * We're not guaranteed that any but the first vnode
333 		 * are of our type.  Check for and don't map any
334 		 * that aren't.  (We must always map first vp or vclean fails.)
335 		 */
336 		if (i && (*this_vp_p == NULL ||
337 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
338 			old_vps[i] = NULL;
339 		} else {
340 			old_vps[i] = *this_vp_p;
341 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
342 			/*
343 			 * XXX - Several operations have the side effect
344 			 * of vrele'ing their vp's.  We must account for
345 			 * that.  (This should go away in the future.)
346 			 */
347 			if (reles & VDESC_VP0_WILLRELE)
348 				VREF(*this_vp_p);
349 		}
350 
351 	}
352 
353 	/*
354 	 * Call the operation on the lower layer
355 	 * with the modified argument structure.
356 	 */
357 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
358 
359 	/*
360 	 * Maintain the illusion of call-by-value
361 	 * by restoring vnodes in the argument structure
362 	 * to their original value.
363 	 */
364 	reles = descp->vdesc_flags;
365 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
366 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
367 			break;   /* bail out at end of list */
368 		if (old_vps[i]) {
369 			*(vps_p[i]) = old_vps[i];
370 			if (reles & VDESC_VP0_WILLUNLOCK)
371 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
372 			if (reles & VDESC_VP0_WILLRELE)
373 				vrele(*(vps_p[i]));
374 		}
375 	}
376 
377 	/*
378 	 * Map the possible out-going vpp
379 	 * (Assumes that the lower layer always returns
380 	 * a VREF'ed vpp unless it gets an error.)
381 	 */
382 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
383 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
384 	    !error) {
385 		/*
386 		 * XXX - even though some ops have vpp returned vp's,
387 		 * several ops actually vrele this before returning.
388 		 * We must avoid these ops.
389 		 * (This should go away when these ops are regularized.)
390 		 */
391 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
392 			goto out;
393 		vppp = VOPARG_OFFSETTO(struct vnode***,
394 				 descp->vdesc_vpp_offset, ap);
395 		/*
396 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
397 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
398 		 * doesn't call bypass as the lower vpp is fine (we're just
399 		 * going to do i/o on it). vop_lookup doesn't call bypass
400 		 * as a lookup on "." would generate a locking error.
401 		 * So all the calls which get us here have a locked vpp. :-)
402 		 */
403 		error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
404 		if (error) {
405 			vput(**vppp);
406 			**vppp = NULL;
407 		}
408 	}
409 
410  out:
411 	return (error);
412 }
413 
414 /*
415  * We have to carry on the locking protocol on the layer vnodes
416  * as we progress through the tree. We also have to enforce read-only
417  * if this layer is mounted read-only.
418  */
419 int
420 layer_lookup(v)
421 	void *v;
422 {
423 	struct vop_lookup_args /* {
424 		struct vnodeop_desc *a_desc;
425 		struct vnode * a_dvp;
426 		struct vnode ** a_vpp;
427 		struct componentname * a_cnp;
428 	} */ *ap = v;
429 	struct componentname *cnp = ap->a_cnp;
430 	int flags = cnp->cn_flags;
431 	struct vnode *dvp, *vp, *ldvp;
432 	int error, r;
433 
434 	dvp = ap->a_dvp;
435 
436 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
437 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
438 		return (EROFS);
439 
440 	ldvp = LAYERVPTOLOWERVP(dvp);
441 	ap->a_dvp = ldvp;
442 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
443 	vp = *ap->a_vpp;
444 	*ap->a_vpp = NULL;
445 
446 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
447 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
448 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
449 		error = EROFS;
450 	/*
451 	 * We must do the same locking and unlocking at this layer as
452 	 * is done in the layers below us. It used to be we would try
453 	 * to guess based on what was set with the flags and error codes.
454 	 *
455 	 * But that doesn't work. So now we have the underlying VOP_LOOKUP
456 	 * tell us if it released the parent vnode, and we adjust the
457 	 * upper node accordingly. We can't just look at the lock states
458 	 * of the lower nodes as someone else might have come along and
459 	 * locked the parent node after our call to VOP_LOOKUP locked it.
460 	 */
461 	if ((cnp->cn_flags & PDIRUNLOCK)) {
462 		LAYERFS_UPPERUNLOCK(dvp, 0, r);
463 	}
464 	if (ldvp == vp) {
465 		/*
466 		 * Did lookup on "." or ".." in the root node of a mount point.
467 		 * So we return dvp after a VREF.
468 		 */
469 		*ap->a_vpp = dvp;
470 		VREF(dvp);
471 		vrele(vp);
472 	} else if (vp != NULL) {
473 		error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
474 		if (error) {
475 			vput(vp);
476 			if (cnp->cn_flags & PDIRUNLOCK) {
477 				if (vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY) == 0)
478 					cnp->cn_flags &= ~PDIRUNLOCK;
479 			}
480 		}
481 	}
482 	return (error);
483 }
484 
485 /*
486  * Setattr call. Disallow write attempts if the layer is mounted read-only.
487  */
488 int
489 layer_setattr(v)
490 	void *v;
491 {
492 	struct vop_setattr_args /* {
493 		struct vnodeop_desc *a_desc;
494 		struct vnode *a_vp;
495 		struct vattr *a_vap;
496 		struct ucred *a_cred;
497 		struct lwp *a_l;
498 	} */ *ap = v;
499 	struct vnode *vp = ap->a_vp;
500 	struct vattr *vap = ap->a_vap;
501 
502   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
503 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
504 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
505 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
506 		return (EROFS);
507 	if (vap->va_size != VNOVAL) {
508  		switch (vp->v_type) {
509  		case VDIR:
510  			return (EISDIR);
511  		case VCHR:
512  		case VBLK:
513  		case VSOCK:
514  		case VFIFO:
515 			return (0);
516 		case VREG:
517 		case VLNK:
518  		default:
519 			/*
520 			 * Disallow write attempts if the filesystem is
521 			 * mounted read-only.
522 			 */
523 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
524 				return (EROFS);
525 		}
526 	}
527 	return (LAYERFS_DO_BYPASS(vp, ap));
528 }
529 
530 /*
531  *  We handle getattr only to change the fsid.
532  */
533 int
534 layer_getattr(v)
535 	void *v;
536 {
537 	struct vop_getattr_args /* {
538 		struct vnode *a_vp;
539 		struct vattr *a_vap;
540 		struct ucred *a_cred;
541 		struct lwp *a_l;
542 	} */ *ap = v;
543 	struct vnode *vp = ap->a_vp;
544 	int error;
545 
546 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
547 		return (error);
548 	/* Requires that arguments be restored. */
549 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
550 	return (0);
551 }
552 
553 int
554 layer_access(v)
555 	void *v;
556 {
557 	struct vop_access_args /* {
558 		struct vnode *a_vp;
559 		int  a_mode;
560 		struct ucred *a_cred;
561 		struct lwp *a_l;
562 	} */ *ap = v;
563 	struct vnode *vp = ap->a_vp;
564 	mode_t mode = ap->a_mode;
565 
566 	/*
567 	 * Disallow write attempts on read-only layers;
568 	 * unless the file is a socket, fifo, or a block or
569 	 * character device resident on the file system.
570 	 */
571 	if (mode & VWRITE) {
572 		switch (vp->v_type) {
573 		case VDIR:
574 		case VLNK:
575 		case VREG:
576 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
577 				return (EROFS);
578 			break;
579 		default:
580 			break;
581 		}
582 	}
583 	return (LAYERFS_DO_BYPASS(vp, ap));
584 }
585 
586 /*
587  * We must handle open to be able to catch MNT_NODEV and friends.
588  */
589 int
590 layer_open(v)
591 	void *v;
592 {
593 	struct vop_open_args *ap = v;
594 	struct vnode *vp = ap->a_vp;
595 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
596 
597 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
598 	    (vp->v_mount->mnt_flag & MNT_NODEV))
599 		return ENXIO;
600 
601 	return LAYERFS_DO_BYPASS(vp, ap);
602 }
603 
604 /*
605  * We need to process our own vnode lock and then clear the
606  * interlock flag as it applies only to our vnode, not the
607  * vnodes below us on the stack.
608  */
609 int
610 layer_lock(v)
611 	void *v;
612 {
613 	struct vop_lock_args /* {
614 		struct vnode *a_vp;
615 		int a_flags;
616 		struct proc *a_p;
617 	} */ *ap = v;
618 	struct vnode *vp = ap->a_vp, *lowervp;
619 	int	flags = ap->a_flags, error;
620 
621 	if (vp->v_vnlock != NULL) {
622 		/*
623 		 * The lower level has exported a struct lock to us. Use
624 		 * it so that all vnodes in the stack lock and unlock
625 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
626 		 * decommissions the lock - just because our vnode is
627 		 * going away doesn't mean the struct lock below us is.
628 		 * LK_EXCLUSIVE is fine.
629 		 */
630 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
631 			return(lockmgr(vp->v_vnlock,
632 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
633 				&vp->v_interlock));
634 		} else
635 			return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
636 	} else {
637 		/*
638 		 * Ahh well. It would be nice if the fs we're over would
639 		 * export a struct lock for us to use, but it doesn't.
640 		 *
641 		 * To prevent race conditions involving doing a lookup
642 		 * on "..", we have to lock the lower node, then lock our
643 		 * node. Most of the time it won't matter that we lock our
644 		 * node (as any locking would need the lower one locked
645 		 * first). But we can LK_DRAIN the upper lock as a step
646 		 * towards decomissioning it.
647 		 */
648 		lowervp = LAYERVPTOLOWERVP(vp);
649 		if (flags & LK_INTERLOCK) {
650 			simple_unlock(&vp->v_interlock);
651 			flags &= ~LK_INTERLOCK;
652 		}
653 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
654 			error = VOP_LOCK(lowervp,
655 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
656 		} else
657 			error = VOP_LOCK(lowervp, flags);
658 		if (error)
659 			return (error);
660 		if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
661 			VOP_UNLOCK(lowervp, 0);
662 		}
663 		return (error);
664 	}
665 }
666 
667 /*
668  */
669 int
670 layer_unlock(v)
671 	void *v;
672 {
673 	struct vop_unlock_args /* {
674 		struct vnode *a_vp;
675 		int a_flags;
676 		struct proc *a_p;
677 	} */ *ap = v;
678 	struct vnode *vp = ap->a_vp;
679 	int	flags = ap->a_flags;
680 
681 	if (vp->v_vnlock != NULL) {
682 		return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
683 			&vp->v_interlock));
684 	} else {
685 		if (flags & LK_INTERLOCK) {
686 			simple_unlock(&vp->v_interlock);
687 			flags &= ~LK_INTERLOCK;
688 		}
689 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
690 		return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
691 			&vp->v_interlock));
692 	}
693 }
694 
695 int
696 layer_islocked(v)
697 	void *v;
698 {
699 	struct vop_islocked_args /* {
700 		struct vnode *a_vp;
701 	} */ *ap = v;
702 	struct vnode *vp = ap->a_vp;
703 	int lkstatus;
704 
705 	if (vp->v_vnlock != NULL)
706 		return lockstatus(vp->v_vnlock);
707 
708 	lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
709 	if (lkstatus)
710 		return lkstatus;
711 
712 	return lockstatus(&vp->v_lock);
713 }
714 
715 /*
716  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
717  * syncing the underlying vnodes, since they'll be fsync'ed when
718  * reclaimed; otherwise,
719  * pass it through to the underlying layer.
720  *
721  * XXX Do we still need to worry about shallow fsync?
722  */
723 
724 int
725 layer_fsync(v)
726 	void *v;
727 {
728 	struct vop_fsync_args /* {
729 		struct vnode *a_vp;
730 		struct ucred *a_cred;
731 		int  a_flags;
732 		off_t offlo;
733 		off_t offhi;
734 		struct lwp *a_l;
735 	} */ *ap = v;
736 
737 	if (ap->a_flags & FSYNC_RECLAIM) {
738 		return 0;
739 	}
740 
741 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
742 }
743 
744 
745 int
746 layer_inactive(v)
747 	void *v;
748 {
749 	struct vop_inactive_args /* {
750 		struct vnode *a_vp;
751 		struct lwp *a_l;
752 	} */ *ap = v;
753 	struct vnode *vp = ap->a_vp;
754 
755 	/*
756 	 * Do nothing (and _don't_ bypass).
757 	 * Wait to vrele lowervp until reclaim,
758 	 * so that until then our layer_node is in the
759 	 * cache and reusable.
760 	 *
761 	 * NEEDSWORK: Someday, consider inactive'ing
762 	 * the lowervp and then trying to reactivate it
763 	 * with capabilities (v_id)
764 	 * like they do in the name lookup cache code.
765 	 * That's too much work for now.
766 	 */
767 	VOP_UNLOCK(vp, 0);
768 
769 	/*
770 	 * ..., but don't cache the device node. Also, if we did a
771 	 * remove, don't cache the node.
772 	 */
773 	if (vp->v_type == VBLK || vp->v_type == VCHR
774 	    || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED))
775 		vgone(vp);
776 	return (0);
777 }
778 
779 int
780 layer_remove(v)
781 	void *v;
782 {
783 	struct vop_remove_args /* {
784 		struct vonde		*a_dvp;
785 		struct vnode		*a_vp;
786 		struct componentname	*a_cnp;
787 	} */ *ap = v;
788 
789 	int		error;
790 	struct vnode	*vp = ap->a_vp;
791 
792 	vref(vp);
793 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
794 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
795 
796 	vrele(vp);
797 
798 	return (error);
799 }
800 
801 int
802 layer_rename(v)
803 	void *v;
804 {
805 	struct vop_rename_args  /* {
806 		struct vnode		*a_fdvp;
807 		struct vnode		*a_fvp;
808 		struct componentname	*a_fcnp;
809 		struct vnode		*a_tdvp;
810 		struct vnode		*a_tvp;
811 		struct componentname	*a_tcnp;
812 	} */ *ap = v;
813 
814 	int error;
815 	struct vnode *fdvp = ap->a_fdvp;
816 	struct vnode *tvp;
817 
818 	tvp = ap->a_tvp;
819 	if (tvp) {
820 		if (tvp->v_mount != fdvp->v_mount)
821 			tvp = NULL;
822 		else
823 			vref(tvp);
824 	}
825 	error = LAYERFS_DO_BYPASS(fdvp, ap);
826 	if (tvp) {
827 		if (error == 0)
828 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
829 		vrele(tvp);
830 	}
831 
832 	return (error);
833 }
834 
835 int
836 layer_rmdir(v)
837 	void *v;
838 {
839 	struct vop_rmdir_args /* {
840 		struct vnode		*a_dvp;
841 		struct vnode		*a_vp;
842 		struct componentname	*a_cnp;
843 	} */ *ap = v;
844 	int		error;
845 	struct vnode	*vp = ap->a_vp;
846 
847 	vref(vp);
848 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
849 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
850 
851 	vrele(vp);
852 
853 	return (error);
854 }
855 
856 int
857 layer_reclaim(v)
858 	void *v;
859 {
860 	struct vop_reclaim_args /* {
861 		struct vnode *a_vp;
862 		struct lwp *a_l;
863 	} */ *ap = v;
864 	struct vnode *vp = ap->a_vp;
865 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
866 	struct layer_node *xp = VTOLAYER(vp);
867 	struct vnode *lowervp = xp->layer_lowervp;
868 
869 	/*
870 	 * Note: in vop_reclaim, the node's struct lock has been
871 	 * decomissioned, so we have to be careful about calling
872 	 * VOP's on ourself. Even if we turned a LK_DRAIN into an
873 	 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
874 	 * set.
875 	 */
876 	/* After this assignment, this node will not be re-used. */
877 	if ((vp == lmp->layerm_rootvp)) {
878 		/*
879 		 * Oops! We no longer have a root node. Most likely reason is
880 		 * that someone forcably unmunted the underlying fs.
881 		 *
882 		 * Now getting the root vnode will fail. We're dead. :-(
883 		 */
884 		lmp->layerm_rootvp = NULL;
885 	}
886 	xp->layer_lowervp = NULL;
887 	simple_lock(&lmp->layerm_hashlock);
888 	LIST_REMOVE(xp, layer_hash);
889 	simple_unlock(&lmp->layerm_hashlock);
890 	FREE(vp->v_data, M_TEMP);
891 	vp->v_data = NULL;
892 	vrele (lowervp);
893 	return (0);
894 }
895 
896 /*
897  * We just feed the returned vnode up to the caller - there's no need
898  * to build a layer node on top of the node on which we're going to do
899  * i/o. :-)
900  */
901 int
902 layer_bmap(v)
903 	void *v;
904 {
905 	struct vop_bmap_args /* {
906 		struct vnode *a_vp;
907 		daddr_t  a_bn;
908 		struct vnode **a_vpp;
909 		daddr_t *a_bnp;
910 		int *a_runp;
911 	} */ *ap = v;
912 	struct vnode *vp;
913 
914 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
915 
916 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
917 }
918 
919 int
920 layer_print(v)
921 	void *v;
922 {
923 	struct vop_print_args /* {
924 		struct vnode *a_vp;
925 	} */ *ap = v;
926 	struct vnode *vp = ap->a_vp;
927 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
928 	return (0);
929 }
930 
931 /*
932  * XXX - vop_bwrite must be hand coded because it has no
933  * vnode in its arguments.
934  * This goes away with a merged VM/buffer cache.
935  */
936 int
937 layer_bwrite(v)
938 	void *v;
939 {
940 	struct vop_bwrite_args /* {
941 		struct buf *a_bp;
942 	} */ *ap = v;
943 	struct buf *bp = ap->a_bp;
944 	int error;
945 	struct vnode *savedvp;
946 
947 	savedvp = bp->b_vp;
948 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
949 
950 	error = VOP_BWRITE(bp);
951 
952 	bp->b_vp = savedvp;
953 
954 	return (error);
955 }
956 
957 int
958 layer_getpages(v)
959 	void *v;
960 {
961 	struct vop_getpages_args /* {
962 		struct vnode *a_vp;
963 		voff_t a_offset;
964 		struct vm_page **a_m;
965 		int *a_count;
966 		int a_centeridx;
967 		vm_prot_t a_access_type;
968 		int a_advice;
969 		int a_flags;
970 	} */ *ap = v;
971 	struct vnode *vp = ap->a_vp;
972 	int error;
973 
974 	/*
975 	 * just pass the request on to the underlying layer.
976 	 */
977 
978 	if (ap->a_flags & PGO_LOCKED) {
979 		return EBUSY;
980 	}
981 	ap->a_vp = LAYERVPTOLOWERVP(vp);
982 	simple_unlock(&vp->v_interlock);
983 	simple_lock(&ap->a_vp->v_interlock);
984 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
985 	return error;
986 }
987 
988 int
989 layer_putpages(v)
990 	void *v;
991 {
992 	struct vop_putpages_args /* {
993 		struct vnode *a_vp;
994 		voff_t a_offlo;
995 		voff_t a_offhi;
996 		int a_flags;
997 	} */ *ap = v;
998 	struct vnode *vp = ap->a_vp;
999 	int error;
1000 
1001 	/*
1002 	 * just pass the request on to the underlying layer.
1003 	 */
1004 
1005 	ap->a_vp = LAYERVPTOLOWERVP(vp);
1006 	simple_unlock(&vp->v_interlock);
1007 	simple_lock(&ap->a_vp->v_interlock);
1008 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
1009 	return error;
1010 }
1011