xref: /netbsd-src/sys/miscfs/genfs/layer_vnops.c (revision da5f4674a3fc214be3572d358b66af40ab9401e7)
1 /*	$NetBSD: layer_vnops.c,v 1.11 2003/08/07 16:32:36 agc Exp $	*/
2 
3 /*
4  * Copyright (c) 1999 National Aeronautics & Space Administration
5  * All rights reserved.
6  *
7  * This software was written by William Studenmund of the
8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the National Aeronautics & Space Administration
19  *    nor the names of its contributors may be used to endorse or promote
20  *    products derived from this software without specific prior written
21  *    permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 /*
36  * Copyright (c) 1992, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * John Heidemann of the UCLA Ficus project.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
67  *
68  * Ancestors:
69  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
70  *	$Id: layer_vnops.c,v 1.11 2003/08/07 16:32:36 agc Exp $
71  *	...and...
72  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73  */
74 
75 /*
76  * Null Layer vnode routines.
77  *
78  * (See mount_null(8) for more information.)
79  *
80  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81  * the core implimentation of the null file system and most other stacked
82  * fs's. The description below refers to the null file system, but the
83  * services provided by the layer* files are useful for all layered fs's.
84  *
85  * The null layer duplicates a portion of the file system
86  * name space under a new name.  In this respect, it is
87  * similar to the loopback file system.  It differs from
88  * the loopback fs in two respects:  it is implemented using
89  * a stackable layers techniques, and it's "null-node"s stack above
90  * all lower-layer vnodes, not just over directory vnodes.
91  *
92  * The null layer has two purposes.  First, it serves as a demonstration
93  * of layering by proving a layer which does nothing.  (It actually
94  * does everything the loopback file system does, which is slightly
95  * more than nothing.)  Second, the null layer can serve as a prototype
96  * layer.  Since it provides all necessary layer framework,
97  * new file system layers can be created very easily be starting
98  * with a null layer.
99  *
100  * The remainder of the man page examines the null layer as a basis
101  * for constructing new layers.
102  *
103  *
104  * INSTANTIATING NEW NULL LAYERS
105  *
106  * New null layers are created with mount_null(8).
107  * Mount_null(8) takes two arguments, the pathname
108  * of the lower vfs (target-pn) and the pathname where the null
109  * layer will appear in the namespace (alias-pn).  After
110  * the null layer is put into place, the contents
111  * of target-pn subtree will be aliased under alias-pn.
112  *
113  * It is conceivable that other overlay filesystems will take different
114  * parameters. For instance, data migration or access controll layers might
115  * only take one pathname which will serve both as the target-pn and
116  * alias-pn described above.
117  *
118  *
119  * OPERATION OF A NULL LAYER
120  *
121  * The null layer is the minimum file system layer,
122  * simply bypassing all possible operations to the lower layer
123  * for processing there.  The majority of its activity centers
124  * on the bypass routine, though which nearly all vnode operations
125  * pass.
126  *
127  * The bypass routine accepts arbitrary vnode operations for
128  * handling by the lower layer.  It begins by examing vnode
129  * operation arguments and replacing any layered nodes by their
130  * lower-layer equivlants.  It then invokes the operation
131  * on the lower layer.  Finally, it replaces the layered nodes
132  * in the arguments and, if a vnode is return by the operation,
133  * stacks a layered node on top of the returned vnode.
134  *
135  * The bypass routine in this file, layer_bypass(), is suitable for use
136  * by many different layered filesystems. It can be used by multiple
137  * filesystems simultaneously. Alternatively, a layered fs may provide
138  * its own bypass routine, in which case layer_bypass() should be used as
139  * a model. For instance, the main functionality provided by umapfs, the user
140  * identity mapping file system, is handled by a custom bypass routine.
141  *
142  * Typically a layered fs registers its selected bypass routine as the
143  * default vnode operation in its vnodeopv_entry_desc table. Additionally
144  * the filesystem must store the bypass entry point in the layerm_bypass
145  * field of struct layer_mount. All other layer routines in this file will
146  * use the layerm_bypass routine.
147  *
148  * Although the bypass routine handles most operations outright, a number
149  * of operations are special cased, and handled by the layered fs. One
150  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151  * layer_fsync, perform layer-specific manipulation in addition to calling
152  * the bypass routine. The other group
153 
154  * Although bypass handles most operations, vop_getattr, vop_lock,
155  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156  * bypassed. Vop_getattr must change the fsid being returned.
157  * Vop_lock and vop_unlock must handle any locking for the
158  * current vnode as well as pass the lock request down.
159  * Vop_inactive and vop_reclaim are not bypassed so that
160  * they can handle freeing null-layer specific data. Vop_print
161  * is not bypassed to avoid excessive debugging information.
162  * Also, certain vnode operations change the locking state within
163  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164  * and symlink). Ideally these operations should not change the
165  * lock state, but should be changed to let the caller of the
166  * function unlock them. Otherwise all intermediate vnode layers
167  * (such as union, umapfs, etc) must catch these functions to do
168  * the necessary locking at their layer.
169  *
170  *
171  * INSTANTIATING VNODE STACKS
172  *
173  * Mounting associates the null layer with a lower layer,
174  * effect stacking two VFSes.  Vnode stacks are instead
175  * created on demand as files are accessed.
176  *
177  * The initial mount creates a single vnode stack for the
178  * root of the new null layer.  All other vnode stacks
179  * are created as a result of vnode operations on
180  * this or other null vnode stacks.
181  *
182  * New vnode stacks come into existance as a result of
183  * an operation which returns a vnode.
184  * The bypass routine stacks a null-node above the new
185  * vnode before returning it to the caller.
186  *
187  * For example, imagine mounting a null layer with
188  * "mount_null /usr/include /dev/layer/null".
189  * Changing directory to /dev/layer/null will assign
190  * the root null-node (which was created when the null layer was mounted).
191  * Now consider opening "sys".  A vop_lookup would be
192  * done on the root null-node.  This operation would bypass through
193  * to the lower layer which would return a vnode representing
194  * the UFS "sys".  layer_bypass then builds a null-node
195  * aliasing the UFS "sys" and returns this to the caller.
196  * Later operations on the null-node "sys" will repeat this
197  * process when constructing other vnode stacks.
198  *
199  *
200  * CREATING OTHER FILE SYSTEM LAYERS
201  *
202  * One of the easiest ways to construct new file system layers is to make
203  * a copy of the null layer, rename all files and variables, and
204  * then begin modifing the copy.  Sed can be used to easily rename
205  * all variables.
206  *
207  * The umap layer is an example of a layer descended from the
208  * null layer.
209  *
210  *
211  * INVOKING OPERATIONS ON LOWER LAYERS
212  *
213  * There are two techniques to invoke operations on a lower layer
214  * when the operation cannot be completely bypassed.  Each method
215  * is appropriate in different situations.  In both cases,
216  * it is the responsibility of the aliasing layer to make
217  * the operation arguments "correct" for the lower layer
218  * by mapping an vnode arguments to the lower layer.
219  *
220  * The first approach is to call the aliasing layer's bypass routine.
221  * This method is most suitable when you wish to invoke the operation
222  * currently being hanldled on the lower layer.  It has the advantage
223  * that the bypass routine already must do argument mapping.
224  * An example of this is null_getattrs in the null layer.
225  *
226  * A second approach is to directly invoked vnode operations on
227  * the lower layer with the VOP_OPERATIONNAME interface.
228  * The advantage of this method is that it is easy to invoke
229  * arbitrary operations on the lower layer.  The disadvantage
230  * is that vnodes arguments must be manualy mapped.
231  *
232  */
233 
234 #include <sys/cdefs.h>
235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.11 2003/08/07 16:32:36 agc Exp $");
236 
237 #include <sys/param.h>
238 #include <sys/systm.h>
239 #include <sys/proc.h>
240 #include <sys/time.h>
241 #include <sys/vnode.h>
242 #include <sys/mount.h>
243 #include <sys/namei.h>
244 #include <sys/malloc.h>
245 #include <sys/buf.h>
246 #include <miscfs/genfs/layer.h>
247 #include <miscfs/genfs/layer_extern.h>
248 #include <miscfs/genfs/genfs.h>
249 
250 
251 /*
252  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
253  *		routine by John Heidemann.
254  *	The new element for this version is that the whole nullfs
255  * system gained the concept of locks on the lower node, and locks on
256  * our nodes. When returning from a call to the lower layer, we may
257  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
258  * macros provide this functionality.
259  *    The 10-Apr-92 version was optimized for speed, throwing away some
260  * safety checks.  It should still always work, but it's not as
261  * robust to programmer errors.
262  *    Define SAFETY to include some error checking code.
263  *
264  * In general, we map all vnodes going down and unmap them on the way back.
265  *
266  * Also, some BSD vnode operations have the side effect of vrele'ing
267  * their arguments.  With stacking, the reference counts are held
268  * by the upper node, not the lower one, so we must handle these
269  * side-effects here.  This is not of concern in Sun-derived systems
270  * since there are no such side-effects.
271  *
272  * New for the 08-June-99 version: we also handle operations which unlock
273  * the passed-in node (typically they vput the node).
274  *
275  * This makes the following assumptions:
276  * - only one returned vpp
277  * - no INOUT vpp's (Sun's vop_open has one of these)
278  * - the vnode operation vector of the first vnode should be used
279  *   to determine what implementation of the op should be invoked
280  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
281  *   problems on rmdir'ing mount points and renaming?)
282  */
283 int
284 layer_bypass(v)
285 	void *v;
286 {
287 	struct vop_generic_args /* {
288 		struct vnodeop_desc *a_desc;
289 		<other random data follows, presumably>
290 	} */ *ap = v;
291 	int (**our_vnodeop_p) __P((void *));
292 	struct vnode **this_vp_p;
293 	int error, error1;
294 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
295 	struct vnode **vps_p[VDESC_MAX_VPS];
296 	struct vnode ***vppp;
297 	struct vnodeop_desc *descp = ap->a_desc;
298 	int reles, i, flags;
299 
300 #ifdef SAFETY
301 	/*
302 	 * We require at least one vp.
303 	 */
304 	if (descp->vdesc_vp_offsets == NULL ||
305 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
306 		panic ("layer_bypass: no vp's in map.\n");
307 #endif
308 
309 	vps_p[0] = VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[0],ap);
310 	vp0 = *vps_p[0];
311 	flags = MOUNTTOLAYERMOUNT(vp0->v_mount)->layerm_flags;
312 	our_vnodeop_p = vp0->v_op;
313 
314 	if (flags & LAYERFS_MBYPASSDEBUG)
315 		printf ("layer_bypass: %s\n", descp->vdesc_name);
316 
317 	/*
318 	 * Map the vnodes going in.
319 	 * Later, we'll invoke the operation based on
320 	 * the first mapped vnode's operation vector.
321 	 */
322 	reles = descp->vdesc_flags;
323 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
324 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
325 			break;   /* bail out at end of list */
326 		vps_p[i] = this_vp_p =
327 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
328 		/*
329 		 * We're not guaranteed that any but the first vnode
330 		 * are of our type.  Check for and don't map any
331 		 * that aren't.  (We must always map first vp or vclean fails.)
332 		 */
333 		if (i && (*this_vp_p == NULL ||
334 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
335 			old_vps[i] = NULL;
336 		} else {
337 			old_vps[i] = *this_vp_p;
338 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
339 			/*
340 			 * XXX - Several operations have the side effect
341 			 * of vrele'ing their vp's.  We must account for
342 			 * that.  (This should go away in the future.)
343 			 */
344 			if (reles & VDESC_VP0_WILLRELE)
345 				VREF(*this_vp_p);
346 		}
347 
348 	}
349 
350 	/*
351 	 * Call the operation on the lower layer
352 	 * with the modified argument structure.
353 	 */
354 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
355 
356 	/*
357 	 * Maintain the illusion of call-by-value
358 	 * by restoring vnodes in the argument structure
359 	 * to their original value.
360 	 */
361 	reles = descp->vdesc_flags;
362 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
363 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
364 			break;   /* bail out at end of list */
365 		if (old_vps[i]) {
366 			*(vps_p[i]) = old_vps[i];
367 			if (reles & VDESC_VP0_WILLUNLOCK)
368 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
369 			if (reles & VDESC_VP0_WILLRELE)
370 				vrele(*(vps_p[i]));
371 		}
372 	}
373 
374 	/*
375 	 * Map the possible out-going vpp
376 	 * (Assumes that the lower layer always returns
377 	 * a VREF'ed vpp unless it gets an error.)
378 	 */
379 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
380 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
381 	    !error) {
382 		/*
383 		 * XXX - even though some ops have vpp returned vp's,
384 		 * several ops actually vrele this before returning.
385 		 * We must avoid these ops.
386 		 * (This should go away when these ops are regularized.)
387 		 */
388 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
389 			goto out;
390 		vppp = VOPARG_OFFSETTO(struct vnode***,
391 				 descp->vdesc_vpp_offset,ap);
392 		/*
393 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
394 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
395 		 * doesn't call bypass as the lower vpp is fine (we're just
396 		 * going to do i/o on it). vop_loookup doesn't call bypass
397 		 * as a lookup on "." would generate a locking error.
398 		 * So all the calls which get us here have a locked vpp. :-)
399 		 */
400 		error = layer_node_create(old_vps[0]->v_mount, **vppp, *vppp);
401 	}
402 
403  out:
404 	return (error);
405 }
406 
407 /*
408  * We have to carry on the locking protocol on the layer vnodes
409  * as we progress through the tree. We also have to enforce read-only
410  * if this layer is mounted read-only.
411  */
412 int
413 layer_lookup(v)
414 	void *v;
415 {
416 	struct vop_lookup_args /* {
417 		struct vnodeop_desc *a_desc;
418 		struct vnode * a_dvp;
419 		struct vnode ** a_vpp;
420 		struct componentname * a_cnp;
421 	} */ *ap = v;
422 	struct componentname *cnp = ap->a_cnp;
423 	int flags = cnp->cn_flags;
424 	struct vnode *dvp, *vp, *ldvp;
425 	int error, r;
426 
427 	dvp = ap->a_dvp;
428 
429 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
430 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
431 		return (EROFS);
432 
433 	ldvp = LAYERVPTOLOWERVP(dvp);
434 	ap->a_dvp = ldvp;
435 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
436 	vp = *ap->a_vpp;
437 
438 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
439 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
440 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
441 		error = EROFS;
442 	/*
443 	 * We must do the same locking and unlocking at this layer as
444 	 * is done in the layers below us. It used to be we would try
445 	 * to guess based on what was set with the flags and error codes.
446 	 *
447 	 * But that doesn't work. So now we have the underlying VOP_LOOKUP
448 	 * tell us if it released the parent vnode, and we adjust the
449 	 * upper node accordingly. We can't just look at the lock states
450 	 * of the lower nodes as someone else might have come along and
451 	 * locked the parent node after our call to VOP_LOOKUP locked it.
452 	 */
453 	if ((cnp->cn_flags & PDIRUNLOCK)) {
454 		LAYERFS_UPPERUNLOCK(dvp, 0, r);
455 	}
456 	if (ldvp == vp) {
457 		/*
458 		 * Did lookup on "." or ".." in the root node of a mount point.
459 		 * So we return dvp after a VREF.
460 		 */
461 		*ap->a_vpp = dvp;
462 		VREF(dvp);
463 		vrele(vp);
464 	} else if (vp != NULL) {
465 		error = layer_node_create(dvp->v_mount, vp, ap->a_vpp);
466 	}
467 	return (error);
468 }
469 
470 /*
471  * Setattr call. Disallow write attempts if the layer is mounted read-only.
472  */
473 int
474 layer_setattr(v)
475 	void *v;
476 {
477 	struct vop_setattr_args /* {
478 		struct vnodeop_desc *a_desc;
479 		struct vnode *a_vp;
480 		struct vattr *a_vap;
481 		struct ucred *a_cred;
482 		struct proc *a_p;
483 	} */ *ap = v;
484 	struct vnode *vp = ap->a_vp;
485 	struct vattr *vap = ap->a_vap;
486 
487   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
488 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
489 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
490 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
491 		return (EROFS);
492 	if (vap->va_size != VNOVAL) {
493  		switch (vp->v_type) {
494  		case VDIR:
495  			return (EISDIR);
496  		case VCHR:
497  		case VBLK:
498  		case VSOCK:
499  		case VFIFO:
500 			return (0);
501 		case VREG:
502 		case VLNK:
503  		default:
504 			/*
505 			 * Disallow write attempts if the filesystem is
506 			 * mounted read-only.
507 			 */
508 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
509 				return (EROFS);
510 		}
511 	}
512 	return (LAYERFS_DO_BYPASS(vp, ap));
513 }
514 
515 /*
516  *  We handle getattr only to change the fsid.
517  */
518 int
519 layer_getattr(v)
520 	void *v;
521 {
522 	struct vop_getattr_args /* {
523 		struct vnode *a_vp;
524 		struct vattr *a_vap;
525 		struct ucred *a_cred;
526 		struct proc *a_p;
527 	} */ *ap = v;
528 	struct vnode *vp = ap->a_vp;
529 	int error;
530 
531 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
532 		return (error);
533 	/* Requires that arguments be restored. */
534 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
535 	return (0);
536 }
537 
538 int
539 layer_access(v)
540 	void *v;
541 {
542 	struct vop_access_args /* {
543 		struct vnode *a_vp;
544 		int  a_mode;
545 		struct ucred *a_cred;
546 		struct proc *a_p;
547 	} */ *ap = v;
548 	struct vnode *vp = ap->a_vp;
549 	mode_t mode = ap->a_mode;
550 
551 	/*
552 	 * Disallow write attempts on read-only layers;
553 	 * unless the file is a socket, fifo, or a block or
554 	 * character device resident on the file system.
555 	 */
556 	if (mode & VWRITE) {
557 		switch (vp->v_type) {
558 		case VDIR:
559 		case VLNK:
560 		case VREG:
561 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
562 				return (EROFS);
563 			break;
564 		default:
565 			break;
566 		}
567 	}
568 	return (LAYERFS_DO_BYPASS(vp, ap));
569 }
570 
571 /*
572  * We must handle open to be able to catch MNT_NODEV and friends.
573  */
574 int
575 layer_open(v)
576 	void *v;
577 {
578 	struct vop_open_args *ap = v;
579 	struct vnode *vp = ap->a_vp;
580 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
581 
582 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
583 	    (vp->v_mount->mnt_flag & MNT_NODEV))
584 		return ENXIO;
585 
586 	return LAYERFS_DO_BYPASS(vp, ap);
587 }
588 
589 /*
590  * We need to process our own vnode lock and then clear the
591  * interlock flag as it applies only to our vnode, not the
592  * vnodes below us on the stack.
593  */
594 int
595 layer_lock(v)
596 	void *v;
597 {
598 	struct vop_lock_args /* {
599 		struct vnode *a_vp;
600 		int a_flags;
601 		struct proc *a_p;
602 	} */ *ap = v;
603 	struct vnode *vp = ap->a_vp, *lowervp;
604 	int	flags = ap->a_flags, error;
605 
606 	if (vp->v_vnlock != NULL) {
607 		/*
608 		 * The lower level has exported a struct lock to us. Use
609 		 * it so that all vnodes in the stack lock and unlock
610 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
611 		 * decommissions the lock - just because our vnode is
612 		 * going away doesn't mean the struct lock below us is.
613 		 * LK_EXCLUSIVE is fine.
614 		 */
615 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
616 			return(lockmgr(vp->v_vnlock,
617 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
618 				&vp->v_interlock));
619 		} else
620 			return(lockmgr(vp->v_vnlock, flags, &vp->v_interlock));
621 	} else {
622 		/*
623 		 * Ahh well. It would be nice if the fs we're over would
624 		 * export a struct lock for us to use, but it doesn't.
625 		 *
626 		 * To prevent race conditions involving doing a lookup
627 		 * on "..", we have to lock the lower node, then lock our
628 		 * node. Most of the time it won't matter that we lock our
629 		 * node (as any locking would need the lower one locked
630 		 * first). But we can LK_DRAIN the upper lock as a step
631 		 * towards decomissioning it.
632 		 */
633 		lowervp = LAYERVPTOLOWERVP(vp);
634 		if (flags & LK_INTERLOCK) {
635 			simple_unlock(&vp->v_interlock);
636 			flags &= ~LK_INTERLOCK;
637 		}
638 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
639 			error = VOP_LOCK(lowervp,
640 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE);
641 		} else
642 			error = VOP_LOCK(lowervp, flags);
643 		if (error)
644 			return (error);
645 		if ((error = lockmgr(&vp->v_lock, flags, &vp->v_interlock))) {
646 			VOP_UNLOCK(lowervp, 0);
647 		}
648 		return (error);
649 	}
650 }
651 
652 /*
653  */
654 int
655 layer_unlock(v)
656 	void *v;
657 {
658 	struct vop_unlock_args /* {
659 		struct vnode *a_vp;
660 		int a_flags;
661 		struct proc *a_p;
662 	} */ *ap = v;
663 	struct vnode *vp = ap->a_vp;
664 	int	flags = ap->a_flags;
665 
666 	if (vp->v_vnlock != NULL) {
667 		return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
668 			&vp->v_interlock));
669 	} else {
670 		if (flags & LK_INTERLOCK) {
671 			simple_unlock(&vp->v_interlock);
672 			flags &= ~LK_INTERLOCK;
673 		}
674 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
675 		return (lockmgr(&vp->v_lock, ap->a_flags | LK_RELEASE,
676 			&vp->v_interlock));
677 	}
678 }
679 
680 /*
681  * As long as genfs_nolock is in use, don't call VOP_ISLOCKED(lowervp)
682  * if vp->v_vnlock == NULL as genfs_noislocked will always report 0.
683  */
684 int
685 layer_islocked(v)
686 	void *v;
687 {
688 	struct vop_islocked_args /* {
689 		struct vnode *a_vp;
690 	} */ *ap = v;
691 	struct vnode *vp = ap->a_vp;
692 
693 	if (vp->v_vnlock != NULL)
694 		return (lockstatus(vp->v_vnlock));
695 	else
696 		return (lockstatus(&vp->v_lock));
697 }
698 
699 /*
700  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
701  * syncing the underlying vnodes, since they'll be fsync'ed when
702  * reclaimed; otherwise,
703  * pass it through to the underlying layer.
704  *
705  * XXX Do we still need to worry about shallow fsync?
706  */
707 
708 int
709 layer_fsync(v)
710 	void *v;
711 {
712 	struct vop_fsync_args /* {
713 		struct vnode *a_vp;
714 		struct ucred *a_cred;
715 		int  a_flags;
716 		off_t offlo;
717 		off_t offhi;
718 		struct proc *a_p;
719 	} */ *ap = v;
720 
721 	if (ap->a_flags & FSYNC_RECLAIM) {
722 		return 0;
723 	}
724 
725 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
726 }
727 
728 
729 int
730 layer_inactive(v)
731 	void *v;
732 {
733 	struct vop_inactive_args /* {
734 		struct vnode *a_vp;
735 		struct proc *a_p;
736 	} */ *ap = v;
737 	struct vnode *vp = ap->a_vp;
738 
739 	/*
740 	 * Do nothing (and _don't_ bypass).
741 	 * Wait to vrele lowervp until reclaim,
742 	 * so that until then our layer_node is in the
743 	 * cache and reusable.
744 	 *
745 	 * NEEDSWORK: Someday, consider inactive'ing
746 	 * the lowervp and then trying to reactivate it
747 	 * with capabilities (v_id)
748 	 * like they do in the name lookup cache code.
749 	 * That's too much work for now.
750 	 */
751 	VOP_UNLOCK(vp, 0);
752 
753 	/* ..., but don't cache the device node. */
754 	if (vp->v_type == VBLK || vp->v_type == VCHR)
755 		vgone(vp);
756 	return (0);
757 }
758 
759 int
760 layer_reclaim(v)
761 	void *v;
762 {
763 	struct vop_reclaim_args /* {
764 		struct vnode *a_vp;
765 		struct proc *a_p;
766 	} */ *ap = v;
767 	struct vnode *vp = ap->a_vp;
768 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
769 	struct layer_node *xp = VTOLAYER(vp);
770 	struct vnode *lowervp = xp->layer_lowervp;
771 
772 	/*
773 	 * Note: in vop_reclaim, the node's struct lock has been
774 	 * decomissioned, so we have to be careful about calling
775 	 * VOP's on ourself. Even if we turned a LK_DRAIN into an
776 	 * LK_EXCLUSIVE in layer_lock, we still must be careful as VXLOCK is
777 	 * set.
778 	 */
779 	/* After this assignment, this node will not be re-used. */
780 	if ((vp == lmp->layerm_rootvp)) {
781 		/*
782 		 * Oops! We no longer have a root node. Most likely reason is
783 		 * that someone forcably unmunted the underlying fs.
784 		 *
785 		 * Now getting the root vnode will fail. We're dead. :-(
786 		 */
787 		lmp->layerm_rootvp = NULL;
788 	}
789 	xp->layer_lowervp = NULL;
790 	simple_lock(&lmp->layerm_hashlock);
791 	LIST_REMOVE(xp, layer_hash);
792 	simple_unlock(&lmp->layerm_hashlock);
793 	FREE(vp->v_data, M_TEMP);
794 	vp->v_data = NULL;
795 	vrele (lowervp);
796 	return (0);
797 }
798 
799 /*
800  * We just feed the returned vnode up to the caller - there's no need
801  * to build a layer node on top of the node on which we're going to do
802  * i/o. :-)
803  */
804 int
805 layer_bmap(v)
806 	void *v;
807 {
808 	struct vop_bmap_args /* {
809 		struct vnode *a_vp;
810 		daddr_t  a_bn;
811 		struct vnode **a_vpp;
812 		daddr_t *a_bnp;
813 		int *a_runp;
814 	} */ *ap = v;
815 	struct vnode *vp;
816 
817 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
818 
819 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
820 }
821 
822 int
823 layer_print(v)
824 	void *v;
825 {
826 	struct vop_print_args /* {
827 		struct vnode *a_vp;
828 	} */ *ap = v;
829 	struct vnode *vp = ap->a_vp;
830 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
831 	return (0);
832 }
833 
834 /*
835  * XXX - vop_strategy must be hand coded because it has no
836  * vnode in its arguments.
837  * This goes away with a merged VM/buffer cache.
838  */
839 int
840 layer_strategy(v)
841 	void *v;
842 {
843 	struct vop_strategy_args /* {
844 		struct buf *a_bp;
845 	} */ *ap = v;
846 	struct buf *bp = ap->a_bp;
847 	int error;
848 	struct vnode *savedvp;
849 
850 	savedvp = bp->b_vp;
851 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
852 
853 	error = VOP_STRATEGY(bp);
854 
855 	bp->b_vp = savedvp;
856 
857 	return (error);
858 }
859 
860 /*
861  * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
862  * vnode in its arguments.
863  * This goes away with a merged VM/buffer cache.
864  */
865 int
866 layer_bwrite(v)
867 	void *v;
868 {
869 	struct vop_bwrite_args /* {
870 		struct buf *a_bp;
871 	} */ *ap = v;
872 	struct buf *bp = ap->a_bp;
873 	int error;
874 	struct vnode *savedvp;
875 
876 	savedvp = bp->b_vp;
877 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
878 
879 	error = VOP_BWRITE(bp);
880 
881 	bp->b_vp = savedvp;
882 
883 	return (error);
884 }
885 
886 int
887 layer_getpages(v)
888 	void *v;
889 {
890 	struct vop_getpages_args /* {
891 		struct vnode *a_vp;
892 		voff_t a_offset;
893 		struct vm_page **a_m;
894 		int *a_count;
895 		int a_centeridx;
896 		vm_prot_t a_access_type;
897 		int a_advice;
898 		int a_flags;
899 	} */ *ap = v;
900 	struct vnode *vp = ap->a_vp;
901 	int error;
902 
903 	/*
904 	 * just pass the request on to the underlying layer.
905 	 */
906 
907 	if (ap->a_flags & PGO_LOCKED) {
908 		return EBUSY;
909 	}
910 	ap->a_vp = LAYERVPTOLOWERVP(vp);
911 	simple_unlock(&vp->v_interlock);
912 	simple_lock(&ap->a_vp->v_interlock);
913 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
914 	return error;
915 }
916 
917 int
918 layer_putpages(v)
919 	void *v;
920 {
921 	struct vop_putpages_args /* {
922 		struct vnode *a_vp;
923 		voff_t a_offlo;
924 		voff_t a_offhi;
925 		int a_flags;
926 	} */ *ap = v;
927 	struct vnode *vp = ap->a_vp;
928 	int error;
929 
930 	/*
931 	 * just pass the request on to the underlying layer.
932 	 */
933 
934 	ap->a_vp = LAYERVPTOLOWERVP(vp);
935 	simple_unlock(&vp->v_interlock);
936 	simple_lock(&ap->a_vp->v_interlock);
937 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
938 	return error;
939 }
940