xref: /netbsd-src/sys/miscfs/genfs/layer_vnops.c (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1 /*	$NetBSD: layer_vnops.c,v 1.35 2008/01/30 09:50:23 ad Exp $	*/
2 
3 /*
4  * Copyright (c) 1999 National Aeronautics & Space Administration
5  * All rights reserved.
6  *
7  * This software was written by William Studenmund of the
8  * Numerical Aerospace Simulation Facility, NASA Ames Research Center.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the National Aeronautics & Space Administration
19  *    nor the names of its contributors may be used to endorse or promote
20  *    products derived from this software without specific prior written
21  *    permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NATIONAL AERONAUTICS & SPACE ADMINISTRATION
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE ADMINISTRATION OR CONTRIB-
27  * UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
28  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 /*
36  * Copyright (c) 1992, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * John Heidemann of the UCLA Ficus project.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
67  *
68  * Ancestors:
69  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
70  *	Id: lofs_vnops.c,v 1.11 1992/05/30 10:05:43 jsp Exp jsp
71  *	...and...
72  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
73  */
74 
75 /*
76  * Null Layer vnode routines.
77  *
78  * (See mount_null(8) for more information.)
79  *
80  * The layer.h, layer_extern.h, layer_vfs.c, and layer_vnops.c files provide
81  * the core implementation of the null file system and most other stacked
82  * fs's. The description below refers to the null file system, but the
83  * services provided by the layer* files are useful for all layered fs's.
84  *
85  * The null layer duplicates a portion of the file system
86  * name space under a new name.  In this respect, it is
87  * similar to the loopback file system.  It differs from
88  * the loopback fs in two respects:  it is implemented using
89  * a stackable layers techniques, and it's "null-node"s stack above
90  * all lower-layer vnodes, not just over directory vnodes.
91  *
92  * The null layer has two purposes.  First, it serves as a demonstration
93  * of layering by proving a layer which does nothing.  (It actually
94  * does everything the loopback file system does, which is slightly
95  * more than nothing.)  Second, the null layer can serve as a prototype
96  * layer.  Since it provides all necessary layer framework,
97  * new file system layers can be created very easily be starting
98  * with a null layer.
99  *
100  * The remainder of the man page examines the null layer as a basis
101  * for constructing new layers.
102  *
103  *
104  * INSTANTIATING NEW NULL LAYERS
105  *
106  * New null layers are created with mount_null(8).
107  * Mount_null(8) takes two arguments, the pathname
108  * of the lower vfs (target-pn) and the pathname where the null
109  * layer will appear in the namespace (alias-pn).  After
110  * the null layer is put into place, the contents
111  * of target-pn subtree will be aliased under alias-pn.
112  *
113  * It is conceivable that other overlay filesystems will take different
114  * parameters. For instance, data migration or access controll layers might
115  * only take one pathname which will serve both as the target-pn and
116  * alias-pn described above.
117  *
118  *
119  * OPERATION OF A NULL LAYER
120  *
121  * The null layer is the minimum file system layer,
122  * simply bypassing all possible operations to the lower layer
123  * for processing there.  The majority of its activity centers
124  * on the bypass routine, through which nearly all vnode operations
125  * pass.
126  *
127  * The bypass routine accepts arbitrary vnode operations for
128  * handling by the lower layer.  It begins by examing vnode
129  * operation arguments and replacing any layered nodes by their
130  * lower-layer equivalents.  It then invokes the operation
131  * on the lower layer.  Finally, it replaces the layered nodes
132  * in the arguments and, if a vnode is return by the operation,
133  * stacks a layered node on top of the returned vnode.
134  *
135  * The bypass routine in this file, layer_bypass(), is suitable for use
136  * by many different layered filesystems. It can be used by multiple
137  * filesystems simultaneously. Alternatively, a layered fs may provide
138  * its own bypass routine, in which case layer_bypass() should be used as
139  * a model. For instance, the main functionality provided by umapfs, the user
140  * identity mapping file system, is handled by a custom bypass routine.
141  *
142  * Typically a layered fs registers its selected bypass routine as the
143  * default vnode operation in its vnodeopv_entry_desc table. Additionally
144  * the filesystem must store the bypass entry point in the layerm_bypass
145  * field of struct layer_mount. All other layer routines in this file will
146  * use the layerm_bypass routine.
147  *
148  * Although the bypass routine handles most operations outright, a number
149  * of operations are special cased, and handled by the layered fs. One
150  * group, layer_setattr, layer_getattr, layer_access, layer_open, and
151  * layer_fsync, perform layer-specific manipulation in addition to calling
152  * the bypass routine. The other group
153 
154  * Although bypass handles most operations, vop_getattr, vop_lock,
155  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
156  * bypassed. Vop_getattr must change the fsid being returned.
157  * Vop_lock and vop_unlock must handle any locking for the
158  * current vnode as well as pass the lock request down.
159  * Vop_inactive and vop_reclaim are not bypassed so that
160  * they can handle freeing null-layer specific data. Vop_print
161  * is not bypassed to avoid excessive debugging information.
162  * Also, certain vnode operations change the locking state within
163  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
164  * and symlink). Ideally these operations should not change the
165  * lock state, but should be changed to let the caller of the
166  * function unlock them. Otherwise all intermediate vnode layers
167  * (such as union, umapfs, etc) must catch these functions to do
168  * the necessary locking at their layer.
169  *
170  *
171  * INSTANTIATING VNODE STACKS
172  *
173  * Mounting associates the null layer with a lower layer,
174  * effect stacking two VFSes.  Vnode stacks are instead
175  * created on demand as files are accessed.
176  *
177  * The initial mount creates a single vnode stack for the
178  * root of the new null layer.  All other vnode stacks
179  * are created as a result of vnode operations on
180  * this or other null vnode stacks.
181  *
182  * New vnode stacks come into existence as a result of
183  * an operation which returns a vnode.
184  * The bypass routine stacks a null-node above the new
185  * vnode before returning it to the caller.
186  *
187  * For example, imagine mounting a null layer with
188  * "mount_null /usr/include /dev/layer/null".
189  * Changing directory to /dev/layer/null will assign
190  * the root null-node (which was created when the null layer was mounted).
191  * Now consider opening "sys".  A vop_lookup would be
192  * done on the root null-node.  This operation would bypass through
193  * to the lower layer which would return a vnode representing
194  * the UFS "sys".  layer_bypass then builds a null-node
195  * aliasing the UFS "sys" and returns this to the caller.
196  * Later operations on the null-node "sys" will repeat this
197  * process when constructing other vnode stacks.
198  *
199  *
200  * CREATING OTHER FILE SYSTEM LAYERS
201  *
202  * One of the easiest ways to construct new file system layers is to make
203  * a copy of the null layer, rename all files and variables, and
204  * then begin modifing the copy.  Sed can be used to easily rename
205  * all variables.
206  *
207  * The umap layer is an example of a layer descended from the
208  * null layer.
209  *
210  *
211  * INVOKING OPERATIONS ON LOWER LAYERS
212  *
213  * There are two techniques to invoke operations on a lower layer
214  * when the operation cannot be completely bypassed.  Each method
215  * is appropriate in different situations.  In both cases,
216  * it is the responsibility of the aliasing layer to make
217  * the operation arguments "correct" for the lower layer
218  * by mapping an vnode arguments to the lower layer.
219  *
220  * The first approach is to call the aliasing layer's bypass routine.
221  * This method is most suitable when you wish to invoke the operation
222  * currently being handled on the lower layer.  It has the advantage
223  * that the bypass routine already must do argument mapping.
224  * An example of this is null_getattrs in the null layer.
225  *
226  * A second approach is to directly invoke vnode operations on
227  * the lower layer with the VOP_OPERATIONNAME interface.
228  * The advantage of this method is that it is easy to invoke
229  * arbitrary operations on the lower layer.  The disadvantage
230  * is that vnodes' arguments must be manually mapped.
231  *
232  */
233 
234 #include <sys/cdefs.h>
235 __KERNEL_RCSID(0, "$NetBSD: layer_vnops.c,v 1.35 2008/01/30 09:50:23 ad Exp $");
236 
237 #include <sys/param.h>
238 #include <sys/systm.h>
239 #include <sys/proc.h>
240 #include <sys/time.h>
241 #include <sys/vnode.h>
242 #include <sys/mount.h>
243 #include <sys/namei.h>
244 #include <sys/kmem.h>
245 #include <sys/buf.h>
246 #include <sys/kauth.h>
247 
248 #include <miscfs/genfs/layer.h>
249 #include <miscfs/genfs/layer_extern.h>
250 #include <miscfs/genfs/genfs.h>
251 
252 
253 /*
254  * This is the 08-June-99 bypass routine, based on the 10-Apr-92 bypass
255  *		routine by John Heidemann.
256  *	The new element for this version is that the whole nullfs
257  * system gained the concept of locks on the lower node, and locks on
258  * our nodes. When returning from a call to the lower layer, we may
259  * need to update lock state ONLY on our layer. The LAYERFS_UPPER*LOCK()
260  * macros provide this functionality.
261  *    The 10-Apr-92 version was optimized for speed, throwing away some
262  * safety checks.  It should still always work, but it's not as
263  * robust to programmer errors.
264  *    Define SAFETY to include some error checking code.
265  *
266  * In general, we map all vnodes going down and unmap them on the way back.
267  *
268  * Also, some BSD vnode operations have the side effect of vrele'ing
269  * their arguments.  With stacking, the reference counts are held
270  * by the upper node, not the lower one, so we must handle these
271  * side-effects here.  This is not of concern in Sun-derived systems
272  * since there are no such side-effects.
273  *
274  * New for the 08-June-99 version: we also handle operations which unlock
275  * the passed-in node (typically they vput the node).
276  *
277  * This makes the following assumptions:
278  * - only one returned vpp
279  * - no INOUT vpp's (Sun's vop_open has one of these)
280  * - the vnode operation vector of the first vnode should be used
281  *   to determine what implementation of the op should be invoked
282  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
283  *   problems on rmdir'ing mount points and renaming?)
284  */
285 int
286 layer_bypass(v)
287 	void *v;
288 {
289 	struct vop_generic_args /* {
290 		struct vnodeop_desc *a_desc;
291 		<other random data follows, presumably>
292 	} */ *ap = v;
293 	int (**our_vnodeop_p)(void *);
294 	struct vnode **this_vp_p;
295 	int error, error1;
296 	struct vnode *old_vps[VDESC_MAX_VPS], *vp0;
297 	struct vnode **vps_p[VDESC_MAX_VPS];
298 	struct vnode ***vppp;
299 	struct mount *mp;
300 	struct vnodeop_desc *descp = ap->a_desc;
301 	int reles, i, flags;
302 
303 #ifdef SAFETY
304 	/*
305 	 * We require at least one vp.
306 	 */
307 	if (descp->vdesc_vp_offsets == NULL ||
308 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
309 		panic("%s: no vp's in map.\n", __func__);
310 #endif
311 
312 	vps_p[0] =
313 	    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[0], ap);
314 	vp0 = *vps_p[0];
315 	mp = vp0->v_mount;
316 	flags = MOUNTTOLAYERMOUNT(mp)->layerm_flags;
317 	our_vnodeop_p = vp0->v_op;
318 
319 	if (flags & LAYERFS_MBYPASSDEBUG)
320 		printf("%s: %s\n", __func__, descp->vdesc_name);
321 
322 	/*
323 	 * Map the vnodes going in.
324 	 * Later, we'll invoke the operation based on
325 	 * the first mapped vnode's operation vector.
326 	 */
327 	reles = descp->vdesc_flags;
328 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
329 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
330 			break;   /* bail out at end of list */
331 		vps_p[i] = this_vp_p =
332 		    VOPARG_OFFSETTO(struct vnode**, descp->vdesc_vp_offsets[i],
333 		    ap);
334 		/*
335 		 * We're not guaranteed that any but the first vnode
336 		 * are of our type.  Check for and don't map any
337 		 * that aren't.  (We must always map first vp or vclean fails.)
338 		 */
339 		if (i && (*this_vp_p == NULL ||
340 		    (*this_vp_p)->v_op != our_vnodeop_p)) {
341 			old_vps[i] = NULL;
342 		} else {
343 			old_vps[i] = *this_vp_p;
344 			*(vps_p[i]) = LAYERVPTOLOWERVP(*this_vp_p);
345 			/*
346 			 * XXX - Several operations have the side effect
347 			 * of vrele'ing their vp's.  We must account for
348 			 * that.  (This should go away in the future.)
349 			 */
350 			if (reles & VDESC_VP0_WILLRELE)
351 				VREF(*this_vp_p);
352 		}
353 
354 	}
355 
356 	/*
357 	 * Call the operation on the lower layer
358 	 * with the modified argument structure.
359 	 */
360 	error = VCALL(*vps_p[0], descp->vdesc_offset, ap);
361 
362 	/*
363 	 * Maintain the illusion of call-by-value
364 	 * by restoring vnodes in the argument structure
365 	 * to their original value.
366 	 */
367 	reles = descp->vdesc_flags;
368 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
369 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
370 			break;   /* bail out at end of list */
371 		if (old_vps[i]) {
372 			*(vps_p[i]) = old_vps[i];
373 			if (reles & VDESC_VP0_WILLUNLOCK)
374 				LAYERFS_UPPERUNLOCK(*(vps_p[i]), 0, error1);
375 			if (reles & VDESC_VP0_WILLRELE)
376 				vrele(*(vps_p[i]));
377 		}
378 	}
379 
380 	/*
381 	 * Map the possible out-going vpp
382 	 * (Assumes that the lower layer always returns
383 	 * a VREF'ed vpp unless it gets an error.)
384 	 */
385 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
386 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
387 	    !error) {
388 		/*
389 		 * XXX - even though some ops have vpp returned vp's,
390 		 * several ops actually vrele this before returning.
391 		 * We must avoid these ops.
392 		 * (This should go away when these ops are regularized.)
393 		 */
394 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
395 			goto out;
396 		vppp = VOPARG_OFFSETTO(struct vnode***,
397 				 descp->vdesc_vpp_offset, ap);
398 		/*
399 		 * Only vop_lookup, vop_create, vop_makedir, vop_bmap,
400 		 * vop_mknod, and vop_symlink return vpp's. vop_bmap
401 		 * doesn't call bypass as the lower vpp is fine (we're just
402 		 * going to do i/o on it). vop_lookup doesn't call bypass
403 		 * as a lookup on "." would generate a locking error.
404 		 * So all the calls which get us here have a locked vpp. :-)
405 		 */
406 		error = layer_node_create(mp, **vppp, *vppp);
407 		if (error) {
408 			vput(**vppp);
409 			**vppp = NULL;
410 		}
411 	}
412 
413  out:
414 	return (error);
415 }
416 
417 /*
418  * We have to carry on the locking protocol on the layer vnodes
419  * as we progress through the tree. We also have to enforce read-only
420  * if this layer is mounted read-only.
421  */
422 int
423 layer_lookup(v)
424 	void *v;
425 {
426 	struct vop_lookup_args /* {
427 		struct vnodeop_desc *a_desc;
428 		struct vnode * a_dvp;
429 		struct vnode ** a_vpp;
430 		struct componentname * a_cnp;
431 	} */ *ap = v;
432 	struct componentname *cnp = ap->a_cnp;
433 	int flags = cnp->cn_flags;
434 	struct vnode *dvp, *lvp, *ldvp;
435 	int error;
436 
437 	dvp = ap->a_dvp;
438 
439 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
440 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
441 		return (EROFS);
442 
443 	ldvp = LAYERVPTOLOWERVP(dvp);
444 	ap->a_dvp = ldvp;
445 	error = VCALL(ldvp, ap->a_desc->vdesc_offset, ap);
446 	lvp = *ap->a_vpp;
447 	*ap->a_vpp = NULL;
448 
449 	if (error == EJUSTRETURN && (flags & ISLASTCN) &&
450 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
451 	    (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
452 		error = EROFS;
453 
454 	/*
455 	 * We must do the same locking and unlocking at this layer as
456 	 * is done in the layers below us.
457 	 */
458 	if (ldvp == lvp) {
459 
460 		/*
461 		 * Did lookup on "." or ".." in the root node of a mount point.
462 		 * So we return dvp after a VREF.
463 		 */
464 		VREF(dvp);
465 		*ap->a_vpp = dvp;
466 		vrele(lvp);
467 	} else if (lvp != NULL) {
468 		/* dvp, ldvp and vp are all locked */
469 		error = layer_node_create(dvp->v_mount, lvp, ap->a_vpp);
470 		if (error) {
471 			vput(lvp);
472 		}
473 	}
474 	return (error);
475 }
476 
477 /*
478  * Setattr call. Disallow write attempts if the layer is mounted read-only.
479  */
480 int
481 layer_setattr(v)
482 	void *v;
483 {
484 	struct vop_setattr_args /* {
485 		struct vnodeop_desc *a_desc;
486 		struct vnode *a_vp;
487 		struct vattr *a_vap;
488 		kauth_cred_t a_cred;
489 		struct lwp *a_l;
490 	} */ *ap = v;
491 	struct vnode *vp = ap->a_vp;
492 	struct vattr *vap = ap->a_vap;
493 
494   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
495 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
496 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
497 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
498 		return (EROFS);
499 	if (vap->va_size != VNOVAL) {
500  		switch (vp->v_type) {
501  		case VDIR:
502  			return (EISDIR);
503  		case VCHR:
504  		case VBLK:
505  		case VSOCK:
506  		case VFIFO:
507 			return (0);
508 		case VREG:
509 		case VLNK:
510  		default:
511 			/*
512 			 * Disallow write attempts if the filesystem is
513 			 * mounted read-only.
514 			 */
515 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
516 				return (EROFS);
517 		}
518 	}
519 	return (LAYERFS_DO_BYPASS(vp, ap));
520 }
521 
522 /*
523  *  We handle getattr only to change the fsid.
524  */
525 int
526 layer_getattr(v)
527 	void *v;
528 {
529 	struct vop_getattr_args /* {
530 		struct vnode *a_vp;
531 		struct vattr *a_vap;
532 		kauth_cred_t a_cred;
533 		struct lwp *a_l;
534 	} */ *ap = v;
535 	struct vnode *vp = ap->a_vp;
536 	int error;
537 
538 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) != 0)
539 		return (error);
540 	/* Requires that arguments be restored. */
541 	ap->a_vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
542 	return (0);
543 }
544 
545 int
546 layer_access(v)
547 	void *v;
548 {
549 	struct vop_access_args /* {
550 		struct vnode *a_vp;
551 		int  a_mode;
552 		kauth_cred_t a_cred;
553 		struct lwp *a_l;
554 	} */ *ap = v;
555 	struct vnode *vp = ap->a_vp;
556 	mode_t mode = ap->a_mode;
557 
558 	/*
559 	 * Disallow write attempts on read-only layers;
560 	 * unless the file is a socket, fifo, or a block or
561 	 * character device resident on the file system.
562 	 */
563 	if (mode & VWRITE) {
564 		switch (vp->v_type) {
565 		case VDIR:
566 		case VLNK:
567 		case VREG:
568 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
569 				return (EROFS);
570 			break;
571 		default:
572 			break;
573 		}
574 	}
575 	return (LAYERFS_DO_BYPASS(vp, ap));
576 }
577 
578 /*
579  * We must handle open to be able to catch MNT_NODEV and friends.
580  */
581 int
582 layer_open(v)
583 	void *v;
584 {
585 	struct vop_open_args *ap = v;
586 	struct vnode *vp = ap->a_vp;
587 	enum vtype lower_type = LAYERVPTOLOWERVP(vp)->v_type;
588 
589 	if (((lower_type == VBLK) || (lower_type == VCHR)) &&
590 	    (vp->v_mount->mnt_flag & MNT_NODEV))
591 		return ENXIO;
592 
593 	return LAYERFS_DO_BYPASS(vp, ap);
594 }
595 
596 /*
597  * We need to process our own vnode lock and then clear the
598  * interlock flag as it applies only to our vnode, not the
599  * vnodes below us on the stack.
600  */
601 int
602 layer_lock(v)
603 	void *v;
604 {
605 	struct vop_lock_args /* {
606 		struct vnode *a_vp;
607 		int a_flags;
608 		struct proc *a_p;
609 	} */ *ap = v;
610 	struct vnode *vp = ap->a_vp, *lowervp;
611 	int	flags = ap->a_flags, error;
612 
613 	if (flags & LK_INTERLOCK) {
614 		mutex_exit(&vp->v_interlock);
615 		flags &= ~LK_INTERLOCK;
616 	}
617 
618 	if (vp->v_vnlock != NULL) {
619 		/*
620 		 * The lower level has exported a struct lock to us. Use
621 		 * it so that all vnodes in the stack lock and unlock
622 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
623 		 * decommissions the lock - just because our vnode is
624 		 * going away doesn't mean the struct lock below us is.
625 		 * LK_EXCLUSIVE is fine.
626 		 */
627 		return (vlockmgr(vp->v_vnlock, flags));
628 	} else {
629 		/*
630 		 * Ahh well. It would be nice if the fs we're over would
631 		 * export a struct lock for us to use, but it doesn't.
632 		 *
633 		 * To prevent race conditions involving doing a lookup
634 		 * on "..", we have to lock the lower node, then lock our
635 		 * node. Most of the time it won't matter that we lock our
636 		 * node (as any locking would need the lower one locked
637 		 * first).
638 		 */
639 		lowervp = LAYERVPTOLOWERVP(vp);
640 		error = VOP_LOCK(lowervp, flags);
641 		if (error)
642 			return (error);
643 		if ((error = vlockmgr(&vp->v_lock, flags))) {
644 			VOP_UNLOCK(lowervp, 0);
645 		}
646 		return (error);
647 	}
648 }
649 
650 /*
651  */
652 int
653 layer_unlock(v)
654 	void *v;
655 {
656 	struct vop_unlock_args /* {
657 		struct vnode *a_vp;
658 		int a_flags;
659 		struct proc *a_p;
660 	} */ *ap = v;
661 	struct vnode *vp = ap->a_vp;
662 	int	flags = ap->a_flags;
663 
664 	if (flags & LK_INTERLOCK) {
665 		mutex_exit(&vp->v_interlock);
666 		flags &= ~LK_INTERLOCK;
667 	}
668 
669 	if (vp->v_vnlock != NULL) {
670 		return (vlockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE));
671 	} else {
672 		VOP_UNLOCK(LAYERVPTOLOWERVP(vp), flags);
673 		return (vlockmgr(&vp->v_lock, flags | LK_RELEASE));
674 	}
675 }
676 
677 int
678 layer_islocked(v)
679 	void *v;
680 {
681 	struct vop_islocked_args /* {
682 		struct vnode *a_vp;
683 	} */ *ap = v;
684 	struct vnode *vp = ap->a_vp;
685 	int lkstatus;
686 
687 	if (vp->v_vnlock != NULL)
688 		return vlockstatus(vp->v_vnlock);
689 
690 	lkstatus = VOP_ISLOCKED(LAYERVPTOLOWERVP(vp));
691 	if (lkstatus)
692 		return lkstatus;
693 
694 	return vlockstatus(&vp->v_lock);
695 }
696 
697 /*
698  * If vinvalbuf is calling us, it's a "shallow fsync" -- don't bother
699  * syncing the underlying vnodes, since they'll be fsync'ed when
700  * reclaimed; otherwise,
701  * pass it through to the underlying layer.
702  *
703  * XXX Do we still need to worry about shallow fsync?
704  */
705 
706 int
707 layer_fsync(v)
708 	void *v;
709 {
710 	struct vop_fsync_args /* {
711 		struct vnode *a_vp;
712 		kauth_cred_t a_cred;
713 		int  a_flags;
714 		off_t offlo;
715 		off_t offhi;
716 		struct lwp *a_l;
717 	} */ *ap = v;
718 
719 	if (ap->a_flags & FSYNC_RECLAIM) {
720 		return 0;
721 	}
722 
723 	return (LAYERFS_DO_BYPASS(ap->a_vp, ap));
724 }
725 
726 
727 int
728 layer_inactive(v)
729 	void *v;
730 {
731 	struct vop_inactive_args /* {
732 		struct vnode *a_vp;
733 		bool *a_recycle;
734 	} */ *ap = v;
735 	struct vnode *vp = ap->a_vp;
736 
737 	/*
738 	 * ..., but don't cache the device node. Also, if we did a
739 	 * remove, don't cache the node.
740 	 */
741 	*ap->a_recycle = (vp->v_type == VBLK || vp->v_type == VCHR
742 	    || (VTOLAYER(vp)->layer_flags & LAYERFS_REMOVED));
743 
744 	/*
745 	 * Do nothing (and _don't_ bypass).
746 	 * Wait to vrele lowervp until reclaim,
747 	 * so that until then our layer_node is in the
748 	 * cache and reusable.
749 	 *
750 	 * NEEDSWORK: Someday, consider inactive'ing
751 	 * the lowervp and then trying to reactivate it
752 	 * with capabilities (v_id)
753 	 * like they do in the name lookup cache code.
754 	 * That's too much work for now.
755 	 */
756 	VOP_UNLOCK(vp, 0);
757 
758 	return (0);
759 }
760 
761 int
762 layer_remove(v)
763 	void *v;
764 {
765 	struct vop_remove_args /* {
766 		struct vonde		*a_dvp;
767 		struct vnode		*a_vp;
768 		struct componentname	*a_cnp;
769 	} */ *ap = v;
770 
771 	int		error;
772 	struct vnode	*vp = ap->a_vp;
773 
774 	vref(vp);
775 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
776 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
777 
778 	vrele(vp);
779 
780 	return (error);
781 }
782 
783 int
784 layer_rename(v)
785 	void *v;
786 {
787 	struct vop_rename_args  /* {
788 		struct vnode		*a_fdvp;
789 		struct vnode		*a_fvp;
790 		struct componentname	*a_fcnp;
791 		struct vnode		*a_tdvp;
792 		struct vnode		*a_tvp;
793 		struct componentname	*a_tcnp;
794 	} */ *ap = v;
795 
796 	int error;
797 	struct vnode *fdvp = ap->a_fdvp;
798 	struct vnode *tvp;
799 
800 	tvp = ap->a_tvp;
801 	if (tvp) {
802 		if (tvp->v_mount != fdvp->v_mount)
803 			tvp = NULL;
804 		else
805 			vref(tvp);
806 	}
807 	error = LAYERFS_DO_BYPASS(fdvp, ap);
808 	if (tvp) {
809 		if (error == 0)
810 			VTOLAYER(tvp)->layer_flags |= LAYERFS_REMOVED;
811 		vrele(tvp);
812 	}
813 
814 	return (error);
815 }
816 
817 int
818 layer_rmdir(v)
819 	void *v;
820 {
821 	struct vop_rmdir_args /* {
822 		struct vnode		*a_dvp;
823 		struct vnode		*a_vp;
824 		struct componentname	*a_cnp;
825 	} */ *ap = v;
826 	int		error;
827 	struct vnode	*vp = ap->a_vp;
828 
829 	vref(vp);
830 	if ((error = LAYERFS_DO_BYPASS(vp, ap)) == 0)
831 		VTOLAYER(vp)->layer_flags |= LAYERFS_REMOVED;
832 
833 	vrele(vp);
834 
835 	return (error);
836 }
837 
838 int
839 layer_reclaim(v)
840 	void *v;
841 {
842 	struct vop_reclaim_args /* {
843 		struct vnode *a_vp;
844 		struct lwp *a_l;
845 	} */ *ap = v;
846 	struct vnode *vp = ap->a_vp;
847 	struct layer_mount *lmp = MOUNTTOLAYERMOUNT(vp->v_mount);
848 	struct layer_node *xp = VTOLAYER(vp);
849 	struct vnode *lowervp = xp->layer_lowervp;
850 
851 	/*
852 	 * Note: in vop_reclaim, the node's struct lock has been
853 	 * decomissioned, so we have to be careful about calling
854 	 * VOP's on ourself.  We must be careful as VXLOCK is set.
855 	 */
856 	/* After this assignment, this node will not be re-used. */
857 	if ((vp == lmp->layerm_rootvp)) {
858 		/*
859 		 * Oops! We no longer have a root node. Most likely reason is
860 		 * that someone forcably unmunted the underlying fs.
861 		 *
862 		 * Now getting the root vnode will fail. We're dead. :-(
863 		 */
864 		lmp->layerm_rootvp = NULL;
865 	}
866 	xp->layer_lowervp = NULL;
867 	mutex_enter(&lmp->layerm_hashlock);
868 	LIST_REMOVE(xp, layer_hash);
869 	mutex_exit(&lmp->layerm_hashlock);
870 	kmem_free(vp->v_data, lmp->layerm_size);
871 	vp->v_data = NULL;
872 	vrele(lowervp);
873 
874 	return (0);
875 }
876 
877 /*
878  * We just feed the returned vnode up to the caller - there's no need
879  * to build a layer node on top of the node on which we're going to do
880  * i/o. :-)
881  */
882 int
883 layer_bmap(v)
884 	void *v;
885 {
886 	struct vop_bmap_args /* {
887 		struct vnode *a_vp;
888 		daddr_t  a_bn;
889 		struct vnode **a_vpp;
890 		daddr_t *a_bnp;
891 		int *a_runp;
892 	} */ *ap = v;
893 	struct vnode *vp;
894 
895 	ap->a_vp = vp = LAYERVPTOLOWERVP(ap->a_vp);
896 
897 	return (VCALL(vp, ap->a_desc->vdesc_offset, ap));
898 }
899 
900 int
901 layer_print(v)
902 	void *v;
903 {
904 	struct vop_print_args /* {
905 		struct vnode *a_vp;
906 	} */ *ap = v;
907 	struct vnode *vp = ap->a_vp;
908 	printf ("\ttag VT_LAYERFS, vp=%p, lowervp=%p\n", vp, LAYERVPTOLOWERVP(vp));
909 	return (0);
910 }
911 
912 /*
913  * XXX - vop_bwrite must be hand coded because it has no
914  * vnode in its arguments.
915  * This goes away with a merged VM/buffer cache.
916  */
917 int
918 layer_bwrite(v)
919 	void *v;
920 {
921 	struct vop_bwrite_args /* {
922 		struct buf *a_bp;
923 	} */ *ap = v;
924 	struct buf *bp = ap->a_bp;
925 	int error;
926 	struct vnode *savedvp;
927 
928 	savedvp = bp->b_vp;
929 	bp->b_vp = LAYERVPTOLOWERVP(bp->b_vp);
930 
931 	error = VOP_BWRITE(bp);
932 
933 	bp->b_vp = savedvp;
934 
935 	return (error);
936 }
937 
938 int
939 layer_getpages(v)
940 	void *v;
941 {
942 	struct vop_getpages_args /* {
943 		struct vnode *a_vp;
944 		voff_t a_offset;
945 		struct vm_page **a_m;
946 		int *a_count;
947 		int a_centeridx;
948 		vm_prot_t a_access_type;
949 		int a_advice;
950 		int a_flags;
951 	} */ *ap = v;
952 	struct vnode *vp = ap->a_vp;
953 	int error;
954 
955 	/*
956 	 * just pass the request on to the underlying layer.
957 	 */
958 
959 	if (ap->a_flags & PGO_LOCKED) {
960 		return EBUSY;
961 	}
962 	ap->a_vp = LAYERVPTOLOWERVP(vp);
963 	mutex_exit(&vp->v_interlock);
964 	mutex_enter(&ap->a_vp->v_interlock);
965 	error = VCALL(ap->a_vp, VOFFSET(vop_getpages), ap);
966 	return error;
967 }
968 
969 int
970 layer_putpages(v)
971 	void *v;
972 {
973 	struct vop_putpages_args /* {
974 		struct vnode *a_vp;
975 		voff_t a_offlo;
976 		voff_t a_offhi;
977 		int a_flags;
978 	} */ *ap = v;
979 	struct vnode *vp = ap->a_vp;
980 	int error;
981 
982 	/*
983 	 * just pass the request on to the underlying layer.
984 	 */
985 
986 	ap->a_vp = LAYERVPTOLOWERVP(vp);
987 	mutex_exit(&vp->v_interlock);
988 	if (ap->a_flags & PGO_RECLAIM) {
989 		return 0;
990 	}
991 	mutex_enter(&ap->a_vp->v_interlock);
992 	error = VCALL(ap->a_vp, VOFFSET(vop_putpages), ap);
993 	return error;
994 }
995